1
|
Shu C, Jiao W, Cui K, Cao J, Jiang W. Ursolic Acid Induces Multifaceted Defense Responses Against Postharvest Blue Mold Rot in Apple Fruit. Foods 2025; 14:761. [PMID: 40077464 PMCID: PMC11899365 DOI: 10.3390/foods14050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The disease resistance and defense mechanisms induced by ursolic acid (UA) in apple fruit were studied in this paper. UA was directly mixed with potato dextrose agar and broth media to assay its antifungal activity in vitro. The results showed that UA exerted inherent antifungal activity and directly inhibited the in vitro growth and spore germination of Penicillium expansum. Its half-maximal inhibitory concentration for hyphal growth was 175.6 mg L-1. Apple fruit were immersed in UA solution, followed by inoculation with P. expansum, to measure their disease response. The results demonstrated that UA induced significant disease resistance in apple fruit and that its mechanisms are multifaceted and associated with defensive and antioxidative enzymes and the phenylpropanoid pathway. Chitinase, β-1,3-glucanase, peroxidase, and polyphenol oxidase were activated and maintained at relatively high levels. The activities of enzymes and their metabolites in the phenylpropanoid pathway, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase were significantly increased; accordingly, total phenolics, flavonoid, and lignin contents were significantly increased. The activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase were enhanced upon UA treatment, while catalase activity was suppressed, which regulates hydrogen peroxide accumulation to defend against pathogens. These results suggest that UA induces defense responses against postharvest blue mold rot in apple fruit and that it may be a promising elicitor to induce fruit disease resistance to control postharvest decay.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| | - Wenxiao Jiao
- College of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China;
| | - Kuanbo Cui
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| |
Collapse
|
2
|
Yu L, Zhang X, Xie P, Su T, Liang W, Wang Y, Prusky D, Romanazzi G, Bi Y. Improving sugar and respiratory metabolism in pear wounds by postharvest dipping with chitosan and chitooligosaccharide. Food Chem 2025; 464:141700. [PMID: 39447271 DOI: 10.1016/j.foodchem.2024.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Chitosan (CTS) and its degradation product, chitooligosaccharide (COS), promote fruit healing by activating phenylpropanoid metabolism. This study investigates their effects on sucrose metabolism in pear wounds. CTS and COS were found to activate neutral invertase, acid invertase, sucrose synthase, and sucrose phosphate synthase, increasing sucrose, glucose, and fructose levels in fruit wounds. They also enhanced sorbitol dehydrogenase activity and promoted sorbitol accumulation. In addition, CTS and COS improved the activities of hexokinase, phosphofructokinase, and pyruvate kinase, increasing phosphoenolpyruvate and ATP production. They activated glucose-6-phosphate dehydrogenase and increased erythrose-4-phosphate, NADPH, and shikimic acid levels. In conclusion, CTS and COS support the formation of the healing closing layer by supplying carbon skeletons, energy, and reducing power through the activation of sugar and respiratory metabolism during the healing process. Compared to CTS, COS was superior in activating the above metabolisms, which is expected to be widely used as a chitin product in postharvest fruit and vegetable preservation and provide new insights into preserving pear freshness.
Collapse
Affiliation(s)
- Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Liang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Saeedi M, Shirzad H, Noruzi P, Ghasemi G. Foliar application of sodium nitroprusside alters the physicochemical properties, antioxidant capacities, and enzymatic activities of strawberry cv. Camarosa. Sci Rep 2024; 14:30943. [PMID: 39730711 DOI: 10.1038/s41598-024-81936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv. Camarosa) cultivated in a soilless culture system. It was attempted to identify optimal treatment concentrations that would improve the quality and yield of the strawberries. The analysis of variance revealed significant differences (p ≤ 0.01) in all morphological and phytochemical properties, as well as antioxidant and enzymatic activities, between the treated samples and the control group. Notably, the highest concentrations of total phenolics, phenylalanine ammonia-lyase (PAL) enzyme activity, guaiacol peroxidase enzyme activity, and potassium content in the fruit were recorded at the 400 μM SNP treatment. Specifically, these values were 6.67 mg GAE 100 g⁻1 FW, 57.42 nmol g⁻1 FW min⁻1, 0.183 μmol H2O2 min-1 100 ml-1 extract, and 5.9% DW, respectively. Furthermore, the 200 μM SNP treatment yielded the highest ascorbic acid content (0.587 mg AA 100 g-1 FW) and the lowest 50% inhibitory concentration for free radicals at 44.18 μl. In contrast, the 600 μM treatment resulted in the highest total flavonoid content (0.529 mg QE 100 g⁻1 FW). In conclusion, the findings indicated that SNP treatment can effectively enhance the yield and improve the quality and marketability of the strawberry fruit.
Collapse
Affiliation(s)
- Mahin Saeedi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Habib Shirzad
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ghader Ghasemi
- Horticulture Crops Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
| |
Collapse
|
4
|
Li J, Eltaher S, Freeman B, Singh S, Ali GS. Genome-wide association study identifies key quantitative trait loci (QTL) for fruit morphometric traits in avocado (Persea spp.). BMC Genomics 2024; 25:1135. [PMID: 39587474 PMCID: PMC11587604 DOI: 10.1186/s12864-024-11043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Avocado, a fruit crop renowned for its high nutritional value, has seen a steadily increasing market demand. However, breeding efforts for avocados have lagged those for other commercial fruits due to limited genomic research and germplasm resources. To address this shortfall, a genome-wide association study was conducted on 122 avocado accessions from the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Subtropical Horticultural Research Station (SHRS) germplasm collection. The study aimed to identify genetic markers and regions associated with various morphometric traits in avocado fruits, including fruit weight, length, width, diameter, seed weight, seed length, seed width, fruit seed ratio (FSR), and fruit shape index (FSI). RESULTS Leveraging 4,226 high-quality single nucleotide polymorphism (SNP) markers obtained from genotyping arrays, fifteen markers were identified with strong associations with these traits, utilizing Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and Fixed and random model Circulating Probability Unification (FarmCPU) models. Gene annotation analyses within a 200-kb window in the vicinity of significant SNPs revealed several genes associated with various metabolic pathways suggesting that some of them likely determine these fruit quality traits, which needs to be verified and validated. Our results, which were conducted at one location, provide directions for conducting future studies using high-resolution genotyping and long-term multi-year and multi-location trait evaluations for precisely identifying the causal SNP(s) and genes associated with these traits. CONCLUSIONS These markers reported in this manuscript provide valuable tools for applying marker-assisted selection (MAS) in avocado breeding programs aimed at enhancing fruit quality and value.
Collapse
Affiliation(s)
- Jin Li
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Shamseldeen Eltaher
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, USA
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Barbie Freeman
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Sukhwinder Singh
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Gul Shad Ali
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, USA.
| |
Collapse
|
5
|
Li J, Eltaher S, Freeman B, Singh S, Ali GS. Comprehensive genetic diversity and genome-wide association studies revealed the genetic basis of avocado fruit quality traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1433436. [PMID: 39193209 PMCID: PMC11347836 DOI: 10.3389/fpls.2024.1433436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Introduction Avocado (Persea americana) is a highly nutritious fruit gaining worldwide popularity. However, its cultivation is currently reliant on a limited number of cultivars with restricted genetic diversity. This study aims to investigate the genetic diversity and population structure of avocado germplasm and identify genetic loci associated with key fruit quality traits that influence customer preference. Methods A diversity panel of 110 avocado accessions was analyzed using 4,706 high-quality single nucleotide polymorphisms (SNPs). Genetic diversity and population structure were analyzed using pairwise FST, AMOVA, admixture analysis, and phylogenetic analysis. Genome-wide association studies (GWAS) were conducted targeting nine fruit quality traits using two models: General Linear Model (GLM) with Principal Component Analysis (PCA) and Mixed Linear Model (MLM) with PCA and kinship (PCA + K). Results The analysis revealed three distinct populations corresponding to the three avocado ecotypes: Guatemalan, West Indian, and Mexican. Phylogenetic analysis indicated a closer relationship between the Guatemalan and West Indian races compared to the Mexican race in our Florida germplasm collection. GWAS led to identification of 12 markers within 11 genomic regions significantly associated with fruit quality traits such as fruit color, shape, taste, and skin texture. These markers explained between 14.84% to 43.96% of the phenotypic variance, with an average of 24.63%. Annotation of these genomic regions unveiled candidate genes potentially responsible for controlling these traits. Discussion The findings enhance our understanding of genetic diversity and population structure in avocado germplasm. The identified genetic loci provide valuable insights into the genetic basis of fruit quality traits, aiding breeding programs in developing improved avocado cultivars. Marker-assisted selection can accelerate the development of new varieties, promoting a more diverse and resilient avocado market.
Collapse
Affiliation(s)
| | | | | | | | - Gul Shad Ali
- Subtropical Horticulture Research Station, United States Department of Agriculture, Agriculture Research Service, Miami, FL, United States
| |
Collapse
|
6
|
Li Y, Guo L, Wei J, Yao Y, Xu L, Zhou Z. Effect of polyethoxylated flavonoids (PMFs)-loaded citral and chitosan composite coatings on citrus preservation: From the perspective of fruit resistance. Food Chem X 2024; 22:101417. [PMID: 38736978 PMCID: PMC11088274 DOI: 10.1016/j.fochx.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Previous studies have shown that polymethoxylated flavonoids-loaded citral emulsion (PCT) can inhibit the growth and reproduction of Penicillium in citrus; however, PCT is difficult to apply to fruit preservation due to its high fluidity and volatility. Therefore, in this study, we combined PCT with chitosan (CS) to investigate the effect of a composite coating on citrus preservation. The results showed that compared to the control group, the CS-PCT group could effectively reduce the decay rate and maintain moisture availability, color difference, and hardness. Moreover, the contents of nonenzymatic antioxidants and volatile substances with antimicrobial activity were better preserved. In addition, the activities of related antioxidant enzymes were greater in the treatment group, and the expression of the corresponding enzyme-encoding genes was upregulated. Consequently, CS-PCT treatment could effectively maintain fruit quality and improve the resistance of citrus fruits during storage; moreover, it can be considered a nontoxic and efficient citrus preservative.
Collapse
Affiliation(s)
- Yurong Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Juanjuan Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Yijun Yao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Li Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| |
Collapse
|
7
|
Duan B, Zhang Y, Feng Z, Liu Z, Tao N. Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105835. [PMID: 38582597 DOI: 10.1016/j.pestbp.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 μL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-β-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.
Collapse
Affiliation(s)
- Bin Duan
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Yonghua Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Zhao Feng
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Zhaoguo Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China.
| |
Collapse
|
8
|
Lin Y, Lin Y, Zhang H, Lin M, Chen L, Li H, Lin H. Hydrogen peroxide induced changes in the levels of disease-resistant substances and activities of disease-resistant enzymes in relation to the storability of longan fruit. Food Chem X 2023; 20:100923. [PMID: 38144865 PMCID: PMC10740103 DOI: 10.1016/j.fochx.2023.100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
The influences of hydrogen peroxide (H2O2) on the storability and metabolism of disease-resistant substances in fresh longan were investigated. Compared to the control samples, H2O2-treated longan exhibited a higher index of fruit disease, pericarp browning, and pulp breakdown, a higher rate of fruit weight loss, but lower chromaticity values (L*, a* and b*) in pericarp appearance, and a lower commercially acceptable fruit rate. Additionally, H2O2-treated longan showed a lower lignin content, lower activities of enzymes including phenylalnine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumaryl coenzyme A ligase (4-CL), cinnamate dehydrogenase (CAD), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU). These data collectively suggest that H2O2 negatively impacted the storability of fresh longan. This can be attributed to H2O2's role in reducing the levels of disease-resistant substances and suppressing the activities of disease-resistant enzymes, implying that H2O2 reduced the postharvest storability of longan by compromising its disease resistance.
Collapse
Affiliation(s)
- Yixiong Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huili Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lian Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hui Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Khan M, Al Azzawi TNI, Ali S, Yun BW, Mun BG. Nitric Oxide, a Key Modulator in the Alleviation of Environmental Stress-Mediated Damage in Crop Plants: A Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112121. [PMID: 37299100 DOI: 10.3390/plants12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and highly reactive molecule with unique properties that make it a crucial signaling molecule with important physiological, biochemical, and molecular implications for plants under normal and stressful conditions. NO regulates plant growth and developmental processes, such as seed germination, root growth, shoot development, and flowering. It is also a signaling molecule in various plant growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the expression of genes encoding hormones and signaling molecules associated with plant development. Abiotic stresses induce NO production in plants, which can regulate various biological processes, such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive genes. Moreover, NO can activate plant defense response mechanisms, such as the production of pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors. NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO exhibits diverse regulatory roles in plant growth, development, and defense responses through complex molecular mechanisms that still require further studies. Understanding NO's role in plant biology is essential for developing strategies for improved plant growth and stress tolerance in agriculture and environmental management.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Wiszniewska A, Makowski W. Assessment of Shoot Priming Efficiency to Counteract Complex Metal Stress in Halotolerant Lobularia maritima. PLANTS (BASEL, SWITZERLAND) 2023; 12:1440. [PMID: 37050070 PMCID: PMC10096694 DOI: 10.3390/plants12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The study investigated whether short-term priming supports plant defense against complex metal stress and multiple stress (metals and salinity) in halophyte Lobularia maritima (L.) Desv. Plants were pre-treated with ectoine (Ect), nitric oxide donor-sodium nitroprusside (SNP), or hydrogen sulfide donor-GYY4137 for 7 days, and were transferred onto medium containing a mixture of metal ions: Zn, Pb, and Cd. To test the effect of priming agents in multiple stress conditions, shoots were also subjected to low salinity (20 mM NaCl), applied alone, or combined with metals. Hydropriming was a control priming treatment. Stress impact was evaluated on a basis of growth parameters, whereas defense responses were on a basis of the detoxification activity of glutathione S-transferase (GST), radical scavenging activity, and accumulation of thiols and phenolic compounds. Exposure to metals reduced shoot biomass and height but had no impact on the formation of new shoots. Priming with nitric oxide annihilated the toxic effects of metals. It was related to a sharp increase in GST activity, glutathione accumulation, and boosted radical scavenging activity. In NO-treated shoots level of total phenolic compounds (TPC) and flavonoids remained unaffected, in contrast to other metal-treated shoots. Under combined metal stress and salinity, NO and H2S were capable of restoring or improving growth parameters, as they stimulated radical scavenging activity. Ect and H2S did not exert any effect on metal-treated shoots in comparison to hydropriming. The results revealed the stimulatory role of nitric oxide and low doses of NaCl in combating the toxic effects of complex metal stress in L. maritima. Both NO and NaCl interfered with thiol metabolism and antioxidant activity, whereas NaCl also contributed to the accumulation of phenolic compounds.
Collapse
|
11
|
Guo Y, Li X, Li C, Jinyue R, Xu H, Ge Y. Acibenzolar-S-methyl activates phenylpropanoid pathway to enhance resistance against Alternaria alternata in pear fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:829-836. [PMID: 36045074 DOI: 10.1002/jsfa.12194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alternaria alternata is a causal agent of black spot rot of pear fruit after harvest. Acibenzolar-S-methyl (ASM) has been shown to be a potential elicitor of tolerance in several horticultural products. This work was performed to research the influence of ASM on black spot rot of Docteur Jules Guyot pears and vital enzyme activity and gene expression in the phenylpropanoid pathway. RESULTS ASM remarkably decreased the lesion diameter of A. alternata-inoculated pears. ASM also increased phenylalanine ammonialyase, cinnamate 4-hydroxylase, cinnamyl alcohol dehydrogenase, peroxidase, polyphenol oxidase activities and gene expression, and enhanced 4-coumarate/coenzyme A ligase activity in pears. Moreover, ASM improved the content of phenylalanine, total phenolic compounds, caffeic acid, flavonoids, anthocyanin and lignin in pears. CONCLUSION ASM could modulate vital enzyme activity and gene expression in the phenylpropanoid pathway to accelerate metabolite synthesis, thereby enhancing resistance against A. alternata in pears. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Xue Li
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Canying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, PR China
| | - Ruxin Jinyue
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Hengping Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, PR China
| |
Collapse
|
12
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|
13
|
Madebo MP, Ayalew Y, Zheng Y, Jin P. Nitric Oxide and Its Donor Sodium-Nitroprusside Regulation of the Postharvest Quality and Oxidative Stress on Fruits: A Systematic Review and Meta-Analysis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yenenesh Ayalew
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
14
|
Zhao R, Ben A, Wei M, Ruan M, Gu H, Yang L. Essential oil obtained from Thlaspi arvense L. leaves and seeds using microwave-assisted hydrodistillation and extraction in situ by vegetable oil and its antifungal activity against Penicillium expansum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Duan B, Du H, Zhang W, Wang J, Cai Z, Shen Y, Huang T, Yuan J, Gan Z, Chen J, Zhu L. An Antifungal Role of Hydrogen Sulfide on Botryosphaeria Dothidea and Amino Acid Metabolism Involved in Disease Resistance Induced in Postharvest Kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:888647. [PMID: 35783925 PMCID: PMC9244146 DOI: 10.3389/fpls.2022.888647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea is a major pathogen responsible for postharvest kiwifruit soft rot. This study aimed to determine the influence of hydrogen sulfide (H2S) on postharvest resistance to kiwifruit soft rot and the antifungal role of H2S against B. dothidea. The results indicated that H2S (20 μl L-1) restricted the lesion area following inoculation with B. dothidea. H2S enhanced the production of shikimic acid, tyrosine, tryptophan, and phenylalanine while also increasing the total phenols, flavonoids, and lignin. H2S upregulated the expression of AcDHQS, AcSDH, AcSK, AcPAL, AcCAD, and AcCHS. Additionally, sodium hydrosulfide (NaHS)-released H2S inhibited mycelial growth. NaHS concentrations of 20 and 40 mmol L-1 significantly decreased the mycelial weight and malondialdehyde content (MDA) content while increasing cell membrane conductivity and membrane leakage. The results indicate that H2S induces resistance in kiwifruit via a microbicidal role and amino acid metabolism involved in postharvest kiwifruit disease resistance.
Collapse
Affiliation(s)
- Bing Duan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yonggen Shen
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tenghuan Huang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yuan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
16
|
Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods 2022; 11:foods11101470. [PMID: 35627040 PMCID: PMC9140707 DOI: 10.3390/foods11101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Browning and lignification often occur in fresh-cut apple processing, leading to quality deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited by the phytic acid treatment and the browning index (BI) of the control fruit was 1.62 times that of phytic acid treatment at 2 d of storage. The lignin content in phytic acid-treated fruit significantly decreased at 2, 4, and 6 d of storage compared to the control. Phytic acid treatment also reduced H2O2 and malonaldehyde (MDA) contents, which may indicate lighter membrane damage to apples. Compared with the control, the polyphenol oxidase (PPO) and peroxidase (POD) activities decreased while superoxide dismutase (SOD) and catalase (CAT) activities increased in phytic acid-treated fruit. Consistent with the lignin content, the activities of phenylpropane metabolism-related enzymes phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) were inhibited by phytic acid treatment. In conclusion, phytic acid alleviated the browning and lignification of fresh-cut apples by reducing PPO and POD activities, maintaining cell membrane integrity, and inhibiting phenylpropane metabolism.
Collapse
|
17
|
Metabolomics analysis of cucumber fruit in response to foliar fertilizer and pesticides using UHPLC-Q-Orbitrap-HRMS. Food Chem 2022; 369:130960. [PMID: 34500210 DOI: 10.1016/j.foodchem.2021.130960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Pesticides and fertilizers are often used to improve the yield and quality of cucumber fruit. In this study, the effect of pesticide applied with or without foliar fertilizer on the cucumber fruit metabolism was investigated. The results showed that the mixed use of pesticides and foliar fertilizer could significantly increase the contents of organic acids and the antioxidant level. When pesticide was used without foliar fertilizer, cucumber fruit up-regulated (1.3 times) shikimate-phenylpropanoid pathway and improved the antioxidant capacity to deal with the pesticide stress. However, the tricarboxylic acid cycle was up-regulated 1.1 times and the antioxidant capacity was improved to promote the pesticide dissipation when pesticide was applied with foliar fertilizer. These observations indicate that the mixed application of foliar fertilizer and pesticides can regulate related metabolites and metabolic pathways, improve the quality and antioxidant capacity of cucumber fruit, and promote the dissipation of pesticides.
Collapse
|
18
|
Li C, Zhu J, Sun L, Cheng Y, Hou J, Fan Y, Ge Y. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:92-101. [PMID: 34773806 DOI: 10.1016/j.plaphy.2021.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, 'Golden Delicious' apples were dipped with γ-aminobutyric acid (GABA) solution to investigate the changes of quality parameters, ethylene anabolism, polyamine metabolism and GABA shunt. Results showed that GABA distinctly suppressed respiratory rate, reduced titratable acidity, maintained higher soluble solid content and pericarp firmness of apples. Compared to the control, GABA also repressed the activities and gene expressions of polyamine oxidase (PAO) and diamine oxidase (DAO), enhanced MdMT, MdMS, MdSAMS, MdSAMDC, MdSPDS, MdODC, MdADC, and MdACL5 expressions, and accelerated the accumulation of putrescine, spermidine, and spermine in the exocarp of apples. Moreover, GABA decreased ethylene release, MdACS and MdACO gene expressions in the exocarp. In addition, exogenous GABA activated MdGAD, MdGDH, MdGS expressions and inhibited MdGABA-T and MdSSADH expressions in the GABA shunt, therefore increased endogenous GABA, pyruvic acid and glutamate contents in the exocarp. These findings suggest that exogenous GABA regulates ethylene anabolism, polyamine metabolism and GABA shunt to maintain fruit quality of 'Golden Delicious' apples.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yiting Fan
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
19
|
Yang R, Du H, Sun Y, Zhang F, Zhang W, Wan C, Chen J, Zhu L. Effects of nitric oxide on the alleviation of postharvest disease induced by Penicillium italicum in navel orange fruits. Int J Food Sci Technol 2021; 56:5259-5267. [DOI: 10.1111/ijfs.15054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
SummaryThe present study evaluated the effects of 15 μL L‐1 nitric oxide (NO) on the fruit defence response of ‘Newhall’ navel orange. The decay rate of NO‐treated navel orange fruits was significantly lower than that of control fruits during storage at 20 °C storage (P < 0.05). Treatment with NO suppressed the increase in disease incidence and lesion area in orange fruits inoculated with Penicillium italicum (P. italicum); significantly increased the activities of phenolic metabolism‐associated enzymes and pathogenesis‐related (PR) proteins, including polyphenoloxidase (PPO), phenylalanine ammonia‐lyase (PAL), β‐1,3‐glucanase (GLU) and chitinase (CHT); and enhanced the activities of key enzymes, including 4‐coumarate: CoA ligase (4CL), cinnamate‐4‐hydroxylase (C4H) and chalcone isomerase (CHI) in the phenylpropanoid pathway. The contents of total phenolics, flavonoids and lignin were also higher in NO‐treated fruits than in control fruits. The findings suggest that exogenous NO could induce disease resistance against P. italicum in navel orange fruits.
Collapse
Affiliation(s)
- Rui Yang
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Huaying Du
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Ying Sun
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Fengying Zhang
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Wei Zhang
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology & Nondestructive Testing of Fruits & Vegetables Collaborative Innovation Center of Postharvest Key Technology & Quality Safety of Fruits & Vegetables College of Agronomy Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology & Nondestructive Testing of Fruits & Vegetables Collaborative Innovation Center of Postharvest Key Technology & Quality Safety of Fruits & Vegetables College of Agronomy Jiangxi Agricultural University Nanchang Jiangxi 330045 China
- College of Materials & Chemical Engineering Pingxiang University Pingxiang Jiangxi 330045 China
| | - Liqin Zhu
- College of Food Science & Technology Jiangxi Agricultural University Nanchang Jiangxi 330045 China
- Jiangxi Key Laboratory for Postharvest Technology & Nondestructive Testing of Fruits & Vegetables Collaborative Innovation Center of Postharvest Key Technology & Quality Safety of Fruits & Vegetables College of Agronomy Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| |
Collapse
|
20
|
Li Z, Wei Y, Cao Z, Jiang S, Chen Y, Shao X. The Jasmonic Acid Signaling Pathway is Associated with Terpinen-4-ol-Induced Disease Resistance against Botrytis cinerea in Strawberry Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10678-10687. [PMID: 34468130 DOI: 10.1021/acs.jafc.1c04608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Terpinen-4-ol, the main component of tea tree oil, markedly increases the disease resistance of postharvest strawberry fruit. To understand the mechanism underlying the enhancement of disease resistance, a high-throughput RNA-seq was used to analyze gene transcription in terpinen-4-ol-treated and untreated fruit. The results show that terpinen-4-ol induces the expression of genes in the jasmonic acid (JA) biosynthesis pathway, secondary metabolic pathways such as phenylpropanoid biosynthesis, and pathways involved in plant-pathogen interactions. Terpinen-4-ol treatment reduced disease incidence and lesion diameter in strawberry fruit inoculated with Botrytis cinerea. Terpinen-4-ol treatment enhanced the expression of genes involved in JA synthesis (FaLOX, FaAOC, and FaOPR3) and signaling (FaCOI1), as well as genes related to disease defense (FaPAL, FaCHI, and FaGLU). In contrast, treatment with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM) accelerated disease development and inhibited the induction of gene expressions by terpinen-4-ol. We conclude that the JA pathway participates in the induction of disease resistance by terpinen-4-ol in strawberry fruit. More generally, the results illuminate the mechanisms by which disease resistance is enhanced by essential oils.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zidan Cao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
21
|
Wang B, Li Z, Han Z, Xue S, Bi Y, Prusky D. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chem 2021; 362:130193. [PMID: 34082290 DOI: 10.1016/j.foodchem.2021.130193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Lignin is an important component of the healing tissue in fruits. In this study, we treated muskmelon (Cucumis melo L. cv. "Manao") fruit with exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to observe and analyze its effect on lignin synthesis and accumulation during healing. Results showed that SNP treatment enhanced the contents of endogenous NO and H2O2, increased the activities of phenylalanine ammonia lyase, cinnamate 4 hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase, and raised the contents of sinapyl alcohol, coniferyl alcohol, coumaryl alcohol, and lignin. SNP augmented the hardness of the healing tissue and decreased its resilience, springiness, and cohesiveness. In addition, SNP treatment effectively reduced the weight loss and disease index of wounded muskmelons. All these results suggest that lignin metabolism mediated by NO play a crucial role in wound healing of muskmelons.
Collapse
Affiliation(s)
- Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhicheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhanhong Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
22
|
Shu C, Cui K, Li Q, Cao J, Jiang W. Epsilon-poly-l-lysine (ε-PL) exhibits multifaceted antifungal mechanisms of action that control postharvest Alternaria rot. Int J Food Microbiol 2021; 348:109224. [PMID: 33965694 DOI: 10.1016/j.ijfoodmicro.2021.109224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
ε-Poly-l-lysine (ε-PL) is a natural antimicrobial poly-cationic peptide widely applied as a natural preservative in the food industry, whereas its application in preventing postharvest loss of fruit was largely absent. This study investigated the antifungal activity of ε-PL and determined the possible mechanisms involved. The in vivo results indicated that 500 mg L-1 exogenous ε-PL treatment significantly inhibited black spot rot in apple, jujube, and tomato. The lesion diameter inhibition rate was range from 20.11% to 29.09% by 500 mg L-1 ε-PL treatment. ε-PL exerts antifungal activity against A. alternata in vitro, the half-inhibition concentration is 160.1 mg L-1. ε-PL induced morphology and ultrastructure change on the pathogen, which resulted in the inhibition of A. alternata. This was accomplished by disturbing pathogen membrane integrity and functionality. The fluorometric assay confirmed that ε-PL induced endogenous reactive oxygen species formation and accumulation in A. alternata and the elicited severe lipid peroxidation that caused membrane lesions. Further, ε-PL treatment enhanced the expression of genes involved in antioxidant metabolism and pathogenesis-related responses in apple fruit. These findings illustrated that ε-PL exhibits multifaceted antifungal activity by the direct effect on the pathogen as well as induce host defense responses. ε-PL may be conducive as a promising alternative for Alternaria rot management.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Kuanbo Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, No. 291 Nanchangnanlu, Urumqi 830091, PR China
| | - Qianqian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
23
|
The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism. Antioxidants (Basel) 2021; 10:antiox10050692. [PMID: 33924800 PMCID: PMC8146815 DOI: 10.3390/antiox10050692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Trichothecium roseum is an important postharvest pathogen, belonging to an alkalizing group of pathogens secreting ammonia during fungal growth and colonization of apple fruits. Fungal pH modulation is usually considered a factor for improving fungal gene expression, contributing to its pathogenicity. However, the effects of inoculation with T. roseum spore suspensions at increasing pH levels from pH 3 up to pH 7, on the reactive oxygen species (ROS) production and scavenging capability of the apple fruits, affecting host susceptibility, indicate that the pH regulation by the pathogens also affects host response and may contribute to colonization. The present results indicate that the inoculation of T. roseum spores at pH 3 caused the lowest cell membrane permeability, and reduced malondialdehyde content, NADPH oxidases activity, O2●− and H2O2 production in the colonized fruit. Observations of the colonized area on the 9th day after inoculation at pH 3, showed that the rate of O2●− production and H2O2 content was reduced by 57% and 25%, compared to their activities at pH 7. In contrast, antioxidative activities of superoxide dismutase, catalase and peroxidases of fruit tissue inoculated with spores’ suspension in the presence of a solution at pH 3.0 showed their highest activity. The catalase and peroxidases activities in the colonized tissue at pH 3 were higher by almost 58% and 55.9%, respectively, on the 6th day after inoculation compared to inoculation at pH 7. The activities of key enzymes of the ascorbate-glutathione (AsA-GSH) cycle and their substrates and products by the 9th day after fruit inoculation at pH 3 showed 150%, 31%, 16%, and 110% higher activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, respectively, compared to pH 7. A similar pattern of response was also observed in the accumulation of ascorbic acid and dehydroascorbate which showed a higher accumulation at pH 3 compared to the colonization at pH 7. The present results indicate that the metabolic regulation of the pH environment by the T. roseum not only modulates the fungal pathogenicity factors reported before, but it induces metabolic host changes contributing both together to fungal colonization.
Collapse
|
24
|
Wang B, He X, Bi Y, Jiang H, Wang Y, Zheng X, Prusky D. Preharvest sprays with sodium nitroprusside induce resistance in harvested muskmelon against the pink rot disease. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Xingfen He
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yang Bi
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Hong Jiang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yi Wang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Xiaoyuan Zheng
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Dov Prusky
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
- Department of Postharvest Science of Fresh Produce Agricultural Research Organization Rishon LeZion Israel
| |
Collapse
|
25
|
Wang B, Bi Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. FOOD QUALITY AND SAFETY 2021; 5. [DOI: 10.1093/fqsafe/fyab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Postharvest diseases are the primary reason causing postharvest loss of fruits and vegetables. Although fungicides show an effective way to control postharvest diseases, the use of fungicides is gradually being restricted due to safety, environmental pollution, and resistance development in the pathogen. Induced resistance is a new strategy to control postharvest diseases by eliciting immune activity in fruits and vegetables with exogenous physical, chemical, and biological elicitors. After being stimulated by elicitors, fruits and vegetables respond immediately against pathogens. This process is actually a continuous signal transduction, including the generation, transduction, and interaction of signal molecules. Each step of response can lead to corresponding physiological functions, and ultimately induce disease resistance by upregulating the expression of disease resistance genes and activating a variety of metabolic pathways. Signal molecules not only mediate defense response alone, but also interact with other signal transduction pathways to regulate the disease resistance response. Among various signal molecules, the second messenger (reactive oxygen species, nitric oxide, calcium ions) and plant hormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid) play an important role in induced resistance. This article summarizes and reviews the research progress of induced resistance in recent years, and expounds the role of the above-mentioned signal molecules in induced resistance of harvested fruits and vegetables, and prospects for future research.
Collapse
|
26
|
Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020; 324:211-219. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) is a short-life and free radical molecule involved in a wide range of cellular, physiological and stressful processes in higher plants. In recent years it has been observed that exogenous NO application can palliate adverse damages against abiotic and biotic stresses. Conversely, there is accumulating information indicating that endogenous NO participates significantly in the mechanism of modulation of the ripening in climacteric and non-climacteric fruits. Even more, when NO is exogenously applied, it can mediate beneficial effects during ripening and postharvest storage being one of the main effects the increase of antioxidant systems. Consequently, NO could be a promising biotechnological tool to improve crops through ameliorating nutritional indexes and to alleviate damages during fruit ripening and postharvest management. Thus, this approach should be complementary to previous strategies to allow preserving the quality and healthiness of fruits with a view of enhancing their added value. The present mini-review aims to provide an overview of NO biochemistry in plants and updated information on the relevance of NO in fruit ripening and postharvest stages with a view to its biotechnological applications.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
28
|
Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Li Z, Wang N, Wei Y, Zou X, Jiang S, Xu F, Wang H, Shao X. Terpinen-4-ol Enhances Disease Resistance of Postharvest Strawberry Fruit More Effectively than Tea Tree Oil by Activating the Phenylpropanoid Metabolism Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6739-6747. [PMID: 32379969 DOI: 10.1021/acs.jafc.0c01840] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the effects and possible mechanism of terpinen-4-ol, the main component of tea tree oil (TTO), on the disease resistance of strawberry fruit. When the effects of TTO and its components were compared on the decay development in fruit inoculated with Botrytis cinerea after treatment, strawberry treated with terpinen-4-ol showed the lowest disease incidence (44.4%) after 48 h and also the smallest lesion diameter during the whole storage. This indicates that terpinen-4-ol induces the highest disease resistance in strawberry compared with TTO and other components. Untargeted metabolomic analysis showed that terpinen-4-ol treatment strongly activated phenylpropanoid biosynthesis and flavonoid metabolism pathway by increasing the accumulation of cinnamaldehyde, coniferyl aldehyde, naringenin, taxifolin, quercetin, and quercitrin in fruit at 12 h after treatment. In addition, terpinen-4-ol treatment also caused the accumulation of total phenolics and lignin by enhancing activities and relative gene expression of key enzymes in the phenylpropanoid metabolism pathway. These results suggest that terpinen-4-ol, as the key component of TTO, is the most important contributor to the effectiveness of TTO in improving disease resistance of strawberry fruit through activating the phenylpropanoid metabolism pathway.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Nan Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiurong Zou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Yingdong College of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
30
|
Zhang W, Cao J, Fan X, Jiang W. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Lu Y, Che J, Xu X, Pang B, Zhao X, Liu Y, Shi J. Metabolomics Reveals the Response of the Phenylpropanoid Biosynthesis Pathway to Starvation Treatment in the Grape Endophyte Alternaria sp. MG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1126-1135. [PMID: 31891261 DOI: 10.1021/acs.jafc.9b05302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenylpropanoid (PPPN) compounds are widely used in agriculture, medical, food, and cosmetic industries because of their multiple bioactivities. Alternaria sp. MG1, an endophytic fungus isolated from grape, is a new natural source of PPPNs. However, the PPPN biosynthesis pathway in MG1 tends to be suppressed under normal growth conditions. Starvation has been reported to stimulate the PPPN pathway in plants, but this phenomenon has not been well studied in endophytic fungi. Here, metabolomics analysis was used to examine the profile of PPPN compounds, and quantitative reverse transcription-polymerase chain reaction was used to detect the expression of key genes in the PPPN biosynthesis pathway under starvation conditions. Starvation treatment significantly increased the accumulation of shikimate and PPPN compounds and upregulated the expression of key genes in their biosynthesis pathways. In addition to previously reported PPPNs, sinapate, 4-hydroxystyrene, piceatannol, and taxifolin were also detected under starvation treatment. These findings suggest that starvation treatment provides an effective way to optimize the production of PPPN compounds and may permit the investigation of compounds that are undetectable under normal conditions. Moreover, the diversity of its PPPNs makes strain MG1 a rich repository of valuable compounds and an extensive genetic resource for future studies.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Jinxin Che
- Department of Biological and Food Engineering, College of Chemical Engineering , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Yanlin Liu
- College of Enology , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| |
Collapse
|