1
|
Zhang J, Zhang M, Bhandari B, Wang M, Rui L. Effects and mechanisms of microencapsulation on the regulation in typical activities and flavor stability of Sichuan pepper oleoresin used for food processing and storage. Food Chem 2025; 480:143883. [PMID: 40112716 DOI: 10.1016/j.foodchem.2025.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Microencapsulation is considered to be an effective means to overcome the defects of Sichuan pepper oleoresin (SPO) and to enhance applications. To explore the improvement effect of microencapsulation on SPO in practical applications, the typical activities and flavor stability under different processing and storage conditions of SPO before and after embedding by sodium octenyl succinate starch-tea polyphenols complexes were investigated based on our previous study. The results indicated that microencapsulation improved the stability and water solubility of SPO, causing the antioxidant and antimicrobial activities to increase by 51.39 and 21.16 times. Although the flavor of SPO was highly unstable, encapsulation resisted the flavor deterioration of SPO during processing and storage, which was fundamentally attributed to the fact that coating and antioxidant effect of wall material reduced the dispersion of SPO and controlled its peroxide value to 59.59-89.23 meq/kg. This has important implications for improving the processing quality of flavored foods.
Collapse
Affiliation(s)
- Jiong Zhang
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mingqi Wang
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| | - Luming Rui
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Yechun Food Production & Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Li F, Hou H, Zhao T, Song G, Wang D, Yuan T, Li L, Gong J. Revealing the non-enzymatic covalent interaction between neo-/crypto-chlorogenic acid and beta-lactoglobulin under nonthermal process and potential delivery capability. Food Chem 2025; 475:143325. [PMID: 39946915 DOI: 10.1016/j.foodchem.2025.143325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Several studies have shown that the protein-chlorogenic acid covalent complex has better function and stability than the non-covalent. The degree of binding between the proteins and chlorogenic acids (CQA) can be enhanced by the ultrasound process. Herein, the effects of ultrasound-assisted non-enzymatic covalent binding (the free radical induction (Vc)-ultrasound combination and the alkali treatment (Alkali)-ultrasound combination) of two chlorogenic acids (neochlorogenic acid (3-CQA), cryptochlorogenic acid (4-CQA)) and β-lactoglobulin (β-LG) on proteins structure and properties were investigated. Results showed that ULG-Alkali-4CQA exhibited a 5.1 % reduction in α-helices, a 6.8 % increase in random curl and proteins structures becoming loose and disordered. The hydrophilicity and thermal stability of β-LG were effectively enhanced by the addition of 4-CQA and the effect of alkali treatment-ultrasound combination. Curcumin (CUR) and lycopene (LYC) were successfully delivered by the covalent complexes as delivery vehicles. The encapsulation efficiencies of the ULG-Vc/Alkali-4CQA + CUR and ULG-Vc/Alkali-4CQA + LYC complexes were 82.81 %, 84.16 %, 89.56 % and 90.51 %, respectively. The stabilities of CUR and LYC in the ULG-Vc/Alkali-4CQA + CUR/LYC ternary complexes were superior to those of all the measured complexes delivery systems. The study hopes to establish a theoretical foundation and serve as a reference for the advancement of a highly stable food-grade delivery system.
Collapse
Affiliation(s)
- Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Haina Hou
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tian Zhao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
3
|
Tan ZF, Zhao GH, Zhou DY, Shao ZW, Song L. Glycation-mediated pea protein isolate-curcumin conjugates for uniform walnut oil dispersion: enhancing oxidative stability and shelf life. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3593-3605. [PMID: 39831351 DOI: 10.1002/jsfa.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Traditional methods for fabricating protein-polyphenol conjugates have not preserved the structural and functional integrity essential for the food industry effectively. This research introduces an advanced encapsulation methodology designed to overcome these limitations, with the potential to enhance the stability of edible oil matrices significantly, leading to improved preservation techniques and extended shelf life. RESULTS Glycated pea protein isolate-curcumin conjugates (gPPI-CUR) were developed, demonstrating a marked improvement in the oxidative stability of walnut oil (WO), a proxy for edible oil matrices. Characterized by a Z-average diameter of 158.37 nm and an encapsulation efficiency of 80.94%, these conjugates demonstrated exceptional performance in reducing lipid oxidation and aldehyde formation. Molecular docking analysis confirmed the formation of robust bonds with curcumin, thereby amplifying antioxidant activity. The uniform distribution of gPPI-CUR throughout the walnut oil matrix, as validated by confocal microscopy, ensured sustained bioactivity and mitigated the risk of localized oxidation. Electron spin resonance spectroscopy corroborated the superior antioxidant properties of the conjugates, which translated into a substantial 19-day increase in the shelf-life of the oil. CONCLUSION The gPPI-CUR conjugates enhanced the oxidative stability of walnut oil significantly, as demonstrated by the increased shelf life and reduced lipid oxidation. This study introduced an effective encapsulation method that improved the stability and extended the shelf life of edible oils, aligning with consumer demands for high-nutrition food products. The results indicate that the gPPI-CUR conjugates could serve as a promising antioxidant strategy for food preservation, offering a practical approach to enhance food quality and safety. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Feng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guan-Hua Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co., Ltd., Qingdao, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Guo Y, Ming Y, Dong X, Nakamura Y, Dong X, Qi H. Polyphenol oxidase mediated (-)-epigallocatechin gallate stabilized protein in body wall of Apostichopus japonicus: Characteristics and structure. Food Chem 2025; 470:142710. [PMID: 39752736 DOI: 10.1016/j.foodchem.2024.142710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
Heat treatment is the most common processing method in Apostichopus japonicus (A. japonicus) processing. However, improper heat treatment can lead to the degradation of protein. In an effort to mitigate this occurrence, we looked into how the protein in the body wall of A. japonicus (AJBWP) was affected by polyphenol oxidase (PPO)-mediated (-)-epigallocatechin gallate (EGCG). The results showed that polyphenol oxidase-mediated EGCG induced protein aggregation. Meanwhile, the antioxidant and thermal stability of the protein were enhanced, and the digestive properties of the protein were inhibited. Protein structure studies have shown that polyphenol oxidase mediated EGCG changes the secondary and tertiary structure of proteins and can maintain the microstructure of proteins after heat treatment. In conclusion, polyphenol oxidase-mediated EGCG was a way to improve the thermal stability of body wall proteins and alleviate the thermal degradation of proteins in A. japonicus.
Collapse
Affiliation(s)
- Yicheng Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Ming
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Dong
- School of Public Health, Dali University, Dali 671000, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Duan C, Qin M, Liu L, Sun Y, Cai L, Ma L, Li X, Ma F, Li D. An exploration of the interaction, structural characterization and anti-oxidative properties of proanthocyanidin and beta-lactoglobulin complex. Food Res Int 2025; 202:115760. [PMID: 39967074 DOI: 10.1016/j.foodres.2025.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Proanthocyanidin (PC) is with antioxidant, anticancer and neuroprotective effects. Cow's milk beta-lactoglobulin (β-Lg) is reported with higher immunoregulatory activity but lower antioxidative function. In this study, a β-Lg-PC complex was prepared, and the interaction and structural characterization of β-Lg-PC complex were investigated by fluorescence spectral analysis, infrared spectroscopy and molecular docking, etc. PC quenched the intrinsic fluorescence and changed the conformation of β-Lg. The optimal ratio of β-Lg and PC (10:3, w/w) was determined by measuring the particle size and ζ potential. Molecular docking results implied that the covalent binding among complex was mainly concentrated on the binding of PC to amino acid residue ILE 71. Moreover, the antioxidant effects and mechanism of β-Lg-PC complex were explored using LPS-induced oxidative stress model of RAW264.7 cells. The results showed that β-Lg-PC could alleviate oxidative stress by slowing down the LPS-induced decline in SOD enzyme activity, increase in ROS level, loss of mitochondrial membrane potential and increase in apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Mengchun Qin
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Lifan Liu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Yixue Sun
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Lin Cai
- College of Food and Biology, Changchun Polytechnic, 3278 Weixing Road, Changchun 130033, Jilin Province, People's Republic of China
| | - Lin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Fumin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun 130022, Jilin Province, People's Republic of China.
| |
Collapse
|
6
|
Duan Y, Yang X, Shen R, Zhang L, Ma X, He L, Qu Y, Tong L, Han G, Yan X. Preparation of bovine liver peptide-flavonoids binary complexes by free radical grafting: Rheological properties, functional effects and spectroscopic studies. Food Chem X 2025; 26:102355. [PMID: 40160201 PMCID: PMC11951038 DOI: 10.1016/j.fochx.2025.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Free radical grafting is a green and fast method for modification of proteins and bioactive peptides. In this study, different flavonoids with flavonol, flavonoid glycoside and flavan-3-ol structures, such as quercetin (QC), rutin (RUT), and catechin (C), which are commonly used in food applications, were used as the research objects, and the binary systems of bioactive bovine liver peptides complexed with the flavonoids were prepared by free radical grafting method. The findings indicated that the affinity of catechin for bovine liver peptides markedly exceeded that of both quercetin and rutin. This observation was consistent with the extent of reduction in the content of free amino. The emulsion system formed using the binary complex was homogeneous and dense under optical microscopy, with reduced droplet diameters and significantly improved interfacial properties such as shear resistance. The combination of bovine liver peptides and flavonoids can be regarded as an effective means of modification.
Collapse
Affiliation(s)
- Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Lin Tong
- Inner Mongolia Horqin Cattle Industry Co., Horqin, China
| | | | - Xiangmin Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| |
Collapse
|
7
|
El-Said MM, Hamzalıoğlu A, Gökmen V. Characterization of whey protein concentrate-maltodextrin-pomegranate peel phenolic compounds ternary conjugate as a novel food-grade stabilizer for nano-pickering emulsion. Food Res Int 2025; 203:115894. [PMID: 40022401 DOI: 10.1016/j.foodres.2025.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Developing effective food-grade stabilizers for nano-Pickering emulsions (NPEs) presents a considerable challenge, as conventional binary systems often exhibit limited functionality. The potential of ternary conjugates incorporating bioactive phenolic compounds remains underexplored. This study aimed to synthesize a novel stabilizer through covalent bonding of whey protein concentrate (WPC), maltodextrin (MD), and pomegranate peel extract (PPex) under alkaline conditions. Ultrasonication-assisted extraction (UAE), microwave-assisted extraction (MAE), and their combination (UM) were employed to extract phenolic compounds from pomegranate peel. By optimizing MAE power (300-600 W), UAE power (200 W), and extraction times (5, 10, 20 min), the highest levels of phenolic compounds (421 ± 0.13 mg Gallic acid/100 g dry peel) and antioxidant activity (90.54 ± 0.481 %) were achieved using UAE at 200 W for 30 min combined with MAE at 300 W for 5 min. Ternary conjugates were formulated with varying concentrations of PPex (0.04 %, 0.08 %, and 0.12 %). Fourier-transform infrared spectroscopy (FTIR) confirmed the interactions between WPC, MD, and PPex. NPEs prepared with ternary conjugates containing 0.12 % PPex exhibited superior stability, enhanced antioxidant activity, and reduced release of free fatty acids during in vitro digestion. Furthermore, the emulsion demonstrated a progressively organized network microstructure, contributing to improved dispersion stability. This study underscores the potential of a ternary conjugate with 0.12 % PPex to enhance NPE stability, presenting a novel approach to developing stable food-grade NPE for functional foods. Additionally, it adds value to pomegranate peel by forming natural protein-polysaccharide- phenolic compounds complex particles.
Collapse
Affiliation(s)
- Marwa M El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Egypt
| | - Aytül Hamzalıoğlu
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
8
|
Xing Z, Fei X, Chen S, Gong D, Hu X, Zhang G. Covalent interaction of ovalbumin with proanthocyanidins improves its thermal stability and antioxidant and emulsifying activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:890-900. [PMID: 39271480 DOI: 10.1002/jsfa.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The structure of proanthocyanidins (PC) contains a large number of active phenolic hydroxyl groups, which makes it have strong antioxidant capacity. This study investigated the structural and functional properties of ovalbumin (OVA) modified by its interaction with PC. RESULTS It was found that on increasing the concentration ratio of PC to OVA from 10:1 to 40:1, the free amino and total sulfhydryl contents of OVA decreased from 470.59 ± 38.77 and 29.81 ± 0.31 nmol mg-1 to 96.61 ± 4.55 and 21.22 ± 0.78 nmol mg-1, respectively, and the free sulfhydryl content increased from 7.65 ± 0.41 to 9.48 ± 0.58 nmol mg-1. These results indicated that CN and CS bonds were formed and PC was covalently linked with OVA. The PC content in the OVA-PC conjugates increased from 281.93 ± 12.92 to 828.81 ± 46.09 nmol mg-1 on increasing the concentration ratio of PC to OVA from 10:1 to 40:1. The contents of α-helix and β-turn of OVA decreased, and the contents of β-sheet and random coil increased, confirmed by circular dichroism. The tertiary structure of OVA was also altered according to the results of fluorescence and ultraviolet absorption spectra. The surface hydrophobicity of OVA-PC conjugates decreased with increasing bound polyphenol content. The conjugation of OVA to PC significantly improved its emulsification and antioxidant activity and denaturation temperature. CONCLUSION This study may provide valuable information for improving OVA's functional properties and its PC conjugates for applications in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zenghong Xing
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xiaoyun Fei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shuling Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Son WY, Hwang J, Park JH, Kim JH, Ahmad R, Kim KS, Kim HW. Enhancement of Physicochemical and Functional Properties of Chicken Breast Protein Through Polyphenol Conjugation: A Novel Ingredient for Protein Supplements. Molecules 2025; 30:448. [PMID: 39942554 PMCID: PMC11821221 DOI: 10.3390/molecules30030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenol conjugation has emerged as a promising approach to enhance the technological properties and physiological benefits of food proteins. This study investigated the effects of polyphenol conjugation on the technological properties, antioxidant capacity, and in vitro digestibility of chicken breast (CB) proteins. Conjugation with (-)-epigallocatechin 3-gallate (EGCG) and tannic acid (TA) significantly reduced sulfhydryl content. EGCG conjugates exhibited higher turbidity and greater molecular weight aggregates (>245 kDa). Fourier-transform infrared spectroscopy (FTIR) revealed alterations in protein secondary structures, with shifts in amide I and II bands. Polyphenol conjugation significantly enhanced the water-holding capacity of chicken muscle proteins, particularly for CB-TA (3.29 g/g) and CB-EGCG (3.13 g/g) compared to the control (2.25 g/g). The emulsion stability index improved notably in CB-EGCG (96.23 min) and CB-TA (87.24 min) compared to the control (69.05 min). Color analysis revealed darker and more intense hues for CB-EGCG, while CB-TA maintained a lighter appearance, making it potentially preferable for industrial applications requiring neutral-colored powders. Moreover, polyphenol conjugation could enhance antioxidant capacity, particularly in conjugates with EGCG (p < 0.05). In vitro protein digestibility remained comparable across treatments (p > 0.05). Our findings could indicate the potential of chicken muscle protein-polyphenol conjugates as innovative ingredients for high-quality protein supplements.
Collapse
Affiliation(s)
- Woo-Young Son
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
| | - Jun Hwang
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
| | - Ju-Hyo Park
- Jungdam Co., Ltd., Suwon 16602, Republic of Korea;
| | - Ji-Han Kim
- Smart Foods, Ag Research, Palmerston North 4410, New Zealand; (J.-H.K.); (R.A.)
| | - Raise Ahmad
- Smart Foods, Ag Research, Palmerston North 4410, New Zealand; (J.-H.K.); (R.A.)
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Hyun-Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (W.-Y.S.); (J.H.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
10
|
Seddiek AS, Chen K, Zhou F, Esther MM, Elbarbary A, Golshany H, Uriho A, Liang L. Whey Protein Hydrogels and Emulsion Gels with Anthocyanins and/or Goji Oil: Formation, Characterization and In Vitro Digestion Behavior. Antioxidants (Basel) 2025; 14:60. [PMID: 39857394 PMCID: PMC11760487 DOI: 10.3390/antiox14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix. Heat-denatured WPI (hWPI) particles and emulsions were characterized in terms of size distribution, ζ-potential, interfacial protein, and anthocyanin partition. The inclusion of anthocyanins-rich blueberry extract led to the aggregation of hWPI particles, but it also increased the interfacial protein of 10% goji oil emulsions to 20% and decreased their size distribution to 120 and 325 nm. WPI hydrogels and emulsion gels were analyzed in terms of their water-holding capacity, which decreased from 98% to 82% with the addition of blueberry extract and goji oil. Syneresis, rheological, and morphological characteristics were also analyzed. The gelation time of hWPI particles and emulsions was shortened from 24 h to 12 h when incorporating blueberry extract to form a dense network. The network was the most homogeneous and densest in the presence of 3% blueberry extract and 5% goji oil. The co-inclusion of blueberry extract and goji oil increased the syneresis during the freeze-thaw cycles, with the values rising from 13% to 36% for 5% BE hydrogel and BE-containing emulsion gels after the first cycle. All WPI hydrogels and emulsion gels exhibit predominantly elastic behavior. Moreover, anthocyanin release, antioxidant activity, and the fatty acid composition profile were also analyzed during in vitro digestion. Soluble and free anthocyanins in the digested medium were reduced with the goji oil content but increased with the blueberry extract content. The stability of polyunsaturated fatty acids in the digested medium was improved by the addition of blueberry extract. The antioxidant activity of the digested medium increased with the content of blueberry extract but decreased with the content of goji oil. The ABTS∙+ scavenging capacities decreased from 63% to 49% by increasing the content of GO from 0% to 10% and they increased from 48% to 57% for 5% BE and 10% GO emulsion gels as the BE content increased from 0% to 5% after 6 h of digestion. The data gathered should provide valuable insights for future efforts to co-encapsulate hydrophilic and hydrophobic agents, thereby enhancing their stability, bioavailability, and functional properties for potential applications in food industries.
Collapse
Affiliation(s)
- Abdullah S. Seddiek
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fanlin Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Muhindo Mwizerwa Esther
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Abdelaziz Elbarbary
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Dairy Science Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Angelo Uriho
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Li F, Xiang T, Jiang L, Cheng Y, Song G, Wang D, Yuan T, Li L, Chen F, Luo Z, Gong J. New insights into ultrasound-assisted noncovalent nanocomplexes of β-lactoglobulin and neochlorogenic acid/cryptochlorogenic acid and its potential application for curcumin loading. Food Res Int 2025; 199:115384. [PMID: 39658175 DOI: 10.1016/j.foodres.2024.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The cross-linking sites and structure of protein-polyphenol complexes are susceptible to the type, structure, weight of polyphenols under nonthermal process. The low bioavailability and poor gastrointestinal instability of curcumin (CUR) hampers its application. Hence, changes in binding mechanism, structural and functional properties between β-lactoglobulin (β-LG) with two different configurations of chlorogenic acids (neochlorogenic acids (3-CQA) and cryptochlorogenic acids (4-CQA) by non-covalent binding under ultrasonic treatment, and the potential capacity for loading CUR were researched. The binding affinity scores of β-LG-4CQA was -7.1 kcal/mol. It is higher than β-LG-3CQA (-6.8 kcal/mol), which implied that the interaction between β-LG and 4-CQA was stronger. Circular dichroism calculations showed that the sonicated complex of the β-LG and 4-CQA with a decreased content of α-helices by 5.4 %, β-sheets by 4.6 %, and an increased content of irregular curls by 8.4 % (p < 0.05). The result demonstrated ultrasound and the binding of β-LG to 3/4-CQA improved the hydrophilicity, thermal stability, and antioxidant property of β-LG. Furthermore, the embedding rate of CUR in the ultrasound-assisted β-LG-4-CQA complex could reach 71.56 %. Consistent with the structural characterization results, the CUR release rate of ULG-4-CQA + CUR complex reached 17.36 % in simulated intestinal digestion, which was 8.09 % higher than free CUR. Indicating that after embedding with protein-polyphenol complexes, the stability and bioaccessibility of CUR was improved. This study reveals the potential application of ultrasound-assisted protein-polyphenol complexes for loading CUR.
Collapse
Affiliation(s)
- Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Taijiao Xiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lie Jiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, SC 29634, USA
| | - Zisheng Luo
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
12
|
Wang Y, Guo H, Zhao T, Chen J, Cheng D. Ca 2+-promoted free radical grafting of whey protein to EGCG: As a novel nanocarrier for the encapsulation of apigenin. Food Chem 2024; 460:140554. [PMID: 39053280 DOI: 10.1016/j.foodchem.2024.140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Whey protein (WP) is often used as a delivery carrier due to its superior biological activity and nutritional value. Covalent binding of WP to epigallocatechin gallate (EGCG) can significantly improve the performance of WP in encapsulated materials. Nevertheless, the preparation of WP-EGCG covalent complexes still suffers from low grafting rates. Studies have shown that calcium ions (Ca2+) can modify the structure of proteins. We therefore explored the effect of calcium chloride (CaCl2) on the free radical grafting of EGCG and WP. The experimental results showed that the grafting rate of free radicals increased by 17.89% after adding Ca2+. Furthermore, the impact of WP-EGCG-Ca2+ covalent complex on the entrapment efficiency of apigenin (AP) was further examined, and the results revealed that the entrapment rate could reach 93.66% at an apigenin concentration of 0.2 mg/mL. Simulated gastrointestinal digestion showed that WP-EGCG-Ca2+ covalent complex could significantly improve the bioavailability of AP. The study provides new ideas to broaden the application of WP as a carrier for delivering bioactive substances.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Heliang Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tingting Zhao
- Shanxi Technology and Business University, Taiyuan, 030000, China
| | - Jinlong Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
13
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
14
|
Zhou W, Geng Q, Zhang Y, Zhou X, Wu Z, Chen H, El-Sohaimy S. The flavonoid-allergen interaction and its influence on allergenicity. FOOD BIOSCI 2024; 61:104939. [DOI: 10.1016/j.fbio.2024.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Chen N, Jiao Z, Xie K, Liu J, Yao P, Luo Y, Zhang T, Cheng K, Zhao C. Effects of Protein on Green Tea Quality in a Milk-Tea Model during Heat Treatment: Antioxidant Activity, Foaming Properties, and Unbound Small-molecule Metabolome. J Dairy Sci 2024:S0022-0302(24)01115-9. [PMID: 39245173 DOI: 10.3168/jds.2024-25167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Tea drinks/beverage has a long history and milk is often added to enhance its taste and nutritional value, whereas the interaction between the tea bioactive compounds with proteins has not been systematically investigated. In this study, a milk-tea model was prepared by mixing green tea solution with milk and then heated at 100°C for 15 min. The milk tea was then measured using biochemical assay, antioxidant detection kit, microscopy as well as HPLC-QTOF-MS/MS after ultrafiltration. The study found that as the concentration of milk protein increased in the milk-tea system, the total phenol-protein binding rate raised from 19.63% to 51.08%, which led to a decrease in free polyphenol content. This decrease of polyphenol was also revealed in the antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability and ferric ion reducing antioxidant power, in a dose-dependent manner. Untargeted metabolomics results revealed that the majority of small-molecule compounds/polyphenols in tea, such as epigallocatechin gallate, (-)-epicatechin gallate, and Catechin 5,7,-di-O-gallate, bound to milk proteins and were removed by ultrafiltration after addition of milk and heat treatment. The SDS-PAGE and Native-PAGE results further indicated that small molecule compounds in tea formed covalent and non-covalent complexes by binding to milk proteins. All above results partially explained that milk proteins form conjugates with tea small-molecule compounds. Consistently, the particle size of the tea-milk system increased as the tea concentration increased, but the polymer dispersity index decreased, indicating a more uniform molecular weight distribution of the particles in the system. Addition of milk protein enhanced foam ability in the milk-tea system but reduced foam stability. In summary, our findings suggest that the proportion of milk added to tea infusion needs to be considered to maintain the quality of milk-tea from multiple perspectives, including stability, nutritional quality and antioxidant activity.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, 5333 Xi'an Road, Jilin University, Changchun 130062, China
| | - Zeting Jiao
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Ke Xie
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Junying Liu
- College of Food Science and Engineering, 5333 Xi'an Road, Jilin University, Changchun 130062, China
| | - Peng Yao
- College of Food Science and Engineering, 5333 Xi'an Road, Jilin University, Changchun 130062, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Tiehua Zhang
- College of Food Science and Engineering, 5333 Xi'an Road, Jilin University, Changchun 130062, China
| | - Ken Cheng
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB UK.
| | - Changhui Zhao
- College of Food Science and Engineering, 5333 Xi'an Road, Jilin University, Changchun 130062, China.
| |
Collapse
|
16
|
Tang W, Wang R, Li M, Zhang Q, He J, Liu D, Feng Y, Liu W, Liu J. High-pressure microfluidization enhanced the stability of sodium caseinate-EGCG complex-stabilized fish oil emulsion. Food Chem 2024; 444:138669. [PMID: 38341915 DOI: 10.1016/j.foodchem.2024.138669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Improving the emulsion-stabilizing effect of protein by chemical or physical modification has been paid much attention recently. Here, sodium caseinate (CS) was treated by high-pressure-microfluidization (HPM) under 0-100 MPa, and was further complexed with (-)-epigallocatechin-3-gallate (EGCG) to form an excellent emulsifier that stabilized fish oil emulsions. Results showed that HPM treatment (especially 80 MPa) significantly changed the secondary structure of CS, and 80 MPa-PCS-EGCG had the best emulsifying and antioxidant activities. In addition, after HPM treatment and EGCG bonding, CS formed a thicker interface layer on the surface of oil droplets, which could better protect the fish oil from the influence by oxygen, temperature and ion concentration. Moreover, the fish oil emulsion stabilized by PCS-EGCG complex significantly delayed the release of free fatty acids subjected to in vitro digestion. Conclusively, HPM-treated CS-EGCG complex could be a potential emulsifier to improve the stability of fish oil emulsions.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Minghui Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingchun Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Yuqi Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
17
|
Song G, Li F, Shi X, Liu J, Cheng Y, Wu Y, Fang Z, Zhu Y, Wang D, Yuan T, Cai R, Li L, Gong J. Characterization of ultrasound-assisted covalent binding interaction between β-lactoglobulin and dicaffeoylquinic acid: Great potential for the curcumin delivery. Food Chem 2024; 441:138400. [PMID: 38199107 DOI: 10.1016/j.foodchem.2024.138400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
The low bioavailability and poor gastrointestinal instability of curcumin hampers its application in pharmaceutical and food industries. Thus, it is essential to explore efficient carrier (e.g. a combination of polyphenols and proteins) for food systems. In this study, covalent β-lactoglobulin (LG)-dicaffeoylquinic acids (DCQAs) complexes were prepared by combining ultrasound and free radical induction methods. Covalent interactions between LG and DCQAs were confirmed by analyzing reactive groups. Variations in secondary or tertiary structure and potential binding sites of covalent complexes were explored using Fourier transform infrared spectroscopy and circular dichroism. Results showed that the β-sheet content decreased and the unordered content increased significantly (P < 0.05). The embedding rate of curcumin in prepared LG-DCQAs complexes using ultrasound could reach 49 % - 62 %, proving that complexes could embed curcumin effectively. This study highlights the benefit of ultrasound application in fabrication of protein-polyphenol complexes for delivering curcumin.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaotong Shi
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Jiayuan Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, Zhejiang, China
| | - Yuhan Wu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Zexu Fang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yuxiao Zhu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ruikang Cai
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
18
|
Liu M, Shen R, Wang L, Yang X, Zhang L, Ma X, He L, Li A, Kong X, Shi H. Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods 2024; 13:1506. [PMID: 38790806 PMCID: PMC11120539 DOI: 10.3390/foods13101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study is to produce a biodegradable food packaging material that reduces environmental pollution and protects food safety. The effects of total solids content, substrate ratio, polyphenol content, and magnetic stirring time on bovine bone gelatin/sodium carboxymethylcellulose nanoemulsion (BBG/SCMC-NE) were investigated using particle size, PDI, turbidity, rheological properties, and zeta potential as evaluation indexes. The micro, structural, antioxidant, encapsulation, and release properties were characterized after deriving its optimal preparation process. The results showed that the nanoemulsion was optimally prepared with a total solids content of 2%, a substrate ratio of 9:1, a polyphenol content of 0.2%, and a magnetic stirring time of 60 min. SEM showed that the nanoemulsion showed a dense and uniform reticulated structure. FTIR and XRD results showed that covalent cross-linking of proteins and polysaccharides altered the structure of gelatin molecular chains to a more compact form but did not change its semi-crystalline structure. DSC showed that the 9:1 BBG/SCMC-NE had a higher thermal denaturation temperature and greater thermal stability, and its DPPH scavenging rate could reach 79.25% and encapsulation rate up to 90.88%, with excellent slow-release performance. The results of the study provide basic guidance for the preparation of stable active food packaging with excellent properties.
Collapse
Affiliation(s)
- Mengying Liu
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Long He
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Aixia Li
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 810200, China;
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Hezuo 746300, China;
| |
Collapse
|
19
|
Kautzmann C, Castanha E, Aloísio Johann Dammann C, Andersen Pereira de Jesus B, Felippe da Silva G, de Lourdes Borba Magalhães M, Turnes Pasini Deolindo C, Pinto Kempka A. Roasted yerba mate (Ilex paraguariensis) infusions in bovine milk model before and after in vitro digestion: Bioaccessibility of phenolic compounds, antioxidant activity, protein-polyphenol interactions and bioactive peptides. Food Res Int 2024; 183:114206. [PMID: 38760137 DOI: 10.1016/j.foodres.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
Yerba mate is increasingly acknowledged for its bioactive properties and is currently being incorporated into various food and pharmaceutical products. When roasted, yerba mate transforms into mate tea, consumed as a hot aqueous infusion, and has gained popularity. This study investigated the bioaccessibility of phenolic compounds, protein-polyphenol interactions, antioxidant activity, and bioactive peptides in roasted yerba mate infusions, utilizing whole, semi-skimmed, and skimmed bovine milk models. The phytochemical profile of roasted yerba mate was analyzed in infusions with water and milk (whole, semi-skimmed, and skimmed), before and after in vitro digestion, identifying 18 compounds that exhibited variations in composition and presence among the samples. Bioavailability varied across different milk matrices, with milk being four times more efficient as a solvent for extraction. Gastric digestion significantly impacted (p < 0.05) the release of phenolic compounds, such as chlorogenic acid and rutin, with only chlorogenic acid remaining 100 % bioavailable in the infusion prepared with skimmed milk. Protein-polyphenol interaction did not influence protein digestion in different infusions, as there was a similarity in the hydrolysis pattern during the digestive process. Changes in antioxidant activity during digestion phases, especially after intestinal digestion in milk infusions, were related to alterations in protein structures and digestive interactions. The evaluation of total phenolic compounds highlighted that skimmed milk infusion notably preserved these compounds during digestion. Peptidomic analysis identified 253, 221, and 191 potentially bioactive peptides for whole, semi-skimmed, and skimmed milk-digested infusions, respectively, with a focus on anti-inflammatory and anticancer activities, presenting a synergistic approach to promote health benefits. The selection of milk type is crucial for comprehending the effects of digestion and interactions in bioactive compound-rich foods, highlighting the advantages of consuming plant infusions prepared with milk.
Collapse
Affiliation(s)
- Charles Kautzmann
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Eliezer Castanha
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | | | | | | | | | - Carolina Turnes Pasini Deolindo
- MinistryofAgriculture, Livestock, and FoodSupply, Federal Agricultural Defense Laboratory, São José, SC, Brazil; Federal University of Santa Catarina, Department of Food Science and Technology, Florianópolis, SC, Brazil.
| | - Aniela Pinto Kempka
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| |
Collapse
|
20
|
Li Z, Al-Wraikat M, Hao C, Liu Y. Comparison of Non-Covalent and Covalent Interactions between Lactoferrin and Chlorogenic Acid. Foods 2024; 13:1245. [PMID: 38672917 PMCID: PMC11048835 DOI: 10.3390/foods13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Adding polyphenols to improve the absorption of functional proteins has become a hot topic. Chlorogenic acid is a natural plant polyphenol with anti-inflammatory, antioxidant, and anticancer properties. Bovine lactoferrin is known for its immunomodulatory, anticancer, antibacterial, and iron-chelating properties. Therefore, the non-covalent binding of chlorogenic acid (CA) and bovine lactoferrin (BLF) with different concentrations under neutral conditions was studied. CA was grafted onto lactoferrin molecules by laccase catalysis, free radical grafting, and alkali treatment. The formation mechanism of non-covalent and covalent complexes of CA-BLF was analyzed by experimental test and theoretical prediction. Compared with the control BLF, the secondary structure of BLF in the non-covalent complex was rearranged and unfolded to provide more active sites, the tertiary structure of the covalent conjugate was changed, and the amino group of the protein participated in the covalent reaction. After adding CA, the covalent conjugates have better functional activity. These lactoferrin-polyphenol couplings can carry various bioactive compounds to create milk-based delivery systems for encapsulation.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| |
Collapse
|
21
|
Zhao R, Wu L, Gao Y, Wang C, Bai X, Luo S, Zheng Z. Fabrication and characterization of soy protein isolation-ferulic acid antioxidant hydrogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2049-2058. [PMID: 37915307 DOI: 10.1002/jsfa.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Soy protein gel products are prone to direct oxidation by reactive oxygen during processing and transportation, thus reducing their functional properties and nutritional values. A covalent complex was prepared with soy protein isolate (SPI) and ferulic acid (FA) catalyzed by laccase (LC). The complex was further treated with microbial transglutaminase (TGase) to form hydrogels. The structural changes of the covalent complex (SPI-FA) and the properties and antioxidant stability of hydrogel were investigated. RESULTS The SPI-FA complexes were demonstrated to be covalently bound by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and they had the least hydrophobic and free sulfhydryl groups at a 1.0 mg mL-1 FA concentration. The α-helix of complexes increased from 11.50% to 27.39%, and random coil dropped from 26.06% to 14.44%. The addition of FA caused SPI fluorescence quenching and redshift. The hydrogel was formed after the complex was induced with TGase, and its hardness and water holding capacity was increased by 50.61% and 26.21%, respectively. Scanning electron microscopy showed that a layered and ordered gel structure was formed. After in vitro digestion, the complex hydrogels maintained stable antioxidant activity, and the free radical scavenging rates of DPPH and ABTS reached 87.65% and 84.45%, respectively. CONCLUSION SPI-FA covalent complexes were prepared under laccase catalysis, and complex hydrogels were formed by TGase. Hydrogels have stable antioxidant activity, which provides application prospects for the antioxidant development of food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ran Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yue Gao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xiaohui Bai
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
22
|
Zhang T, Li S, Yang M, Li Y, Liu X, Shang X, Liu J, Du Z, Yu T. Egg White Protein-Proanthocyanin Complexes Stabilized Emulsions: Investigation of Physical Stability, Digestion Kinetics, and Free Fatty Acid Release Dynamics. Molecules 2024; 29:743. [PMID: 38338486 PMCID: PMC10856577 DOI: 10.3390/molecules29030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
23
|
Amiratashani F, Yarmand MS, Kiani H, Askari G, Naeini KK, Parandi E. Comprehensive structural and functional characterization of a new protein-polysaccharide conjugate between grass pea protein (Lathyrus sativus) and xanthan gum produced by wet heating. Int J Biol Macromol 2024; 254:127283. [PMID: 37806423 DOI: 10.1016/j.ijbiomac.2023.127283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The purpose of this work was to use a controlled wet-heating process to promote Maillard reaction (MR) between grass pea protein (GPPI) and xanthan gum (XG), and then analyse structural, functional and antioxidant properties of the conjugate (GPPI-XGCs). During heating, the degree of glycation of all conjugated samples was raised (up to 37.43 %) and, after heating for 24 h, the lightness of the samples decreased by 24.75 %. Circular dichroism showed changes in secondary structure with lower content of α-helix and random coil in conjugates. XRD patterns showed that MR destroyed the crystalline structure of the protein. In addition, Lys and Arg content of the produced conjugates decreased by 16.94 % and 6.17 %, respectively. Functional properties including foaming capacity and stability were increased by 45.17 % and 37.17 %, and solubility reached 98.88 %, due to the protein unfolding driven by MR. GPPI-XGCs showed significantly higher antioxidant activities with maximum ABTS-RS value of 49.57 %. This study revealed how MR can improve GPPI's properties, which can aid the food industry in producing a wide range of plant-based foods. Especially, among other characteristics, the foaming properties were significantly improved and the final product can be introduced as a promising foaming agent to be used in food formulation.
Collapse
Affiliation(s)
- Farzane Amiratashani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Hossein Kiani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Kiana Kassaeian Naeini
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
Affiliation(s)
| | | | | | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| | | | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| |
Collapse
|
25
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
26
|
Islam F, Imran A, Nosheen F, Fatima M, Arshad MU, Afzaal M, Ijaz N, Noreen R, Mehta S, Biswas S, Rasool IFU, Aslam MA, Usman I, Zahra SM, Segueni N, Amer Ali Y. Functional roles and novel tools for improving-oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Sci Nutr 2023; 11:2471-2482. [PMID: 37324849 PMCID: PMC10261796 DOI: 10.1002/fsn3.3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Polyunsaturated fatty acids may be derived from a variety of sources and could be incorporated into a balanced diet. They protect against a wide range of illnesses, including cancer osteoarthritis and autoimmune problems. The PUFAs, ω-6, and ω-3 fatty acids, which are found in both the marine and terrestrial environments, are given special attention. The primary goal is to evaluate the significant research papers in relation to the human health risks and benefits of ω-6 and ω-3 fatty acid dietary resources. This review article highlights the types of fatty acids, factors affecting the stability of polyunsaturated fatty acids, methods used for the mitigation of oxidative stability, health benefits of polyunsaturated fatty acids, and future perspectives in detail.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhana Nosheen
- Department of Home EconomicsGovernment College University FaisalabadFaisalabadPakistan
| | - Maleeha Fatima
- Department of Home EconomicsGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Umair Arshad
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Nosheen Ijaz
- Department of Home EconomicsGovernment College University FaisalabadFaisalabadPakistan
| | - Rabia Noreen
- Department of Home EconomicsGovernment College University FaisalabadFaisalabadPakistan
| | - Shilpa Mehta
- Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand
| | - Sunanda Biswas
- Department of Food and NutritionAcharya Prafulla Chandra CollegeKolkataIndia
| | - Izza Faiz Ul Rasool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Arslan Aslam
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ifrah Usman
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional SciencesAllama Iqbal Open UniversityIslamabadPakistan
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Narimane Segueni
- Faculty of MedicineUniversity Salah Boubnider Constantine 3ConstantineAlgeria
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| |
Collapse
|
27
|
Zhang S, Dongye Z, Wang L, Li Z, Kang M, Qian Y, Cheng X, Ren Y, Chen C. Influence of environmental pH on the interaction properties of WP-EGCG non-covalent nanocomplexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37029636 DOI: 10.1002/jsfa.12611] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Whey protein-epigallocatechin gallate (WP-EGCG) covalent conjugates and non-covalent nanocomplexes were prepared and compared using Fourier-transform infrared spectra. The effect of pH (at 2.6, 6.2, 7.1, and 8.2) on the non-covalent nanocomplexes' functional properties and the WP-EGCG interactions were investigated by studying antioxidant activity, emulsification, fluorescence quenching, and molecular docking, respectively. RESULTS With the formation of non-covalent and covalent complexes, the amide band decreased; the -OH peak disappeared; the antioxidant activity of WP-EGCG non-covalent complexes was 2.59- and 2.61-times stronger than WP-EGCG covalent conjugates for 1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing ability of plasma (FRAP), respectively (particle size: 137 versus 370 nm). The antioxidant activity (DPPH 27.48-44.32%, FRAP 0.47-0.63) was stronger at pH 6.2-7.1 than at pH 2.6 and pH 8.2 (DPPH 19.50% and 26.36%, FRAP 0.39 and 0.41). Emulsification was highest (emulsifying activity index 181 m2 g-1 , emulsifying stability index 107%) at pH 7.1. The interaction between whey protein (WP) and EGCG was stronger under neutral and weakly acidic conditions: KSV (5.11-8.95 × 102 L mol-1 ) and Kq (5.11-8.95 × 1010 L mol s-1 ) at pH 6.2-7.1. Binding constants (pH 6.2 and pH 7.1) increased with increasing temperature. Molecular docking suggested that hydrophobic interactions played key roles at pH 6.2 and pH 7.1 (∆H > 0, ∆S > 0). Hydrogen bonding was the dominant force at pH 2.6 and pH 8.2 (∆H < 0, ∆S < 0). CONCLUSION Environmental pH impacted the binding forces of WP-EGCG nanocomplexes. The interaction between WP and EGCG was stronger under neutral and weakly acidic conditions. Neutral and weakly acidic conditions are preferable for WP-EGCG non-covalent nanocomplex formation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangling Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zixuan Dongye
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Li Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zhenru Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Mengchen Kang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yaru Qian
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Xiaofang Cheng
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yuhang Ren
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Chengwang Chen
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
28
|
Berton-Carabin C, Villeneuve P. Targeting Interfacial Location of Phenolic Antioxidants in Emulsions: Strategies and Benefits. Annu Rev Food Sci Technol 2023; 14:63-83. [PMID: 36972155 DOI: 10.1146/annurev-food-060721-021636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
It is important to have larger proportions of health-beneficial polyunsaturated lipids in foods, but these nutrients are particularly sensitive to oxidation, and dedicated strategies must be developed to prevent this deleterious reaction. In food oil-in-water emulsions, the oil-water interface is a crucial area when it comes to the initiation of lipid oxidation. Unfortunately, most available natural antioxidants, such as phenolic antioxidants, do not spontaneously position at this specific locus. Achieving such a strategic positioning has therefore been an active research area, and various routes have been proposed: lipophilizing phenolic acids to confer them with an amphiphilic character; functionalizing biopolymer emulsifiers through covalent or noncovalent interactions with phenolics; or loading Pickering particles with natural phenolic compounds to yield interfacial antioxidant reservoirs. We herein review the principles and efficiency of these approaches to counteract lipid oxidation in emulsions as well as their advantages and limitations.
Collapse
Affiliation(s)
- Claire Berton-Carabin
- INRAE, UR BIA, Nantes, France;
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, Netherlands
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France;
- Qualisud, University of Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
29
|
Zhang M, Fan L, Liu Y, Li J. Effects of alkali treatment on structural and functional properties of chickpea protein isolate and its interaction with gallic acid: To improve the physicochemical stability of water–in–oil emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
30
|
Liu H, Meng X, Li L, Xia Y, Hu X, Fang Y. The incorporated hydrogel of chitosan-oligoconjugated linoleic acid vesicles and the protective sustained release for curcumin in the gel. Int J Biol Macromol 2023; 227:17-26. [PMID: 36502952 DOI: 10.1016/j.ijbiomac.2022.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Assemblies of as called "chitosan hydrogel-liposome" are expected for overcoming the burst effect in drug release from chitosan (CS) hydrogels. Herein, a hydrogel delivery system made of chitosan incorporated fatty acid vesicles was constructed for protective sustained release of curcumin (Cur). The curcumin was encapsulated in the prepared oligo-conjugated linoleic acid vesicles (OCLAVs), and then the drug-embedded vesicles were constructed to Cur-OCLAVs-CS hydrogels with CS solution. The fabricated Cur-OCLAVs-CS hydrogel was fluidic at room temperature and could be rapidly gelled at 37 °C. Morphology study proves that the OCLAVs stayed as nano-vesicles in the gel. The Cur-OCLAVs-CS hydrogels effectively declined the burst effect with enhanced antioxidant activity. The Cur (400 μM)-OCLAVs-CS gel presented a cumulative release rate of 51.23 % of curcumin in 96 h, comparing to 93.37 % of that from the Cur-CS gel. Moreover, the corporation of OCLAVs and CS made the gel exhibited strong synergistic effect on the antioxidant activity, with an enhancement of up to 148.1 % on the ferric reducing power. Therefore, the hydrogel carrier made of incorporated fatty acid vesicles-chitosan can be served as an injectable or 3D printable drug delivery system, which may provide a hint to overcome the burst effect that existed in chitosan and other polysaccharide-based gels.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyu Meng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Fang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
31
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Effects of FeII, tannic acid, and pH on the physicochemical stability of oil body emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
33
|
Pan L, Chen J, Fu H, Wang N, Zhou J, Zhang S, Lu S, Dong J, Wang Q, Yan H. Effects of fabrication of conjugates between different polyphenols and bovine bone proteins on their structural and functional properties. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Maria Jenita Peter, Lalithapriya U, Venkatachalapathy R, Sukumar M. Characterization of an effective drug carrier system for improved oxidative and thermal stability of essential fatty acids: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maria Jenita Peter
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | | | | | - Muthusamy Sukumar
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
35
|
Zhang M, Fan L, Liu Y, Li J. Food–grade interface design based on antioxidants to enhance the performance, functionality and application of oil–in–water emulsions: Monomeric, binary and ternary systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Jia Y, Sun S, Zhang D, Yan X, Man H, Huang Y, Qi B, Li Y. Dynamic monitoring of the protein-lipid co-oxidation of algae oil-enriched emulsions coated with soybean protein-rutin covalent conjugates. Food Res Int 2022; 162:112173. [DOI: 10.1016/j.foodres.2022.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
37
|
Li Y, Liu X, Yin F, Li D, Jiang P, Song L, Nakamura Y, Zhou D. Characterization of oyster water-soluble protein-EGCG conjugate and its antioxidant effects on linolic acid in emulsion system. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Effects of Pineapple Peel Ethanolic Extract on the Physicochemical and Textural Properties of Surimi Prepared from Silver Carp ( Hypophthalmichthys molitrix). Foods 2022. [PMCID: PMC9601345 DOI: 10.3390/foods11203223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of ethanolic pineapple peel extract (PPE) powder at various concentrations (0–1.50%, w/w) on the gelling properties of silver carp surimi were investigated. The pineapple peel extract produced with 0–100% ethanol, revealed that 100% ethanol had the highest bioactive properties. Surimi gels with added PPE powder demonstrated improved gel strength (504.13 ± 11.78 g.cm) and breaking force (511.64 ± 11.80 g) up to 1% PPE addition; however, as PPE concentration increased beyond 1%, the gel strength decreased. Similarly, with the addition of 1% PPE powder, more hydrophobic bonds and fewer sulfhydryl groups and free amino groups were seen. However, the gels with PPE powder added showed a slight reduction in the whiteness of the surimi gels. FTIR analysis indicated that the fortification with PPE powder brought about the secondary structure of myofibrillar proteins; peaks shifted to the β-sheet region (PPE gels) from the α-helix region (control). SEM analysis indicated that the gel with 1% PPE powder had a relatively organized, finer and denser gel architecture. Overall results suggested that the addition of PPE powder up to 1% to the surimi gels enhanced the gelling properties as well as the microstructure of the surimi.
Collapse
|
39
|
Han S, Cui F, McClements DJ, Xu X, Ma C, Wang Y, Liu X, Liu F. Structural Characterization and Evaluation of Interfacial Properties of Pea Protein Isolate-EGCG Molecular Complexes. Foods 2022; 11:foods11182895. [PMID: 36141023 PMCID: PMC9498586 DOI: 10.3390/foods11182895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Highlights Pea protein isolate (PPI) and EGCG spontaneously formed complexes. Protein–polyphenol complexation was mainly driven by hydrogen bonding. The binding of EGCG influenced the structure and functionality of PPI. PPI-EGCG complexes had better emulsifier properties than PPI.
Abstract There is increasing interest in using plant-derived proteins in foods and beverages for environmental, health, and ethical reasons. However, the inherent physicochemical properties and functional performance of many plant proteins limit their widespread application. Here, we prepared pea protein isolate (PPI) dispersions using a combined pH-shift/heat treatment method, and then, prepared PPI-epigallocatechin-3-gallate (EGCG) complexes under neutral conditions. Spectroscopy, calorimetry, molecular docking, and light scattering analysis demonstrated that the molecular complexes formed spontaneously. This was primarily ascribed to hydrogen bonds and van der Waals forces. The complexation of EGCG caused changes in the secondary structure of PPI, including the reduction in the α-helix and increase in the β-sheet and disordered regions. These changes slightly decreased the thermal stability of the protein. With the accretion of EGCG, the hydrophilicity of the complexes increased significantly, which improved the functional attributes of the protein. Optimization of the PPI-to-EGCG ratio led to the complexes having better foaming and emulsifying properties than the protein alone. This study could broaden the utilization of pea proteins as functional ingredients in foods. Moreover, protein–polyphenol complexes can be used as multifunctional ingredients, such as antioxidants or nutraceutical emulsifiers.
Collapse
Affiliation(s)
- Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fengzhan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | | | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
40
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Zhang M, Fan L, Liu Y, Li J. Migration of gallic acid from the aqueous phase to the oil–water interface using pea protein to improve the physicochemical stability of water–in–oil emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Sun J, Huang Y, Liu T, Jing H, Zhang F, Obadi M, Xu B. Evaluation of crossing-linking sites of egg white protein-polyphenol conjugates: Fabricated using a conventional and ultrasound-assisted free radical technique. Food Chem 2022; 386:132606. [PMID: 35366637 DOI: 10.1016/j.foodchem.2022.132606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
There has been strong interest in developing effective strategies to inhibit lipid oxidation in emulsified food products such as ω-3 fatty acids, carotenoids, or carotenoids. Dual-functional protein emulsifiers with antioxidant and emulsifying properties are in the spotlight. Our aim was to investigate the influence of caffeic acid (CF), chlorogenic acid (CA) with a C3-C6 structure, epigallocatechin gallate (EGCG), catechin (CT), and quercetin (QE) with a C6-C3-C6 structure on the cross-linking sites and structure of egg white protein (EWP)-polyphenol conjugates fabricated by the free radical method under conventional water bath (WB) and ultrasound assisted (US) conditions. Results of structural analysis and liquid chromatography-tandem mass spectrometry indicated that the structure of EWP-polyphenol conjugates and the cross-linking sites of the two are influenced by the polyphenol structure and the free radical system. Our study provides important information about the mechanism of research into proteins and polyphenols using the free radical method.
Collapse
Affiliation(s)
- Jun Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China.
| | - Yuqian Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Tengmei Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Hui Jing
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Feng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, ZhenJiang, Jiangsu 212013, China.
| |
Collapse
|
44
|
Encapsulation of β-carotene in high internal phase Pickering emulsions stabilized by soy protein isolate – epigallocatechin-3-gallate covalent composite microgel particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Xu Y, Wei Z, Xue C, Huang Q. Covalent modification of zein with polyphenols: A feasible strategy to improve antioxidant activity and solubility. J Food Sci 2022; 87:2965-2979. [PMID: 35638335 DOI: 10.1111/1750-3841.16203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Covalent modification of protein with polyphenols is an attractive research topic, since it is an effective way to improve the properties and broaden the applications of protein. However, the majority of prolamin-polyphenol reactions were carried out in alcohol aqueous solution, and this study aimed to investigate the covalent interaction of zein and polyphenols in water. Chlorogenic acid (CGA), gallic acid (GA), and caffeic acid (CA) were used as polyphenol models. The grafting ratio revealed that zein interacted more strongly with CGA and CA than with GA, which was probably due to the larger molecular weight of CGA and the hydroxycinnamic acid structure of CA. Afterward, the differences in structural and functional properties between control zein and zein-polyphenol complexes were compared. Covalent interaction with polyphenols induced great changes in the morphology and secondary structure of zein. Compared with control zein and non-covalent complexes, covalent zein-polyphenol complexes exhibited better solubility, antioxidant activity, and thermal stability. PRACTICAL APPLICATION: Covalent modification of zein with polyphenols in water is a simple and efficient method, which can ameliorate the antioxidant activity as well as the hydrophilicity of zein and improve its application value. The findings of this research carry important implications for using zein-polyphenol complexes as novel food additives, or to design more efficient delivery systems.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
46
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
47
|
Interfacial Properties and Antioxidant Activity of Whey Protein-Phenolic Complexes: Effect of Phenolic Type and Concentration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whey protein is a common food additive for enhancing product stability and texture, while phenolics are considered food antioxidants. As a consequence, combining whey protein with phenolics is an effective way to improve protein functionality while also maintaining polyphenol bioactivity. Herein, the functional properties and antioxidant activity of whey protein modified with various types and concentrations of oxidized phenolic compounds, including gallic acid (OGA), ferulic acid (OFA), and tannic acid (OTA), were studied. In general, the modified whey protein had a decrease in free amino content, but an increase in total phenolic content. Whey protein modified with 5% OTA showed the highest total phenolic content and the lowest free amino content. Modification of whey protein with OTA and OGA resulted in a loss of surface hydrophobicity in contrast to whey protein modified with OFA. However, no significant difference in surface activity including foam and emulsion properties in the whey protein with/without modification was observed. The modified whey protein had an increase in antioxidant activity when compared with that of the control.
Collapse
|
48
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
A soft Pickering emulsifier made from chitosan and peptides endows stimuli-responsiveness, bioactivity and biocompatibility to emulsion. Carbohydr Polym 2022; 277:118768. [PMID: 34893215 DOI: 10.1016/j.carbpol.2021.118768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023]
Abstract
Polymeric Pickering emulsifiers may bring new insights to emulsion theory and practice due to their soft characters. Herein, a group of soft Pickering emulsifiers, chitosan-casein hydrophobic peptides nanoparticles (CS-CHP NPs) were prepared with a non-covalent anti-solvent procedure. The CS-CHP NPs provided the contact angles of 37.2°-87.4°, stabilizing O/W or W/O emulsions with enhanced thermal stability, endowing the emulsion with pH and CO2/N2 responsiveness. The emulsifying behavior and mechanism presented by CS-CHP NPs were different from that of ordinary hard Pickering emulsifiers, where the appropriate contact angle was 37.2° instead of 87.4° for stabilizing O/W emulsions. Moreover, the nanoparticles possess antioxidant, antibacterial activities and excellent biocompatibility. DPPH and ABTS scavenging activity of the CS-CHP NPs were >220% of that of CS NPs. The last, the emulsion provided high-efficient encapsulation of curcumin, making the soft Pickering emulsifiers a group candidate for drug delivery in food, cosmetics and pharmaceutical industry.
Collapse
|
50
|
Costa ALR, Gomes A, Cangussu LB, Cunha RL, de Oliveira LS, Franca AS. Stabilization mechanisms of O/W emulsions by cellulose nanocrystals and sunflower protein. Food Res Int 2022; 152:110930. [DOI: 10.1016/j.foodres.2021.110930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/04/2022]
|