1
|
Rittisak S, Charoen R, Seamsin S, Buppha J, Ruangthong T, Muenkhling S, Riansa-Ngawong W, Eadmusik S, Phattayakorn K, Jantrasee S, Savedboworn W. Effects of incorporated collagen/prebiotics and different coating substances on the survival rate of encapsulated probiotics. Food Sci Biotechnol 2025; 34:1383-1399. [PMID: 40110402 PMCID: PMC11914594 DOI: 10.1007/s10068-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 03/22/2025] Open
Abstract
The purpose of this study was to assess the influence of collagen protein and various prebiotics as encapsulant materials, as well as double-layer coatings composed of chitosan or sericin, on the viability of encapsulated probiotic Lactobacillus plantarum TISTR 2075. The storage stability of encapsulated probiotic was evaluated throughout 4 and 30 °C for 105 and 63 days, respectively. The log-linear inactivation rate (k) models indicated that co-encapsulated with alginate-collagen-inulin and double-layer coated with chitosan (ACI-C) had the lowest k value. Furthermore, ACI-C demonstrated the greatest value in terms of the time required for the first decimal decrease (δ) applied by Weibull non-linear model during storage at 4 and 30 °C. Encapsulated probiotic beads with ACI-C also exhibited the highest survivability after exposure to simulated gastrointestinal tract tolerance, heat resistance, and the degree hydrophobicity. The viability of cells significantly enhanced through coating with chitosan rather than sericin when employing the identical encapsulating agent. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01794-8.
Collapse
Affiliation(s)
- Sriwiang Rittisak
- Department of Innovation and Product Development Technology, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Ratchanee Charoen
- Department of Innovation and Product Development Technology, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Saowalak Seamsin
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Jamin Buppha
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Thanida Ruangthong
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Sarinya Muenkhling
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Wiboon Riansa-Ngawong
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Sunee Eadmusik
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Kriangkrai Phattayakorn
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Wanticha Savedboworn
- Department of Agro-Industry Technology and Management, Faculty of Digital Agro-Industry, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| |
Collapse
|
2
|
Romano N, Tavares G, Passot S, Sanchez MG, Golowczyc M, Campoy S, Fonseca F, Alves P, Coimbra P, Simões PN, Gomez-Zavaglia A. Bench scale Layer-by-Layer microencapasulation of Lactiplantibacillus plantarum WCFS1. Food Res Int 2025; 200:115431. [PMID: 39779077 DOI: 10.1016/j.foodres.2024.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio. To our knowledge, this work is the first to address the optimization of each stage of the encapsulation process for Lactiplantibacillus plantarum WCFS1. These stages include biomass production, handling of encapsulation polymers [chitosan (Chi) and alginate (Alg)], critical LbL parameters (e.g., biomass concentration, washing steps). The encapsulation efficiency was assessed by plate-counting microorganisms before and after coating with the polymers layers, followed by spray- and freeze-drying dehydration using fructo-oligosaccharides (FOS) and maltodextrin as carriers. Once dehydrated, microorganisms were either exposed to gastrointestinal conditions or stored for 30 days at 25 and 30 °C. Supplementing culture media with glucose, controlling pH, and harvesting at the early stationary phase during biomass production increased the bacterial recovery after LbL encapsulation (decrease < 1 log unit) compared to bacteria grown under non-controlled conditions (decrease of 4 log units). Coating bacteria (B) with up to two polymer layers (B|Chi or B|Chi|Alg) did not significantly affect bacterial culturability, unlike adding further layers. Zeta-potential measurements enabled the determination of the optimal biomass-to-polymer mass ratio. Using up to a 10:1 bacterial-to-polymer ratio did not change the z-potential for B|Chi or B|Chi|Alg samples. After drying, a synergistic effect between the LbL coating and carrier compounds (FOS and maltodextrin) was observed in terms of culturability. LbL encapsulation mitigated thermal and acidic stresses during spray-drying and gastrointestinal exposure. These findings support scaling-up LbL encapsulation for delivering sensitive lactic acid bacteria strains to the gut.
Collapse
Affiliation(s)
- Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina
| | - Gina Tavares
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Stéphanie Passot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120, Palaiseau, France
| | | | - Marina Golowczyc
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina
| | | | - Fernanda Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120, Palaiseau, France
| | - Patrícia Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Patrícia Coimbra
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Pedro Nuno Simões
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina.
| |
Collapse
|
3
|
Wang Q, Jin L, Yang H, Yu L, Cao X, Mao Z. Bacteria/Nanozyme Composites: New Therapeutics for Disease Treatment. SMALL METHODS 2025; 9:e2400610. [PMID: 38923867 DOI: 10.1002/smtd.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.
Collapse
Affiliation(s)
- Qirui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinran Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China
| |
Collapse
|
4
|
Ta LP, Corrigan S, Horniblow RD. Novel pectin-carboxymethylcellulose-based double-layered mucin/chitosan microcomposites successfully protect the next-generation probiotic Akkermansia muciniphila through simulated gastrointestinal transit and alter microbial communities within colonic ex vivo bioreactors. Int J Pharm 2024; 665:124670. [PMID: 39244071 DOI: 10.1016/j.ijpharm.2024.124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation was formed. Initially, a chitosan-based microcomposite was coated with mucin to establish a surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected, including carboxymethylcellulose (CMC), that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila under intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Tan M, Zhong X, Xue H, Cao Y, Tan G, Li K. Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. Int J Biol Macromol 2024; 279:135192. [PMID: 39216587 DOI: 10.1016/j.ijbiomac.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The growing demand for food safety has stimulated the development of new environmentally friendly food packaging. It is the development trend of food packaging in recent years by using natural polysaccharides as carriers and adding bioactive ingredients extracted from plants to prepare multifunctional films with antioxidant, antimicrobial and biodegradable properties. Herein, three polysaccharide components (PPE40, PPE60, and PPE80) from pineapple peel were extracted by ultrasound-assisted hot water extraction combined with gradient ethanol precipitation method, which all showed a certain scavenging activities against DPPH, ABTS, and hydroxyl radical. Then, the composite films were prepared by adding PPE40, PPE60 and PPE80 to chitosan. The results of SEM, FT-IR and XRD analysis showed that PPE40, PPE60 and PPE80 could interact with chitosan matrix. Furthermore, the addition of PPE40, PPE60, and PPE80 could improve the mechanical properties of the films, and promote the antibacterial activity of the films against B. subtilis, S. aureus and E. coli. Finally, the application of the composite films to strawberries showed that the addition of PPE40, PPE60 and PPE80 could delay the rapid decay of strawberries during storage. The results of this study showed that pineapple polysaccharides have a potential to be applied in the field of food packaging.
Collapse
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongxin Xue
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinyin Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Guangdong Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Wang XC, Xu Y, Jiang W, Luo FX, Zhang D, Wu D, Du YN, Hu JN. Dual-layer probiotic encapsulation using metal phenolic network with gellan gum-tamarind gum coating for colitis treatment. Int J Biol Macromol 2024; 280:135759. [PMID: 39299413 DOI: 10.1016/j.ijbiomac.2024.135759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Probiotic oral therapy has been recognised as an effective treatment for inflammatory bowel disease (IBD). However, the efficacy of probiotics is often diminished due to their limited resistance to harsh gastrointestinal conditions. Therefore, the importance of designing innovative strategies for oral probiotic delivery for the effective treatment of IBD is increasingly recognised. In this study, we present a novel encapsulation strategy of Lactobacillus plantarum (L.P) using the dual-layer system consisting of a tannic acid‑calcium network and polysaccharide coating (gellan gum-tamarind gum) named L.P-C/T-G/T. This double-layer encapsulation system not only does not affect the normal proliferation of probiotics and provide protection, but also endows probiotics with more functions. More specifically, the acid resistance ability of the encapsulated probiotics is increased by 10 times, the free radical scavenging rate is enhanced by 5 times, and the intestinal retention time can be prolonged by 6-12 h. In the DSS-induced murine colitis model, it significantly alleviated colon shortening, inhibited ROS overexpression, and promoted the repair and regeneration of the mucus layer. This dual-layer encapsulation approach for a single probiotic demonstrates a significant advancement in probiotic delivery technology, offering hope for a comprehensive approach to the treatment of colitis and potentially other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yu Xu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng-Xian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yi-Nan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
7
|
Allahverdi M, Dadmehr M, Sharifmoghadam MR, Bahreini M. Encapsulation of Lactiplantibacillus plantarum probiotics through cross-linked chitosan and casein for improving their viability, antioxidant and detoxification. Int J Biol Macromol 2024; 280:135820. [PMID: 39306184 DOI: 10.1016/j.ijbiomac.2024.135820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In the present study, encapsulation of Lactiplantibacillus plantarum (L.p) was performed using chitosan and casein through calcium phosphate intercrossing. Chitosan and casein both considered as non-toxic and biocompatible food derived components with intrinsic antioxidant properties. Layer by layer strategy was performed for deposition of modified cross-linked chitosan along with casein as the novel protective layers on the surface of probiotics. After confirmation of successful encapsulation, the viability and antioxidant activity of encapsulated L.p was evaluated. The results showed enhanced survival and antioxidant activity of encapsulated L.p compared to free bacteria in simulated digestive conditions. The survival of free and encapsulated L.p was respectively 1.38 ± 0.29 log cfu/ml and 6.99 ± 0.12 log cfu/ml in SGF and 8.54 ± 0.05 log cfu/ml and 7.25 ± 0.23 log cfu/ml in SIJ after 2 h of incubation. HPLC analysis was also used to investigate the detoxification activity of probiotics toward Aflatoxin M1 and obtained results showed encapsulated bacteria could significantly reduce aflatoxin M1 (68.44 ± 0.5 %) compared to free bacteria (43.76 ± 0.54 %). The results of this research suggest that the chitosan/casein mediated encapsulation of L.p with layer-by-layer technology is an effective method to improve the survival and antioxidant properties of probiotics with enhanced detoxification of AFM1.
Collapse
Affiliation(s)
- Mehrana Allahverdi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Masoumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
9
|
Jike X, Wu C, Yang N, Rong W, Zhang M, Zhang T, Lei H. Lactiplantibacillus plantarum encapsulated by chitosan-alginate and soy protein isolate-reducing sugars conjugate for enhanced viability. Int J Biol Macromol 2024; 281:136162. [PMID: 39443175 DOI: 10.1016/j.ijbiomac.2024.136162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
To investigate the protective effects of various wall materials on probiotics, two types of Lactiplantibacillus plantarum 90 (Lp90) microcapsules were prepared using sodium alginate and chitosan (Lp-AC), soy protein isolate (SPI) and reducing sugars conjugate (Lp -MRP) as wall materials, respectively. The physical properties, cell viability under different conditions and the application of the microcapsules were investigated. Results showed that the selected wall materials were safe to Lp90 and their simulated digestion products exhibited antioxidant activities and prebiotic properties. The encapsulation efficiencies of Lp-AC and Lp-MRP were above 80 %. Both microcapsules significantly enhanced cell survival rates under various conditions including low pH, bile salts, thermal processing, mechanical force, storage, and gastrointestinal digestion, with Lp-MRP demonstrating superior protective effects. When incorporated into milk and orange juice and stored at 4 °C for 28 d, the colony counts of beverages containing Lp90 microcapsules exceeded 6 Log CFU/mL, with minimal changes in total soluble solids. Lp-MRP exhibited higher cell viability and smaller viscosity changes at 25 °C for 28 d. Therefore, the single-layer encapsulation using SPI and reducing sugars conjugate showed promise over traditional chitosan-alginate double-layer encapsulation concerning probiotic protection, targeted delivery, and application.
Collapse
Affiliation(s)
- Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Wenbin Rong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Ting Zhang
- Institute of Farm Product Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Hu F, Gao Q, Zheng C, Zhang W, Yang Z, Wang S, Zhang Y, Lu T. Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J Nanobiotechnology 2024; 22:582. [PMID: 39304919 PMCID: PMC11414319 DOI: 10.1186/s12951-024-02862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aβ deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.
Collapse
Affiliation(s)
- Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenhui Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziyi Yang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shihao Wang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
11
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
12
|
Fang T, Liu S. Metal-Phenolic Network Directed Coating of Single Probiotic Cell Followed by Photoinitiated Thiol-Ene Click Fortification to Enhance Oral Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308146. [PMID: 38054771 DOI: 10.1002/smll.202308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Probiotics-based oral therapy has become a promising way to prevent and treat various diseases, while the application of probiotics is primarily restricted by loss of viability due to adverse conditions in the gastrointestinal (GI) tract during oral delivery. Layer-by-layer (LbL) single-cell encapsulation approaches are widely employed to improve the bioavailability of probiotics. However, they are generally time- and labor-intensive owing to multistep operation. Herein, a simple yet efficient LbL technique is developed to coat a model probiotic named Escherichia coli Nissle 1917 (EcN) through polyphenol-Ca2+ network directed allyl-modified gelatin (GelAGE) adsorption followed by cross-linking of GelAGE via photoinitiated thiol-ene click reaction to protect EcN from harsh microenvironments of GI tract. LbL single-cell encapsulation can be performed within 1 h through simple operation. It is revealed that coated EcN exhibits significantly improved viability against acidic gastric fluid and bile salts, and enhanced colonization in the intestinal tract without loss of proliferation capabilities. Furthermore, oral therapy of coated EcN remarkably relieves the pathological symptoms associated with colitis in mice including down-regulating inflammation, repairing epithelial barriers, scavenging reactive oxygen species (ROS), and restoring the homeostasis of gut microbiota. This simplified LbL coating strategy has great potential for various probiotics-mediated biomedical and nutraceutical applications.
Collapse
Affiliation(s)
- Taisong Fang
- Department of Food Science and Nutrition, Innovation Center of Yangtze River Delta, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Innovation Center of Yangtze River Delta, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
13
|
Zhu L, Yu T, Wang W, Xu T, Geng W, Li N, Zan X. Responsively Degradable Nanoarmor-Assisted Super Resistance and Stable Colonization of Probiotics for Enhanced Inflammation-Targeted Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308728. [PMID: 38241751 DOI: 10.1002/adma.202308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Indexed: 01/21/2024]
Abstract
Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.
Collapse
Affiliation(s)
- Limeng Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tong Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
14
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
15
|
Li S, Zhang YX. Sensitive delivery systems and novel encapsulation technologies for live biotherapeutic products and probiotics. Crit Rev Microbiol 2024; 50:371-384. [PMID: 37074732 DOI: 10.1080/1040841x.2023.2202237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Live biotherapeutic product (LBP), a type of biological product, holds promise for the prevention or treatment of metabolic disease and pathogenic infection. Probiotics are live microorganisms that improve the intestinal microbial balance and beneficially affect the health of the host when ingested in sufficient numbers. These biological products possess the advantages of inhibition of pathogens, degradation of toxins, and modulation of immunity. The application of LBP and probiotic delivery systems has attracted great interest to researchers. The initial used technologies for LBP and probiotic encapsulation are traditional capsules and microcapsules. However, the stability and targeted delivery capability require further improved. The specific sensitive materials can greatly improve the delivery efficiency of LBPs and probiotics. The specific sensitive delivery systems show advantages over traditional ones due to their better properties of biocompatibility, biodegradability, innocuousness, and stability. Moreover, some new technologies, including layer-by-layer encapsulation, polyelectrolyte complexation, and electrohydrodynamic technology, show great potential in LBP and probiotic delivery. In this review, novel delivery systems and new technologies of LBPs and probiotics were presented, and the challenges and prospects were explored in specific sensitive materials for LBP and probiotic delivery.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Wang C, Liu S, Wang Z, Wang M, Pang H, Liu Y, Chang H, Sui Z. Rapid and Accurate Quantification of Viable Lactobacillus Cells in Infant Formula by Flow Cytometry Combined with Propidium Monoazide and Signal-Enhanced Fluorescence In Situ Hybridization. Anal Chem 2024; 96:1093-1101. [PMID: 38204177 DOI: 10.1021/acs.analchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| |
Collapse
|
17
|
Pandey RP, Gunjan, Himanshu, Mukherjee R, Chang CM. Nanocarrier-mediated probiotic delivery: a systematic meta-analysis assessing the biological effects. Sci Rep 2024; 14:631. [PMID: 38182678 PMCID: PMC10770044 DOI: 10.1038/s41598-023-50972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.).
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan city 33302, Taiwan (R.O.C.).
| |
Collapse
|
18
|
Zhang W, Sadeghi A, Karaca AC, Zhang J, Jafari SM. Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Crit Rev Food Sci Nutr 2023; 64:12759-12779. [PMID: 37702799 DOI: 10.1080/10408398.2023.2257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Probiotics (PRO) have been recognized for their significant role in promoting human health, particularly in relation to colon-related diseases. The effective delivery of PRO to the colon is a fascinating area of research. Among various delivery materials, carbohydrates have shown great potential as colon-targeted delivery (CTD) carriers for PRO. This review explores the connection between probiotics and colonic diseases, delving into their underlying mechanisms of action. Furthermore, it discusses current strategies for the targeted delivery of active substances to the colon. Unlike other reviews, this work specifically focuses on the utilization of carbohydrates, such as alginate, chitosan, pectin, and other carbohydrates, for probiotic colon-targeted delivery applications. Carbohydrates can undergo hydrolysis at the colonic site, allowing their oligosaccharides to function as prebiotics or as direct functional polysaccharides with beneficial effects. Furthermore, the development of multilayer self-assembled coatings using different carbohydrates enables the creation of enhanced delivery systems. Additionally, chemical modifications of carbohydrates, such as for adhesion and sensitivity, can be implemented to achieve more customized delivery of PRO.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Alireza Sadeghi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
19
|
Chen C, Zhu Z. Recent Advances in the Nanoshells Approach for Encapsulation of Single Probiotics. Drug Des Devel Ther 2023; 17:2763-2774. [PMID: 37705759 PMCID: PMC10497064 DOI: 10.2147/dddt.s419897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
The intestine, often referred to as the "second brain" of the human body, houses a vast microbial community that plays a crucial role in maintaining the host's balance and directly impacting overall health. Probiotics, a type of beneficial microorganism, offer various health benefits when consumed. However, probiotics face challenges such as acidic conditions in the stomach, bile acids, enzymes, and other adverse factors before they can colonize the intestinal tissues. At present, pills, dry powder, encapsulation, chemically modified bacteria, and genetically engineered bacteria have emerged as the preferred method for the stable and targeted delivery of probiotics. In particular, the use of nanoshells on the surface of single probiotics has shown promise in regulating their growth and differentiation. These nanoshells can detach from the probiotics' surface upon reaching the intestine, facilitating direct contact between the probiotics and intestinal mucosa. In this perspective, we provide an overview of the current developments in the formation of nanoshells mediated by single probiotics. We also discuss the advantages and disadvantages of different nanocoating strategies and explore future trends in probiotic protection.
Collapse
Affiliation(s)
- Cheng Chen
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People’s Republic of China
| | - Ziyu Zhu
- The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an, Huai’an, 223002, People’s Republic of China
| |
Collapse
|
20
|
Li T, Luo K, Wang C, Wu L, Pan J, Wang M, Liu J, Li Y, Yao J, Chen W, Zhu S, Zhang Y. GhCKX14 responding to drought stress by modulating antioxi-dative enzyme activity in Gossypium hirsutum compared to CKX family genes. BMC PLANT BIOLOGY 2023; 23:409. [PMID: 37658295 PMCID: PMC10474641 DOI: 10.1186/s12870-023-04419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kun Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Chenlei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingwen Pan
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Mingyang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Jinwei Liu
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Sekhavatizadeh SS, Afrasiabi F, Montaseri Z. Encapsulation of probiotic Lactobacillus acidophilus ATCC 4356 in alginate-galbanum (Ferula Gummosa Boiss) gum microspheres and evaluation of the survival in simulated gastrointestinal conditions in probiotic Tahini halva. Braz J Microbiol 2023; 54:1589-1601. [PMID: 37515666 PMCID: PMC10485199 DOI: 10.1007/s42770-023-01074-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
One of the famous traditional confectionery products is Tahini halva. The aim of this study was the production of probiotic halva using free Lactobacillus acidophilus (FLA) and microencapsulated Lactobacillus acidophilus (MLA) with sodium alginate and galbanum gum as the second layer. The survival rate of MLA and FLA during heat stress, storage time, and simulation gastrointestinal condition in Tahini halva was assessed. The survival rates of MLA and FLA under heat stress were 50.13% and 34.6% respectively. During storage in Tahini halva, the cell viability loss was 3.25 Log CFU g-1 and 6.94 Log CFU g-1 for MLA and FLA, separately. Around 3.58 and 4.77 Log CFU g-1 bacteria were reduced after 6 h of exposure in simulated gastrointestinal conditions, for MLA and FLA respectively. These results suggest that the use of alginate and galbanum gum is a promising approach to protecting L. acidophilus against harsh environmental conditions.
Collapse
Affiliation(s)
- Seyed Saeed Sekhavatizadeh
- Fars Agricultural and Natural Resources Research and Education Center, AREEO, Post Box: 7155863511, Shiraz, Fars, Iran.
| | - Forough Afrasiabi
- Food Science and Technology, Islamic Azad University, Sarvestan, Fars, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
22
|
Yang J, Peng M, Tan S, Ge S, Xie L, Zhou T, Liu W, Zhang K, Zhang Z, Liu J, Shi J. Calcium Tungstate Microgel Enhances the Delivery and Colonization of Probiotics during Colitis via Intestinal Ecological Niche Occupancy. ACS CENTRAL SCIENCE 2023; 9:1327-1341. [PMID: 37521784 PMCID: PMC10375893 DOI: 10.1021/acscentsci.3c00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 08/01/2023]
Abstract
The effective delivery and colonization of probiotics are recommended for therapeutic interventions during colitis, the efficacy of which is hampered by abnormally colonized Enterobacteriaceae at pathological sites. To improve the delivery and colonization of probiotics, a calcium tungstate microgel (CTM)-based oral probiotic delivery system is proposed herein. CTM can selectively disrupt the ecological niche occupied by abnormally expanded Enterobacteriaceae during colitis to facilitate probiotic colonization. In addition, the calcium-binding protein, calprotectin, which is highly expressed in colitis, efficiently extracts calcium from CTM and releases tungsten to inhibit Enterobacteriaceae by displacing molybdenum in the molybdenum enzyme, without affecting the delivered probiotics. Moreover, CTM demonstrated resistance to the harsh environment of the gastrointestinal (GI) tract and to intestinal adhesion. The synergistic reduction of Enterobacteriaceae by 45 times and the increase in probiotic colonization by 25 times, therefore, result in a remarkable treatment for colitis, including restoration of colonic length, effective downregulation of the inflammatory response, restoration of the damaged mucosal barrier, and restoration of gut microbiome homeostasis.
Collapse
Affiliation(s)
- Jiali Yang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Mengyun Peng
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Shaochong Tan
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Shengchan Ge
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Li Xie
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Tonghai Zhou
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Wei Liu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
| | - Kaixiang Zhang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, P. R. China
| | - Zhenzhong Zhang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, P. R. China
| | - Junjie Liu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, P. R. China
| | - Jinjin Shi
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Key
Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, P. R. China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, P. R. China
- State
Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| |
Collapse
|
23
|
Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Pan D. Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends. Crit Rev Food Sci Nutr 2023; 64:10148-10163. [PMID: 37318213 DOI: 10.1080/10408398.2023.2220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
He X, Yang W, Qin X. Ultrasound-assisted multilayer Pickering emulsion fabricated by WPI-EGCG covalent conjugates for encapsulating probiotics in colon-targeted release. ULTRASONICS SONOCHEMISTRY 2023; 97:106450. [PMID: 37224638 DOI: 10.1016/j.ultsonch.2023.106450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3-4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.
Collapse
Affiliation(s)
- Xian He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Xinsheng Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Qi P, Lv J, Yan X, Bai L, Zhang L. Microfluidics: Insights into Intestinal Microorganisms. Microorganisms 2023; 11:1134. [PMID: 37317109 DOI: 10.3390/microorganisms11051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Microfluidics is a system involving the treatment or manipulation of microscale (10-9 to 10-18 L) fluids using microchannels (10 to 100 μm) contained on a microfluidic chip. Among the different methodologies used to study intestinal microorganisms, new methods based on microfluidic technology have been receiving increasing attention in recent years. The intestinal tracts of animals are populated by a vast array of microorganisms that have been established to play diverse functional roles beneficial to host physiology. This review is the first comprehensive coverage of the application of microfluidics technology in intestinal microbial research. In this review, we present a brief history of microfluidics technology and describe its applications in gut microbiome research, with a specific emphasis on the microfluidic technology-based intestine-on-a-chip, and also discuss the advantages and application prospects of microfluidic drug delivery systems in intestinal microbial research.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eunhye K. Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| |
Collapse
|
28
|
Dos Santos Wanderley LA, Aguiar GPS, Calisto JFF, Magro JD, Rossato G, Zotti CA, de Souza Hassemer G, Puton BMS, Cansian RL, Dallago RM, Junges A. Microencapsulation of Yarrowia lipolytica: cell viability and application in vitro ruminant diets. World J Microbiol Biotechnol 2023; 39:88. [PMID: 36740658 DOI: 10.1007/s11274-023-03534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Microencapsulation is an alternative to increase the survival capacity of microorganisms, including Yarrowia lipolytica, a widely studied yeast that produces high-value metabolites, such as lipids, aromatic compounds, biomass, lipases, and organic acids. Thus, the present study sought to investigate the effectiveness of different wall materials and the influence of the addition of salts on the microencapsulation of Y. lipolytica, evaluating yield, relationship with cell stability, ability to survive during storage, and in vitro application of ruminant diets. The spray drying process was performed via atomization, testing 11 different compositions using maltodextrin (MD), modified starch (MS) and whey protein concentrate (WPC), Y. lipolytica (Y. lipo) cells, tripolyphosphate (TPP), and sodium erythorbate (SE). The data show a reduction in the water activity value in all treatments. The highest encapsulation yield was found in treatments using MD + TPP + Y. lipo (84.0%) and WPC + TPP + Y. lipo (81.6%). Microencapsulated particles showed a survival rate ranging from 71.61 to 99.83% after 24 h. The treatments WPC + Y. lipo, WPC + SE + Y. lipo, WPC + TPP + Y. lipo, and MD + SE + Y. lipo remained stable for up to 105 days under storage conditions. The treatment WPC + SE + Y. lipo (microencapsulated yeast) was applied in the diet of ruminants due to the greater stability of cell survival. The comparison between the WPC + SE + Y. lipo treatment, wall materials, and the non-microencapsulated yeast showed that the microencapsulated yeast obtained a higher soluble fraction, degradability potential, and release of nutrients.
Collapse
Affiliation(s)
| | - Gean Pablo Silva Aguiar
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Jean Felipe Fossá Calisto
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Jacir Dal Magro
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Gabriel Rossato
- Department of Animal Science, University of West Santa Catarina, Xanxerê, SC, 89820-000, Brazil
| | - Claiton André Zotti
- Department of Animal Science, University of West Santa Catarina, Xanxerê, SC, 89820-000, Brazil
| | - Guilherme de Souza Hassemer
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Bruna Maria Saorin Puton
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Rogério Luis Cansian
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
29
|
Li S, Fan L, Li S, Sun X, Di Q, Zhang H, Li B, Liu X. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1701-1712. [PMID: 36622380 DOI: 10.1021/acs.jafc.2c07139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probiotics are sensitive to phenolic antibacterial components and the extremely acidic environment of blueberry juices. Layer-by-layer (LbL) coating using whey protein isolate fibrils (WPIFs) and sodium alginate (ALG), carboxymethyl cellulose (CMC), or xanthan gum (XG) was developed to improve the survival rate of Lactobacillus plantarum 90 (LP90) in simulated digestion, storage, and fermented blueberry juices. The LbL-coated LP90 remained at 6.65 log CFU/mL after 48 h of fermentation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that dense and rough wall networks were formed on the surface of LP90, maintaining the integrity of LP90 cells after the coating. Stability evaluation showed that the LbL-coated LP90 had a much higher survival rate in the processes of simulated gastrointestinal digestion and storage. The formation mechanism of the LbL coating process was further explored, which indicated that electrostatic interactions and hydrogen bonding were involved. The LbL coating approach has great potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Xiaochen Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Qingru Di
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
30
|
Physicochemical and functional properties of chitosan-based edible film incorporated with Sargassum pallidum polysaccharide nanoparticles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying. Foods 2022; 11:foods11233872. [PMID: 36496680 PMCID: PMC9736631 DOI: 10.3390/foods11233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% FOS (SPI-F-L-P), 20 μL fish oil (SPI-O-L-P) and the complex of 20 μL fish oil, and 2% FOS (SPI-O-F-L-P), respectively. The obtained synbiotic microcapsules had a better encapsulation efficiency (EE) and survival rate (SR) after in vitro digestion than microcapsules without the addition of substrate (SPI-L-P) and SPI-O-F-L-P presented the highest EE (95.9%) and SR (95.5%). When compared to SPI-L-P, the synbiotic microcapsules possessed a more compact structure as proved by the SEM observation and their cell viability were significantly improved in response to environmental stresses (heat treatment, freeze drying, and storage). The synbiotic microcapsules containing the complex of FOS and fish oil showed the best beneficial effect, followed by ones with fish oil and then FOS, suggesting the FOS and fish oil complex has more potential in application.
Collapse
|
32
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
33
|
Talebian S, Schofield T, Valtchev P, Schindeler A, Kavanagh JM, Adil Q, Dehghani F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv Healthc Mater 2022; 11:e2102487. [PMID: 35189037 PMCID: PMC11468821 DOI: 10.1002/adhm.202102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics. However, majority of microencapsulated products only contain a single layer of protection around probiotics, which is likely to be inferior to more sophisticated approaches. This review discusses emerging methods for the multilayer encapsulation of probiotic using biopolymers. Correlations are drawn between fabrication techniques and the resultant microparticle properties. Subsequently, multilayer microparticles are categorized based on their layer designs. Recent reports of specific biopolymeric formulations are examined regarding their physical and biological properties. In particular, animal models of gastrointestinal transit and disease are highlighted, with respect to trials of multilayer microencapsulated probiotics. To conclude, novel materials and approaches for fabrication of multilayer structures are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Timothy Schofield
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
- Bioengineering & Molecular Medicine LaboratoryThe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadNSW2145Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Qayyum Adil
- PharmaCare Laboratories18 Jubilee AveWarriewoodNSW2102Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
34
|
Sbehat M, Altamimi M, Sabbah M, Mauriello G. Layer-by-Layer Coating of Single-Cell Lacticaseibacillus rhamnosus to Increase Viability Under Simulated Gastrointestinal Conditions and Use in Film Formation. Front Microbiol 2022; 13:838416. [PMID: 35602083 PMCID: PMC9115559 DOI: 10.3389/fmicb.2022.838416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics and prebiotics are widely used as functional food ingredients. Viability of probiotics in the food matrix and further in the digestive system is still a challenge for the food industry. Different approaches were used to enhance the viability of probiotics including microencapsulation and layer-by-layer cell coating. The of aim of this study was to evaluate the viability of coated Lacticaseibacillus rhamnosus using a layer-by-layer (LbL) technique with black seed protein (BSP) extracted from Nigella sativa defatted seeds cakes (NsDSC), as a coating material, with alginate, inulin, or glucomannan, separately, and the final number of coating layers was 3. The viable cell counts of the plain and coated L. rhamnosus were determined under sequential simulated gastric fluid (SGF) for 120 min and simulated intestinal fluid (SIF) for 180 min. Additionally, the viability after exposure to 37, 45, and 55°C for 30 min was also determined. Generally, the survivability of coated L. rhamnosus showed significant (p ≤ 0.05) improvement (<4, 3, and 1.5 logs reduction for glucomannan, alginate and inulin, respectively) compared with plain cells (∼6.7 log reduction) under sequential exposure to SGF and SIF. Moreover, the cells coated with BSP and inulin showed the best protection for L. rhamnosus under high temperatures. Edible films prepared with pectin with LbL-coated cells showed significantly higher values in their tensile strength (TS) of 50% and elongation at the break (EB) of 32.5% than pectin without LbL-coated cells. The LbL technique showed a significant protection of probiotic cells and potential use in food application.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Jiang Z, Li M, McClements DJ, Liu X, Liu F. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Apiwattanasiri P, Charoen R, Rittisak S, Phattayakorn K, Jantrasee S, Savedboworn W. Co-encapsulation efficiency of silk sericin-alginate-prebiotics and the effectiveness of silk sericin coating layer on the survival of probiotic Lactobacillus casei. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Yang X, Yang J, Ye Z, Zhang G, Nie W, Cheng H, Peng M, Zhang K, Liu J, Zhang Z, Shi J. Physiologically Inspired Mucin Coated Escherichia coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS NANO 2022; 16:4041-4058. [PMID: 35230097 DOI: 10.1021/acsnano.1c09681] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery of probiotics to the microbiota is a promising method to prevent and treat diseases. However, oral probiotics will suffer from gastrointestinal insults, especially the pathological microenvironment of inflammatory diseases such as reactive oxygen species (ROS) and the exhausted mucus layer, which can limit their survival and colonization in the intestinal tract. Inspired by the fact that probiotics colonized and grew in the mucus layer under physiological conditions, we developed a strategy for a super probiotic (EcN@TA-Ca2+@Mucin) coated with tannic acid and mucin via layer-by-layer technology. We demonstrated that mucin endows probiotics with superior resistance to the harsh environment of the gastrointestinal tract and with strong adhesiveness to the intestine through its interaction with mucus, which enhanced colonization and growth of probiotics in the mucus layer without removing the coating. Moreover, EcN@TA-Ca2+@Mucin can distinctly down-regulate inflammation with ROS scavenging and reduce the side effects of bacterial translocation in inflammatory bowel diseases, increasing the abundance and diversity of the gut microflora. We envision that it is a powerful platform to improve the colonization of probiotics by regulating the pathological microenvironment, which is expected to provide an important perspective for applying the intestinal colonization of probiotics to treat a variety of diseases.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Zihan Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guizhen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| |
Collapse
|
38
|
Centurion F, Basit AW, Liu J, Gaisford S, Rahim MA, Kalantar-Zadeh K. Nanoencapsulation for Probiotic Delivery. ACS NANO 2021; 15:18653-18660. [PMID: 34860008 DOI: 10.1021/acsnano.1c09951] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gut microbiota dynamically participate in diverse physiological activities with direct impact on the host's health. A range of factors associated with the highly complex intestinal flora ecosystem poses challenges in regulating the homeostasis of microbiota. The consumption of live probiotic bacteria, in principle, can address these challenges and confer health benefits. In this context, one of the major problems is ensuring the survival of probiotic cells when faced with physical and chemical assaults during their intake and subsequent gastrointestinal passage to the gut. Advances in the field have focused on improving conventional encapsulation techniques in the microscale to achieve high cell viability, gastric and temperature resistance, and longer shelf lives. However, these microencapsulation approaches are known to have limitations with possible difficulties in clinical translation. In this Perspective, we present a brief overview of the current progress of different probiotic encapsulation methods and highlight the contemporary and emerging single-cell encapsulation strategies using nanocoatings for individual probiotic cells. Finally, we discuss the relative advantages of various nanoencapsulation approaches and the future trend toward developing coated probiotics with advanced features and health benefits.
Collapse
Affiliation(s)
- Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Jinyao Liu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
39
|
Hua Y, Wei Z, Xue C. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34793271 DOI: 10.1080/10408398.2021.2004992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural bioactive ingredients have lower bioavailability because of their chemical instability and poor water solubility, which limits their applications in functional foods. Among diverse biopolymers that can be used to construct delivery systems of bioactives, chitosan has attracted extensive attention due to its unique cationic nature, excellent mucoadhesive properties and easy modification. In this review, chitosan and its composites-based food-grade delivery systems as well as the factors affecting their performance are summarized. Modification, crosslinking, combination with other biopolymer or utilization of coating material can effectively overcome the instability of pure chitosan-based carriers under acidic conditions, thereby constructing chitosan and its complex-based carriers with conspicuously improved performance. Furthermore, the applications of chitosan-based delivery systems in nutrition and health as well as their future development trends and challenges are discussed. Functional food ingredients, functional food packaging and biological health are potential applications of chitosan-based food-grade delivery systems. The research trends of nutraceutical delivery systems based on chitosan and its composites include co-delivery of nutrients and essential oils, targeted intestinal delivery, stimulus responsive/sustained release and their applications in real foods. In conclusion, food industry will be significantly promoted with the continuous innovation and development of chitosan-based nutraceutical delivery systems.
Collapse
Affiliation(s)
- Yijie Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
40
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Hu B, Guo Y, Li H, Liu X, Fu Y, Ding F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr Polym 2021; 271:118427. [PMID: 34364567 DOI: 10.1016/j.carbpol.2021.118427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
In recent years, chitosan-based biomaterials have been continually and extensively researched by using layer-by-layer (LBL) assembly, due to their potentials in biomedicine. Various chitosan-based LBL materials have been newly developed and applied in different areas along with the development of technologies. This work reviews the recent advances of chitosan-based biomaterials produced by LBL assembly. Driving forces of LBL, for example electrostatic interactions, hydrogen bond as well as Schiff base linkage have been discussed. Various forms of chitosan-based LBL materials such as films/coatings, capsules and fibers have been reviewed. The applications of these biomaterials in the field of antimicrobial applications, drug delivery, wound dressings and tissue engineering have been comprehensively reviewed.
Collapse
Affiliation(s)
- Biao Hu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yuchun Guo
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuanyu Fu
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
42
|
Joint protection strategies for Saccharomyces boulardii: exogenous encapsulation and endogenous biofilm structure. Appl Microbiol Biotechnol 2021; 105:8469-8479. [PMID: 34647135 DOI: 10.1007/s00253-021-11601-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Biofilms are heterogeneous structures composed of microorganisms and the surrounding extracellular polymeric substances (EPS) that protect the microbial cells from harsh environments. Saccharomyces boulardii is the first yeast classified as a probiotic strain with unique properties. However, tolerance of S. boulardii biofilms to harsh environments especially during production and in the gastrointestine remains unknown. In this study, S. boulardii cells were encapsulated in alginate microcapsules and subsequently cultured to form biofilms, and their survival and tolerance were evaluated. Microencapsulation provided S. boulardii a confined space that enhanced biofilm formation. The thick alginate shell and the mature biofilm improved the ability of S. boulardii to survive under harsh conditions. The exogenous encapsulation and the endogenous biofilm structure together enhanced the gastrointestinal tolerance and thermotolerance of S. boulardii. Besides, as the alginate shell became thinner with an increase in the subsequent culture duration, the EPS of S. boulardii biofilms exerted an important protective effect in resisting high temperatures. The encapsulated biofilm of S. boulardii after 24-h culture exhibited 60 × higher thermotolerance at 60 °C (10 min), while those after 6-h and 24-h culture showed 1000 × to 550,000 × higher thermotolerance at 120 °C (1 min) compared with the planktonic cells without encapsulation. The present study's findings suggest that a combination of encapsulation and biofilm mode efficiently enhanced gastrointestinal tolerance and thermotolerance of S. boulardii. KEY POINTS: • Encapsulated S. boulardii in biofilm mode showed enhanced tolerance. • Exogenous shell and endogenous biofilm provided dual protection to S. boulardii.
Collapse
|
43
|
Huang RM, Feng K, Li SF, Zong MH, Wu H, Han SY. Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. NANOSCALE ADVANCES 2021; 3:2699-2709. [PMID: 36134186 PMCID: PMC9419840 DOI: 10.1039/d0na00952k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 05/02/2023]
Abstract
Probiotics are microorganisms that have beneficial health effects when administered in adequate dosages. The oral administration of probiotic bacteria is widely considered beneficial for both intestinal as well as systemic health but its clinical efficacy is conflicted in the literature. This may at least in part be due to the loss of viability during gastrointestinal passage resulting in poor intestinal delivery. Microencapsulation technology has been proposed as a successful strategy to address this problem by maintaining the viability of probiotics, thereby improving their efficacy following oral administration. More recently, nanomaterials have demonstrated significant promise as encapsulation materials to improve probiotic encapsulation. The integration of nanotechnology with microencapsulation techniques can improve the controlled delivery of viable probiotic bacteria to the gut. The current review aims at summarizing the types of nanomaterials used for the microencapsulation of probiotics and showing how they can achieve the delivery and controlled release of probiotics at the site of action.
Collapse
Affiliation(s)
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Deanna L Gibson
- Department of Biology, Faculty of Science, University of British Columbia Kelowna Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Vancouver Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia Kelowna BC Canada
| |
Collapse
|
45
|
Wang M, Li Y, Yang J, Shi R, Xiong L, Sun Q. Effects of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Functional protection of different structure soluble dietary fibers from Lentinus edodes as effective delivery substrate for Lactobacillus plantarum LP90. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Abstract
Controlled drug delivery formulations have revolutionized treatments for a range of health conditions. Over decades of innovation, layer-by-layer (LbL) self-assembly has emerged as one of the most versatile fabrication methods used to develop multifunctional controlled drug release coatings. The numerous advantages of LbL include its ability to incorporate and preserve biological activity of therapeutic agents; coat multiple substrates of all scales (e.g., nanoparticles to implants); and exhibit tuned, targeted, and/or responsive drug release behavior. The functional behavior of LbL films can be related to their physicochemical properties. In this review, we highlight recent advances in the development of LbL-engineered biomaterials for drug delivery, demonstrating their potential in the fields of cancer therapy, microbial infection prevention and treatment, and directing cellular responses. We discuss the various advantages of LbL biomaterial design for a given application as demonstrated through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Dahlia Alkekhia
- School of Engineering and Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anita Shukla
- School of Engineering and Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
48
|
Survivability Assessment of Saccharomyces boulardii in a Symbiotic System Using Nutraceuticals and Modified Atmosphere Packaging. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02430-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
50
|
Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release 2019; 313:1-13. [PMID: 31622690 DOI: 10.1016/j.jconrel.2019.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Non-invasive means of insulin administration circumvent some of the inconveniences of injections. Oral administration in particular is convenient, pain-free, and allows favorable glucose homeostasis, but is subject to chemical instability, enzymatic degradation, and poor gastrointestinal absorption. Natural polymeric nanoparticles have emerged as a promising oral delivery system for peptide therapeutics due their safety, biocompatibility, and stability. In this study, self-assembled nanocomposites from chitosan (CS) and insulin-loaded, zein-carboxymethylated short-chain amylose (IN-Z-CSA) nanocomposites were synthesized to improve oral bioavailability of insulin. The optimized IN-Z-CSA/CS0.2% nanocomposites exhibited an average size of 311.32±6.98 nm, a low polydispersity index (0.227±0.01), a negative zeta potential (43.77±1.36 mV), an encapsulation efficiency of 89.6±0.9%, and a loading capacity of 6.8±0.4%. The IN-Z-CSA/CS0.2% nanocomposites were stable in storage conditions. The transepithelial permeability of the N-Z-CSA/CS0.2% nanocomposites was 12-fold higher than that of insulin. Cellular uptake studies revealed that the IN-Z-CSA/CS0.2% nanocomposites were internalized into Caco-2 cells by both endocytosis and a paracellular route. Additionally, in pharmacological studies, orally administered IN-Z-CSA/CS0.2% nanocomposites had a stronger hypoglycemic effect with a relative bioavailability of 15.19% compared with that of IN-Z-CSA1.0% nanocomposites. Furthermore, cell toxicity and in vivo tests revealed that the IN-Z-CSA/CS0.2% nanocomposites were biocompatible. Overall, these results indicate that the IN-Z-CSA/CS0.2% nanocomposites can improve oral bioavailability of insulin and are a promising delivery system for insulin or other peptide/protein drugs.
Collapse
|