1
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
2
|
Baek SH, Lee JW, Ho TC, Park Y, Ata SM, Yun HJ, Gang G, Getachew AT, Chun BS, Lee SG, Cao L. A comparative study of extraction methods for recovery of bioactive components from brown algae Sargassum serratifolium. Food Sci Biotechnol 2025; 34:237-244. [PMID: 39758719 PMCID: PMC11695544 DOI: 10.1007/s10068-024-01649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 01/07/2025] Open
Abstract
Species of Sargassum genus are known to be rich sources of bioactive compounds. However, there is a lack of studies comparing extraction methods for these bioactive components. This study aimed to compare the total phenolic contents, total antioxidant capacity, tyrosinase inhibitory effect, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), two algal meroterpenoids, of Sargassum serratifolium extracts acquired by different extraction methods. The methods employed in this study included conventional solid-liquid extraction using methanol (SME), supercritical fluid extraction using CO2 with ethanol as a co-solvent (SC-CO2 + ethanol), and pressurized liquid extraction (PLE) at two temperatures (25 and 100 °C). PLE at 100 °C (PLE100) exhibited the highest total yield, total phenolic content, total antioxidant capacity and tyrosinase inhibitory activity. Notably, SME resulted in the highest recovery of both SHQA and SCM. Compared to SME, PLE100 exhibited a two-fold increase in antioxidant capacity but a minimal increase in phenolic content.
Collapse
Affiliation(s)
- Su Hyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., Yangsan-si, Gyeongsangnam-do Korea
| | - Yena Park
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Shymaa M. Ata
- Department of Home Economics, School of Specific Education, Menofia University, Menofia, Egypt
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Korea
| |
Collapse
|
3
|
Naranjo-Durán AM, Miedes D, Patiño-Osorio JM, Cilla A, Alegría A, Marín-Echeverri C, Quintero-Quiroz J, Ciro-Gómez GL. Formulation of Hydrogel Beads to Improve the Bioaccessibility of Bioactive Compounds from Goldenberry and Purple Passion Fruit and Evaluation of Their Antiproliferative Effects on Human Colorectal Carcinoma Cells. Gels 2024; 11:10. [PMID: 39851981 PMCID: PMC11764489 DOI: 10.3390/gels11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility and to assess antiproliferative effects. A blend of goldenberry-purple passion fruit was encapsulated using ionic gelation and electrospraying. Through a mixture experimental design with sodium alginate (SA), hydroxypropylmethylcellulose (HPMC) and arabic gum (AG) as components, the following response variables were optimized: polyphenol bioaccessibility and encapsulation efficiency. Polyphenols and antioxidant activity were quantified before and after digestion. Antiproliferative effect was evaluated on Caco-2 colon cancer cells. Variations in formulation proportions had a significant effect (p < 0.05) on most responses. An SA-AG mixture in a 0.75:0.25 ratio maximized polyphenol bioaccessibility to 213.17 ± 19.57% and encapsulation efficiency to 89.46 ± 6.64%. Polyphenols and antioxidant activity were lower in FHBs than in the fruit blend (F). Both F and FHBs inhibited tumor cell proliferation by 17% and 25%, respectively. In conclusion, encapsulating BCs in hydrogel beads with SA-AG can enhance the effectiveness of polyphenols in food applications by improving their bioaccessibility and showing a more pronounced effect in inhibiting tumor cell proliferation.
Collapse
Affiliation(s)
- Ana María Naranjo-Durán
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Juan Manuel Patiño-Osorio
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Catalina Marín-Echeverri
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Julián Quintero-Quiroz
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
- College of Sciences and Biotechnology, CES University, Calle 10 # 22-04, Medellin 050018, Colombia
| | - Gelmy Luz Ciro-Gómez
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| |
Collapse
|
4
|
Baek S, Bae JE, Miao Y, Kim G, Ryu B, Lee BH, Lee S. Optimized Extraction of Sargahydroquinoic Acid, Major Bioactive Substance, from Sargassum yezoense Using Response Surface Methodology. Mar Drugs 2024; 22:543. [PMID: 39728118 DOI: 10.3390/md22120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Sargahydroquinoic acid (SHQA), a bioactive compound found in certain Sargassum species, exhibits significant health benefits. This study optimized the extraction of SHQA from Sargassum yezoense using response surface methodology (RSM) and evaluated its antioxidant effects through in vitro and in vivo assays. A Box-Behnken design (BBD) was effectively employed to investigate the effects of incubation temperature, time, and ethanol concentration on SHQA yield, achieving a high coefficient of determination (R2 = 0.961). Analysis of variance (ANOVA) validated the model's reliability (F = 13.86, p = 0.005) and highlighted ethanol concentration as a highly significant factor (p < 0.001). Optimal extraction conditions were identified as 52.8 °C, 8.3 h, and 74.1% ethanol. The SHQA-maximized extract (SME) contained 67.8 ± 0.6 mg SHQA/g and 25.00 ± 1.01 mg phloroglucinol equivalent/g. SME exhibited antioxidant capacity of 26.45 ± 0.66 mg and 28.74 ± 2.30 mg vitamin C equivalent/g in ABTS and DPPH assays, respectively, and 0.29 ± 0.02 mM FeSO4 equivalent/g in the FRAP assay. Additionally, SME at 50 µg/mL and SHQA at 1 µg/mL inhibited reactive oxygen species (ROS) generation in an H2O2-induced zebrafish model. This study presents the first optimization of SHQA extraction using RSM and demonstrates SHQA's ROS inhibition in a zebrafish model.
Collapse
Affiliation(s)
- Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ji-Eun Bae
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Yu Miao
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Gahyeon Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bomi Ryu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Sukhtezari S, Sahari MA, Barzegar M, Azizi MH. In vitro antidiabetic and antioxidant activities of Galega officinalis extracts. Food Sci Nutr 2024; 12:8137-8149. [PMID: 39479699 PMCID: PMC11521668 DOI: 10.1002/fsn3.4326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
The purpose of the present study was to determine the total phenolic, flavonoid, and galegine content and antioxidant activity, as well as the in vitro antidiabetic potential of different extracts of Galega officinalis using the solvent extraction method. The results demonstrated that the highest yield of extraction (28.05%) and galegine content (17.40 ± 0.04 μg/g of sample) was obtained using water as the solvent (p < .05). However, the highest total phenolic content (TPC) (138.35 ± 0.63 mg GAE per gram of dried GOEs) and total flavonoid content (TFC) (189.12 ± 1.47 mg catechin per gram of dried GOEs) were extracted using A90 (acetone-water, 90:10) solvent. A90 extract exhibited the highest inhibition of sucrase activity (91.42%) (p < .05). Also, the inhibitory activity of A90 against α-amylase (59.96%), α-glucosidase (54.3%), and maltase (62.73%) was significantly higher than that of A70 (acetone-water, 70:30) and E20 (ethanol-water, 20:80) (p < .05). According to antioxidant activity results, the highest ABTS•+ (360.5 ± 15.69 μmol Trolox eq per gram of dried GOEs), hydroxyl radical-scavenging activity (3657.75 ± 21.56 μmol histidine eq per gram of dried GOEs), and FRAP assay (558.18 ± 20.26 μmol FeSO4 eq per gram of dried GOEs) were related to A90, while the best DPPH radical-scavenging activity and metal-chelating activity were related to A70 (302.66 ± 2.42 μmol Trolox equivalents per gram of dried GOEs) and E20 (36.5 ± 1.02 μmol EDTA eq per gram of dried GOEs), respectively. Taken together, A90 appears to be the best solvent to get Galega officinalis extract with the highest antioxidant and antidiabetic activity.
Collapse
Affiliation(s)
- Shokoofeh Sukhtezari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Hossain Azizi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Ryu H, Jeong HH, Kim MJ, Lee S, Jung WK, Lee B. Modulation of macrophage transcript and secretion profiles by Sargassum Serratifolium extract is associated with the suppression of muscle atrophy. Sci Rep 2024; 14:13282. [PMID: 38858416 PMCID: PMC11165015 DOI: 10.1038/s41598-024-63146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Recent research has emphasized the role of macrophage-secreted factors on skeletal muscle metabolism. We studied Sargassum Serratifolium ethanol extract (ESS) in countering lipopolysaccharide (LPS)-induced changes in the macrophage transcriptome and their impact on skeletal muscle. Macrophage-conditioned medium (MCM) from LPS-treated macrophages (LPS-MCM) and ESS-treated macrophages (ESS-MCM) affected C2C12 myotube cells. LPS-MCM upregulated muscle atrophy genes and reduced glucose uptake, while ESS-MCM reversed these effects. RNA sequencing revealed changes in the immune system and cytokine transport pathways in ESS-treated macrophages. Protein analysis in ESS-MCM showed reduced levels of key muscle atrophy-related proteins, TNF-α, IL-6, IL-1, and GDF-15. These proteins play crucial roles in muscle function. These findings highlight the intricate relationship between the macrophage transcriptome and their secreted factors in either impairing or enhancing skeletal muscle function. ESS treatment has the potential to reduce macrophage-derived cytokines, preserving skeletal muscle function.
Collapse
Affiliation(s)
- Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-Gu, Busan, 48513, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-Gu, Busan, 48513, Republic of Korea
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-Gu, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, PukyongNationalUniversity, Busan, 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-Gu, Busan, 48513, Republic of Korea.
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, PukyongNationalUniversity, Busan, 48513, Republic of Korea.
| |
Collapse
|
7
|
Seyedalhosseini SH, Salati AP, Torfi Mozanzadeh M, Parrish CC, Shahriari A, Ahangarzadeh M. Effect of Dietary Seaweed ( Gracilaria pulvinata and Sargassum ilicifolium) on Serum and Mucosal Immunity, Some Growth and Immune-Related Genes Expression, Antioxidant Status, and Fatty Acid Profile in Asian Seabass ( Lates calcarifer). AQUACULTURE NUTRITION 2024; 2024:3683163. [PMID: 39555556 PMCID: PMC11178414 DOI: 10.1155/2024/3683163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 11/19/2024]
Abstract
This study was done to appraise the effects of the combination of dietary Gracilaria pulvinata and Sargassum ilicifolium on growth, immunity, and fatty acid profile in Asian seabass (Lates calcarifer). A total of 540 juveniles (36.06 ± 0.05 g) were stocked into eighteen 200 L tanks and divided into six experimental treatments, each in triplicate. Fish were fed diets containing 0 (control), 3% (SW3), 6% (SW6), 9% (SW9), 12% (SW12), and 15% (SW15) mixtures of both seaweeds powder in equal proportions (1 : 1) for 56 days. There was no improvement in weight gain parameters. Serum lysozyme and peroxidase activities in SW9 and SW12 treatments were significantly higher in compare to other treatments. The highest activities of skin mucus lysozyme, alkaline phosphatase, and total protease were observed in the SW12. Liver igf-1, il-1β, il-8, and lysozyme expression showed a rising trend up to SW9 and then decreased. Liver antioxidant enzymes activity and glutathione content showed a similar pattern of changes. Liver total antioxidant capacity was highest in the SW9 treatment, while the lowest value of liver malondialdehyde was observed in the 12% seaweed treatment. The amount of total n-3 polyunsaturated fatty acids, especially docosahexaenoic acid, was higher in the SW12 and SW15 treatments in compare to others. Our findings suggest that adding 9%-12% of Gracilaria and Sargassum seaweed powder to the diet improves serum and mucosal immunity, antioxidant status, and fatty acid profile in L. calcarifer juveniles.
Collapse
Affiliation(s)
- Seyed Hadi Seyedalhosseini
- Department of FisheriesFaculty of Marine Natural ResourcesKhorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Amir Parviz Salati
- Department of FisheriesFaculty of Marine Natural ResourcesKhorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research CentreIranian Fisheries Science Research Institute (IFSRI)Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Christopher C. Parrish
- Department of Ocean SciencesMemorial University of Newfoundland, St. John's NL A1C 5S7, Canada
| | - Ali Shahriari
- Department of Basic SciencesFaculty of Veterinary MedicineShahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mina Ahangarzadeh
- South Iran Aquaculture Research CentreIranian Fisheries Science Research Institute (IFSRI)Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| |
Collapse
|
8
|
Kim MJ, Ryu H, Jeong HH, Van JY, Hwang JY, Kim AR, Seo J, Moon KM, Jung WK, Lee B. The beneficial effects of ethanolic extract of Sargassum serratifolium in DNCB-induced mouse model of atopic dermatitis. Sci Rep 2024; 14:12874. [PMID: 38834629 DOI: 10.1038/s41598-024-62828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.
Collapse
Affiliation(s)
- Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Ah-Reum Kim
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Jaeseong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan, 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea.
- Department of Smart Green Technology Engineering, Pukyong National University, 599-1, Daeyeondong, Nam-gu, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Zhu Y, Li Y, Li X, Chen T, Zhao H, Zhou H. Activities of polysaccharide fractions from corn silk: Hemostatic, immune, and anti-lung cancer potentials. Int J Biol Macromol 2024; 262:130156. [PMID: 38367774 DOI: 10.1016/j.ijbiomac.2024.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Corn silk is the stigma and style of corn and is rich in polysaccharides. Despite the extensive research on its polysaccharides, the hemostatic characteristics of effective parts and the related activities remain insufficiently explored. Corn silk polysaccharide (CSP) was extracted with hot water and purified using a diethylaminoethyl cellulose membrane. Then, it was separated with sephadex G-150 to obtain five fractions. These fractions were investigated for their potential in hemostasis, antioxidant, immune response, and anti-lung cancer activities. CSP-2, CSP-3, and CSP-4 significantly affected the coagulation indicators activated partial thromboplastin time (APTT) and thrombin time (TT) at 125-500 μg/mL. Corn silk flavonoids and saponins at 32.25 μg/mL significantly prolonged APTT, TT, and prothrombin time (PT). CSP-2, with potent antioxidant ability, approaches Vitamin C. At 25 μg/mL, CSPs nearly reached the phagocytosis of neutral red of lipopolysaccharides. The five fractions promoted the proliferation of RAW264.7 cells at 25-800 μg/mL and stimulated NO secretion at 25-100 μg/mL. CSP-2 also showed an 86 % inhibition rate effect on A549 at 200 μg/mL. These results indicate that CSP not only has hemostatic effects but also has immune and anti-lung cancer activities. Thus, it is a potential candidate compound with immune activity for managing bleeding in cancer.
Collapse
Affiliation(s)
- Yunwen Zhu
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Yaping Li
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Xue Li
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Tongfei Chen
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China
| | - Hepeng Zhao
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China.
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical, Engineering Jilin Institute of Chemical Technology Jilin, PR China.
| |
Collapse
|
10
|
Park Y, Cao L, Baek S, Jeong S, Yun HJ, Kim MB, Lee SG. The Role of Sargahydroquinoic Acid and Sargachromenol in the Anti-Inflammatory Effect of Sargassum yezoense. Mar Drugs 2024; 22:107. [PMID: 38535449 PMCID: PMC10971697 DOI: 10.3390/md22030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025] Open
Abstract
The anti-inflammatory effect of the ethanol extract of Sargassum yezoense and its fractions were investigated in this study. The ethanol extract exhibited a strong anti-inflammatory effect on lipopolysaccharide-stimulated RAW 264.7 macrophages and effectively suppressed the M1 polarization of murine bone-marrow-derived macrophages stimulated by lipopolysaccharides and IFN-γ (interferon-gamma). Through a liquid-liquid extraction process, five fractions (n-hexane, chloroform, ethyl acetate, butanol, and aqueous) were acquired. Among these fractions, the chloroform fraction (SYCF) was found to contain the highest concentration of phenolic compounds, along with two primary meroterpenoids, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), and exhibit significant antioxidant capacity. It also demonstrated a robust anti-inflammatory effect. A direct comparison was conducted to assess the relative contribution of SHQA and SCM to the anti-inflammatory properties of SYCF. The concentrations of SHQA and SCM tested were determined based on their relative abundance in SYCF. SHQA contributed to a significant portion of the anti-inflammatory property of SYCF, while SCM played a limited role. These findings not only highlight the potential of the chloroform-ethanol fractionation approach for concentrating meroterpenoids in S. yezoense but also demonstrate that SHQA and other bioactive compounds work additively or synergistically to produce the potent anti-inflammatory effect of SYCF.
Collapse
Affiliation(s)
- Yena Park
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (Y.P.); (S.B.); (S.J.)
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (Y.P.); (S.B.); (S.J.)
| | - Seungjin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (Y.P.); (S.B.); (S.J.)
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Mi-Bo Kim
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (Y.P.); (S.B.); (S.J.)
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Amerifar M, Arabnozari H, Shokrzadeh M, Habibi E. Evaluation of antioxidant properties and cytotoxicity of brown algae (nizamuddinia zanardinii) in uterine (hela) and pancreatic cancer cell lines (paca-2). Hum Exp Toxicol 2024; 43:9603271241227228. [PMID: 38238028 DOI: 10.1177/09603271241227228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pancreatic cancer and cervical cancer are among the most common cancers. Brown algae have anti-inflammatory, anti-cancer, anti-fungal, antioxidant, and immune-boosting properties. This study investigated the antioxidant properties and the effect of brown algae extract on pancreatic and uterine cancer cells. MATERIALS AND METHODS In this study, Cervical (Hela) and pancreas (Paca-2) cancer cell lines were examined. The algae materials were extracted by sequential maceration method and amount of fucoxanthin content in the sample was determined by using High Performance Liquid Chromatography (HPLC) system. The cytotoxic effect of different concentrations of brown algae was measured by the MTT assay. All statistical calculations for comparing IC50 were analyzed using Graph Pad Prism software. RESULTS the algal sample contained an average of 102.52 ± 0.12 μg of fucoxanthin per 100 g. IC50 for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide free radical scavenging activity for methanolic extract was 2.02 and 11.98 ± 0.13 respectively. Brown algae in all fractions inhibited cell growth and survival. In Hela cell lines, the methanolic extract was the most effective inhibitor, while in Paca cell lines, hexane and methanolic extracts were particularly potent. The methanolic extract was more toxic than other fractions on Hela and Paca cell lines. CONCLUSION This study highlights brown algae extracts strong anticancer effects on uterine and pancreatic cancer cells, suggesting its potential as a natural anticancer drug. Different fractions of the extract showed superior apoptotic and cytotoxic effects, with higher concentrations leading to increased apoptotic effects and reduced survival rates of cancer cells.
Collapse
Affiliation(s)
- Milad Amerifar
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hesamoddin Arabnozari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Yan X, Pang P, Qin C, Mi J, Yang L, Yang B, Nie G. Improvement of sea buckthorn (Hippophae rhamnoides L.) flavonoids on the antioxidant and immune performance of Yellow River carp (Cyprinus carpio L.) fed high-carbohydrate diet. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109289. [PMID: 38104699 DOI: 10.1016/j.fsi.2023.109289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
High-carbohydrate (HC) diets may lead to the deterioration of the antioxidant and immune properties of Yellow River carp and the healthy development of the industry. Studies in mammals have found that sea buckthorn flavonoids (SF) improve antioxidant and immune performance. Therefore, this study comprehensively evaluated the effects of SF on Yellow River carp using in vitro and feeding trials with an HC diet. Control (C, 27.23 %), high-carbohydrate (HC, 42.99 %), and HC + SF (0.1 %, 0.2 %, and 0.4 %) groups were studied in a 10-week aquaculture experiment. The main findings were as follows: (1) SF scavenged O2·-, ·OH, and DPPH free radicals in vitro, which gradually increased with the SF concentration. (2) The antioxidant and immune performance of Yellow River carp was enhanced by dietary supplementation with SF, which involved the regulation of activities of antioxidant and immune enzymes, as well as their changes at the transcription and protein levels. In terms of antioxidant properties, compared to the HC group, HC + SF significantly decreased the activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase and the contents of H2O2 and malondialdehyde in the serum and hepatopancreas. The activities of glutathione, glutathione-Px, superoxide dismutase, catalase, and total antioxidant activity in the HC-diet group. In contrast, the addition of SF increased antioxidant enzyme activity. In the hepatopancreas and muscles, SF regulated and activated Nrf2-Keap1, a key signaling pathway for oxidative stress. SF significantly increased the mRNA expression levels of downstream genes (gr, ho-1, cat, and sod) regulated by nrf2. In terms of immune performance, 0.4 % SF markedly increased the activity of immune-related enzymes. SF inhibited the gene expression of pro-inflammatory factors induced by the HC diet and promoted the gene expression of anti-inflammatory factors. In addition, the resistance of Yellow River carp to Aeromonas hydrophila was enhanced by SF. In summary, SF supplementation can reduce oxidative stress and inflammatory harm caused by the HC diet and improve the antioxidant and immune performance of Yellow River carp to varying degrees.
Collapse
Affiliation(s)
- Xiao Yan
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Peng Pang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; College of Life Sciences, Henan Normal University, Xinxiang, 453007, PR China
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jiali Mi
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Liping Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Bowen Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
13
|
Rarison RHG, Truong VL, Yoon BH, Park JW, Jeong WS. Antioxidant and Anti-Inflammatory Mechanisms of Lipophilic Fractions from Polyscias fruticosa Leaves Based on Network Pharmacology, In Silico, and In Vitro Approaches. Foods 2023; 12:3643. [PMID: 37835296 PMCID: PMC10573055 DOI: 10.3390/foods12193643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Polyscias fruticosa leaf (PFL) has been used in food and traditional medicine for the treatment of rheumatism, ischemia, and neuralgia. However, the lipophilic components of PFL and their biological properties remain unknown. This study, integrating network pharmacology analysis with in silico and in vitro approaches, aimed to elucidate the antioxidant and anti-inflammatory capacities of lipophilic extracts from PFL. A total of 71 lipophilic compounds were identified in PFL using gas chromatography-mass spectrometry. Network pharmacology and molecular docking analyses showed that key active compounds, mainly phytosterols and sesquiterpenes, were responsible for regulating core target genes, such as PTGS2, TLR4, NFE2L2, PRKCD, KEAP1, NFKB1, NR1l2, PTGS1, AR, and CYP3A4, which were mostly enriched in oxidative stress and inflammation-related pathways. Furthermore, lipophilic extracts from PFL offered powerful antioxidant capacities, as evident in our cell-free antioxidant assays. These extracts also provided a protection against oxidative stress by inducing the expression of catalase and heme oxygenase-1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, lipophilic fractions from PFL showed anti-inflammatory potential in downregulating the level of pro-inflammatory factors in LPS-treated macrophages. Overall, these findings provide valuable insights into the antioxidant and anti-inflammatory properties of lipophilic extracts from PFL, which can be used as a fundamental basis for developing nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea (V.-L.T.)
| | - Byoung-Hoon Yoon
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Won Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea (V.-L.T.)
| |
Collapse
|
14
|
Naranjo-Durán AM, Quintero-Quiroz J, Ciro-Gómez GL, Barona-Acevedo MJ, Contreras-Calderón JDC. Characterization of the antioxidant activity, carotenoid profile by HPLC-MS of exotic colombian fruits (goldenberry and purple passion fruit) and optimization of antioxidant activity of this fruit blend. Heliyon 2023; 9:e17819. [PMID: 37501959 PMCID: PMC10368774 DOI: 10.1016/j.heliyon.2023.e17819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The consumption of antioxidants can prevent chronic non-communicable diseases and the exotic Colombian fruits, goldenberry (Physalis peruviana L.) and purple passion fruit (Passiflora edulis f. Edulis Sims), are rich in bioactive compounds. The aim of this work was to characterize and optimize the antioxidant activity of these fruits blend. The fruits were classified according to their maturity stages, the freeze-dried extracts were physiochemically characterized, and polyphenols, carotenoids and antioxidant activity were quantified, and an experimental mixture design was applied to optimize the antioxidant activity of the bend. For the goldenberry the maturity stage 3 had higher iron-reducing capacity and higher content of polyphenols. Meanwhile, for the purple passion fruit, this maturity stage had higher antioxidant activity by all methodologies and a higher concentration of polyphenols; the ultrasound-assisted extraction showed statistical differences for polyphenols, ABTS and FRAP. Antioxidant activity showed significant differences (p < 0.05) between samples (TBARS (3.98 ± 0.14 and 7.03 ± 0.85 μM-MDA/g), ABTS (36.53 ± 2.66 and 29.4 ± 4.88 μMTrolox/g), DPPH (36.53 ± 2.66 and 23.90 ± 0.96μMTrolox/g), ORAC (23.02 ± 0.36 and 32.44 ± 0.94 μM Trolox/g) and total polyphenols (5, 29 ± 0.34 and 9.12 ± 0.37mgGA/g). Some of the carotenoids identified by HPLC-MS in both fruits were lutein, α and β-carotene, phytoene and lycopene. The optimum bend was goldenberry 0.83 and purple passion fruit 0.17.
Collapse
Affiliation(s)
- Ana María Naranjo-Durán
- Group of Toxinology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, 53-108, Medellin, Colombia
| | - Julián Quintero-Quiroz
- Group of Toxinology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, 53-108, Medellin, Colombia
- College of Sciences and Biotechnology, CES University, Calle 10 # 22-04, Medellin, 050018, Colombia
| | - Gelmy Luz Ciro-Gómez
- Group of Toxinology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, 53-108, Medellin, Colombia
| | - María-Jaqueline Barona-Acevedo
- Group of Toxinology, Food and Therapeutic Alternatives, Microbiology School, Universidad de Antioquia UdeA, Calle 67, 53-108, Medellin, Colombia
| | | |
Collapse
|
15
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. The degradation of chicken feathers by Ochrobactrum intermedium results in antioxidant and metal chelating hydrolysates and proteolytic enzymes for staphylococcal biofilm dispersion. 3 Biotech 2023; 13:202. [PMID: 37220603 PMCID: PMC10199982 DOI: 10.1007/s13205-023-03619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
The increase in the generation of chicken feathers, due to the large production of the poultry industry, has created the need to search for ecologically safer ways to manage these residues. As a sustainable alternative for recycling keratin waste, we investigated the ability of the bacterium Ochrobactrum intermedium to hydrolyze chicken feathers and the valorization of the resulting enzymes and protein hydrolysate. In submerged fermentation with three different inoculum sizes (2.5, 5.0, and 10.0 mg of bacterial cells per 50 mL of medium), the fastest degradation of feathers was achieved with 5.0 mg cells, in which a complete decomposition of the substrate (96 h) and earlier peaks of keratinolytic and caseinolytic activities were detected. In the resulting protein hydrolysate, we noticed antioxidant and Fe2+ and Cu2+ chelating activities. ABTS scavenging, Fe3+-reducing ability and metal chelating activities of the fermentative samples followed the same trend of feather degradation; as feather mass decreased in the media, these activities increased. Furthermore, we noticed about 47% and 60% dispersion of established 7-day biofilms formed by S. aureus after enzymatic treatment for 5 h and 24 h, respectively. These findings highlight the potential use of this bacterium as an environmentally friendly alternative to treat this poultry waste and offer valuable products.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrosio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| |
Collapse
|
16
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Hu MB, Gao KX, Wang Y, Liu YJ. Characterization of Polysaccharides from the Pericarp of Zanthoxylum bungeanum Maxim by Saccharide Mapping and Their Neuroprotective Effects. Molecules 2023; 28:molecules28041813. [PMID: 36838801 PMCID: PMC9966022 DOI: 10.3390/molecules28041813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The pericarp of Zanthoxylum bungeanum maxim (PZM) is a commonly used spice and herbal medicine in China. In the present study, the structural characteristics of PPZM were investigated by saccharide mapping after enzymatic digestion by using high-performance thin layer chromatography (HPTLC) and polysaccharide analysis by using carbohydrate gel electrophoresis (PACE). The mechanisms of protective effects of PPZM on Aβ25-35-induced oxidative damage were explored in PC12 cells. The results showed that PPZM contained 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic, and (1→4)-β-D-glucosidic linkages. Pretreatment with PPZM significantly increased the cell viability of Aβ25-35-injured PC12 cells. Flow cytometry and Hoechst/PI staining indicated that PPZM gradually relieved the apoptosis of the Aβ25-25-treated cells. PPZM markedly decreased the ROS level of PC12 cells and suppressed Aβ25-35-induced oxidative stress by increasing the SOD level, and decreasing the level of MDA and LDH. The mRNA expressions of caspase-3 and Bax were significantly downregulated, and Bcl-2 expression was upregulated by treatment with PPZM. PPZM significantly increased the mRNA expression of Nrf2 and HO-1 in Aβ25-35 treated cells. The results indicated that PPZM alleviated apoptosis and oxidative stress induced by Aβ25-25 through the inhibition of mitochondrial dependent apoptosis and activation of Nrf2/HO-1 pathway. PPZM can be used as a potential protective agent against Aβ25-25-induced neurotoxicity.
Collapse
Affiliation(s)
- Mei-Bian Hu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Key Laboratory of Traditional Chinese Medicine Processing of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Kui-Xu Gao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Key Laboratory of Traditional Chinese Medicine Processing of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yao Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Key Laboratory of Traditional Chinese Medicine Processing of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yu-Jie Liu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Key Laboratory of Traditional Chinese Medicine Processing of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Correspondence:
| |
Collapse
|
18
|
Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. Molecules 2023; 28:molecules28041683. [PMID: 36838671 PMCID: PMC9959782 DOI: 10.3390/molecules28041683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA), a disabling joint inflammatory disease, is characterized by the progressive destruction of cartilage, subchondral bone remodeling, and chronic synovitis. Due to the prolongation of the human lifespan, OA has become a serious public health problem that deserves wide attention. The development of OA is related to numerous factors. Among the factors, nitric oxide (NO) plays a key role in mediating this process. NO is a small gaseous molecule that is widely distributed in the human body, and its synthesis is dependent on NO synthase (NOS). NO plays an important role in various physiological processes such as the regulation of blood volume and nerve conduction. Notably, NO acts as a double-edged sword in inflammatory diseases. Recent studies have shown that NO and its redox derivatives might be closely related to both normal and pathophysiological joint conditions. They can play vital roles as normal bone cell-conditioning agents for osteoclasts, osteoblasts, and chondrocytes. Moreover, they can also induce cartilage catabolism and cell apoptosis. Based on different conditions, the NO/NOS system can act as an anti-inflammatory or pro-inflammatory agent for OA. This review summarizes the studies related to the effects of NO on all normal and OA joints as well as the possible new treatment strategies targeting the NO/NOS system.
Collapse
|
19
|
Kido S, Chosa E, Tanaka R. The effect of six dried and UV-C-irradiated mushrooms powder on lipid oxidation and vitamin D contents of fish meat. Food Chem 2023; 398:133917. [DOI: 10.1016/j.foodchem.2022.133917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
20
|
Lee YJ, Kim YD, Uh YR, Kim YM, Seo TH, Choi SJ, Jang CS. Complete organellar genomes of six Sargassum species and development of species-specific markers. Sci Rep 2022; 12:20981. [PMID: 36470932 PMCID: PMC9722929 DOI: 10.1038/s41598-022-25443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sargassum is one of the most important brown algal genera that can be used as food and raw material for medicinal purpose, and has various beneficial effects. As the classification of Sargassum species is currently based on their morphological characteristics, organellar genome sequences of Sargassum would provide important information for accurate identification of species and developing species-specific markers. We sequenced the complete organellar genomes of six Sargassum species, including the first complete chloroplast genome sequences of S. fulvellum, S. serratifolium, S. macrocarpum, and S. siliquastrum, and the first complete mitochondrial genome sequences of S. fulvellum, S. serratifolium, and S. macrocarpum. The chloroplast genomes of the 6 Sargassum species contained 139 protein-coding genes (PCGs), and the mitochondrial genomes possessed 37 PCGs. A comparative study was performed between the newly sequenced organellar genomes and 44 other species belonging to class Phaeophyceae. Phylogenetic relationships using PCGs shared by Phaeophyceae species were constructed with IQ-TREE 2 using the maximum likelihood method. In addition, we developed real-time PCR markers based on SNPs to distinguish the 6 Sargassum species. Our results provide useful information for establishing phylogenetic relationships between brown algae.
Collapse
Affiliation(s)
- Yong Jin Lee
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Dam Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Ho Seo
- Coastal Production Institute, Yeosu, Republic of Korea
| | - Sung-Je Choi
- Korea National College of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea.
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
21
|
Yan G, Zhou Y, Zhao L, Wang W. Phenolic contents and antioxidant activities of solvent extracts from four edible flowers. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to identify new sources of natural antioxidants, the antioxidant activities of various solvent extracts from four edible flower samples [Wisteria sinensis (Sims) DC., Benincasa hispida (Thunb.) Cogn, Luffa cylindrica (L.) Roem, and Cucurbita pepo L.) were systemically investigated. The total phenolic content (TPC) and total flavonoid content (TFC), and individual phenolic profile of each extract were investigated, and antioxidant activities were measured by the DPPH radical scavenging activity, superoxide radical scavenging activity, total reduction capability, and ferrous ions chelating activity. Results revealed that all flower extracts exhibited antioxidant activities, and contained certain amounts of phenolic compounds. Specifically, different solvents exhibited different efficiencies in the extraction of phenolics, flavonoids, and compounds with antioxidant activities. The 70% ethanolic extract from B. hispida yielded the highest TPC (49.92 mg GAE/g DW), superoxide radical scavenging activity (IC50, 0.073 mg/mL), and FRAP value (18.05 mg of GAE/g DW). The highest TFC was obtained with the ethanolic extract of W. sinensis (30.39 mg QE/g DW), and the contents of apigenin, luteolin, and myricetin in the ethanolic extract of W. sinensis were significantly higher than those in the other extracts. The 40% ethanolic extract of L. cylindrica yielded the highest DPPH scavenging capacity (IC50, 0.340 mg/mL), and water extract of B. hispida yielded the highest chelating activity (0.027 mg/mL). Correlation analysis indicated that total phenolics and flavonoids in the extracts were the major contributors to the DPPH scavenging activities and FRAP activities. Overall, results demonstrated that these edible flowers could serve as useful source of natural antioxidants, and be used as functional food ingredients.
Collapse
|
22
|
Susano P, Silva J, Alves C, Martins A, Pinteus S, Gaspar H, Goettert MI, Pedrosa R. Saccorhiza polyschides-A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022; 27:6496. [PMID: 36235032 PMCID: PMC9573298 DOI: 10.3390/molecules27196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado 95914-014, RS, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D 72076 Tübingen, Germany
| | - Rui Pedrosa
- MARE/ARNET, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
23
|
Brontowiyono W, Jasim SA, Mahmoud MZ, Thangavelu L, Izzat SE, Yasin G, Mohammad HJ, Mustafa YF, Balvardi M. Dietary Sargassum angustifolium (Macro-Algae, Sargassaceae) extract improved antioxidant defense system in diazionon-exposed common carp, Cyprinus carpio. ANNALS OF ANIMAL SCIENCE 2022; 22:1323-1331. [DOI: 10.2478/aoas-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effects of different dietary levels of algae (Sargassum angustifolium) extract were investigated on the antioxidant system of common carp, Cyprinus carpio. Fish (30.2 ± 2.1 g) were fed 0 (control), 5, 10 and 15 g/kg basal diet of Sargassum angustifolium extract (SAE) for 60 days and then exposed to an environmentally relevant concentration of diazinon (2 mg/l) for 24 h. The biochemical assays were conducted in two times including at the end of feeding period and after 24 h exposure to diazinon. According to the results, malondialdehyde (MDA) levels in the liver remained unchanged (P>0.01) during feeding period, while significantly increased in response to diazinon in control and fish fed 5 and 10 g/kg diet SAE (P<0.01). The hepatic metabolic enzymes (AST: Aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate dehydrogenase, CK: creatine kinase) showed no significant changes in all groups during feeding period, while these enzymes increased in Non-SAE supplemented fish and those fed 5 and 10 g/kg SAE after exposure to diazinon (P<0.01). Although little elevations were observed in the activity of hepatic antioxidant enzymes (CAT: catalase, SOD: superoxide dismutase, GPx: Glutathione peroxidase) in fish fed SAE, these elevations were not significant (P>0.01). After exposure to diazinon, antioxidant enzymes significantly decreased in control and fish fed 5 g/kg diet SAE, while the fish of 10 and 15 g/kg diet SAE treatments showed significant elevations (P<0.01). The antioxidant-related genes (sod, cat, gpx) significantly expressed more in response to dietary SAE compared to control (P<0.01). After exposure to diazinon, all groups showed significant elevations in antioxidant-related genes (P<0.01). In conclusion, the results of the present study revealed the antioxidant enhancing effects of SAE at dietary levels of 10 and 15 g/kg diet, which this effect may be attributed to some antioxidant components in the chemical composition of the macro-algae or to the direct effect of SAE on antioxidant defence system of the fish.
Collapse
Affiliation(s)
- Widodo Brontowiyono
- Department of Environmental Engineering and Centre for Environmental Studies , Islamic University of Indonesia , Yogyakarta , Indonesia
| | - Saade Abdalkareem Jasim
- Al-maarif University College , Medical Laboratory Techniques Department , Al-anbar-Ramadi , Iraq
| | - Mustafa Z. Mahmoud
- Department of Radiology and Medical Imaging , College of Applied Medical Sciences , Prince Sattam bin Abdulaziz University , Al-Kharj , Saudi Arabia
- Faculty of Health , University of Canberra , Canberra , ACT, Australia
| | - Lakshmi Thangavelu
- Department of Pharmacology , Saveetha Dental College, Saveetha Institute of Medical and Technical Science , Saveetha University , Chennai , India
| | | | - Ghulam Yasin
- Department of Botany , Bahauddin Zakariya University , Multan , Pakistan
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry , College of Pharmacy , University of Mosul , Mosul , Iraq
| | | |
Collapse
|
24
|
Evaluation of chemical components of herbs and spices from Thailand and effect on lipid oxidation of fish during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | |
Collapse
|
26
|
Seo C, Jeong SJ, Yun HJ, Lee HJ, Lee JW, An HW, Han N, Jung WK, Lee SG. Nutraceutical potential of polyphenol-rich Sargassum species grown off the Korean coast: a review. Food Sci Biotechnol 2022; 31:971-984. [PMID: 35873381 PMCID: PMC9300800 DOI: 10.1007/s10068-022-01050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022] Open
Abstract
Sargassum, a brown seaweed, has been used traditionally as food and medicine in Korea, China, and Japan. Sargassum spp. contain bioactive substances associated with health benefits, including anti-inflammatory and antioxidant effects. Thirty Sargassum spp. inhabit the Korean coast. However, their health benefits have yet to be systematically summarized. Therefore, the purpose of this article was to review the health benefits of these 30 Sargassum spp. grown off the Korean coast based on their health benefits, underlying mechanisms, and identified bioactive compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01050-x.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Jung Yun
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Hye Ju Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Woo An
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Nara Han
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea.,Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
27
|
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 2022; 11:antiox11071285. [PMID: 35883773 PMCID: PMC9311900 DOI: 10.3390/antiox11071285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
A cataract is a condition that causes 17 million people to experience blindness and is the most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural antioxidant extracts for cataract therapy may be investigated further in light of these findings, which show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose reductase and preventing apoptosis of the eye lens.
Collapse
Affiliation(s)
- Eva Imelda
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia
- Department of Ophthalmology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence:
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Rodiah Rahmawaty Lubis
- Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia;
| | - Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| | - Ade John Nursalim
- Department of Ophthalmology, General Hospital Prof. Dr. R. D. Kandou, Manado 955234, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| |
Collapse
|
28
|
Gao Y, Chen H, Liu R, Wu W, Mu H, Han Y, Yang H, Gao H. Ameliorating effects of water bamboo shoot (Zizania latifolia) on acute alcoholism in a mice model and its chemical composition. Food Chem 2022; 378:132122. [PMID: 35033708 DOI: 10.1016/j.foodchem.2022.132122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
In this study, the ameliorative effect of water bamboo shoot (WBS) on acute alcoholism mice was investigated and potential biological compounds were explored. Results showed that extraction methods significantly affected the active substances contents and bioactivities of WBS. Principal component analysis (PCA) showed that alkali extract (NE) obtained the highest score, therefore, it was selected for further analysis. Animal experiments showed that NE demonstrated ameliorative effects on acute alcoholism mice as evident by significantly elevated activities of dehydrogenase (alcohol dehydrogenase, acetaldehyde dehydrogenase) and antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase), whereas significantly reduced the levels of aminotransferase (alanine aminotransferase, aspartate aminotransferase) in serum. The potential bioactive activity compounds of NE were explored by UPLC-MS/MS and bioinformatics analysis. Butyl isobutyl phthalate vanillin, ferulic acid methyl ester might be the major compounds in NE on alleviating acute alcoholism. These results indicated that WBS possesses potential ameliorating effect on acute alcoholism.
Collapse
Key Words
- 1,1-diphenyl-2-picrylhydrazyl (DPPH): Compound CID: 2,735,032
- 1,4-Dihydronicotinamide adenine dinucleotide (NADH) Compound CID: 439,153
- 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS): Compound CID: 9,570,474
- Active substance
- Acute alcoholism
- Alcohol dehydrogenase
- Antioxidant activity
- Ascorbic acid: Compound CID: 54,670,067
- Butyl isobutyl phthalate: Compound CID: 28,813
- Ferulic acid methyl ester: Compound CID: 5,357,283
- Nicotinamide adenine dinucleotide oxidoreductase (NAD(+)) Compound CID: 5892
- Salicylic acid: Compound CID: 338
- Water bamboo shoot
Collapse
Affiliation(s)
- Yuan Gao
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hailong Yang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 32535, China.
| | - Haiyan Gao
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
29
|
Estrada-Sierra NA, Rincon-Enriquez G, Urías-Silvas JE, Bravo SD, Villanueva-Rodríguez SJ. Impact of ripening, harvest season, and the nature of solvents on antioxidant capacity, flavonoid and p-synephrine concentrations in Citrus aurantium extracts from residue. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
31
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
32
|
Ibrahim RYM, Hammad HBI, Gaafar AA, Saber AA. The possible role of the seaweed Sargassum vulgare as a promising functional food ingredient minimizing aspartame-associated toxicity in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:752-771. [PMID: 32705899 DOI: 10.1080/09603123.2020.1797642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Thirty-two male Wistar albino rats were chosen to test the possible protective role of antioxidants of the edible seaweed Sargassum vulgare as a functional food additive to alleviate oxidative stress and toxicity associated with consumption of the artificial sweetener 'aspartame (ASP)'. Biochemical and spleen histopathological analyses of the orally ASP-administrated rats, at a dose of 500 mg/kg for one week daily, showed different apoptotic and inflammatory patterns. Rats treated with ASP and then supplemented orally with the S. vulgare-MeOH extract, at a dose of 150 mg/kg for three consecutive weeks daily, showed significant positive reactions in all investigated assays related to ASP consumption. The protective and immune-stimulant efficacy of S. vulgare-MeOH extract, inferred from combating oxidative stress-induced lipid peroxidation, modulating the low levels of the endogenous antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and of the thyroid hormones T3 and T4, attenuating the elevated levels of apoptotic CASP-3 and inflammatory biomarkers TNF-α and IL-6, as well as heat shock proteins (Hsp70), can be most likely ascribed to the synergistic effect of its potent antioxidant phenolics (mainly gallic, ferulic, salicylic, and chlorogenic, and p-coumaric acids) and flavonoids (rutin, kaempferol, and hesperidin). Mechanism of action of these natural antioxidants was discussed.
Collapse
Affiliation(s)
- Rasha Y M Ibrahim
- Radioisotopes Department, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Huda B I Hammad
- Radioisotopes Department, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Alaa A Gaafar
- Plant Biochemistry Department, National Research Centre, Giza, Egypt
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Zhao Y, Wan H, Yang J, Huang Y, He Y, Wan H, Li C. Ultrasound-assisted preparation of 'Ready-to-use' extracts from Radix Paeoniae Rubra with natural deep eutectic solvents and neuroprotectivity evaluation of the extracts against cerebral ischemic/ reperfusion injury. ULTRASONICS SONOCHEMISTRY 2022; 84:105968. [PMID: 35272238 PMCID: PMC8908277 DOI: 10.1016/j.ultsonch.2022.105968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Natural deep eutectic solvent (NaDES) is widely applied in the extraction of nutrients from natural resources as a greener alternative for fossil solvent. In the present work, 27 different NaDESs were screened for the extraction of paeoniflorin (PF) and galloyl paeoniflorin (GPF) from Radix Paeoniae Rubra (RPR). After screening and extraction parameter optimization, the extraction yields of PF and GPF reached up to 182.8 mg/g and 77.4 mg/g with the selected NaDES, ChCl-Sor. Furthermore, the antioxidant activity in vitro and neuroprotectivity in vivo of the 'ready-to-use' extracts were evaluated comprehensively. Especially in vivo, the cerebral ischemic/ reperfusion injury model was established in rats and the protective effects of the RPR extracts were determined. The results not only proved that NaDES is a valuable green extraction media, but also indicated the safety and potential pharmaceutical application of NaDES based 'ready-to-use' extracts from medical plants.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yan Huang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| |
Collapse
|
34
|
Joung EJ, Cao L, Gwon WG, Kwon MS, Lim KT, Kim HR. Meroterpenoid-Rich Ethanoic Extract of Sargassum macrocarpum Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice. Foods 2022; 11:foods11030329. [PMID: 35159480 PMCID: PMC8834051 DOI: 10.3390/foods11030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Colitis is a colon mucosal disorder characterized by intestinal damage and inflammation. This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown algae, Sargassum macrocarpum (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce colitis, followed by 3 days of regular water. MES (12 mg/kg body weight) or celecoxib (10 mg/kg body weight) was administrated orally to mice on a daily basis during these 10 days. Both MES and celecoxib supplementations significantly attenuated DSS-induced weight loss, shortening of colon length, elevated myeloperoxidase activity as well as histomorphological changes of colon. MES and celecoxib reduced the inflammation level of colon tissue, as indicated by its suppression on a panel of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-17, tumor necrosis factor α, and interferon γ, and a group of inflammatory proteins, including intracellular adhesion molecule 1, vascular adhesion molecule 1, matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and inducible nitric oxidase. In addition, their administration down-regulated pro-inflammatory cytokines in serum. Moreover, the supplementation of MES suppressed the DSS-induced hyperactivation of Akt, JNK, and NF-κB signaling pathways. Taken together, our results demonstrate that MES ameliorates DSS-induced colitis in mice, suggesting that MES may have therapeutic implications for the treatment of colitis.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Lei Cao
- Institute of Marine Sciences, Pukyong National University, Busan 608737, Korea;
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Mi-Sung Kwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 608737, Korea;
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 608737, Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608737, Korea; (E.-J.J.); (W.-G.G.); (M.-S.K.)
- Correspondence: ; Tel.: +82-051-629-5847
| |
Collapse
|
35
|
Semaida AI, El-Khashab MA, Saber AA, Hassan AI, Elfouly SA. Effects of Sargassum virgatum extracts on the testicular measurements, genomic DNA and antioxidant enzymes in irradiated rats. Int J Radiat Biol 2021; 98:191-204. [PMID: 34694945 DOI: 10.1080/09553002.2022.1998702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress and reactive oxygen species (ROS) are primarily responsible for the development of male infertility after exposure to γ-irradiation. The present work aimed to assess the ameliorative and therapeutic roles of the aqueous and ethanolic extracts of the edible seaweed Sargassum virgatum (S. virgatum) on spermatogenesis and infertility in γ-irradiated Wistar rats. MATERIALS AND METHODS Induction of infertility was performed by exposing the rats to 137Cs-gamma rays, using a single dose of 3.5 Gy. γ-irradiated rats were given the S. virgatum ethanolic (S. virgatum-EtOH) and aqueous extracts intraperitoneally on a daily base for two consecutive weeks at doses of 100 and 400 mg/kg body weight (b.wt.) for each seaweed extract. Morphometric data of the testes, semen quality indices, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx), and deoxyribonucleic acid (DNA) fragmentation were assessed. The results obtained were taken during two-time intervals of 15 and 60 days from the commencement of the algal treatments. In vitro antioxidant assays and polyphenolic compounds of S. virgatum were characterized. RESULTS Significant negative changes in the semen quality and morphometric data of the testes, as well as remarkable DNA fragmentation, were detected in the irradiated rats compared to the control. The levels of the endogenous antioxidant enzymes (SOD, CAT, GSH, and GPx) were also significantly diminished. Nonetheless, treatments of γ-irradiated rats with the S. virgatum-EtOH and aqueous extracts significantly improved the above-mentioned enzymes, in addition to noteworthy amendments in the dimensions of the testes, the semen quality, as well as the DNA structure. CONCLUSIONS The ameliorative potency of S. virgatum to cure γ-irradiation-induced male infertility, particularly 400 mg/kg ethanolic extract for 60 days, is the result of the consistent therapeutic interventions of its potent antioxidant and anti-apoptotic polyphenols, particularly protocatechuic, p-hydroxybenzoic, rosmarinic, chlorogenic, cinnamic and gentisic acids, as well as the flavonoids catechin, hesperidin, rutin and quercetin. Besides its high-value nutraceutical importance, S. virgatum could be a natural candidate for developing well-accepted radioprotectant products capable of treating γ-irradiation-induced male infertility.
Collapse
Affiliation(s)
- Ahmed I Semaida
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mona A El-Khashab
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shady A Elfouly
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
36
|
Wang R, He R, Li Z, Li S, Li C, Wang L. Tailor-made deep eutectic solvents-based green extraction of natural antioxidants from partridge leaf-tea (Mallotus furetianus L.). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Ma S, Zhang H, Xu J. Characterization, Antioxidant and Anti-Inflammation Capacities of Fermented Flammulina velutipes Polyphenols. Molecules 2021; 26:molecules26206205. [PMID: 34684784 PMCID: PMC8537206 DOI: 10.3390/molecules26206205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
This work investigated the preparation, characterization, antioxidant, and anti-inflammation capacities of Flammulina velutipes polyphenols (FVP) and fermented FVP (FFVP). The results revealed that the new syringic acid, accounting for 22.22%, was obtained after fermentation (FFVP). FFVP exhibits higher antioxidant and anti-inflammation activities than FVP, enhancing cell viability and phagocytosis, inhibiting the secretion of NO and ROS, and reducing the inflammatory response of RAW264.7 cells. This study revealed that FFVP provides a theoretical reference for in-depth study of its regulatory mechanisms and further development of functional antioxidants that are applicable in the food and health industry.
Collapse
Affiliation(s)
- Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
- Correspondence: (H.Z.); (J.X.)
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
- Correspondence: (H.Z.); (J.X.)
| |
Collapse
|
38
|
Yoon JH, Youn K, Jun M. Protective effect of sargahydroquinoic acid against Aβ 25-35-evoked damage via PI3K/Akt mediated Nrf2 antioxidant defense system. Biomed Pharmacother 2021; 144:112271. [PMID: 34619494 DOI: 10.1016/j.biopha.2021.112271] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. β-Amyloid (Aβ) is widely accepted as the main neurotoxin that triggers mitochondrial-associated oxidative stress, leading to neuronal death in AD. Following our preliminary research on the neuroprotective effects of the brown alga Sargassum serratifolium, its major compounds, including sargaquinoic acid, sargahydroquinoic acid (SHQA), and sargachromenol, were investigated to elucidate the antioxidant and anti-apoptotic properties of Aβ25-35-stimulated PC12 cells. SHQA exhibited the most potent effect on Aβ-induced mitochondrial-associated oxidative stress and apoptosis. In addition, the compound enhanced the expression and translocation of nuclear factor-E2-related factor 2 (Nrf2), while reducing the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Furthermore, the compound upregulated the expression of Nrf2-regulated antioxidant enzymes, including HO-1, NQO1, GCLc, GCLm, and TrxR1. Co-treatment with SHQA and LY294002, a specific PI3K inhibitor, inhibited nuclear Nrf2 expression and Akt phosphorylation, demonstrating that SHQA-mediated Nrf2 activation was directly associated with the PI3K/Akt signaling pathway. Mechanistic studies indicate that activation of the PI3K/Akt/Nrf2 pathway is the molecular basis for the neuroprotective effects of SHQA. In silico docking simulation revealed that SHQA established specific interactions with the key amino acid residues of PI3K, Akt, and Nrf2-Keap1 via hydrogen bonding and van der Waals interactions, which may affect the biological capacities of target markers. Overall, this is the first report of this novel mechanism of SHQA as a Nrf2 activator against Aβ-mediated oxidative damage, suggesting that the compound might be a potential agent for the prevention of AD.
Collapse
Affiliation(s)
- Jeong-Hyun Yoon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea.
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
39
|
Joung EJ, Cao L, Lee B, Gwon WG, Park SH, Kim HR. Sargahydroquinoic Acid, a Cyclooxygenase-2 Inhibitor, Attenuates Inflammatory Responses by Regulating NF-κB Inactivation and Nrf2 Activation in Lipopolysaccharide-Stimulated Cells. Inflammation 2021; 44:2120-2131. [PMID: 34050497 DOI: 10.1007/s10753-021-01488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Sargahydroquinoic acid (SHQA) is a major plastoquinone in Sargassum macrocarpum and has shown the capacity to prevent inflammation and oxidative stress. However, the protective mechanisms were unclear. The molecular mechanisms of SHQA on ameliorating inflammation and oxidative stress have been investigated, using lipopolysaccharide (LPS)-stimulated macrophages. SHQA was isolated and purified from S. macrocarpum and the anti-inflammatory mechanisms were explored using LPS-stimulated murine macrophage RAW 264.7 cells. SHQA did not change the expression of cyclooxygenase-2 (COX-2) but inhibited the activity of COX-2. As a result, SHQA significantly diminished the secretions of nitric oxide (NO), prostaglandin E2 (PGE2), and multiple pro-inflammatory cytokines. LPS-induced activation of nuclear factor-κB (NF-κB) was inhibited by SHQA by preventing the degradation of inhibitor κB-α (IκBα). NF-κB activation was also downregulated by the inhibition of Akt phosphorylation in LPS-stimulated cells. Furthermore, SHQA induced the expression of heme oxygenase 1 via Nrf2 activation. These results indicated that SHQA inhibited LPS-induced expressions of inflammatory mediators via suppressing the Akt-mediated NF-κB pathway as well as upregulating the Nrf2/HO-1 pathway. Our findings suggest that SHQA might be a potential therapeutic agent in various inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Lei Cao
- Institute of Marine Life Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
40
|
Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Sci Rep 2021; 11:17876. [PMID: 34504117 PMCID: PMC8429668 DOI: 10.1038/s41598-021-95769-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Sample particle size is an important parameter in the solid-liquid extraction system of natural products for obtaining their bioactive compounds. This study evaluates the effect of sample particle size on the phytochemical composition and antioxidant activity of brown macroalgae Sargassum cristaefolium. The crude ethanol extract was extracted from dried powders of S.cristeafolium with various particle sizes (> 4000 µm, > 250 µm, > 125 µm, > 45 µm, and < 45 µm). The ethanolic extracts of S.cristaefolium were analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), phenolic compound concentration and antioxidant activities. The extract yield and phytochemical composition were more abundant in smaller particle sizes. Furthermore, the TPC (14.19 ± 2.08 mg GAE/g extract to 43.27 ± 2.56 mg GAE/g extract) and TFC (9.6 ± 1.8 mg QE/g extract to 70.27 ± 3.59 mg QE/g extract) values also significantly increased as particle sizes decreased. In addition, phenolic compounds epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and Epigallocatechin gallate (EGCG) concentration were frequently increased in samples of smaller particle sizes based on two-way ANOVA and Tukey's multiple comparison analysis. These results correlate with the significantly stronger antioxidant activity in samples with smaller particle sizes. The smallest particle size (< 45 µm) demonstrated the strongest antioxidant activity based on DPPH, ABTS, hydroxyl assay and FRAP. In addition, ramp function graph evaluates the desired particle size for maximum phytochemical composition and antioxidant activity is 44 µm. In conclusion, current results show the importance of particle size reduction of macroalgae samples to increase the effectivity of its biological activity.
Collapse
|
41
|
Antioxidant Mechanisms of the Oligopeptides (FWKVV and FMPLH) from Muscle Hydrolysate of Miiuy Croaker against Oxidative Damage of HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9987844. [PMID: 34471471 PMCID: PMC8405337 DOI: 10.1155/2021/9987844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
In this work, the antioxidant mechanisms of bioactive oligopeptides (FWKVV and FMPLH) from protein hydrolysate of miiuy croaker muscle against H2O2-damaged human umbilical vein endothelial cells (HUVECs) were researched systemically. The finding demonstrated that the HUVEC viability treated with ten antioxidant peptides (M1 to M10) at 100.0 μM for 24 h was not significantly affected compared with that of the normal group (P < 0.05). Furthermore, FWKVV and FMPLH at 100.0 μM could very significantly enhance the viabilities (75.89 ± 1.79% and 70.03 ± 4.37%) of oxidative-damaged HUVECs by H2O2 compared with those of the model group (51.66 ± 2.48%) (P < 0.001). The results indicated that FWKVV and FMPLH played their protective functions through increasing the levels of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) in oxidative-damaged HUVECs in a dose-dependent manner. In addition, the comet assay revealed that FWKVV and FMPLH could dose-dependently protect deoxyribonucleic acid (DNA) from oxidative damage in the HUVEC model. These results suggested that antioxidant pentapeptides (FWKVV and FMPLH) could serve as potential antioxidant additives applied in the food products, pharmaceuticals, and health supplements.
Collapse
|
42
|
Sridhar K, Charles AL. Discrimination of Kyoho grape (
Vitis labruscana
) skin, seed and flesh antioxidant activities by solvent extraction: application of advanced chemometrics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kandi Sridhar
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology Neipu Pingtung 91201 Taiwan
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology Neipu Pingtung 91201 Taiwan
- Faculty of Fisheries and Marine Universitas Airlangga Campus C Universitas Airlangga Mulyorejo, Surabaya 60115East Java Indonesia
| |
Collapse
|
43
|
Yang M, Sun P, Fan Z, Khan A, Xue Q, Wang Y, Cao J, Cheng G. Safety evaluation and hypolipidemic effect of aqueous-ethanol and hot-water extracts from E Se tea in rats. Food Chem Toxicol 2021; 156:112506. [PMID: 34389369 DOI: 10.1016/j.fct.2021.112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023]
Abstract
E Se tea, processed by the fresh leaves of Malus toringoides (Rehd.) Hughes, is a traditional herbal tea with various human benefits. The present study was aimed to evaluate the toxicity and hypolipidemic effect of aqueous-ethanol extract (EE) and hot-water extract (WE) from E Se tea. Eight main chemical constituents in EE and WE were respectively identified and quantified by UHPLC-HRMS/MS. EE is rich in TPC and TFC, while WE had higher TPS content. Both EE and WE exhibited strong antioxidant activity with no significant difference. The acute toxicity study revealed that the LD50 values were higher than 5000 mg/kg, while both WE and EE had no significant adverse effect in rats by subacute toxicity assay. However, the triglyceride (TG) content in experiment groups (male) and highest doses groups (female) significantly decreased. Furthermore, the hypolipidemic effect of WE and EE were performed on high fat diet induced hyperlipidemic rats. The result exhibited that either WE or EE could effectively regulate lipid droplet accumulation in liver, and reduce the adipocyte size. These results demonstrated that these two extracts from E Se tea could be regarded as a potential functional dietary supplement in preventing and treating diet induced metabolic diseases.
Collapse
Affiliation(s)
- Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Pengzhen Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Yifen Wang
- Department of Science, Kunming Institute of Zoology, Kunming, 650223, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
44
|
Wang R, He R, Li Z, Lin X, Wang L. HPLC-Q-Orbitrap-MS/MS phenolic profiles and biological activities of extracts from roxburgh rose (Rosa roxburghii Tratt.) leaves. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Jamali T, Kavoosi G, Jamali Y, Mortezazadeh S, Ardestani SK. In-vitro, in-vivo, and in-silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components. Sci Rep 2021; 11:14281. [PMID: 34253776 PMCID: PMC8275595 DOI: 10.1038/s41598-021-93535-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
We aimed to explore and compare new insights on the pharmacological potential of Oliveria decumbence essential oil (OEO) and its main components highlighting their antioxidant activity in-vitro, in-vivo, and in-silico and also cytotoxic effects of OEO against A549 lung cancer cells. At first, based on GC-MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were introduced as basic ingredients of OEO and their in-vitro antioxidant capacity was considered by standard methods. Collectively, OEO exhibited strong antioxidant properties even more than its components. In LPS-stimulated macrophages treated with OEO, the reduction of ROS (Reactive-oxygen-species) and NO (nitric-oxide) and down-regulation of iNOS (inducible nitric-oxide-synthase) and NOX (NADPH-oxidase) mRNA expression was observed and compared with that of OEO components. According to the results, OEO, thymol, and carvacrol exhibited the highest radical scavenging potency compared to p-cymene, and γ-terpinene. In-silico Molecular-Docking and Molecular-Dynamics simulation indicated that thymol and carvacrol but no p-cymene and γ-terpinene may establish coordinative bonds in iNOS active site and thereby inhibit iNOS. However, they did not show any evidence for NOX inhibition. In the following, MTT assay showed that OEO induces cytotoxicity in A549 cancer cells despite having a limited effect on L929 normal cells. Apoptotic death and its dependence on caspase-3 activity and Bax/Bcl2 ratio in OEO-treated cells were established by fluorescence microscopy, flow cytometry, colorimetric assay, and western blot analysis. Additionally, flow cytometry studies demonstrated increased levels of ROS in OEO-treated cells. Therefore, OEO, despite showing antioxidant properties, induces apoptosis in cancer cells by increasing ROS levels. Collectively, our results provided new insight into the usage of OEO and main components, thymol, and carvacrol, into the development of novel antioxidant and anti-cancer agents.
Collapse
Affiliation(s)
- Tahereh Jamali
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Susan K Ardestani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
46
|
Jongsawatsataporn N, Suzuki Y, Tanaka R. Evaluation of Functional Chemical Components and Radical Scavenging Activity in 11 Fermented Fish Products from Thailand. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1937422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nichawee Jongsawatsataporn
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuka Suzuki
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
47
|
Khuanekkaphan M, Khobjai W, Noysang C, Wisidsri N, Thungmungmee S. Bioactivities of Karanda ( Carissa carandas Linn.) fruit extracts for novel cosmeceutical applications. J Adv Pharm Technol Res 2021; 12:162-168. [PMID: 34159148 PMCID: PMC8177143 DOI: 10.4103/japtr.japtr_254_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this research was to determine the total phenolic content (TPC), antioxidation, antiaging, and antibacterial activities of Carissa carandas Linn., and aims at the novel plant sources which is utilized for their cosmeceutical applications. The two conditions (fresh and dried) and three stages (unripe, ripe, and fully ripe) of C. carandas were extracted by ethanolic maceration. Folin–Ciocalteu assay was used for determining the TPC. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were used for estimating antioxidant activity. The inhibitory tyrosinase activities were measured using the modified dopachrome assay. Antiaging was evaluated by inhibition of collagenase and elastase, and antibacterial activities. The result of six extracts from C. carandas showed that the highest phenolic content and elastase inhibition of the fresh fruit in fully ripe stage were 100.31 ± 2.64 mg GAE/g extract and 14.11% ± 0.95%, respectively. The fresh fruit in the unripe stage showed that the strongest percentage of DPPH IC50 and collagenase inhibitory activity were 29.11 ± 0.23 μg/mL and 85.94% ± 2.21%, respectively. The ethanolic extract of unripe dried fruit exhibited the highest antioxidant activity in the of ABTS assay, with an IC50 of 0.17 ± 0.01 μg/mL. The MBC displayed the dried fruit ripe stage anti Cutibacterium acnes, Staphylococcus epidermidis, and Staphylococcus aureus strains were 25.0, 25.0, and 16.25 mg/mL, respectively. The fresh fruit in the ripe stage showed that the strongest inhibition tyrosinase was 93.88% ± 5.64%. The conclusion of this research indicates that the fresh fruit of C. carandas fruit extracts has high potential as a novel cosmeceuticals’ applications to antiaging and skin whitening. The dried fruit in ripe stage extract has the most effective ingredient for antiacne products.
Collapse
Affiliation(s)
- Monsicha Khuanekkaphan
- Department of Health and Aesthetics, Thai Traditional Medicine College, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Warachate Khobjai
- Department of Clinical Chemistry, Faculty of Medical Technology, Nation University, Lampang, Thailand
| | - Chanai Noysang
- Department of Innovation of Health Products, Thai Traditional Medicine College, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Nakuntwalai Wisidsri
- Department of Health and Aesthetics, Thai Traditional Medicine College, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Suradwadee Thungmungmee
- Department of Innovation of Health Products, Thai Traditional Medicine College, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
48
|
Savaghebi D, Ghaderi-Ghahfarokhi M, Barzegar M. Encapsulation of Sargassum boveanum Algae Extract in Nano-liposomes: Application in Functional Mayonnaise Production. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02638-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Kim HS, Fernando IPS, Lee SH, Ko SC, Kang MC, Ahn G, Je JG, Sanjeewa K, Rho JR, Shin HJ, Lee W, Lee DS, Jeon YJ. Isolation and characterization of anti-inflammatory compounds from Sargassum horneri via high-performance centrifugal partition chromatography and high-performance liquid chromatography. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 2021. [DOI: 10.3390/catal11030347] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.
Collapse
|