1
|
Ye D, Ren J, Zhang Y, Wang X, Guo J, Li B, Li Q, Chen Y, Chen P, Zhang B. Lactic acid/tartaric acid-maltitol antibacterial activity against spoilage bacteria and prevention of yellowing and wilting in spinach and oilseed rape. Food Chem 2025; 471:142557. [PMID: 39823900 DOI: 10.1016/j.foodchem.2024.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The wilting and yellowing of leafy vegetables caused by spoilage bacteria resulted in serious resource wastage. This study investigated the efficacy of a combined lactic acid (LA) and tartaric acid (TA) treatment against four predominant spoilage bacteria (Erwinia persicina, Citrobacter freundii, Pseudomonas putida, and Pseudomonas punonensis) isolated from spinach and oilseed rape. Detailed analysis using Fourier-transform infrared spectroscopy, flow cytometry, scanning electron microscopy, and light microscopy revealed substantial cellular damage in the bacteria treated by LA and TA, including loss of intracellular material, and collapse of cellular morphology, as well as effective biofilm removal. Furthermore, the combination of maltitol with LA/TA preserved the color, water content, and antioxidant activity of spinach and oilseed rape with upgrading CAT and SOD activities while suppressing PPO and POD activity. In conclusion, LA/TA-maltitol effectively delayed yellowing and water loss while inhibiting rot-causing bacteria, highlighting its potential as a preservative solution for leafy greens.
Collapse
Affiliation(s)
- Dengyi Ye
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jing Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yanan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiali Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Bing Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Quanliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yanjun Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
2
|
Ma C, Wang G, Xia C, Guo L, Cui B, Du X, Wang J, Sun C. Effects of different ratios of glycerol to erythritol on the structure and properties of starch straws during long term storage. Food Chem 2025; 464:141862. [PMID: 39515163 DOI: 10.1016/j.foodchem.2024.141862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
To explore starch straws with low water absorption rate (WAR) and not prone to brittleness during long term storage. Glycerol and erythritol were used as composite plasticizers to explore their effects on the structure of starch straws. The results showed that G:E (60:40) had the lowest bending force (Fb = 12.58 N) and relative crystallinity (RC = 10.05 %). G:E (40:60) had the lowest water absorption rate. With the increase of erythritol contents, the proportion of starch straws short chains (A + B1) increased. Starch straws are easier to be broken during long term storage as the percentages of erythritol increased from 80 to100. However, G:E (40:60) and G:E (60:40) not only had higher flexibility (Eb = 6.12 N/cm and 7.47 N/cm) but greater hardness (Fb = 39.37 N and 45.42 N). Therefore, the addition of glycerol can inhibit the precipitation of erythritol and has an ideal plasticizing effect than single plasticizer.
Collapse
Affiliation(s)
- Chenyu Ma
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guoqing Wang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanjin Xia
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Xianfeng Du
- Department of Food Sciences, Anhui Agricultural University, Hefei, China.
| | - Jinpeng Wang
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao Corn Developing Co. Ltd, Zhucheng, China.
| | - Chunrui Sun
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao Corn Developing Co. Ltd, Zhucheng, China
| |
Collapse
|
3
|
Xie W, Jia R, Qu Y, Ma M, Wang Y, Li H, Sun Q, Li M, Xie F. Response of the distribution and molecular transition of gluten proteins and quality of Chinese steamed bread to different hydration levels. Int J Biol Macromol 2024; 280:135784. [PMID: 39306169 DOI: 10.1016/j.ijbiomac.2024.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
This study systematically explored how different hydration levels (45 %, 50 %, and 55 % water addition) affect the evolution of gluten network morphology, distribution, conformational and molecular transition, and moisture migration during the processing of Chinse steamed bread (CSB), and their impact on quality formation. Higher hydration levels resulted in a more uniform distribution and fibrous structure of the gluten network during mixing. However, excessive hydration (55 %) caused gluten fibers to rupture during fermentation. This increased the specific volume but decreased the chewiness and stickiness of CSB. MRI results highlighted that differences in moisture migration and internal structure among samples with different hydration levels were enlarged after steaming. AFM images revealed the increase in both protein molecular chain height and width with increasing hydration level, particularly after steaming. Moreover, high hydration levels promoted the depolymerization of glutenin macropolymers during mixing, fermentation, as well as repolymerization during cooking. These results indicated that both macroscopic qualities and molecular structure of gluten protein became more sensitive to the physical and biochemical processes during CSB processing. These dynamic transitions play a crucial role in determining dough rheological properties and CSB's overall quality. This research offers theoretical insights for precise dough product regulation and understanding underlying mechanisms.
Collapse
Affiliation(s)
- Wenxin Xie
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Ruobing Jia
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunpeng Qu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Yanfei Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hongyan Li
- Heze Huarui Wheat flour Industry Co. LTD, Heze, 274000, Shandong, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Mendes BDAB, Almeida MF, Silva GL, Amparo Dos Anjos D, Fontan GCR, Rebouças São José A, Veloso CM. Physical, textural, and sensory characteristics of gluten-free cupcakes developed with native and modified by hydrothermal treatment green plantain flours. J Food Sci 2024; 89:7437-7451. [PMID: 39390631 DOI: 10.1111/1750-3841.17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Gluten-free diets are characterized by lower nutritional quality. The use of green plantain flour in gluten-free formulations appears as an alternative to overcome this deficiency, considering that green plantains have a relevant content of bioactive compounds, dietary fiber, including resistant starch. The objective of this work was to evaluate the effect of the addition of native and modified by hydrothermal treatment green plantain whole flours in the form of gluten-free cupcakes. The density, yield, and microstructure of the dough, specific volume (SV), height, crumb analysis, color, texture, and sensory acceptability of the cupcakes were evaluated. Partial replacement (40%) of rice flour by native and modified flours produced darker, redder cupcakes, less yellowish and with less color intensity. Sensory analysis revealed higher acceptance for cupcakes with native and modified flours, compared to the control, for appearance, flavor, texture, aroma, and overall acceptance. The native flour was the most viable option, as the cupcake produced with it showed the best values for hardness and chewiness, without changing elasticity and SV, in addition to superior sensory acceptance than the control and similar to cupcakes with other modified flours. PRACTICAL APPLICATION: Pursuing to meet the market demand for gluten-free products, with the cake being one of the most requested products in this market, and taking in account that green banana, from different cultivars, has gained interest for the production of flours. The production of flour and bakery products is of great interest to the food industry, not only because of its flavor and properties but also due to the economic and sustainable viability of producing whole green plantain flour with the potential for application, promoting diversification and innovation in the gluten-free functional products market.
Collapse
Affiliation(s)
- Bruna de Andrade Braga Mendes
- Multidisciplinary Institute in Health (IMS), Federal University of Bahia (UFBA), Vitória da Conquista, Bahia, Brazil
| | | | - Gabriela Leite Silva
- Chemistry Laboratory, State University of Southwest Bahia, Vitória da Conquista, Bahia, Brazil
| | - Dioneire Amparo Dos Anjos
- Multidisciplinary Institute in Health (IMS), Federal University of Bahia (UFBA), Vitória da Conquista, Bahia, Brazil
| | - Gabrielle Cardoso Reis Fontan
- Rural and Animal Technology Department (DTRA), State University of the Southwest of Bahia (UESB), Itapetinga, Bahia, Brazil
| | - Alcebíades Rebouças São José
- Department of Phytotechnics and Zootechnics (DFZ), State University of the Southwest of Bahia (UESB), Vitória da Conquista, Bahia, Brazil
| | - Cristiane Martins Veloso
- Department of Natural Sciences (DCN), State University of the Southwest of Bahia (UESB), Vitória da Conquista, Bahia, Brazil
| |
Collapse
|
5
|
Wang D, Tang Z, Chen R, Zhong X, Du X, Li YX, Zhao Z. Physicochemical properties of esterified/crosslinked quinoa starches and their influence on bread quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3834-3841. [PMID: 38394374 DOI: 10.1002/jsfa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Starch is the main component of quinoa seeds. However, quinoa starch has poor solubility in cold water and poor mechanical resistance and is easily aged, which limit its application. Therefore, modification of its structure to improve its functional properties is necessary. RESULTS This research used acetic anhydride and sodium trimetaphosphate to modify the structure of starch molecules and investigated their influence on bread quality. The results showed that both esterification and crosslinking prevented the aggregation behavior of starch molecules. Moreover, they both decreased the gelatinization enthalpy change and relative crystallinity of the starch. Compared with native starch, modification significantly decreased the gelatinization temperature from 57.01 to 52.01 °C and the esterified starch exhibited the lowest enthalpy change with a 44.2% decrease. Modified starch increased the specific volume and decreased the hardness and chewiness of bread. Modification did not influence the moisture content in bread but impacted the water retention capacity, depending on the degree of modification. Low and medium degrees of modification improved the water retention capacity during storage. By contrast, a high degree of modification (10 g kg-1 crosslinking agent) decreased the water retention capacity. The dually modified quinoa starch (esterified and crosslinked) showed no influence on the textural properties of bread. CONCLUSION This study demonstrated that both esterification and crosslinking significantly improved the functional properties of quinoa starch. Crosslinked or esterified quinoa starches have the potential to improve the textural properties of bakery products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Donghai Wang
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
- School of Biology and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyi Tang
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Rui Chen
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu Zhong
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaoyao Du
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yi-Xuan Li
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhengtao Zhao
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
6
|
Bölek S, Tosya F, Göksu F. Effects of Artemisia dracunculus powder on dough rheology and quality properties as a novel ingredient in bread formulation. FOOD SCI TECHNOL INT 2024:10820132241248483. [PMID: 38651275 DOI: 10.1177/10820132241248483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tarragon has a great potential to be a healthy functional food ingredient thanks to its rich antioxidant, phenolic compounds, and nutrient content. The possibility of enriching bread with tarragon was investigated. For this aim, tarragon powder was used at the rates of 0, 2, 4 and 6% instead of wheat flour. In this study, the effects of substitution on the rheological properties of bread dough and color, total phenolic content, antioxidant activity, texture, sensory, and Fourier transform infrared (FT-IR) analysis of bread samples were performed. The composition of tarragon powder showed significant protein (23.16%), crude fiber (7.4%), antioxidant (48.22 ± 0.11%), and total phenolic content (511.66 ± 1.56 mg GAE/100 g). Bread samples with increased fiber and protein content were obtained by adding tarragon powder to the bread formulation. The major differences in the FT-IR absorbance spectra for the bread samples were not observed. Additionally, tarragon powder significantly increased the antioxidative properties of breads (p < 0.05). Adding up to 4% tarragon powder to the bread formulation increased the sensory scores of the breads.
Collapse
Affiliation(s)
- Sibel Bölek
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Feyza Tosya
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Feriha Göksu
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
7
|
Wang C, Lin M, Li Y, Zhuang W, Guo Z. Effect of steam explosion modified soluble dietary fiber from Tremella fuciformis stem on the quality and digestibility of biscuits. Int J Biol Macromol 2024; 265:130905. [PMID: 38492690 DOI: 10.1016/j.ijbiomac.2024.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Steam explosion (SE) technology is an effective modification method for improving resource utilization of edible fungi processing by-products. In this study, the effect of SE-modified Tremella fuciformis (T. fuciformis) stem soluble dietary fiber (SDF) on the quality and digestibility of biscuits was investigated. The results showed that the addition of SE-modified T. fuciformis stem SDF (M-SDF) changed the gluten network structure and moisture distribution in the biscuits, which improved the spread ratio of the biscuits and resulted in attractive colors. Meanwhile, as starch was embedded, the starch hydrolysis rate (from 60.9 ± 0.90 % to 43.01 ± 0.78 %) and estimated glycemic index (from 84.10 ± 4.39 to 68.45 ± 3.15) of 12 % M-SDF biscuits were reduced. Furthermore, 8 % M-SDF received the highest sensory scores. These results demonstrate the potential applicability of SE-modified edible fungi processing by-product SDF as an additive in functional foods.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China.
| |
Collapse
|
8
|
Zhou H, Wang X, Yang Y, Ban J, Guo S, Song T, Zhang S, Yu Y, Guo B, Zhang Y, Zhang X. HMW-GSs 1Dx3+1Dy12 contribute to a suitable wheat gluten strength that confers superior Chinese steamed bread quality. J Food Sci 2024; 89:1047-1057. [PMID: 38193206 DOI: 10.1111/1750-3841.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
The aim of this study was to clarify the effects of the high-molecular-weight glutenin subunits (HMW-GSs) 1Dx3+1Dy12 (3+12) and 1Dx4+1Dy12 (4+12) at the Glu-D1 locus on gluten and Chinese steamed bread (CSB) quality. The grain protein content and composition, gluten content and gluten index, farinograph properties, and CSB quality were investigated using four wheat near-isogenic lines (NILs) carrying HMW-GSs 1Dx2+1Dy12 (2+12), 3+12, 4+12 and 1Dx5+1Dy10 (5+10), respectively. The unextractable polymeric protein (UPP) and glutenin macropolymer (GMP) content, gluten index, dough development time, stability time, and farinograph quality number of four NILs all ranked as 5+10 > 3+12 > 2+12/4+12, such as the gluten index ranked as 5+10(44.88%) > 3+12(40.07%) > 2+12(37.46%)/4+12(35.85%); however, their contributions to the quality of CSB were ranked as 3+12 > 5+10 > 2+12/4+12, such as the specific volume ranked as 3+12(2.64 mL/g) > 5+10(2.49 mL/g) > 2+12(2.36 mL/g)/4+12(2.35 mL/g), which indicated that a suitable gluten strength (3+12) was crucial to making high-quality CSB. In addition, subunits 4+12 had a similar quality performance to low-quality subunits 2+12. All these findings suggested that, except for the acknowledged high-quality subunits 5+10, the introduction of 3+12 at the Glu-D1 locus is an efficient way for quality improvement of gluten as well as CSB.
Collapse
Affiliation(s)
- Hongwei Zhou
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanning Yang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinfu Ban
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sihai Guo
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuangxing Zhang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yang Yu
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhu J, Huang T, Chen X, Tian D. Effect of vanillin-conjugated chitosan-stabilized emulsions on dough and bread characteristics. Curr Res Food Sci 2024; 8:100691. [PMID: 38356612 PMCID: PMC10864875 DOI: 10.1016/j.crfs.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, the effect of chitosan-vanillin Schiff base emulsions (CSVAEs) on dough and bread characteristics was investigated. The results revealed that CSVAEs were embedded in the gluten and that the viscoelasticity and mechanical strength of the dough gradually increased with increasing CSVAEs concentration, α-helical and β-fold content, and elastic structure in the dough increased with the same patterns. The basic properties of bread were measured, and it was found that low concentrations of CSVAEs were effective in improving the quality of bread and slowing the staling rate. As the storage time increased, CSVAEs had less effect on the rate of moisture loss, hardness and springiness of the bread and more effect on the inhibition of the acidity of the bread. The addition of CSVAEs slowed the increase in bacteria and molds and extended the shelf life of the bread.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067, China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
10
|
Zhang Y, Liu X, Yu J, Fu Y, Liu X, Li K, Yan D, Barba FJ, Ferrer E, Wang X, Zhou J. Effects of Wheat Oligopeptide on the Baking and Retrogradation Properties of Bread Rolls: Evaluation of Crumb Hardness, Moisture Content, and Starch Crystallization. Foods 2024; 13:397. [PMID: 38338532 PMCID: PMC10855756 DOI: 10.3390/foods13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Delaying the deterioration of bakery goods is necessary in the food industry. The objective of this study was to determine the effects of wheat oligopeptide (WOP) on the qualities of bread rolls. The effects of WOP on the baking properties, moisture content, and starch crystallization of rolls during the storage process were investigated in this study. The results showed that WOP effectively improved the degree of gluten cross-linking, thereby improving the specific volume and the internal structure of rolls. The FTIR and XRD results showed that the addition of WOP hindered the formation of the starch double helix structure and decreased its relative crystallinity. The DSC results revealed a decrease in the enthalpy change (ΔH) from 0.812 to 0.608 J/g after 7 days of storage with 1.0% WOP addition, further indicating that WOP reduced the availability of water for crystal lattice formation and hindered the rearrangement of starch molecules. The addition of WOP also improved the microstructure of the rolls that were observed using SEM analysis. In summary, WOP is expected to be an effective natural additive to inhibit starch staling and provide new insights into starchy food products.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (Y.Z.); (X.L.); (Y.F.)
| | - Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (Y.Z.); (X.L.); (Y.F.)
| | - Junbo Yu
- Chinese Cereals and Oils Association, Beijing 100032, China;
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (Y.Z.); (X.L.); (Y.F.)
| | - Xiangjun Liu
- National Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (X.L.); (K.L.); (D.Y.)
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (X.L.); (K.L.); (D.Y.)
| | - Dongfang Yan
- National Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; (X.L.); (K.L.); (D.Y.)
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain; (F.J.B.); (E.F.)
| | - Emlia Ferrer
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain; (F.J.B.); (E.F.)
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (Y.Z.); (X.L.); (Y.F.)
| | - Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain; (F.J.B.); (E.F.)
| |
Collapse
|
11
|
Ma C, Tao H, Tan C, Gao S, Wu Z, Guo L, Cui B, Yuan F, Zou F, Liu P, Lu L. Effects of polyols with different hydroxyl numbers on the structure and properties of starch straws. Carbohydr Polym 2023; 321:121297. [PMID: 37739530 DOI: 10.1016/j.carbpol.2023.121297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
To study the relationship between the number of hydroxyl groups of polyols and the plasticizing effect, the effects of different polyols including ethylene glycol, glycerol, erythritol, xylitol and sorbitol on the structure and properties of corn starch straws were analyzed and compared. The results showed that the addition of plasticizer significantly improved the performance of starch straws, which greatly improved the mechanical properties, water absorption rate (WAR) and thermal stability. However, there was no linear relationship between the plasticizing effect on starch straws and the number of hydroxyl groups in plasticizers. Fourier transform infrared (FTIR) results showed that erythritol formed the strongest intermolecular interaction with starch. Starch straws with erythritol (S-ERY) had the highest bending force (Fb = 25.78 N) and the lowest WAR. Starch straws with glycerol (S-GLY) showed the lowest relative crystallinity (RC = 12.87 %) and the highest temperature of the maximum degradation (Tdmax = 302.1 °C). In addition, after storing for 180 days, S-GLY showed higher modulus of elasticity in bending (Eb = 4.26 N/cm) and a uniform surface.
Collapse
Affiliation(s)
- Chenyu Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shijun Gao
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China
| | - Zehua Wu
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
12
|
Ding F, Wang Q, Xie C, Wang M, Zhang L, Gao M, Yang Z, Ma J, Shi X, Chen W, Duan S, Yuan P, Li Y, Ma X, Wu Y, Liu J, Feng X, Cheng Q, Wang Z, Li X, Huang J. The impact of mulberry leaf extract at three different levels on reducing the glycemic index of white bread. PLoS One 2023; 18:e0288911. [PMID: 37561734 PMCID: PMC10414662 DOI: 10.1371/journal.pone.0288911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
In this study, the influences of mulberry leaf extract (MLE) addition on the physicochemical properties including the specific volume, texture and sensory features of white bread (WB) were evaluated by the sensory analysis technology. A double-blind, randomised, repeat-measure design was used to study the impact of MLE addition on the postprandial blood glucose response as well as the satiety index of WB. Results showed that the addition of MLE showed no significant effects on the physicochemical properties of WB except for the slight changes of color and bitterness. The addition of MLE significantly reduced the total blood glucose rise after ingestion of WB over 120 minutes, and reduced the GI value of WB in a dose-effect relationship. When the concentration of MLE reached 1.5 g per 100 g available carbohydrate, the GI value of WB could be reduced from 77 to 43. This study provides important information in terms of the appropriateness of MLE when added to more complex real food, the dose-dependent relationship could supply a reference for the application of MLE.
Collapse
Affiliation(s)
- Fangli Ding
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Qing Wang
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Chen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, People’s Republic of China
| | - Meng Wang
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Lu Zhang
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Ming Gao
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Zongling Yang
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Jianrui Ma
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Xiaodong Shi
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shenglin Duan
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Peng Yuan
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Yali Li
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Xishan Ma
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Yimin Wu
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Jia Liu
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Xiaowen Feng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Qingli Cheng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, People’s Republic of China
| | - Zichun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xuyan Li
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, People’s Republic of China
| | - Jingmei Huang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Cui T, Wu X, Mou T, Fan F. Water usability as a descriptive parameter of thermodynamic properties and water mobility in food solids. NPJ Sci Food 2023; 7:30. [PMID: 37316524 DOI: 10.1038/s41538-023-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
A classic problem in preservation is the microbes can grow in low-moisture foods. In this paper, the water sorption, and thermodynamic properties of glucose/WPI solid matrices were measured, while their molecular mobility was analyzed and associated with the microbial growth of D. Hansenii at various aw and 30 °C. Although the sorption isotherms, Tg, and relaxation processes of studied matrices were affected by aw and WPI, the microbial growth showed highly dependent on water mobility rather than aw. Hence, we introduced water usability (Uw), derived from the mobility difference between system-involved water and liquid pure water explicating from the classical thermodynamic viewpoint, to describe the dynamic changes of water mobility in glucose/WPI matrices. Despite to aw, the yeast growth rate was enhanced at high Uw matrices concomitantly with a rapid cell doubling time. Therefore, the proposed Uw provides a better understanding of the water relationships of microorganisms in food preservation.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong, China
| | - Xukai Wu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Tian Mou
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, China.
| | - Fanghui Fan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Du X, Zhao Z, Li YX. Production of soluble pea protein/sodium caseinate co-dispersions using ultrasonication and their acid coagulation properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Wang L, Zhang Y, Xing Q, Xu J, Li L. Quality and microbial diversity of homemade bread packaged in cinnamaldehyde loaded poly(lactic acid)/konjac glucomannan/wheat gluten bilayer film during storage. Food Chem 2023; 402:134259. [DOI: 10.1016/j.foodchem.2022.134259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
16
|
Influence of Partially Substituting Wheat Flour with Tiger Nut Flour on the Physical Properties, Sensory Quality, and Consumer Acceptance of Tea, Sugar, and Butter Bread. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7892739. [PMID: 36704447 PMCID: PMC9873436 DOI: 10.1155/2023/7892739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Tiger nut is a valuable source of fiber, lipids, minerals, and carbohydrates. However, avenues for incorporating tiger nuts into food remain underexplored, especially in several tropical countries where the plant grows well. The current study investigated the effects of partially substituting wheat flour (WF) with tiger nut flour (TNF) on the physical and sensory properties of different bread types to evaluate the more amenable system for tiger nut incorporation. The substitution was done at WF:TNF ratio of 100 : 0, 90 : 10, 85 : 15, 80 : 20, 75 : 25, and 70 : 30 for butter bread (Bb), tea bread (Tb), and sugar bread (Sb). The results show that WF substitution with TNF increased bread brownness and color saturation and decreased lightness, showing the highest impact on Sb, followed by Tb and Bb. Additionally, bread-specific volume decreased significantly after 20% (Bb), 25% (Tb), and 30% (Sb) TNF substitution. Furthermore, substituting WF with 30% TNF increased crumb hardness from approx. 1.87 N to 3.64 N (Bb), 3.46 N to 8.14 N (Tb), and 6.71 N to 11.39 N (Sb) and caused significant increases to 17.80 N (Tb) and 21.08 N (Sb) after 3 d storage. Only a marginal effect on storage hardness (4.32 N) was observed for Bb. Substituting WF with 10% TNF for Bb or 25% TNF for Tb led to significantly higher consumer (N = 56) scores for all attributes and overall acceptability. However, no significant effect on the overall acceptability of Sb was observed. Flash profiling showed frequently used descriptors for Bb as firm, moist, buttery, smooth, and astringent. After 10% TNF substitution, descriptors were chewy, firm, sweet, porous, dry, and caramel, and that of 30% TNF were grainy, chocolate, brown, nutty, and flaky. Substituting WF with TNF increased the lipids, fiber, and minerals content but decreased the protein and carbohydrate contents of bread. TNF substitution led to different physical and sensory effects depending on bread type, showing that Bb with 10% or Tb with 25% TNF is more comparable with the overall acceptance quality of 100% WF. The study is relevant for utilizing tiger nuts as an ingredient in bread products.
Collapse
|
17
|
Tomić J, Dapčević-Hadnađev T, Škrobot D, Maravić N, Popović N, Stevanović D, Hadnađev M. Spontaneously fermented ancient wheat sourdoughs in breadmaking: Impact of flour quality on sourdough and bread physico-chemical properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Niu X, Mi S, Jin Q, Sang Y, Wang X. Characterization and discrimination of two varieties of eggplants using multi-element and metabolomics profiles coupled with chemometrics analysis. Food Res Int 2022; 162:111976. [DOI: 10.1016/j.foodres.2022.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
19
|
Ding J, Hu H, Yang J, Wu T, Sun X, Fang Y, Huang Q. Mechanistic study of the impact of germinated brown rice flour on gluten network formation, dough properties and bread quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Mouzakitis CK, Sereti V, Matsakidou A, Kotsiou K, Biliaderis CG, Lazaridou A. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Wang L, Li Y, Guo Z, Wang H, Wang A, Li Z, Chen Y, Qiu J. Effect of buckwheat hull particle-size on bread staling quality. Food Chem 2022; 405:134851. [DOI: 10.1016/j.foodchem.2022.134851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
22
|
Riley IM, Nivelle MA, Ooms N, Delcour JA. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr Rev Food Sci Food Saf 2022; 21:4738-4775. [PMID: 36124883 DOI: 10.1111/1541-4337.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.
Collapse
Affiliation(s)
- Isabella M Riley
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Biscuiterie Thijs, Herentals, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Cao H, Wang C, Li R, Guan X, Huang K, Zhang Y. Influence of sprouted oat flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Chem X 2022; 15:100428. [PMID: 36211788 PMCID: PMC9532797 DOI: 10.1016/j.fochx.2022.100428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
β-glucan reduced 45 % and polyphenols increased 79 % after sprouting for 120 h. Bread’s cell density and specific volume were the highest after sprouting for 72 h. The starch digestibility was the lowest with oat flour sprouting for 72 h. Two digestible fractions with different digestion rates was presented in the bread. Sprouting for 72 h postponed t2start and reduced digestion rate by 7 % in the bread.
The aim of this study was to investigate the effect of sprouted oats substitutions on the in vitro digestibility of starch in the wheat bread. The physical and nutritional quality of wheat bread enriched with 20 % sprouted oat flour was compared. The polyphenols and γ-aminobutyric acid increased, while the content of starch and β-glucan in the mixed bread was gradually decreased. The specific volume of mixed bread reached the maximum with a 19.79 % reduction of area fraction and a 31.36 % increase cell density when sprouting for 72 h. Two digestible starch fractions with different digestion rates were observed from the LOS-CPS fitted starch digestograms. The microstructure revealed that large type A wheat starch was gelatinized after baking, whereas small type B wheat starch and oat starch were wrapped in protein-β-glucan complexes. This study suggests that properly sprouting has the potential to obtain nutritional bread with low starch digestibility.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| | - Chong Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
- Corresponding author at: School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| |
Collapse
|
25
|
Pan Q, Zhou J, Shen W, Wang Z, Cai H, Jia X. Effect of extruded wheat bran on volatile and physicochemical properties of bread during its shelf life. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Novel Gluten-Free Bread with an Extract from Flaxseed By-Product: The Relationship between Water Replacement Level and Nutritional Value, Antioxidant Properties, and Sensory Quality. Molecules 2022; 27:molecules27092690. [PMID: 35566041 PMCID: PMC9103911 DOI: 10.3390/molecules27092690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry generates a great amount of food waste and by-products, which in many cases are not fully valorized. Press cakes, deriving from oilseeds extraction, represent interesting co-products due to their nutritional value, high biopolymers content, and the presence of bioactive phytochemicals. Gluten-free breads (GFBs) are products that have disadvantages such as unsatisfactory texture, low nutritional value, and short shelf life, so natural additives containing proteins and hydrocolloids are in demand to increase GFBs value. In this study, extract from flaxseed by-product (FOCE-Flaxseed Oil Cake Extract) was used to replace water (25-100%) in GFBs formulations and their nutritional value, antioxidant properties, and sensory features were investigated. The results showed that GFBs with FOCE had an elevated nutritional and nutraceutical profile (up to 60% more proteins, significantly increased K, Mg, and P levels). Moreover, the addition of FOCE improved the technological parameters (increased specific volume, number of cells and height/width ratio, reduced density, average size, and perimeter of cells), antioxidant potential, and overall sensory quality of GFBs. This study showed an encouraging way of using a by-product that, due to its high content of proteins, polysaccharides, minerals, and antioxidants, can add value to GFBs.
Collapse
|
27
|
Zhang M, Xiao S, Gong A, Liu X, Wu Y, Du J, Ding W, Fu Y, Wang X. Effect of lactosucrose on the evaluation of visual appearance, texture, water mobility, microstructure and inhibition of staling in wheat bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | | | - Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Yan Wu
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Jing Du
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
28
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
29
|
Gao Z, Duan Z, Zhang J, Zheng J, Li F, Xu G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals (Basel) 2022; 12:315. [PMID: 35158638 PMCID: PMC8833397 DOI: 10.3390/ani12030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, soybean oil, lard and mixed oils were added to the feed in two concentrations (1.5% and 3% of each), resulting in six experimental groups. The control group was fed with a base diet without additions, and used to compare the effects of feeding on production performance and egg quality of laying hens. The results demonstrated that: (1) the 3% supplemented-oils or lard group showed a decrease in laying rate; (2) 1.5% and 3% added-lard significantly increased the total amount of unsaturated fatty acids in eggs, compared to the control group; (3) 1.5% and 3% soybean oil increased the content of mono/polyunsaturated fatty acids, cholesterol, phospholipids and choline in eggs; (4) glutathione peroxidase (GPx) and superoxide dismutase (SOD) contents were increased in all groups, being the most evident in the lard-treated group; (5) all experimental groups showed an increase in the content of essential and non-essential amino acids in albumen; (6) 3% oils, especially the mixed oils, damaged the structure of globules of cooked egg yolks. Therefore, the use of 1.5% soybean oil in the feed diet of Hyline brown hens resulted in the most adequate oil to ensure animal health and economic significant improvements in this experiment.
Collapse
Affiliation(s)
- Zhouyang Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.); (J.Z.)
| | - Zhongyi Duan
- National Animal Husbandry Service, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.); (J.Z.)
| | - Jiangxia Zheng
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.); (J.Z.)
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guiyun Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.); (J.Z.)
| |
Collapse
|
30
|
Sato Y, Fukuhara N. New and Simple Substitution Methods for Measuring the Loaf Volume and Crust Color Bread Made Using an Automatic Bread-making Machine. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yukinori Sato
- Laboratory of Food Materials Science and Engineering, Faculty of Agriculture and Life Science, Hirosaki University
| | - Natsumi Fukuhara
- Laboratory of Food Materials Science and Engineering, Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
31
|
|
32
|
Effects of Laminaria japonica polysaccharides on the texture, retrogradation, and structure performances in frozen dough bread. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
|
34
|
Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life. Food Res Int 2021; 148:110597. [PMID: 34507742 DOI: 10.1016/j.foodres.2021.110597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
This work is aimed to obtain nanocomplexes based on egg white protein nanoparticles (EWPn) and bioactive compounds (BC), carvacrol (CAR), thymol (THY) and trans-cinnamaldehyde (CIN), and evaluate their application as antifungal edible coatings on preservative-free breads. The nanocomplex formation was studied through stoichiometry, affinity, colloidal behavior, morphology, and encapsulation efficiency (EE, %). Rounded-shape nanocomplexes with particle sizes < 100 nm were obtained. The EE values were similar for all BC (>83%). Furthermore, the in vitro antifungal activity of the nanocomplexes was verified using the Aspergillus niger species. The nanocomplexes were applied as coatings onto the crust of preservative-free breads, which were stored for 7 days (at 25 °C). The coatings had no impact on the physicochemical properties of the bread loaves (moisture, aw, texture, and color). Finally, the coatings based on EWPn-THY and EWPn-CAR nanocomplexes showed higher antifungal efficacy, extending the bread shelf life after 7 days.
Collapse
|
35
|
Martins MJN, Augusto PED, Telis-Romero J, Polachini TC. Transport properties of saturated sucrose and maltitol solutions as affected by temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Ma M, Mu T, Sun H, Zhou L. Evaluation of texture, retrogradation enthalpy, water mobility, and anti-staling effects of enzymes and hydrocolloids in potato steamed bread. Food Chem 2021; 368:130686. [PMID: 34399176 DOI: 10.1016/j.foodchem.2021.130686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
The functionalities of hydrocolloids and enzymes in texture, retrogradation enthalpy, water mobility and distribution, and anti-staling effects of potato steamed bread stored for 0, 24, and 48 h at 25 °C were investigated. Four kinds of hydrocolloids, including carrageenan, xanthan gum, arabic gum, sodium alginate, and one kind of enzyme (xylanase) showed little effects on the hardness reduction and springiness retention of potato steamed bread during storage, while the presence of α-amylase and lipase could slow down its staling rate. Potato steamed bread with combination of α-amylase (20 mg/kg) and lipase (40 mg/kg) exhibited the lowest hardness, with a significant reduction of 44.20%, besides improving the specific volume, L*, and overall acceptability in sensory evaluation. The addition of α-amylase and lipase could decrease the retrogradation enthalpy and bound water, and increase the mobility of mobile water. These findings shed efficient methods to retard staling of potato steamed bread.
Collapse
Affiliation(s)
- Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Liang Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| |
Collapse
|
37
|
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021; 10:foods10071542. [PMID: 34359411 PMCID: PMC8304690 DOI: 10.3390/foods10071542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G’ and G” decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
Collapse
|
38
|
Yang Y, Xu H, Tang S, Gu Z. Study on the Thermal and Water Migration of Chinese steamed buns during cooling process after steam cooking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Krupa-Kozak U, Drabińska N, Bączek N, Šimková K, Starowicz M, Jeliński T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021; 10:819. [PMID: 33918917 PMCID: PMC8069453 DOI: 10.3390/foods10040819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
In comparison to conventional bread, gluten-free bread (GF) shows many post-baking defects and a lower nutritional and functional value. Although broccoli leaves are perceived as waste products, they are characterised by a high content of nutrients and bioactive compounds. The present study evaluated the nutritional value, technological quality, antioxidant properties, and inhibitory activity against the formation of advanced glycation end-products (AGEs) of GF enriched with broccoli leaf powder (BLP). Compared to the control, gluten-free bread with BLP (GFB) was characterised by a significantly (p < 0.05) higher content of nutrients (proteins and minerals), as well as improved specific volume and bake loss. However, what needs to be emphasised is that BLP significantly (p < 0.05) improved the antioxidant potential and anti-AGE activity of GFB. The obtained results indicate that BLP can be successfully used as a component of gluten-free baked products. In conclusion, the newly developed GFB with improved technological and functional properties is an added-value bakery product that could provide health benefits to subjects on a gluten-free diet.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (N.D.); (N.B.); (K.Š.); (M.S.); (T.J.)
| | | | | | | | | | | |
Collapse
|
41
|
Yang H, Fu Y, Zhang Y, Zhou J, Wang D, Gao Z, Ke Y, Lv Q, Ding B, Wang X. Evaluation of mannitol and xylitol on the quality of wheat flour and extruded flour products. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Heng Yang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Yang Fu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Yudong Zhang
- Hunan Yufeng Food Industry Co., Ltd. Yueyang410400China
| | - Jian Zhou
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Danfeng Wang
- Eontop Healthy Salt Production Co., Ltd. Yicheng432400China
| | - Zhen Gao
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Yuan Ke
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Qingyun Lv
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Beibei Ding
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| | - Xuedong Wang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan430023China
| |
Collapse
|
42
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Effect of sucrose replacement and resistant starch addition on textural properties of gluten-free doughs and biscuits. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03659-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThere is a need to develop low-sugar healthy products. The aim of this research was to evaluate the effect of maltitol and inulin as sucrose replacement alongside resistant starch (RS) and green banana flour (GBF) on the texture and physical properties of gluten-free doughs and biscuits formulated with buckwheat, sorghum and lentil flours. These properties are important to predict the dough workability, how easy the biscuits could be mass-produced and determine consumers’ acceptability. Results showed that partial and complete substitution of sucrose could be achieved and appropriate concentration of resistant starch or green banana flour contributed to better dough and biscuit texture. RS content showed the biggest influence on dough stickiness and biscuit hardness and could be used to correct the negative effect of sucrose replacement and to maximise both the dough processability and biscuit acceptability.
Collapse
|
44
|
Yang B, Yin Y, Liu C, Zhao Z, Guo M. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem 2021; 349:129125. [PMID: 33535111 DOI: 10.1016/j.foodchem.2021.129125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of germination time on compositional changes and functionality of whole wheat malt flour (WMF) as well as its influence on cookie quality. The results illustrated that malting resulted in decreases of starch, protein, fat and ash, while it increased dietary fiber, carbohydrate and energy. Gel hydration, emulsifying and foaming ability, pasting viscosity decreased significantly, particularly during the first 2 days of germination. Both bound and immobilized water in WMF decreased with increasing germination time while the concentration and antioxidant capacity of extractable and hydrolyzable phenolic compounds (EPP and HPP) increased significantly in WMF and malt-based cookies. Flours changed from an integrated granular to an irregular tousy structure during germination. The incorporation of WMF induced a distorted "honey-like" comb structure to the cookies. Conclusively, controlled germination not only improves the physicochemical, functional properties of WMF but also increases nutrition value and technological performance of malt-based cookies.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjing Yin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Liu
- Shandong Taishan Beer Company, Tai'an 271000, China; Shandong Institute of Pomology, Tai'an 271018, Shandong, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mengmeng Guo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
45
|
Guo L, Xu D, Fang F, Jin Z, Xu X. Effect of glutathione on wheat dough properties and bread quality. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Ashraf W, Shehzad A, Sharif HR, Aadil RM, Rafiq Khan M, Zhang L. Influence of selected hydrocolloids on the rheological, functional, and textural properties of wheat‐pumpkin flour bread. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Waqas Ashraf
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Faculty of Food, Nutrition and Home Sciences National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| | - Aamir Shehzad
- Faculty of Food, Nutrition and Home Sciences National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
- UniLaSalle, Univ. Artois, EA7519 ‐ Transformations & Agro‐ressources, Normandie Université Mont‐Saint‐Aignan France
| | - Hafiz Rizwan Sharif
- University Institute of Diet and Nutritional Sciences, The University of Lahore Gujrat Campus Gujrat Pakistan
| | - Rana Muhammad Aadil
- Faculty of Food, Nutrition and Home Sciences National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| | - Moazzam Rafiq Khan
- Faculty of Food, Nutrition and Home Sciences National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- The Food College Shihezi University Shihezi China
| |
Collapse
|
47
|
Arp CG, Correa MJ, Ferrero C. Kinetic study of staling in breads with high-amylose resistant starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5227. [PMID: 32698373 PMCID: PMC7400077 DOI: 10.3390/ijerph17145227] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Bulk sweetener maltitol belongs to the polyols family and there have been several dietary applications in the past few years, during which the food industry has used it in many food products: bakery and dairy products, chocolate, sweets. This review paper addresses and discusses in detail the most relevant aspects concerning the analytical methods employed to determine maltitol's food safety and industry applications, its metabolism and its impacts on human health. According to our main research outcome, we can assume that maltitol at lower doses poses little risk to humans and is a good alternative to using sucrose. However, it causes diarrhoea and foetus complications at high doses. Regarding its determination, high-performance liquid chromatography proved the primary method in various food matrices. The future role of maltitol in the food industry is likely to become more relevant as processors seek alternative sweeteners in product formulation without compromising health.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Lapland, Finland
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, University of Oporto, 4051-401 Porto, Portugal
| | - António Raposo
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
49
|
Meng X, Liu C, Cao C, Zheng Z, Su Q, Liu Y. L-ascorbyl palmitate modify the crystallization behavior of palm oil: Mechanism and application. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Sehn GAR, Steel CJ. Staling kinetics of whole wheat pan bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:557-563. [PMID: 32116365 PMCID: PMC7016051 DOI: 10.1007/s13197-019-04087-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
Understanding the staling process of whole grain breads, especially in relation to the increase in firmness, can contribute to optimize the shelf life of these products. The aim of this work was to develop an equation (staling rate) capable of estimating the increase in firmness of whole wheat pan breads. The staling rate (K) demonstrated that the greater the bran content, the greater the increase in bread firmness (from 0.011 day-1 for 0% replacement, to 0.174 day-1 and 0.091 day-1 for 30% replacement of fine and coarse bran, respectively). Thereby, we established an equation to estimate the firmness of whole wheat pan bread on a given day, considering the concentration of bran in the formulation, thus helping baking industries to predict bread behavior during storage and optimize the use of additives.
Collapse
Affiliation(s)
- Georgia Ane Raquel Sehn
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University (UDESC), BR 282, km 573, Pinhalzinho, Santa Catarina 89870-000 Brazil
| | - Caroline Joy Steel
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, São Paulo 13083-862 Brazil
| |
Collapse
|