1
|
Xuan Z, Ye J, Ni B, Cui H, Li L, Chen J, Qin Y, Pan Q, Liu H, Wang S. Immunomagnetic metal-organic frameworks based coupling-free and extraction-free sensitive detection of aflatoxin B 1 in peanut oils. Food Chem 2025; 474:143203. [PMID: 39921973 DOI: 10.1016/j.foodchem.2025.143203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Conventional AFB1 detection methods are hindered by cumbersome pretreatment procedures, primarily due to the lack of new sample pretreatment materials and technologies. This work developed a novel coupling-free synthesis strategy for the immunomagnetic metal-organic frameworks (IMMOFs), focusing on its effective and promising application in the extraction-free detection of AFB1. By coupling with UPLC-FLD, a sensitive quantification detection method for AFB1 was developed, exhibiting a linear range of 0.5 to 20 μg/kg and a detection limit of 0.1 μg/kg. The spiked recoveries at three concentrations ranged from 90.3 % to 97.9 %, with RSDs of less than 6 %. Moreover, the established method was successfully employed for analyzing AFB1 in naturally contaminated peanut oil samples, with results further confirmed by the traditional immunoaffinity column (IAC) method. This study provides an effective extraction-free detection technique for AFB1 that addresses the limitations of the traditional methods.
Collapse
Affiliation(s)
- Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Hua Cui
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Yao Qin
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Quan Pan
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.
| |
Collapse
|
2
|
Gao R, Zhang L, Yu R. Detection of zearalenone in miscellaneous beans by functionalized SERS sensor based on sea urchin aptamer. Food Chem 2024; 460:140394. [PMID: 39032292 DOI: 10.1016/j.foodchem.2024.140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
In this work, a sea urchin gold nanoparticles-zearalenone aptamer- tetramethylrhodamine sensor was constructed. Sea urchin gold nanoparticles, prepared using the seed-mediated growth method, were used as Raman substrates. Nucleic acid aptamers were mainly used as specific recognition molecules. Zearalenone detection in miscellaneous beans was accomplished using the principle of conformational change in aptamer. In addition, we evaluated the linear range, sensitivity, and selectivity of our sensor. We observed that at the displacement of 814 cm-1, for Zearalenone concentrations of 0.01-60 ng/mL, the Raman signal intensity linearly correlated with the zearalenone concentration, with a limit of detection of 0.01 ng/mL, and recoveries of 91.7% to 108.3%. The optimum detection time was 30 min. Thus, our sensor exhibited great potential in zearalenone detection in food products.
Collapse
Affiliation(s)
- Ruoqi Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China.
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China.
| |
Collapse
|
3
|
Wang M, Zhao X, Yang X, He X. Recovery of AFB 1 intrinsic fluorescence in vegetable oils with continuous variations in matrices by theoretical analysis and experiments. Food Chem 2024; 467:142305. [PMID: 39637663 DOI: 10.1016/j.foodchem.2024.142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The fluorescence characteristics of aflatoxin B1 (AFB1) have enabled the development of an effective and non-destructive screening method for AFB1 in agro-products using fluorescence spectroscopy. However, the complex and varied matrices present in most foodstuffs can significantly distort the intrinsic fluorescence of AFB1. In this study, the absorption and scattering properties of vegetable oils were obtained using double integrating spheres (DIS), and fluorescence intensity was obtained using laser-induced fluorescence (LIF) technique. A six-parameter analytical model has been developed to recover AFB1 intrinsic fluorescence based on the absorption and scattering features at excitation (375 nm) and emission (424 nm) wavelengths employing a one-dimensional convolutional neural network (1D-CNN). Prediction models for AFB1 concentration in vegetable oils with gradient variations of matrices were calibrated using the disturbed and recovered intrinsic fluorescence intensity, respectively. The models were validated and compared to demonstrate the feasibility and superiority of the proposed method.
Collapse
Affiliation(s)
- Meng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoqi Zhao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyun Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xueming He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
4
|
Song L, Zhang J, Wang M, Huang Z, Zhang Y, Zhang X, Liang Y, He J. Simultaneously Selective Separation of Zearalenone and Four Aflatoxins From Rice Samples Using Co-Pseudo-Template Imprinted Polymers With MIL-101(Cr)-NH2 as Core. J Chromatogr Sci 2024; 62:892-903. [PMID: 38862395 DOI: 10.1093/chromsci/bmae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/26/2024] [Indexed: 06/13/2024]
Abstract
A novel approach for the simultaneous separation of zearalenone (ZEN) and four types of aflatoxins (AFB1, AFB2, AFG1 and AFG2) from rice samples was presented. This approach utilized modified MIL-101(Cr)-NH2 as core, with molecularly imprinted polymers (MIPs) serving as the shell. The MIL-101(Cr)-NH2 was prepared via ring-opening reaction, while the imprinted polymers were synthesized using warfarin and 4-methylumbelliferyl acetate as co-pseudo template, ethylene glycol dimethacrylate as the cross-linker and azobisisobutyronitrile as initiator. The resulting co-pseudo-template-MIPs (CPT-MIPs) were thoroughly characterized and evaluated. Adsorption studies demonstrate that the adsorption process of CPT-MIPs follows a chemical monolayer adsorption mechanism, with imprinted factors ranging from 1.24 to 1.52 and selective factors ranging from 1.29 to 1.52. Self-made columns were prepared, and the method for separation was developed and validated. The limit of detections ranged from 0.12 to 2.09 μg/kg, and the limit of qualifications ranged from 1.2 to 6.25 μg/kg. To assess the reliability of the method, ZEN and AFs were spiked at three different levels, and the recoveries ranged from 79.53 to 94.58%, with relative standard deviations of 2.90-5.78%.
Collapse
Affiliation(s)
- Lixin Song
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Jian Zhang
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Zhipeng Huang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yunxia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yutao Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| |
Collapse
|
5
|
Zakaria L. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens 2024; 13:813. [PMID: 39339004 PMCID: PMC11435247 DOI: 10.3390/pathogens13090813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Aspergillus contains several species that are important plant pathogens. Plant pathogenic Aspergillus spp. affect agricultural crops in the field as well as after harvest, often associated with corn ear rot, cotton boll rot, peanut yellow mold, black mold of onion and garlic, fruit rot on grapes, pomegranates, olives, citrus, and apples. Coffee berries and coffee beans as well as tree nuts are also frequently infected by Aspergillus spp. Some of the plant pathogenic Aspergillus spp. are also mycotoxigenic, produced mycotoxin in the plant tissues leading to contamination of agricultural products. Over the years, reports of plant diseases caused by Aspergillus in various crops have increased, suggesting they are commonly encountered plant pathogens. This review focuses on agricultural crops or cultivated plants infected by Aspergillus spp. The compilation of plant pathogenic Aspergillus spp. provides information to mycologists, particularly those involved in plant pathology and crop protection, with updated information on plant diseases caused by various species of Aspergillus. The updated information also includes the locality or location, province, state and the country. The knowledge on the prevalence and geographic distribution of plant pathogenic Aspergillus spp. is beneficial in the application of crop protection.
Collapse
Affiliation(s)
- Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| |
Collapse
|
6
|
Li Y, Zhang D, Zeng X, Liu C, Wu Y, Fu C. Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins. Molecules 2024; 29:3974. [PMID: 39203052 PMCID: PMC11356850 DOI: 10.3390/molecules29163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response. In this review, we focus on the progress of single-mode and dual-mode aptasensors in basic research and device applications over recent years. Furthermore, we also point out some problems in the current detection strategies, with the aim of stimulating future toxin detection systems for a transition toward ease of operation and rapid detection.
Collapse
Affiliation(s)
- Yangyang Li
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Dan Zhang
- School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Xiaoyuan Zeng
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cheng Liu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yan Wu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cuicui Fu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| |
Collapse
|
7
|
Chen SR, Chen LH, Pan L, Wang B. Application of luminescent Photobacterium Phosphoreum T3 for the detection of zearalenone and estimating the efficiency of their enzymatic degradation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:979-988. [PMID: 38857317 DOI: 10.1080/19440049.2024.2363397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes enormous economic losses in the food and feed industries. Simple, rapid, low-cost, and quantitative analysis of ZEN is particularly urgent in the fields of food safety and animal husbandry. Using the bioluminescent bacterium Photobacterium phosphoreum T3, we propose a bioluminescence inhibition assay to evaluate ZEN levels quickly. The limit of detection (LOD), limit of quantification (LOQ), and quantitative working range of this bioluminescence inhibition assay were 0.1 µg/mL, 5 µg/mL, and 5-100 µg/mL, respectively. The concentration-response curve of the bioluminescence inhibition rate and ZEN concentration was plotted within the range 5 to 100 μg/mL, as follows: y = 0.0069x2 - 0.0190x + 7.9907 (R2 = 0.9943, y is luminescence inhibition rate, x is ZEN concentration). First, we used the bioluminescence inhibition assay to detect the remaining ZEN in samples treated with purified lactonohydrolase ZHD101. The bioluminescence inhibition assay results showed a strong correlation with the HPLC analysis. Furthermore, we successfully evaluated the overall toxicity of samples treated with purified peroxidase Prx and H2O2 using the P. phosphoreum T3 bioluminescence inhibition assay. The results indicate that the degradation products of ZEN created by purified peroxidase Prx and H2O2 showed little toxicity to P. phosphoreum T3. In this study, a simple, rapid, and low-cost assay method of zearalenone by bioluminescent P. phosphoreum T3 was developed. The bioluminescence inhibition assay could be used to estimate the efficiency of enzymatic degradation of ZEN.
Collapse
Affiliation(s)
- Shu-Rong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Li-Hong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Xiang S, Li J, Wang F, Yang Y, Yang H, Cai R, Tan W. Ultrasensitive Electrochemiluminescence Biosensing Platform Based on Polymer Dots with Aggregation-Induced Emission for Dual-Biotoxin Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37748-37756. [PMID: 38990678 DOI: 10.1021/acsami.4c08302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Multitarget assay has always been a hot topic in electrochemiluminescence (ECL) methods. Herein, a "on-off-on" ECL aptasensor was developed for the ultrasensitive and sequential detection of possible biological warfare agents, deoxynivalenol (DON) and abrin (ABR). As a luminophore, polymer dots (Pdots) with aggregation-induced emission exhibit high ECL efficiency in the aptasensor, i.e., the signal "on" state. The DON assays mainly depend on ECL quenching due to the efficient quenching effect between ferrocene-H2-ferrocene (Fc-H2-Fc) and Pdots, i.e., the signal "off" state. When the aptasensor is incubated with the oligonucleotide sequence S2 to replace Fc-H2-Fc, obvious ECL recovery occurs, i.e., the signal "on" state, which can be used to sequentially detect ABR. The limit of detection (LOD) for DON is 0.73 fg·mL-1 in the range of 5.0 to 50 ng·mL-1; and the LOD for ABR is ∼0.38 pg·mL-1 in the range of 1.25 pg·mL-1 to 1.25 μg·mL-1. The as-designed ECL aptasensor exhibits good stability and reproducibility, high specificity, and favorable practicality. Therefore, this work provides a new approach for assays of DON and ABR in food safety and can be used as a model to design an ultrasensitive ECL biosensor for multitarget detection.
Collapse
Affiliation(s)
- Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Reichert B, Pizzutti IR, Jänisch BD, Zorzella Fontana ME. Improving analytical performance for pesticides and mycotoxins determination in Brazilian table olives: one extraction and one analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4124-4135. [PMID: 38860427 DOI: 10.1039/d4ay00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
This paper describes an extensive study in which a multiclass QuEChERS based approach was optimized for determination of 150 pesticides and 7 mycotoxins in table olives. Three versions of QuEChERS were evaluated and compared (unbuffered, citrate and acetate buffering). A combination of EMR-Lipid cartridges and liquid nitrogen or freezer freezing out were tested for clean-up of the oily olive extracts. Analysis of the extracts were performed by LC-MS/MS triple quadrupole. The best results were achieved using acetate QuEChERS with liquid nitrogen for clean-up. For validation, organic olives were ground and spiked at 4 concentrations with pesticides and mycotoxins (n = 5). The linearity of the calibration curves was assessed by analyzing calibration standards of 7 concentrations which were prepared separately in acetonitrile and in blank olive extract (n = 5). The validation study demonstrated that the calculated r2 was ≥0.99 for 144 pesticides and 6 mycotoxins, when the calibration curves were prepared in matrix extract, showing satisfactory linearity. Matrix effects were within the range of ±20% for only 46 pesticides and one mycotoxin. Then, to ensure reliable quantification, calibration standards had to be matrix-matched. In accuracy experiments 138 pesticides and 6 mycotoxins presented recoveries from 70 to 120% and RSD ≤ 20% for at least 2 of the 4 spike concentrations evaluated, being successfully validated. The integrated QuEChERS and LC-MS/MS method meet MRL for 11 of the 21 pesticides regulated for olives in Brazil and for 132 pesticides which are regulated in the EU law. Eleven commercial table olive samples were analyzed and 4 of them tested positive for pesticides. All the positive samples violate the Brazilian law and one sample violates also the European law.
Collapse
Affiliation(s)
- Bárbara Reichert
- HUSM - University Hospital of Santa Maria, Pharmacy Sector (SFH), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil
| | - Ionara Regina Pizzutti
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil.
| | - Bárbara Daiana Jänisch
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil.
| | - Marlos Eduardo Zorzella Fontana
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
10
|
He X, You J, Yang X, Li L, Shen F, Wang L, Li P, Fang Y. Quantitative prediction of AFB 1 in various types of edible oil based on absorption, scattering and fluorescence signals at dual wavelengths. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123900. [PMID: 38262292 DOI: 10.1016/j.saa.2024.123900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
This study aims to address the challenge of matrix interference of various types of edible oils on intrinsic fluorescence of aflatoxin B1 (AFB1) by developing a novel solution. Considering the fluorescence internal filtering effect, the absorption (μa) and reduced scattering (μ's) coefficients at dual wavelengths (excitation: 375 nm, emission: 450 nm) were obtained by using integrating sphere technique, and were used to improve the quantitative prediction results for AFB1 contents in six different kinds of edible oils. A research process of "Monte Carlo (MC) simulation - phantom verification - actual sample validation" was conducted. The MC simulation was used to determine interference rule and correction parameters for fluorescence, the results indicated that the escaped fluorescence flux nonlinearly decreased with the μa, μ's at emission wavelength (μa,em, μ's,em) and μa at excitation wavelength (μa,ex), however increased with the μ's at excitation wavelength (μ's,ex). And the required optical parameters to eliminate the interference of matrix on fluorescence intensity are: effective attenuation coefficients at excitation and emission wavelengths (μeff,ex, μeff,em) and μ's,ex. Phantom verification was conducted to explore the feasibility of fluorescence correction based on the identified parameters by MC simulation, and determine the optimal machine learning method. The modelling results showed that least squares support vector regression (LSSVR) model could reach the best performance. Three kinds of edible oil (peanut, rapeseed, corn), each with two brands were used to prepare oil samples with different AFB1 contamination. The LSSVR model for AFB1 based on μeff,ex, μeff,em, μ's,ex and fluorescence intensity at 450 nm was calibrated, both correlation coefficients for calibration (Rc) and the validation (Rv) sets could reach 1.000, root mean square errors for calibration (RMSEC) and the validation (RMSEV) sets were as low as 0.038 and 0.099 respectively. This study proposed a novel method which is based solely on the absorption, scattering, and fluorescence characteristics at excitation and emission wavelengths to achieve accurate prediction of AFB1 content in different types of vegetable oils.
Collapse
Affiliation(s)
- Xueming He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China.
| | - Jie You
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Xiaoyun Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Longwen Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Liu Wang
- Key Iaboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310022, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| |
Collapse
|
11
|
Wang C, Li J, Wang Q, Wu Q, Shi X. Fluorine-functionalized covalent organic framework as efficient solid phase extraction sorbent for adsorption of aflatoxins in nuts. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133017. [PMID: 37984147 DOI: 10.1016/j.jhazmat.2023.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
In this study, a new fluorine-functionalized covalent organic framework (F-COF) was designed and fabricated by the direct polycondensation of tris(4-aminophenyl)amine and 2,3,5,6-tetra-fluoroterephthaldehyde for the first time. F-COF exhibited a remarkably enhanced adsorption capability compared with that of the fluorine-free COF. The favorable adsorption of aflatoxins was attributed to multiple interactions including pseudo hydrogen bond, F-O, π-π, F-π interactions and hydrophobic interactions between F-COF and aflatoxins. By coupling F-COF based solid phase extraction with high-performance liquid chromatography equipped with fluorescence detector, a rapid and sensitive method for determining aflatoxins (aflatoxin B1, B2, G1 and G2) in nuts (peanuts and pistachios) was established. Under optimal conditions (35 mg F-COF, 100 mL sample solution, 3 mL min-1 as sample loading rate, pH<7, 0.2 mL acetonitrile as desorption solvent), the limits of detection for aflatoxins were 0.02-0.30 ng g-1. The linear range was 0.08-16.0 ng g-1 and the recoveries of the F-COF-based method were 83.5-114 % with relative standard deviations less than 8.0 %.
Collapse
Affiliation(s)
- Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jie Li
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
12
|
Ji J, Wang D, Wang Y, Hou J. Relevant mycotoxins in oil crops, vegetable oils, de-oiled cake and meals: Occurrence, control, and recent advances in elimination. Mycotoxin Res 2024; 40:45-70. [PMID: 38133731 DOI: 10.1007/s12550-023-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Dan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jie Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
13
|
Deng H, Xu Z, Luo L, Gao Y, Zhou L, Chen X, Chen C, Li B, Yin Q. High-throughput detection and dietary exposure risk assessment of 44 mycotoxins in Mango, Litchi, Longan, and their products in South China. Food Chem X 2023; 20:101002. [PMID: 38144736 PMCID: PMC10740044 DOI: 10.1016/j.fochx.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Mycotoxins exposure from food can trigger serious health hazards. This study aimed to establish an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous detection of 44 mycotoxins in fruits and their products, followed by dietary exposure risk assessment. The optimized UPLC-MS/MS method exhibited a good linear relationship with correlation coefficients ≥ 0.99041. The limits of detection (LOD) and the limits of quantification (LOQ) were within the range of 0.003 ∼ 0.700 μg/kg and 0.01 ∼ 2.00 μg/kg, respectively. The three fruits and their corresponding value-added products, with a total sampling size of 42, were subjected to analysis and detected with mycotoxins. Further dietary exposure risk assessment revealed that the hazard quotient (HQ) and hazard index (HI) of mycotoxins were 1.213 ∼ 60.032 % and 5.573 ∼ 93.750 %, indicating a low risk for Chinese consumers. However, we still need be cautious about 15-acetyl-deoxynivalenol (15-ADON), as it had 78.6 % occurrence among all samples. This work provides an accurate analysis strategy for 44 mycotoxins and contributes to mycotoxins supervision.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China
| | - Yunkai Gao
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Lingyu Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Xiaomei Chen
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Chunquan Chen
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Qingchun Yin
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| |
Collapse
|
14
|
Li S, Zhang S, Li X, Zhou S, Ma J, Zhao X, Zhang Q, Yin X. Determination of multi-mycotoxins in vegetable oil via liquid chromatography-high resolution mass spectrometry assisted by a complementary liquid-liquid extraction. Food Chem X 2023; 20:100887. [PMID: 38144739 PMCID: PMC10740109 DOI: 10.1016/j.fochx.2023.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 12/26/2023] Open
Abstract
The simultaneous determination of multi-mycotoxins in food commodities are highly desirable due to their potential toxic effects and mass consumption of foods. Herein, liquid chromatography-quadrupole exactive orbitrap mass spectrometry was proposed to analyze multi-mycotoxins in commercial vegetable oils. Specifically, the method featured a successive liquid-liquid extraction process, in which the complementary solvents consisted of acetonitrile and water were optimized. Resultantly, matrix effects were reduced greatly. External calibration approach revealed good quantification property for each analyte. Under optimal conditions, the recovery ranging from 80.8% to 109.7%, relative standard deviation less than 11.7%, and good limit of quantification (0.35 to 45.4 ng/g) were achieved. The high accuracy of proposed method was also validated. The detection of 20 commercial vegetable oils revealed that aflatoxins B1 and B2, zearalenone were observed in 10 real samples. The as-developed method is simple and low-cost, which merits the wide applications for scanning mycotoxins in oil matrices.
Collapse
Affiliation(s)
- Shuangqing Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Siyao Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaomin Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Shukun Zhou
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Jiahui Ma
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaotong Zhao
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qinghe Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Xiong Yin
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
15
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023; 55:316-329. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
16
|
Pradanas-González F, Aragoneses-Cazorla R, Merino-Sierra MÁ, Andrade-Bartolomé E, Navarro-Villoslada F, Benito-Peña E, Moreno-Bondi MC. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food Chem 2023; 429:136846. [PMID: 37467670 DOI: 10.1016/j.foodchem.2023.136846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this work, we developed an environmentally friendly liquid-liquid microextraction method using a natural deep eutectic solvent in combination with liquid chromatography for the simultaneous determination of four mycotoxins (deoxynivalenol, alternariol, ochratoxin A and zearalenone) in edible vegetable oils. A chemometric approach assessed the effect of the operational parameters on the mycotoxin extraction efficiency. The extracts were analyzed by HPLC coupled with a diode array and fluorescence detector. The optimum NADES composition resulted in the highest extraction recoveries, and it was applied to coextract the target mycotoxins in several types of edible vegetable oils without using hazardous solvents or requiring further clean-up. The limits of detection ranged from 0.07 to 300 µg kg-1, and recoveries were close to 100%, except for zearalenone (viz. 35%), with relative standard deviations below 9% in all cases. The proposed method was validated following the European Commission 2002/657/EC and 2006/401/EC.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rubén Aragoneses-Cazorla
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Miguel Ángel Merino-Sierra
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Elena Andrade-Bartolomé
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
17
|
Zhang Y, Chen T, Chen D, Liang W, Lu X, Zhao C, Xu G. Suspect and nontarget screening of mycotoxins and their modified forms in wheat products based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1708:464370. [PMID: 37717452 DOI: 10.1016/j.chroma.2023.464370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Various forms of mycotoxins commonly exist in food and pose a significant risk to human health. Here a comprehensive suspect and nontarget screening strategy for both parent and modified mycotoxins was developed using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS). We constructed an in-house MS/MS database containing 82 mycotoxins in 8 categories. Then fragmentation characteristics of different classes of mycotoxins were rapidly extracted by a Python program "Fragmentation pattern screener (FPScreener)" and nontarget screening rules were determined by analyzing the frequencies and average intensities of fragmentation characteristics. Using the suspect and nontarget screening strategy, we successfully identified six parent mycotoxins and eight modified mycotoxins with different confidence levels in contaminated wheat and flour samples. This strategy enables screening of unknown parents and modified mycotoxins in food matrices with corresponding fragmentation characteristics.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Chen
- Food Safety Research Unit of Chinese Academy of Medical Science (2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| |
Collapse
|
18
|
Xiang S, Li J, Wang F, Yang H, Jiang Y, Zhang P, Cai R, Tan W. Novel Ultralow-Potential Electrochemiluminescence Aptasensor for the Highly Sensitive Detection of Zearalenone Using a Resonance Energy Transfer System. Anal Chem 2023; 95:15125-15132. [PMID: 37774402 DOI: 10.1021/acs.analchem.3c03437] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
An ultralow-potential electrochemiluminescence (ECL) aptasensor has been designed for zearalenone (ZEN) assay based on a resonance energy transfer (RET) system with SnS2 QDs/g-C3N4 as a novel luminophore and CuO/NH2-UiO-66 as a dual-quencher. SnS2 QDs were loaded onto g-C3N4 nanosheets and enhanced the ECL luminescence via strong synergistic effects under an ultralow potential. The UV-vis absorption spectrum of CuO/NH2-UiO-66 exhibits considerable overlap with the ECL emission spectrum of SnS2 QDs/g-C3N4, an important consideration for the RET process. In order to stimulate RET, the ZEN aptamer and complementary DNA are introduced for conjugation between the donor and the acceptor. With the binding interaction between ZEN by its aptamer, CuO/NH2-UiO-66 is removed from the electrode surface, resulting in the inhibition of the RET system and an increase in the ECL signal. Under optimal conditions, the as-prepared aptasensor quantified ZEN from 0.5 μg·mL-1 to 0.1 fg·mL-1 with a low limit of detection of 0.085 fg·mL-1, and it exhibited good stability, excellent specificity, high reproducibility, and desirable practicality. The sensing strategy provides a method for mycotoxins assay to monitor food safety.
Collapse
Affiliation(s)
- Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yifei Jiang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Penghui Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Chau SL, Zhao A, Jia W, Wang L. Simultaneous Determination of Pesticide Residues and Mycotoxins in Storage Pu-erh Tea Using Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2023; 28:6883. [PMID: 37836726 PMCID: PMC10574668 DOI: 10.3390/molecules28196883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Mycotoxins and pesticides are the most concerning chemical contaminants that can affect the quality of Pu-erh tea during its production and storage. This study presents a method that can simultaneously determine 31 pesticide residues and six mycotoxins in Pu-erh tea within 11 min using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after QuEChERS extraction. The lower limit of quantification (LOQ) for all analytes ranged between 0.06 and 50 ppb. Recoveries for each pesticide and mycotoxin ranged between 62.0 and 130.3%, with intra- and inter-day precisions lower than 15%. Good linear relationships were obtained, with correlation coefficients of r2 > 0.991 for all analytes. The established method was applied to 31 Pu-erh tea samples, including raw and ripened Pu-erh tea with different storage times. As a result, pesticide residues were not detected in any of the collected samples, and the mycotoxins detected in the samples were well below the official maximum residue limits (MRLs). Notably, the levels of aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) were lower than 1 ppb in the samples stored for more than 30 years.
Collapse
Affiliation(s)
- Siu Leung Chau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Aihua Zhao
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China;
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| |
Collapse
|
20
|
Diamantidou D, Tsochatzis E, Kalogiannis S, Alberto Lopes J, Theodoridis G, Gika H. Analysis of Migrant Cyclic PET Oligomers in Olive Oil and Food Simulants Using UHPLC-qTOF-MS. Foods 2023; 12:2739. [PMID: 37509830 PMCID: PMC10379823 DOI: 10.3390/foods12142739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Oligomers are a particular category of non-intentionally added substances (NIAS) that may be present in food contact materials (FCMs), such as polyethylene terephthalate (PET), and consequently migrate into foods. Here, an ultra-high-pressure liquid chromatography quadruple time-of-flight mass spectrometry (UHPLC-qTOF-MS) method was developed for the analysis of 1st series cyclic PET oligomers in virgin olive oil (VOO) following a QuEChERS clean-up protocol. Oligomer migration was evaluated with two different migration experiments using bottles from virgin and recycled PET: one with VOO samples stored in household conditions for a year and one using the food simulant D2 (95% v/v ethanol in water) at 60 °C for 10 days. Calibration curves were constructed with fortified VOO samples, with the LOQs ranging from 10 to 50 µg L-1 and the recoveries ranging from 86.6 to 113.0%. Results showed no migration of PET oligomers in VOO. However, in the simulated study, significant amounts of all oligomers were detected, with the migration of cyclic PET trimers from recycled bottles being the most abundant. Additional substances were tentatively identified as linear derivatives of PET oligomers. Again, open trimer structures in recycled bottles gave the most significant signals.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
| | - Emmanouil Tsochatzis
- Department of Food Science, iFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Stavros Kalogiannis
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Joao Alberto Lopes
- European Innovation Council and SMEs Executive Agency (EISMEA), 1210 Brussels, Belgium
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Carro N, Fernández R, Sóñora S, Cobas J, García I, Ignacio M, Mouteira A. Optimization of micro-QuEChERS extraction coupled with gas chromatography-mass spectrometry for the fast determination of phthalic acid esters in mussel samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1836-1845. [PMID: 36974432 DOI: 10.1039/d3ay00042g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a new miniaturized version of the analytical method based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) technique using Florisil in the cleanup step for extracting six phthalic acid esters (PAEs) in mussel samples was developed by using a design of experiments. For this purpose, 1.5 mL of ultrapure water and later, 1.5 mL of acetonitrile were added to 0.1 g of the lyophilized sample, followed by 0.3 g of a commercial extraction salt packet (magnesium sulfate, sodium chloride, sodium citrate dihydrate, and sodium hydrogencitrate sesquihydrate). The recovered extract was purified using 0.1 g of Florisil. The final extract was evaporated and reconstituted in 1 mL of hexane. The six phthalates were determined by a GC-MS (SIM) system. The whole method was validated at two concentration levels. Recoveries ranged from 79% to 108%. Reproducibility in terms of coefficients of variation was between 4.9% and 12.1%. The limits of quantification of the whole method were between 0.53 and 38.0 μg per kg dry weight. Five mussel samples coming from the Galician Rías were analysed using this method. Except for three of the five samples where DnOP (di-n-octyl phthalate) was below the limit of quantification, all PAEs were found in concentrations that ranged between 1.99 and 372.7 μg per kg dry weight.
Collapse
Affiliation(s)
- N Carro
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - R Fernández
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - S Sóñora
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - J Cobas
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - I García
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - M Ignacio
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - A Mouteira
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (INTECMAR), Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| |
Collapse
|
22
|
Shavakhi F, Rahmani A, Piravi-Vanak Z. A global systematic review and meta-analysis on prevalence of the aflatoxin B 1 contamination in olive oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1255-1264. [PMID: 35034978 PMCID: PMC8753009 DOI: 10.1007/s13197-022-05362-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Olive oil can be contaminated by fungal toxins; therefore, it is necessary to monitor the incidence of mycotoxins in this oil. In the present study, the pooled prevalence of detectable aflatoxin B1 (AFB1) in olive oil was evaluated using systematic review and meta-analysis approach from 1 January 1991 to 31 December 2020 (30 years study). The search was conducted via electronic databases involving Scopus, Web of Science, PubMed, Agris and Agricola. Synonyms were collected from combination of the MESH, Agrovoc and free text method. After screening and selection process of primary researches, full texts of eligible researches (46 studies) were evaluated and data of the nine studies as included researches were extracted. Random effect model was used to estimate the pooled prevalence of AFB1 in olive oil and weighing model of Dersimonian-Laired was applied. Summary measure of mycotoxin prevalence was estimated using Metaprop module of STATA and 95% confidence interval (CI) were calculated using the Binomial Exact Method. Pooled prevalence of AFB1 in olive oils were 32% (95% CI 8-56%) which means that 68% of olive oil were free of detectable contaminants of AFB1. Due to controversy over the results of primary studies, future researches and consequent subgroup analysis based on the main variables affecting the aflatoxins contamination in olive oil are recommended to achieve the conclusive results.
Collapse
Affiliation(s)
- Forough Shavakhi
- Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box: 31585-845, Karaj, Iran
| | - Anosheh Rahmani
- Department of Food, Halal and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| | - Zahra Piravi-Vanak
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| |
Collapse
|
23
|
Chen M, Qileng A, Liang H, Lei H, Liu W, Liu Y. Advances in immunoassay-based strategies for mycotoxin detection in food: From single-mode immunosensors to dual-mode immunosensors. Compr Rev Food Sci Food Saf 2023; 22:1285-1311. [PMID: 36717757 DOI: 10.1111/1541-4337.13111] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Mycotoxin contamination in foods and other goods has become a broad issue owing to serious toxicity, tremendous threat to public safety, and terrible loss of resources. Herein, it is necessary to develop simple, sensitive, inexpensive, and rapid platforms for the detection of mycotoxins. Currently, the limitation of instrumental and chemical methods cannot be massively applied in practice. Immunoassays are considered one of the best candidates for toxin detection due to their simplicity, rapidness, and cost-effectiveness. Especially, the field of dual-mode immunosensors and corresponding assays is rapidly developing as an advanced and intersected technology. So, this review summarized the types and detection principles of single-mode immunosensors including optical and electrical immunosensors in recent years, then focused on developing dual-mode immunosensors including integrated immunosensors and combined immunosensors to detect mycotoxins, as well as the combination of dual-mode immunosensors with a portable device for point-of-care test. The remaining challenges were discussed with the aim of stimulating future development of dual-mode immunosensors to accelerate the transformation of scientific laboratory technologies into easy-to-operate and rapid detection platforms.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Preparation of magnetic hyper-crosslinked polymer for high efficient preconcentration of four aflatoxins in rice and sorghum samples. Food Chem 2023; 404:134688. [DOI: 10.1016/j.foodchem.2022.134688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
25
|
Leite M, Freitas A, Barbosa J, Ramos F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins (Basel) 2023; 15:toxins15030173. [PMID: 36977064 PMCID: PMC10054876 DOI: 10.3390/toxins15030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins are compounds produced by several fungi that contaminate agricultural fields and, either directly or by carry-over, final food products. Animal exposure to these compounds through contaminated feed can lead to their excretion into milk, posing threats to public health. Currently, aflatoxin M1 is the sole mycotoxin with a maximum level set in milk by the European Union, as well as the most studied. Nonetheless, animal feed is known to be contaminated by several groups of mycotoxins with relevance from the food safety point of view that can be carried over into milk. To evaluate the multi-mycotoxin occurrence in this highly consumed food product it is crucial to develop precise and robust analytical methodologies towards their determination. In this sense, an analytical method for the simultaneous identification of 23 regulated, non-regulated, and emerging mycotoxins in raw bovine milk using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was validated. A modified QuEChERS protocol for extraction purposes was used, and further validation was performed by assessing the selectivity and specificity, limits of detection and quantification (LOD and LOQ), linearity, repeatability, reproducibility, and recovery. The performance criteria were compliant with mycotoxin-specific and general European regulations for regulated, non-regulated, and emerging mycotoxins. The LOD and LOQ ranged between 0.001 and 9.88 ng mL−1 and 0.005 and 13.54 ng mL−1, respectively. Recovery values were between 67.5 and 119.8%. The repeatability and reproducibility parameters were below 15 and 25%, respectively. The validated methodology was successfully applied to determine regulated, non-regulated, and emerging mycotoxins in raw bulk milk from Portuguese dairy farms, proving the importance of widening the monitoring scope of mycotoxins in dairy products. Additionality, this method presents itself as a new strategic and integrated biosafety control tool for dairy farms for the analysis of these natural and relevant human risks.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Jorge Barbosa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
26
|
Patil AC, Fernández la Villa A, Mugilvannan AK, Elejalde U. Electrochemical investigation of edible oils: Experimentation, electrical signatures, and a supervised learning–case study of adulterated peanut oils. Food Chem 2023; 402:134143. [DOI: 10.1016/j.foodchem.2022.134143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
27
|
Discovery and validation of bladder cancer related excreted nucleosides biomarkers by dilution approach in cell culture supernatant and urine using UHPLC-MS/MS. J Proteomics 2023; 270:104737. [PMID: 36174950 DOI: 10.1016/j.jprot.2022.104737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023]
Abstract
The exploration of nucleoside changes in human biofluids has profound potential for cancer diagnosis. Herein, we developed a rapid methodology to quantify 17 nucleosides by UHPLC-MS/MS. Five pairs of isomers were successfully separated within 8 min. The ME was mostly eliminated by sample dilution folds of 1000 for urine and 40 for CCS. The optimized method was firstly applied to screen potential nucleoside biomarkers in CCS by comprising bladder cancer cell lines (5637 and T24) and normal human bladder cell line SV-HUC-1 together with student's t-test and OPLS-DA. Nucleosides with significant differences in the supernatant of urine samples were also uncovered comparing BCa with the non-tumor group, as well as a comparison of BCa recurrence group with the non-recurrence group. By intersecting the differential nucleosides in CCS and urine supernatant, and then further confirmed using validation sets, the combination of m3C and m1A with AUC of 0.775 was considered as a potential biomarker for bladder cancer diagnosis. A panel of m3C, m1A, m1G, and m22G was defined as potential biomarkers for bladder cancer prognosis with an AUC of 0.819. Above all, this method provided a new perspective for diagnosis and recurrence monitoring of bladder cancer. SIGNIFICANCE: The exploration of nucleoside changes in body fluids has profound potential for the diagnosis and elucidation of the pathogenesis of cancer. In this study, we developed a rapid methodology for the simultaneous quantitative determination of 17 nucleosides in the supernatant of cells and urine samples using UHPLC-MS/MS to discover and validate bladder cancer related excreted nucleoside biomarkers. The results of this paper provide a new strategy for diagnosis and postoperative recurrence monitoring of bladder cancer and provide theoretical support for the exploration of its pathogenesis.
Collapse
|
28
|
Li S, Li X, Liu X, Zhang Q, Fang J, Li X, Yin X. Stability Evaluation of Aflatoxin B 1 Solution Certified Reference Material via Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. ACS OMEGA 2022; 7:40548-40557. [PMID: 36385854 PMCID: PMC9647931 DOI: 10.1021/acsomega.2c05829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxin B1 (AFB1) solution certified reference materials (CRMs) have been widely utilized in the measurements of AFB1 contaminations in foods and agricultural products. It is of great importance to evaluate the stability of AFB1 solution CRMs in different matrices for their practical applications. In this study, the stability of AFB1 solution CRM was investigated and its degradation products under various conditions were elucidated using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry for the first time. Exposure to high temperatures and UV light irradiation accelerated the degradation of AFB1 solution significantly, and the degradation products were largely dependent on the solvents. Two degradation pathways were proposed based on the degradation products. The addition reaction, oxidation reaction, and modification of the methoxy group are the major processes involved in the degradation of the AFB1 solution. The results of this study indicate that the property value of the acetonitrile solution of AFB1 can be well retained when it is stored at temperatures lower than 60 °C, and the exposure to UV light irradiation is avoided.
Collapse
Affiliation(s)
- Shuangqing Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiaomin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xuehui Liu
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Qinghe Zhang
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Jiaqi Fang
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xiuqin Li
- Food
Safety Analysis Laboratory, Division of Chemical Metrology and Analytical
Science, Key Laboratory of Chemical Metrology and Applications on
Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing100029, P. R. China
| | - Xiong Yin
- College
of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
29
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
30
|
Zhu C, Deng J, Jiang H. Parameter Optimization of Support Vector Machine to Improve the Predictive Performance for Determination of Aflatoxin B 1 in Peanuts by Olfactory Visualization Technique. Molecules 2022; 27:6730. [PMID: 36235267 PMCID: PMC9573054 DOI: 10.3390/molecules27196730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
This study proposes a novel method for detection of aflatoxin B1 (AFB1) in peanuts using olfactory visualization technique. First, 12 kinds of chemical dyes were selected to prepare a colorimetric sensor to assemble olfactory visualization system, which was used to collect the odor characteristic information of peanut samples. Then, genetic algorithm (GA) with back propagation neural network (BPNN) as the regressor was used to optimize the color component of the preprocessed sensor feature image. Support vector regression (SVR) quantitative analysis model was constructed by using the optimized combination of characteristic color components to achieve determination of the AFB1 in peanuts. In this process, the optimization performance of grid search (GS) algorithm and sparrow search algorithm (SSA) on SVR parameter was compared. Compared with GS-SVR model, the model performance of SSA-SVR was better. The results showed that the SSA-SVR model with the combination of seven characteristic color components obtained the best prediction effect. Its correlation coefficients of prediction (RP) reached 0.91. The root mean square error of prediction (RMSEP) was 5.7 μg·kg-1, and ratio performance deviation (RPD) value was 2.4. The results indicate that it is reliable to use the colorimetric sensor array with strong specificity for the determination of the AFB1 in peanuts. In addition, it is necessary to properly optimize the parameters of the prediction model, which can obviously improve the generalization performance of the multivariable model.
Collapse
Affiliation(s)
- Chengyun Zhu
- School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Intelligent Optoelectronic Devices and Measurement and Control Engineering Research Center, Yancheng 224007, China
| | - Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
31
|
Luo D, Guan J, Dong H, Chen J, Liang M, Zhou C, Xian Y, Xu X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front Nutr 2022; 9:1001671. [PMID: 36245528 PMCID: PMC9555343 DOI: 10.3389/fnut.2022.1001671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12–1.2 μg/L and 0.40–4.0 μg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20–100 μg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4–106.8%, and the relative standard deviations (RSDs) were 1.2–9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3–115.6%, and the precision RSD (n = 6) was 0.9–8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 μg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.
Collapse
Affiliation(s)
- Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Hao Dong
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Sciences, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Hao Dong
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Chunxia Zhou
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Xiaofei Xu
| |
Collapse
|
32
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
33
|
Ni B, Ye J, Chen J, Li L, Liu H, Wu Y, Wang S. Surfactant-Enhanced and Automated Pretreatment Based on Immunoaffinity Magnetic Beads Coupled with Ultra-Performance Liquid Chromatography with Fluorescence Detection for the Determination of Aflatoxins in Peanut Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10654-10661. [PMID: 35996206 DOI: 10.1021/acs.jafc.2c02529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sample pretreatment is an important step in the detection and analysis of mycotoxins. However, conventional pretreatment methods are complex, time-consuming, and labor-intensive; moreover, they generate a large amount of organic waste that pollutes the environment. An environmentally friendly and automated pretreatment method is proposed. Without extraction using organic solvents in advance, aflatoxins in peanut oil are directly cleaned and concentrated by immunomagnetic beads with the aid of a reaction solution containing surfactant Tween-20. Under optimal conditions, the proposed pretreatment method requires 40 min to simultaneously pretreat 10-24 samples without any centrifugation or filtering steps, and virtually no organic waste was produced. This pretreatment step was coupled with ultra-performance liquid chromatography-fluorescence detection to develop an effective detection method. The recovery of spiked aflatoxins in peanut oils at different concentrations ranged from 91.6 to 100.8%, and the relative standard deviation was below 5.3%. This reliable method overcomes the drawbacks of conventional methods and offers great application prospects.
Collapse
Affiliation(s)
- Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, China
| |
Collapse
|
34
|
Jubeen F, Zahra N, Nazli ZIH, Saleemi MK, Aslam F, Naz I, Farhat LB, Saleh A, Alshawwa SZ, Iqbal M. Risk Assessment of Hepatocellular Carcinoma with Aflatoxin B1 Exposure in Edible Oils. Toxins (Basel) 2022; 14:toxins14080547. [PMID: 36006209 PMCID: PMC9415889 DOI: 10.3390/toxins14080547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of edible oils with aflatoxins (AFs) is a universal issue due to the detrimental effects of aflatoxins on human health and the fact that edible oils are a major source of fungal growth, particularly storage fungi (Aspergillus sp.). The objective of this study was to assess aflatoxin B1 (AFB1) in edible oil used in fried food in order to determine the risk of cancer from AFB1 exposure through cooked food using the FAO/WHO’s and EFSA’s margin of exposure (MOE) quantitative liver cancer risk approaches. Using Mycosep 226 columns and HPLC-FLD, 100 samples of cooking oils (soybean, canola, and sunflower oil) from different food points were analyzed for contamination with aflatoxins. Of all the samples tested, 89% were positive for total aflatoxins and AFB1, with 65% indicating AF concentrations beyond permitted levels. Canola oil was found to contain higher levels of AFB1 and AFs than soybean and sunflower oil. Almost 71 percent of canola oil samples (range of 54.4–281.1 µg/kg) were contaminated with AF levels higher than the proposed limits of the European Union (20 µg/kg). The consumption of canola oil samples used in fried foods had MOE values that were significantly lower as compared to sunflower and soybean oils, indicating that risk reduction is feasible. Additionally, compared to soybean and sunflower oil, canola oil exhibited a greater threat of liver cancer cases linked to AFB1 exposure (17.13 per 100,000 males over 35 and 10.93 per 100,000 females over 35). Using a quantitative liver cancer approach, health risk valuation demonstrated that males and females over the age of 35 are at significant risk of developing liver cancer. The health risk assessment exposed that the males and female over the age of 35 are at considerable risk of liver cancer by using a quantitative liver cancer approach. The innovation of this study lies in the fact that no such study is reported related to liver cancer risk evaluation accompanied with AFB1 exposure from consumed edible oil. As a result, a national strategy must be developed to solve this problem so that edible oil products are subjected to severe regulatory examination.
Collapse
Affiliation(s)
- Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Nida Zahra
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Zill-i-Huma Nazli
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Muhammad K. Saleemi
- Department of Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Farheen Aslam
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Iram Naz
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Lamia B. Farhat
- Department of Chemistry, College of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Laboratoire des Matériaux et de L’Environnement Pour le Développement Durable LR18ES10, 9 Avenue Dr. Zoheir Sai, Tunis 1006, Tunisia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- Correspondence: mailto:
| |
Collapse
|
35
|
Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022; 64:517-543. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The natural bioactive or nutraceuticals exhibit several health benefits, including anti-inflammatory, anti-cancer, metal chelation, antiviral, and antimicrobial activity. The inherent limitation of nutraceuticals or bioactive ligand(s) in terms of poor pharmacokinetic and other physicochemical properties affects their overall therapeutic efficiency. The excess of iron in the physiological compartments and its varying dynamic oxidation state [Fe(II) and Fe(III)] precipitates various clinical conditions such as non-transferrin bound iron (NTBI), labile iron pool (LIP), ferroptosis, cancer, etc. Though several natural bioactive ligands are proposed to chelate iron, the efficiency of bioactive ligands is limited due to poor bioavailability, denticity, and other related physicochemical properties. The present review provides insight into the relevance of studying the dynamic oxidation state of iron(II) and iron(III) in the physiological compartments and its clinical significance for selecting diagnostics and therapeutic regimes. We suggested a three-pronged approach, i.e., diagnosis, selection of therapeutic regime (natural bioactive), and integration of novel drug delivery systems (NDDS) or nanotechnology-based principles. This systematic approach improves the overall therapeutic efficiency of natural iron chelators to manage iron overload-related clinical conditions.
Collapse
Affiliation(s)
- K N Lokesh
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
36
|
Wang B, Deng J, Jiang H. Markov Transition Field Combined with Convolutional Neural Network Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Determination of Aflatoxin B 1 in Maize. Foods 2022; 11:foods11152210. [PMID: 35892795 PMCID: PMC9332458 DOI: 10.3390/foods11152210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022] Open
Abstract
This work provides a novel approach to monitor the aflatoxin B1 (AFB1) content in maize by near-infrared (NIR) spectra-based deep learning models that integrates Markov transition field (MTF) image coding and a convolutional neural network (CNN) strategy. According to the data structure characteristics of near-infrared spectra, new structures of one-dimensional CNN (1D-CNN) and two-dimensional MTF-CNN (2D-MTF-CNN) were designed to construct a deep learning model for the monitoring of AFB1 in maize. The results obtained showed that compared with the 1D-CNN model, the performance of the 2D-MTF-CNN model had been significantly improved, and its root mean square error of prediction, coefficient of predictive determination, and relative percent deviation were 1.3591 μg·kg-1, 0.9955, and 14.9386, respectively. The results indicate that the MTF is an effective data encoding technique for converting one-dimensional spectra into two-dimensional images. It more intuitively reflects the intrinsic characteristics of the NIR spectra from a new perspective and provides richer spectral information for the construction of deep learning models, which can ensure the detection accuracy and generalization performance of deep learning quantitative detection models. This study provides a new analytical perspective for the chemometrics analysis of the NIR spectroscopy.
Collapse
|
37
|
Yin L, You T, El-Seedi HR, El-Garawani IM, Guo Z, Zou X, Cai J. Rapid and sensitive detection of zearalenone in corn using SERS-based lateral flow immunosensor. Food Chem 2022; 396:133707. [PMID: 35853376 DOI: 10.1016/j.foodchem.2022.133707] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is a universal mycotoxin contaminant in corn and its products. A surface-enhanced Raman scattering (SERS) based test strip was proposed for the detection of ZEN, which had the advantages of simplicity, rapidity, and high sensitivity. Core-shell Au@AgNPs with embedded reporter molecules (4-MBA) were synthesized as SERS nanoprobe, which exhibited excellent SERS signals and high stability. The detection range of ZEN for corn samples was 10-1000 μg/kg with the limit of detection (LOD) of 3.6 μg/kg, which is far below the recommended tolerable level (60 μg/kg). More importantly, the SERS method was verified by HPLC in the application on corn samples contaminated with ZEN, and the coincidence rates were in the range of 86.06%-111.23%, suggesting a high accuracy of the SERS assay. Therefore, the SERS-based test strip with an analysis time of less than 15 min is a promising tool for accurate and rapid detection of ZEN-field contamination.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Islam M El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
38
|
Yu Y, Han J, Yin J, Huang J, Liu J, Geng L, Sun X, Zhao W. Dual-Target Electrochemical Sensor Based on 3D MoS2-rGO and Aptamer Functionalized Probes for Simultaneous Detection of Mycotoxins. Front Chem 2022; 10:932954. [PMID: 35836672 PMCID: PMC9274162 DOI: 10.3389/fchem.2022.932954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
A dual-target aptamer functionalized probes (DTAFP) was applied for the detection of aflatoxin B1 (AFB1) and zearalenone (ZEN) simultaneously, which has not been reported. Meanwhile, two functional materials for signal amplification of the DTAFP were synthesized: 1) a three-dimensional molybdenum disulfide-reduced graphene oxide (MoS2-rGO) as a favorable loading interface; 2) a double-probes gold nanoparticles (AuNPs) modified by Thionin (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S) as distinguishable and non-interfering signals. Mycotoxins on the electrode surface release into solution under the function of the DTAFP, leading a reduction of the differential peak impulse in signal response. Under the optimum conditions, the aptasensor exhibited a detection range of 1.0 pg mL−1–100 ng mL−1 for AFB1 and ZEN, with no observable cross reactivity. In addition, the aptasensor performed excellent stability, reproducibility, specificity, and favorable recovery in the detection of edible oil. This work demonstrated a novel method for the construction of a simple, rapid, and sensitive aptasensor in the detection of multiple mycotoxins simultaneously.
Collapse
Affiliation(s)
- Yanyang Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jiaqi Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
- *Correspondence: Wenping Zhao,
| |
Collapse
|
39
|
Wang M, He J, Zhang Y, Tian Y, Xu P, Zhang X, Li Y, Chen J, He L. Application of magnetic hydroxyapatite surface-imprinted polymers in pretreatment for detection of zearalenone in cereal samples. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1201-1202:123297. [DOI: 10.1016/j.jchromb.2022.123297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
|
40
|
Liu B, Peng J, Wu Q, Zhao Y, Shang H, Wang S. A novel screening on the specific peptide by molecular simulation and development of the electrochemical immunosensor for aflatoxin B1 in grains. Food Chem 2022; 372:131322. [PMID: 34818740 DOI: 10.1016/j.foodchem.2021.131322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/03/2023]
Abstract
In this work, based on a specific antibody was obtained from the Protein Data Bank (PDB), a library of the specific peptides of aflatoxin B1 (AFB1) was constructed by combining key amino acids, amino acid mutations and molecular docking. Then, the porous gold nanoparticles (porous AuNPs) were fabricated on the surface of a glassy carbon electrode (GCE). A novel, sensitive and no-label signal immunosensor was developed by signal enhancement with the specific peptide as the recognition element for the detection of AFB1 in cereals. Under the optimal conditions, the limit of detection (S/N = 3) was 9.4 × 10-4 μg·L-1, and the linear range was 0.01 μg·L-1 to 20 μg·L-1. The recovery results were 88.4%∼102.0%, which indicated an excellent accuracy. This sensor is an ideal candidate for screening the peptides of AFB1, and a novel immunosensor was used to detect AFB1 in cereals.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaxuan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiuyue Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaoshuai Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hua Shang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Hussain A, Jiang W, Wang X, Shahid S, Saba N, Ahmad M, Dar A, Masood SU, Imran M, Mustafa A. Mechanistic Impact of Zinc Deficiency in Human Development. Front Nutr 2022; 9:717064. [PMID: 35356730 PMCID: PMC8959901 DOI: 10.3389/fnut.2022.717064] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) deficiency in humans is an emerging global health issue affecting approximately two billion people across the globe. The situation prevails due to the intake of Zn deficient grains and vegetables worldwide. Clinical identification of Zn deficiency in humans remains problematic because the symptoms do not appear until impair the vital organs, such as the gastrointestinal track, central nervous system, immune system, skeletal, and nervous system. Lower Zn body levels are also responsible for multiple physiological disorders, such as apoptosis, organs destruction, DNA injuries, and oxidative damage to the cellular components through reactive oxygen species (ROS). The oxidative damage causes chronic inflammation lead toward several chronic diseases, such as heart diseases, cancers, alcohol-related malady, muscular contraction, and neuro-pathogenesis. The present review focused on the physiological and growth-related changes in humans under Zn deficient conditions, mechanisms adopted by the human body under Zn deficiency for the proper functioning of the body systems, and the importance of nutritional and nutraceutical approaches to overcome Zn deficiency in humans and concluded that the biofortified food is the best source of Zn as compared to the chemical supplementation to avoid their negative impacts on human.
Collapse
Affiliation(s)
- Azhar Hussain
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Shumaila Shahid
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Noreena Saba
- Qaid-e-Azam Medical College, Bahawal Victoria Hospital, Bahawalpur, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Usama Masood
- Clinical Fellow Pediatric Nephrology, Children Hospital and Institute of Child Health Multan, Multan, Pakistan
| | | | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition (FA), Mendel University, Brno, Czechia
- Institute of Environmental Studies, Charles University Prague, Prague, Czechia
| |
Collapse
|
42
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
43
|
Kholif OT, Sebaei AS, Eissa FI, Elhamalawy OH. Determination of aflatoxins in edible vegetable oils from Egyptian market: Method development, validation, and health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Taroncher M, Vila-Donat P, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Biological activity and toxicity of plant nutraceuticals: an overview. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Junsai T, Poapolathep S, Sutjarit S, Giorgi M, Zhang Z, Logrieco AF, Li P, Poapolathep A. Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography-Tandem Mass Spectrometry. Foods 2021; 10:2795. [PMID: 34829076 PMCID: PMC8619327 DOI: 10.3390/foods10112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Samak Sutjarit
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | | | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| |
Collapse
|
46
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Le LHT, Tran-Lam TT, Nguyen HQ, Quan TC, Nguyen TQ, Nguyen DT, Dao YH. A study on multi-mycotoxin contamination of commercial cashew nuts in Vietnam. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Xu H, Sun J, Wang H, Zhang Y, Sun X. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes. Food Chem 2021; 365:130409. [PMID: 34256225 DOI: 10.1016/j.foodchem.2021.130409] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
A new, green, and cost-effective magnetic solid-phase extraction of aflatoxins and ochratoxins from edible vegetable oils samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes (PDA@Fe3O4-MWCNTs) as the absorbent. PDA@Fe3O4-MWCNTs nanomaterials were prepared by chemical co-precipitation and in situ oxidation and self-polymerization of dopamine and was characterized. Factors affecting MSPE and the adsorption behavior of the adsorbent to mycotoxins were studied, and the optimal extraction conditions of MSPE and the complexity of the adsorption process were determined. Based on this, the magnetic solid-phase extraction-high-performance liquid chromatography-fluorescence detection method (MSPE-HPLC-FLD) was established for determining six mycotoxins [aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2, and ochratoxin A (OTA) and OTB)] in vegetable oils. The recovery was 70.15%~89.25%, and RSD was ≤6.4%. PDA@Fe3O4-MWCNTs showed a high affinity toward aflatoxins and ochratoxins, allowing selective extraction and quantification of aflatoxins and ochratoxins from complex sample matrices.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China; Guangzhou Guangdian Metrology and Inspection Co., Ltd., Guangzhou 510627 China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China
| | - Haiming Wang
- Guangzhou Guangdian Metrology and Inspection Co., Ltd., Guangzhou 510627 China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China.
| |
Collapse
|
50
|
Zhou J, Liu Z, Yang Q, Qian W, Chen Y, Qi Y, Wang A. Multiple fluorescence immunoassay for the simultaneous detection of Zearalenone and Ochratoxin A. Anal Biochem 2021; 628:114288. [PMID: 34126058 DOI: 10.1016/j.ab.2021.114288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
A sensitive and accurate multiple fluorescence immunoassay for the simultaneous quantitative detection of Zearalenone (ZEN) and Ochratoxin A (OTA) in single spot based on multicolor quantum dots (QDs) labeling was developed for the first time. Two kinds of ZnCdSe/ZnS (core/shell) QDs with maximum emission wavelengths at 520 nm (green) and 610 nm (orange-red) were selected as marking materials, respectively. The anti-ZEN-mAb-QDs and anti-OTA-mAb-QDs were designed as the immune fluorescent probes. Fluorescence was measured at the same excitation wavelength and two different emission wavelengths to determine each target. The procedure for QDs-based multiple fluorescence labeled immunosorbent assay (M-FLISA) was developed. The 50% inhibition concentrations (IC50) of ZEN and OTA were 0.034 and 1.175 ng/mL. Moreover, the limits of detection (LOD) for the simultaneous determination were 0.0239 and 2.339 ng/g for ZEN and OTA in maize, respectively. In addition, the recoveries ranged from 93.15 to 101.90% for ZEN and from 95.29 to 102.43% for OTA, with the coefficient variation (CV) of 2.70-8.86% and 3.51-6.22% respectively. There was good consistency between the M-FLISA and high performance liquid chromatography (HPLC) results, which confirmed that the M-FLISA was suitable for the simultaneous quantitative detection of various mycotoxins.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qingbao Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|