1
|
da Silva J, da Silva AFV, Cesca K, Ribeiro PRV, de Brito ES, Ferreira SRS. Efficient and sustainable recovery of bioactive compounds from cashew nut testa shell (Anacardium occidentale L.) using pressurized liquid extraction. Anal Bioanal Chem 2025:10.1007/s00216-025-05881-5. [PMID: 40281234 DOI: 10.1007/s00216-025-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cashew nut processing generates large quantities of byproducts daily, such as cashew nut testa shell (CNTS), which is discarded, leading to environmental and economic issues. However, CNTS contains bioactive substances such as polyphenols and antioxidant components, with potential for applications in the food, pharmaceutical, and chemical industries. This study investigated the optimization of pressurized liquid extraction (PLE) with composite central rotational design (CCRD) to evaluate the effect of the independent variables of temperature (T °C) and ethanol concentration (EtOH %) in aqueous solutions on the extraction of bioactive compounds from CNTS. The process conditions were evaluated, considering extraction yield and content of polyphenols and antioxidants from the extracts, which were identified and quantified by UPLC-PDA-ESI-QDa, and the ability of the extracts to inhibit foodborne pathogens was evaluated. Besides, a techno-economic assessment of the PLE process was also performed. The PLE conditions were optimized at 170.7 °C and 92.4% EtOH, providing better performance compared to maceration (MC) in terms of yield, phenolic content, and antioxidant potential. The recovered extracts contain catechin and epicatechin, with a higher concentration from the PLE sample compared to MC. The CNTS extracts demonstrated inhibitory effects on pathogen strains, notably inhibiting E. coli at concentrations below 0.7 mg mL-1. Scaling up the PLE process for large-scale production of CNTS extract was economically promising, considering the current market price.
Collapse
Affiliation(s)
- Jonas da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | - Anderson Felipe Viana da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | - Karina Cesca
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | | | | | - Sandra Regina Salvador Ferreira
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil.
| |
Collapse
|
2
|
Nasr M, Katary SH. From Olive Tree to Treatment: Nano-Delivery Systems for Enhancing Oleuropein's Health Benefits. Pharmaceuticals (Basel) 2025; 18:573. [PMID: 40284008 PMCID: PMC12030431 DOI: 10.3390/ph18040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Oleuropein is a natural polyphenolic compound isolated from olive trees (Olea europaea). Besides the strong antioxidant effect of oleuropein, it has many pharmacological activities such as anticancer, antidiabetic, anti-inflammatory, antihypertensive, and many other activities. Thus, oleuropein could be used alone or with other drugs to prevent and treat many diseases. Despite its promising health benefits, oleuropein is highly prone to hydrolysis inside and outside the human body, in addition to a poorly identified pharmacokinetic profile and poor bioavailability. Many nanocarrier delivery systems have overcome the delivery limitations of oleuropein in order to maximize its therapeutic benefits. Therefore, this review article sheds light on nano-delivery systems explored until the current date, aiming to enhance oleuropein's bioavailability and therapeutic impact by improving its pharmacokinetic properties and addressing its stability challenges. Continued research into innovative nanotechnology solutions will be crucial in unlocking the full potential of oleuropein as a powerful nutraceutical and pharmaceutical agent.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Salma H. Katary
- Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
3
|
Deng Y, Zhou J, Qu J, Wang B, Xu X, Zhao C. Deep Eutectic Solvents and Wall-Breaking Technique: A New Frontier in the Extraction of Oleuropein and Flavonoids from Olive Leaves with Superior Antioxidant and Antitumor Potential. Molecules 2025; 30:1150. [PMID: 40076373 PMCID: PMC11902047 DOI: 10.3390/molecules30051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The main objectives of this study were to develop an optimized green extraction process to obtain high contents of oleuropein and flavonoids from olive leaves. A deep eutectic solvent (DES) combined with wall-breaking extraction (WBE) was employed. A DES composed of choline chloride and ethylene glycol in a 1:2 molar ratio with 30% moisture content outperformed lactic acid and methanol as extraction solvents. The optimal conditions, determined by response surface methodology, were 30% moisture content, 140 s of wall-breaking time, and a 230 mL/g liquid-solid ratio. Under these conditions, 88.87 mg/g DM oleuropein, 4.57 mg/g DM luteolin-7-O-glucoside, and 114.31 mg RE/g total flavonoids were obtained. Among three olive varieties (Arbosana, Arbequina, and Picholine) cultivated in China, young Picholine leaves exhibited the highest contents. The Picholine-enriched extract demonstrated higher antioxidant activity (ABTS•+ 155.10 mg/mL, DPPH• 44.58 mg/mL) compared to other DES-based extracts, although it was lower than that of purified compounds. Furthermore, the CCK-8 assay revealed significant inhibition of Eca-109 human esophageal cells by the Picholine-enriched extract at 25 µg/mL for 24 h, compared to Het-1A cells. This process effectively recovers bioactive compounds from olive by-product, and shows potential for applications in nutritional supplements, cosmetics, and the food industry.
Collapse
Affiliation(s)
- Yan Deng
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Junlin Zhou
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Jipen Qu
- College of Agricultural Science, Xichang University, Xichang 615000, China;
| | - Bixia Wang
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Xiao Xu
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Chunyan Zhao
- Sichuan Yizhang Agricultural Development Co., Ltd., Nanchong 637009, China;
| |
Collapse
|
4
|
Teslić N, Pojić M, Stupar A, Mandić A, Mišan A, Pavlić B. PhInd database - Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem 2024; 458:140474. [PMID: 39043067 DOI: 10.1016/j.foodchem.2024.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Sustainable Development Goal 12 and target 12.3 set by the United Nations aims to reduce"food waste" per capita global for 50% losses by 2030. Databases such as the PhInd could help us to achieve set goals via mapping the potential ways for valorization of polyphenols from the agri-food by-products and waste. Fruit by-products (73.2% of the PhInd entries) are the most studied sources of polyphenols and future studies might be more focused on vegetables. More than half (55.8%) of entries were evaluated polyphenols in samples created in laboratory. These samples could have significantly different composition from industrial samples. Solid-liquid extraction (53.5%) and solvents like water, ethanol and aqueous ethanol (51.5%) were the most often used for extraction of polyphenols. Green solvents as NADES (0.4%) are rarely used in studies and should be more explored.
Collapse
Affiliation(s)
- Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Anamarija Mandić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Aleksandra Mišan
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, BP, Serbia.
| |
Collapse
|
5
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
6
|
Maiuolo J, Bonacci S, Bosco F, Guarnieri L, Ruga S, Leo A, Citraro R, Ragusa S, Palma E, Mollace V, De Sarro G. Two Olea europaea L. Extracts Reduce Harmful Effects in a Model of Neurotoxicity: Involvement of the Endoplasmic Reticulum. PLANTA MEDICA 2024; 90:844-857. [PMID: 38925154 PMCID: PMC11387015 DOI: 10.1055/a-2353-1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Prolonged exposure to lead has been recognized as harmful to human health as it may cause neurotoxic effects including mitochondrial damage, apoptosis, excitotoxicity, and myelin formation alterations, among others. Numerous data have shown that consuming olive oil and its valuable components could reduce neurotoxicity and degenerative conditions. Olive oil is traditionally obtained from olive trees; this plant (Olea europaea L.) is an evergreen fruit tree.In this manuscript, two extracts have been used and compared: the extract from the leaves of Olea europaea L. (OE) and the extract derived from OE but with a further sonication process (s-OE). Therefore, the objectives of this experimental work were as follows: 1) to generate an innovative extract; 2) to test both extracts on a model of neurotoxicity of human neurons induced following lead exposure; and 3) to study the mechanisms behind lead-induced neurotoxicity.The results showed that the mechanism involved in the neurotoxicity of lead included dysfunction of the cellular endoplasmic reticulum, which suffered oxidative damage. In addition, in all experiments, s-OE was more effective than OE, having greater and better effects against lead-induced damage and being dissolved in a smaller amount of EtOH, which promotes its sustainability.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Sonia Bonacci
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, Palermo, Italy
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
7
|
Loise V, Abe AA, Porto M, Muzzalupo I, Madeo L, Colella MF, Rossi CO, Caputo P. Plant Waste-Based Bioadditive as an Antioxidant Agent and Rheological Modifier of Bitumen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2303. [PMID: 38793370 PMCID: PMC11122973 DOI: 10.3390/ma17102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
In recent times, circular economy initiatives in addition to the need for sustainable biomaterials have brought about several attempts at the eco-friendly, eco-sustainable and cost-effective production of asphalt pavements. It is an increasingly common practice in the asphalt industry to improve road pavement performance using additives to enhance the physico-chemical properties of bitumen, which performs the role of the binder in the asphalt mix. This paper evaluated the potential of a bio-based additive derived from olive leaf residue as a modifier and antioxidant agent for bitumen. Samples of neat, aged and doped aged bitumen were analyzed. In this study, the two bio-based additives were characterized in terms of phenol, chlorophyll, lignin and cellulose content, which was correlated with the mechanical properties of the tested samples. The mechanical properties of the neat, modified, aged and unaged samples were evaluated via Dynamic Shear Rheology. The bio-based additives proved to be promising and can improve the properties of bitumen binder and the performance of asphalt pavements in general.
Collapse
Affiliation(s)
- Valeria Loise
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Abraham A. Abe
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Michele Porto
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Innocenzo Muzzalupo
- Research Centre for Forestry and Wood, Council for Agricultural Research and Agricultural Economy Analysis, 87036 Rende, CS, Italy;
| | - Luigi Madeo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Maria Francesca Colella
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (V.L.); (L.M.); (M.F.C.); (C.O.R.); (P.C.)
| |
Collapse
|
8
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Kim S, Lee KH, Lee J, Lee SK, Chun Y, Lee JH, Yoo HY. Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. Int J Mol Sci 2023; 24:12366. [PMID: 37569741 PMCID: PMC10419010 DOI: 10.3390/ijms241512366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Peanut shells (PSs) generated from agricultural waste contain valuable compounds with bioactive properties such as anti-aging, antimicrobial, and antioxidant properties, making it desirable to recycle them as a sustainable resource. The aim of this study is to design an effective luteolin recovery process as the first step of an integrated biorefinery utilizing PSs as raw material. The major extraction variables and their ranges for luteolin recovery from PSs were determined (0-60 °C, 1-5 h, 0-100% MeOH concentration) and a predictive model was derived through a response surface methodology (RSM). Based on the predictive model, the equation determined for the maximal extraction of luteolin at 1 h was as follows: y = -1.8475x + 159.57, and the significant range of variables was as follows: 33.8 °C ≤ temperature (x) ≤ 48.5 °C and 70.0% ≤ MeOH concentration (y) ≤ 97.5%, respectively. High antioxidant and elastase inhibitory activities of PS extracts were confirmed, and these results support their potential to be used as functional materials. In addition, 39.2% of the solid residue after extraction was carbohydrate, which has potential as a carbon source for fermentation. This study provides a useful direction on an integrated biorefinery approach for sustainable agricultural waste valorization.
Collapse
Affiliation(s)
- Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Soo Kweon Lee
- Fermentation Team, Lotte R&D Center, 210 Magokjungang-Ro, Gangseo-Gu, Seoul 07594, Republic of Korea;
| | - Youngsang Chun
- Department of Advanced Materials Engineering, Shinhan University, Uijeongbu 11644, Republic of Korea;
| | - Ja Hyun Lee
- Department of Convergence Bio-Chemical Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| |
Collapse
|
10
|
Zakraoui M, Hannachi H, Pasković I, Vidović N, Polić Pasković M, Palčić I, Major N, Goreta Ban S, Hamrouni L. Effect of Geographical Location on the Phenolic and Mineral Composition of Chetoui Olive Leaves. Foods 2023; 12:2565. [PMID: 37444304 DOI: 10.3390/foods12132565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the influence of pedological parameters and variation of altitude on the mineral nutrients, phenolic compounds, and antioxidant activities of olive leaves. Samples of the Chetoui cultivar were collected from eight geographical locations with different altitudes. Levels of phenolic compounds varied according to the altitude. Classification of the locations revealed that altitude 1 (>500 m) was characterized by high levels of secoiridoids and simple phenols, while altitude 2 (500-300 m) and altitude 3 (<300 m) were higher in flavonoids. Levels of Mn, Ca and B in the leaves and level of Zn in the soil were significantly correlated with the abundance of oleuropein and luteolin-7-O glucoside, the most important phenols in Chetoui olive leaves. The results suggest that, in addition to pedological criteria, environmental conditions also influence the formation of phenolic compounds.
Collapse
Affiliation(s)
- Mariem Zakraoui
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
- Faculty of Sciences of Tunis, University of El Manar, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2029, Tunisia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikolina Vidović
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
| |
Collapse
|
11
|
Castro-Muñoz R, Boczkaj G, Cabezas R. A Perspective on Missing Aspects in Ongoing Purification Research towards Melissa officinalis. Foods 2023; 12:foods12091916. [PMID: 37174453 PMCID: PMC10178074 DOI: 10.3390/foods12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
12
|
Foti P, Occhipinti PS, Russo N, Scilimati A, Miciaccia M, Caggia C, Perrone MG, Randazzo CL, Romeo FV. Olive Mill Wastewater Fermented with Microbial Pools as a New Potential Functional Beverage. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020646. [PMID: 36677704 PMCID: PMC9866608 DOI: 10.3390/molecules28020646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Paride S. Occhipinti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
- Correspondence:
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
| | - Flora V. Romeo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Olivico-Tura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy
| |
Collapse
|
13
|
Punia Bangar S, Kajla P, Chaudhary V, Sharma N, Ozogul F. Luteolin: A flavone with myriads of bioactivities and food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
15
|
Wan D, Wan Y, Zhang T, Wang R, Ding Y. Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis. FRONTIERS IN PLANT SCIENCE 2022; 13:995074. [PMID: 36407579 PMCID: PMC9673880 DOI: 10.3389/fpls.2022.995074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.
Collapse
Affiliation(s)
- Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongqing Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Tongrui Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
16
|
Erragued R, Braga ME, Bouaziz M, Gando-Ferreira LM. Integration of solvent extraction and membrane processes to produce an oleuropein extract from olive leaves. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. SEPARATIONS 2022. [DOI: 10.3390/separations9090255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The recovery of phenolic compounds from olive leaves (Olea europaea L.) has received special attention due to their significant potential for applications in food, nutraceuticals, cosmetics, and pharmaceuticals. In this work, the extraction of the phenolic compounds from olive leaves was examined by means of conventional extraction and microwave-assisted extraction (MAE) using nontoxic common solvents such as ethanol and water as well as using promising environmentally friendly, Deep Eutectic Solvents (DESs) and their mixtures with ethanol or water. The effects of the various parameters that likely govern the extractability of the bioactive compounds of olive leaves (OL), such as the solvent type, temperature, and biomass to solvent mass ratio, were studied and evaluated with regard to the oleuropein and hydroxytyrosol content, antioxidant activity, and total phenolic content of the extracts. The study also explores the effects of the microwave-assisted extraction parameters, namely irradiation power and time, on the total phenolic content and antioxidant activity of the extracts. The findings of this work suggest that among the solvents studied, the solvent mixture consisting of the DES choline chloride:acetic acid with a molar ratio of 1:2 and ethanol (80:20 w/w) is highly effective in recovering extracts rich in phenolic compounds and with significant antioxidant activity. Moreover, it is demonstrated that the MAE method allows for the recovery of bioactive compounds in a very short processing time.
Collapse
|
18
|
Determination of an optimum extraction region for the recovery of bioactive compounds from olive leaves (Olea europaea L.) using green dynamic pressurized liquid extraction. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Effect of Ohmic Heating on the Extraction Yield, Polyphenol Content and Antioxidant Activity of Olive Mill Leaves. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the influence of ohmic heating (OH), compared to the conventional heating (Conven) and Control (solvent) methods, on the extraction of olive mill leaves. The main extraction parameters were: (i) solvent ratio (aqueous ethanol; 40%, 60%, and 80%, v/v), and (ii) extraction temperature; 45 °C, 55 °C, and 75 °C (for OH and Conven), and room temperature (for Control). The selected response variables were extraction yield (%), total phenolic content (TPC), and antioxidant activity (ABTS and DPPH). The ohmic system, compared to Conven and Control, exhibited the greatest effects (p < 0.001) on increasing (i) extraction yield (34.53%) at 75 °C with 80% ethanol, (ii) TPC at 55 °C (42.53, 34.35, 31.63 mg GAE/g extract, with 60%, 40%, and 80% ethanol, respectively), and (iii) antioxidant potency at 75 °C detected by DPPH and ABTS, in the range of 1.21–1.04 mM TE/g, and 0.62–0.48 mM TE/g extract, respectively. Further, there were relatively similar trends in TPC and antioxidant activity (both methods), regardless of solvent ratios, p < 0.001. These findings demonstrate the potential of ohmic heating, as a green processing tool, for efficient extraction (15 min) of olive leaves. To date, no literature has described ohmic application for olive leave extraction.
Collapse
|
20
|
Beyond the Exploration of Muicle (Justicia spicigera): Reviewing Its Biological Properties, Bioactive Molecules and Materials Chemistry. Processes (Basel) 2022. [DOI: 10.3390/pr10051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the research community is tremendously investigating unexplored plants and herbals as they represent a potential source of various biomolecules, which not only contribute to nutrition but also to human health. In fact, Muicle (Justicia spicigera) has attracted the attention of scientists thanks to its multiple biological activities associated with the phytochemicals and specific biomolecules present in this plant. In this review, an evidence on current development works assaying the potential biological properties of Muicle is given. Here, we introduce the key biologically active molecules ascribed to such properties, along with the mechanism of action and interaction. Although the utilization of this plant has been majorly focused on traditional medicine, specific applications in terms of production of new feedstocks and nanomaterials, and developments of functional foods and formulations, are also a current direction towards the exploitation of this natural source. Therefore, this review reports the main outcomes of current research towards the utilization of biomolecules and other elements of the plant in new fields of research such as materials chemistry.
Collapse
|
21
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Morgana NM, Magdalena E, Angeles FMDL, Fernanda SM. NADES for food industry innovation: novel bioadditives based on olive oil byproducts. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Malekjani N, Jafari SM. Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Crit Rev Food Sci Nutr 2022; 63:9797-9815. [PMID: 35475951 DOI: 10.1080/10408398.2022.2068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Olive by-products are rich sources of phenolic compounds and their valorization is a favorable approach in line with sustainable development goals of the United Nations (UN) organization to promote well-being and production of healthier products; also, to deal with the environmental and economic subjects resulting in more profitability in the olive oil industry. The production of value-added ingredients from these by-products is not extensively exploited on the industrial scale. Drying is a critical pretreatment before extraction that can have a direct impact on the recovery and yield of the available bioactive compounds in olive by-products. In order to produce more stable and high quality phenolic products, encapsulation using spray and freeze drying is used. In this study, the effect of the drying process before and after extraction of bioactive compounds from olive by-products as a valuable source of phenolic compounds is reviewed. In addition, fortification using these ingredients and their incorporation in food formulations is also investigated.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
24
|
Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041292. [PMID: 35209081 PMCID: PMC8878581 DOI: 10.3390/molecules27041292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.
Collapse
|
25
|
Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace. Antioxidants (Basel) 2022; 11:antiox11020204. [PMID: 35204087 PMCID: PMC8868085 DOI: 10.3390/antiox11020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Refined olive oils (ROOs) are commonly enriched with synthetic antioxidants. Antioxidant extracts obtained from natural products can be used to improve the stability of these oils. In this study, ROOs were enriched through the addition of phenolic extracts from olive leaves (OLs) and exhausted olive pomace (EOP). In addition to replacing synthetic antioxidants with natural ones, this results in the valorization of these olive-derived biomasses. The most suitable method for mixing and enriching refined oils was probe-type ultrasonication using lecithin as the emulsifier. Thereafter, the change in the content of antioxidant compounds and the antioxidant capacity of the oils at 25, 35, and 45 °C were studied over 28 and 50 days of storage. The experimental results were fitted using a pseudo-first-order kinetic model. The oxidative stability index of the ROO enriched with a 2 g/L OL extract (70 h) was higher than that of a commercial ROO (46.8 h). Moreover, the oxidative stability index of the refined olive pomace oil (ROPO) enriched with a 2 g/L EOP extract (44.1 h) was higher than that of a commercial ROPO (38.9 h). In addition, the oxidative stabilities and antioxidant capacities of the oils were significantly correlated.
Collapse
|
26
|
Innovative Extraction Technologies for Development of Functional Ingredients Based on Polyphenols from Olive Leaves. Foods 2021; 11:foods11010103. [PMID: 35010227 PMCID: PMC8750173 DOI: 10.3390/foods11010103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Olive tree (Olea europea L.) leaves represent around 10% of the total weight of olives arriving at any given mill, which are generally discarded, causing economic and environmental issues. However, these are rich sources of natural bioactive compounds (i.e., polyphenols), which have health-promoting potential. Thus, the valorization of olive leaves by recovering and reusing their components should be a must for food sustainability and circular economy. This review provides an insight into the principal polyphenols present in olive leaves, together with agronomic variables influencing their content. It also summarizes the recent advances in the application of novel extraction technologies that have shown promising extraction efficacy, reducing the volume of extraction solvent and saving time and cost. Moreover, potential industrial uses and international patents filed in the pharmaceutic, food, and cosmetic sectors are discussed.
Collapse
|
27
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
28
|
Zheng Y, Liu Z, Yang X, Liu L, Ahn KS. An updated review on the potential antineoplastic actions of oleuropein. Phytother Res 2021; 36:365-379. [PMID: 34808696 DOI: 10.1002/ptr.7325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Oleuropein is an ester of elenolic acid and hydroxytyrosol (3, 4-dihydroxyphenylethanol). It is a phenolic compound and the most luxuriant in olives. The detailed information related to the anticancer effects of oleuropein was collected from the internet database PubMed/Medline, ResearchGate, Web of Science, Wiley Online Library, and Cnki using appropriate keywords until the end of October 2021. Oleuropein has been shown to have antioxidant, anticancer, antiinflammatory, cardioprotective, neuroprotective, and hepatoprotective effects. Previous studies also revealed that oleuropein could effectively inhibit the malignant progression of esophageal cancer, gastric cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, prostate cancer, and cervical cancer. Recently, the role of oleuropein in inhibiting tumor cell proliferation, invasion, and migration and inducing tumor cell apoptosis has gained extensive attention. In this review, we have summarized the latest research progress related to the antioncogenic mechanisms and the potential role of oleuropein in targeting different human malignancies. Based on these findings, it can be concluded that oleuropein can function as a promising chemopreventive and chemotherapeutic agent against cancer, but its more detailed anticancer effects and underlying mechanisms need to be further validated in future preclinical as well as clinical studies.
Collapse
Affiliation(s)
- Yudong Zheng
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Zhenzhen Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Xiulan Yang
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Kwang Seok Ahn
- Kyung Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Tang J, Cao Y, Wang X, Yan W, Yao S. A targeted extraction with solvent-free pressurized method based on analyte-like oxonium salts: An example for simultaneous determination of bamboo-leaf flavonoids by ultra-performance liquid chromatography/ultraviolet detection. J Chromatogr A 2021; 1658:462595. [PMID: 34662825 DOI: 10.1016/j.chroma.2021.462595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
By using novel oxonium salts in "Sandwich" mode, an improved approach of targeted enrichment through a pressurized solvent-free extraction coupled with ultra-performance liquid chromatography/ultraviolet detection (UPLC-UV) analysis was developed for main bioactive flavonoids in bamboo leaves. As solid extractants, these salts have the same structural nucleus with analytes. By comparison, the yield of this new method was higher than that of reported ways, and the highest enrichment factor reached 394.22. The whole process was more consistent with pseudo-second order model (R2=0.9994) with the rate constant of 0.0537 (g/mg·min). Moreover, ideal selectivity, linearity, repeatability, limit of detection, limit of quantification, and recovery were all achieved.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yu Cao
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Xia Wang
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Wentao Yan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
30
|
Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants (Basel) 2021; 10:antiox10111781. [PMID: 34829652 PMCID: PMC8614775 DOI: 10.3390/antiox10111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/18/2023] Open
Abstract
Olive-derived biomasses contain bioactive compounds with health promoting effects as well as antioxidant and sweet-tasting properties. However, their sequential extraction has not been attained. In the present study, firstly antioxidants and mannitol were extracted from exhausted olive pomace (EOP) by an eco-friendly method, ultrasound-assisted water extraction (UAWE). The amplitude (20-80%), extraction time (2-18 min) and solid loading (2-15%, w/v) were evaluated according to a Box-Behnken experimental design. Using the response surface methodology, the optimal conditions for extraction were obtained: 80% amplitude, 11.5% solid loading and 16 min. It enabled the multi-response optimization of the total phenolic content (TPC) (40.04 mg/g EOP), hydroxytyrosol content (6.42 mg/g EOP), mannitol content (50.92 mg/g EOP) and antioxidant activity (ferric reducing power or FRAP, 50.95 mg/g EOP; ABTS, 100.64 mg/g EOP). Moreover, the phenolic profile of the extracts was determined by liquid chromatography-UV and mass spectrometry, identifying hydroxytyrosol as the main phenolic compound and other minor derivatives could be characterized. Scanning electron microscopy was used to analyze the morphological changes produced in the cellular structure of EOP after UAWE. In addition, the chemical composition of the extracted EOP solid was characterized for further valorization. Then, a second extraction step was performed in order to extract bioactive triterpenes from the latter solid. The triterpenes content in the extract was determined and the effect of the previous UAWE step on the triterpenes extraction was evaluated. In this case, the use of ultrasound enhanced the extraction of maslinic acid and oleanolic acid from pelletized EOP with no milling requirement. Overall, UAWE can be applied to obtain antioxidant compounds and mannitol as first extraction step from pelletized EOP while supporting the subsequent recovery of triterpenic acids.
Collapse
|
31
|
Biophenolic Profile Modulations in Olive Tissues as Affected by Manganese Nutrition. PLANTS 2021; 10:plants10081724. [PMID: 34451769 PMCID: PMC8402200 DOI: 10.3390/plants10081724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) is an essential element that intervenes in several plant metabolic processes. The olive tree, and its fruits and leaves, are known as a source of nutraceuticals since they are rich in biophenols. However, there is still a serious lack of data about biophenolic distribution in olive stems and roots under Mn fertilisation. In this context, our study aimed to examine the effects of Mn fertilisation on the biophenolic profile in the leaves, stems, and roots of the ‘Istarska bjelica’ olive cultivar. The experiment was set up in a greenhouse, during a period of five months, as a random block design consisting of three treatments with varying Mn concentrations in full-strength Hoagland’s nutrient solution (0.2 µM Mn, 12 µM Mn, and 24 µM Mn). The obtained results indicate that the amount of Mn in the examined olive plant tissues was significantly higher under 12 µM Mn and 24 µM Mn treatments compared to that of the 0.2 µM Mn treatment. While the concentration of biophenols varied in roots depending on the compound in question, a strong positive impact of the increased Mn concentration in nutrient solution (12 µM Mn and 24 µM Mn) on the concentrations of the main biophenolic compounds was observed in stems. The concentration of oleuropein in leaves almost doubled at 24 µM Mn, with the highest Mn concentration, as compared to the 0.2 µM Mn treatment. The obtained results led to the conclusion that the supply of Mn could enhance the concentration of some biologically active compounds in olives grown hydroponically, implying a critical need for further investigation of Mn fertilisation practices in the conventional olive farming system.
Collapse
|
32
|
Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9060953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bio-functional properties of olive oil products and by-products rely greatly on the proportions and types of the endogenous phenolics that may favorably/unfavorably change during various processing conditions. The olive oil industrial activities typically produce (i) olive oils, the main/marketable products, and (ii) olive mill by-products. The mechanical processing of olive oil extraction is making progress in some areas. However, the challenges inherent in the existing system, taking into consideration, the susceptibilities of phenolics and their biosynthetic variations during processing, hamper efforts to ascertain an ideal approach. The proposed innovative means, such as inclusion of emerging technologies in extraction system, show potential for sustainable development of olive oil processing. Another crucial factor, together with the technological advancements of olive oil extraction, is the valorization of olive mill by-products that are presently underused while having great potential for extended/high-value applications. A sustainable re-utilization of these valuable by-products helps contribute to (i) food and nutrition security and (ii) economic and environmental sustainability. This review discusses typical processing factors responsible for the fate of endogenous phenolics in olive oil products/by-products and provides an overview of the possibilities for the sustainable processing to (i) produce phenolic-rich olive oil and (ii) optimally valorize the by-products.
Collapse
|
33
|
Guerras L, Sengupta D, Martín M, El-Halwagi MM. Multilayer Approach for Product Portfolio Optimization: Waste to Added-Value Products. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6410-6426. [PMID: 34796044 PMCID: PMC8592024 DOI: 10.1021/acssuschemeng.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A multistage multilayer systematic procedure has been developed for the selection of the optimal product portfolio from waste biomass as feedstock for systems involving water-energy-food nexus. It consists of a hybrid heuristic, metric-based, and optimization methodology that evaluates the economic and environmental performance of added-value products from a particular raw material. The first stage preselects the promising products. Next, a superstructure optimization problem is formulated to valorize or transform waste into the optimal set of products. The methodology has been applied within the waste to power and chemicals initiative to evaluate the best use of the biomass residue from the olive oil industry toward food, chemicals, and energy. The heuristic stage is based on the literature review to analyze the feasible products and techniques. Next, simple metrics have been developed and used to preselect products that are promising. Finally, a superstructure optimization approach is used to design the facility that processes leaves, wood chips, and olives into final products. The best technique to recover phenols from "alperujo", a wet solid waste/byproduct of the process, consists of the use of membranes, while the adsorption technique is used for the recovery of phenols from olive leaves and branches. The investment required to process waste adds up to €110.2 million for a 100 kt/yr for the olive production facility, while the profit depends on the level of integration. If the facility is attached to an olive oil production, the generated profit ranges between 14.5 MM €/yr (when the waste is purchased at prices of €249 per ton of alperujo and €6 per ton of olive leaves and branches) and 34.3 MM €/yr when the waste material is obtained for free.
Collapse
Affiliation(s)
- Lidia
S. Guerras
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Debalina Sengupta
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Mahmoud M. El-Halwagi
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, 100 Spence Street, College Station, Texas 77843, United States
| |
Collapse
|
34
|
Sánchez-Gutiérrez M, Bascón-Villegas I, Rodríguez A, Pérez-Rodríguez F, Fernández-Prior Á, Rosal A, Carrasco E. Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods 2021; 10:966. [PMID: 33925051 PMCID: PMC8145053 DOI: 10.3390/foods10050966] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE was applied under 40, 60 and 80 °C for 3, 6.5 and 10 min. The effect of the extraction method, solvent and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity (AA) and the phenolic profile of the extracts were all evaluated. The extracts showed high values of TPC (up to 76.1 mg GAE/g DW) and AA (up to 78 mg TE/g DW), with oleuropein being the most predominant compound in all extracts. The Soxhlet extraction method exhibited better yields in TPC than in MAE, although both methods presented comparable AA values. The water MAE extract presented the strongest antimicrobial activity against five foodborne pathogens, with minimum inhibitory concentration (MIC) values ranging from 2.5 to 60 mg/mL. MAE water extract is proposed to be exploited in the food and nutraceutical industry in the frame of a sustainable economy.
Collapse
Affiliation(s)
- Mónica Sánchez-Gutiérrez
- Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; (I.B.-V.); (F.P.-R.); (E.C.)
- BioPrEn Group, Chemical Engineering Department, Universidad de Córdoba, Marie-Curie Building, 14014 Córdoba, Spain;
| | - Isabel Bascón-Villegas
- Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; (I.B.-V.); (F.P.-R.); (E.C.)
- BioPrEn Group, Chemical Engineering Department, Universidad de Córdoba, Marie-Curie Building, 14014 Córdoba, Spain;
| | - Alejandro Rodríguez
- BioPrEn Group, Chemical Engineering Department, Universidad de Córdoba, Marie-Curie Building, 14014 Córdoba, Spain;
| | - Fernando Pérez-Rodríguez
- Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; (I.B.-V.); (F.P.-R.); (E.C.)
| | - África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain;
| | - Antonio Rosal
- Molecular Biology and Biochemical Engineering Department, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain;
| | - Elena Carrasco
- Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; (I.B.-V.); (F.P.-R.); (E.C.)
| |
Collapse
|
35
|
Martínez-Navarro EM, Cebrián-Tarancón C, Moratalla-López N, Lorenzo C, Alonso GL, Salinas RM. Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1447-1453. [PMID: 32839982 DOI: 10.1002/jsfa.10758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Oil mills could benefit by preparing their own aqueous extracts from olive leaves. Accordingly, the present study aimed to measure the bioactive compounds richness of such extracts, especially oleuropein. A water-based microwave extraction procedure was developed and a selective and precise high-performance liquid chromatography with diode array detection (HPLC-DAD) method was validated for the determination of oleuropein and others bioactive compounds from olive leaves. RESULTS The water solubility of oleuropein was determined to be 9.5 g L-1 . The extraction procedure was optimized in terms of power, olive leaf weight/water volume ratio and time of extraction, and the results revealed that 2 mg mL-1 and a microwave irradiation at 800 W for 30 s resulted in the greatest efficiency. Oleuropein was determined by the new validation method, which showed good linearity (r2 = 0.996), precision (% relative standard deviation < 10%), recovery (118.6%), and limits of detection (17.48 mg L-1 ) and quantification (21.54 mg L-1 ). Good correlation (r2 = 0.979) was obtained between oleuropein of the olive leaf extracts determined by HPLC-DAD and by UV-visible spectrophotometry. CONCLUSION A simple extraction method was developed and validated to obtain aqueous extract from olive leaves by microwave extraction, determining for the first time oleuropein water solubility. Validation of the method showed that oleuropein in olive leaves could be quantified when it is at least 1% of dry weight by means of HPLC-DAD. UV-visible spectrophotometry can be useful in oil mills because it enables the content of oleuropein and other bioactive compounds content to be determined in situ in such leaf aqueous extracts. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Esther M Martínez-Navarro
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Natalia Moratalla-López
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Rosario M Salinas
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| |
Collapse
|
36
|
Contreras MDM, Gómez-Cruz I, Romero I, Castro E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021; 10:111. [PMID: 33430320 PMCID: PMC7825784 DOI: 10.3390/foods10010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Olive-derived biomass is not only a renewable bioenergy resource but also it can be a source of bioproducts, including antioxidants. In this study, the antioxidant composition of extracted olive pomace (EOP) and a new byproduct, the residual fraction from olive pit cleaning (RFOPC or residual pulp) was characterized and compared to olive leafy biomass, which have been extensively studied as a source of antioxidants and other bioactive compounds with pharmacological properties. The chemical characterization showed that these byproducts contain a high amount of extractives; in the case of EOP, it was even higher (52.9%) than in olive leaves (OL) and olive mill leaves (OML) (35.8-45.1%). Then, ultrasound-assisted extraction (UAE) was applied to recover antioxidants from the extractive fraction of these biomasses. The solubilization of antioxidants was much higher for EOP, correlating well with the extractives content and the total extraction yield. Accordingly, this also affected the phenolic richness of the extracts and the differences between all biomasses were diminished. In any case, the phenolic profile and the hydroxytyrosol cluster were different. While OL, OML, and EOP contained mainly hydroxytyrosol derivatives and flavones, RFOPC presented novel trilignols. Other compounds were also characterized, including secoiridoids, hydroxylated fatty acids, triterpenoids, among others, depending on the bioresource. Moreover, after the UAE extraction step, alkaline extraction was applied recovering a liquid and a solid fraction. While the solid fraction could of interest for further valorization as a biofuel, the liquid fraction contained proteins, sugars, and soluble lignin, which conferred antioxidant properties to these extracts, and whose content depended on the biomass and conditions applied.
Collapse
Affiliation(s)
- María del Mar Contreras
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
37
|
Wang W, Yang J, Yang J. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves. Prep Biochem Biotechnol 2020; 51:821-831. [PMID: 33346692 DOI: 10.1080/10826068.2020.1861012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, polyphenols from olive leaves was extracted by ultrasound-assisted aqueous two phase extraction (UAATPE). Based on single factor experiment and response surface methodology (RSM), the optimum extraction conditions of polyphenols contained 29% (w/w) (NH4)2SO4, 35% (w/w) ethanol, pH 6.7, and 45 °C. The maximum extraction yield of polyphenols and oleuropein content were 34.06 mg/g and 44.13 mg/L, respectively. Compared with ultrasound-assisted extraction (UAE) and aqueous two phase extraction (ATPE), the extraction yield of polyphenols by UAATPE was 9.48 and 61.19% higher, respectively. In addition, the extract of UAATPE had higher purity. The results of antioxidant activity showed that polyphenols extracted by UAATPE had stronger DPPH and hydroxyl radicals scavenging ability and reducing power. Therefore, UAATPE is an efficient method for extracting polyphenols from olive leaves.
Collapse
Affiliation(s)
- Weixiang Wang
- College of Food and Bioengineering, Xihua University, Chengdu, P.R. China
| | - Jianbo Yang
- College of Food and Bioengineering, Xihua University, Chengdu, P.R. China
| | - Jun Yang
- College of Food and Bioengineering, Xihua University, Chengdu, P.R. China
| |
Collapse
|
38
|
Kashaninejad M, Sanz M, Blanco B, Beltrán S, Niknam S. Freeze dried extract from olive leaves: Valorisation, extraction kinetics and extract characterization. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Lama-Muñoz A, del Mar Contreras M, Espínola F, Moya M, Romero I, Castro E. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem 2020; 329:127153. [DOI: 10.1016/j.foodchem.2020.127153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
|
40
|
Abi-Khattar AM, Rajha HN, Abdel-Massih RM, Habchi R, Maroun RG, Debs E, Louka N. "Intensification of Vaporization by Decompression to the Vacuum" (IVDV), a novel technology applied as a pretreatment to improve polyphenols extraction from olive leaves. Food Chem 2020; 342:128236. [PMID: 33092913 DOI: 10.1016/j.foodchem.2020.128236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
Impact of the "Intensification of Vaporization by Decompression to the Vacuum" (IVDV) on extraction of polyphenols from olive leaves was investigated. Using Response Surface Methodology, the effect of three variables were studied: initial water content of leaves, processing time and steam pressure on total phenolic content (TPC). Extractions of TPC from leaves were achieved either using 100% water as a solvent (w100), or 50% (v/v) aqueous ethanol (w50). Following IVDV pretreatment, TPC yields were enhanced with both solvents by approximately 3 times compared to the negative controls. Furthermore, oleuropein and hydroxytyrosol were intensified by up to 600% and 238% respectively. Antioxidant-antiradical assays revealed higher activities, up to 3.5 times, in extracts from IVDV-treated leaves. Calculation of the extraction indices Zp, reflecting cellular damage, confirmed the beneficial effect of IVDV on the extraction yield. Finally, Scanning Electron Microscopy (SEM) permitted the morphological observation of IVDV-treated as compared to untreated leaves.
Collapse
Affiliation(s)
- Anna-Maria Abi-Khattar
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon.
| | - Hiba N Rajha
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon; Ecole Supérieure d'Ingénieurs de Beyrouth (ESIB). Université Saint-Joseph, CST Mkalles Mar Roukos, P. O. Box 11-514, Riad El Solh, Beirut 1107 2050, Lebanon.
| | - Roula M Abdel-Massih
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, P. O. Box 100, Lebanon.
| | - Roland Habchi
- 2 EC2M, Faculty of Sciences 2, Campus Pierre Gemayel, Fanar, Lebanese University, 90656, Lebanon.
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon.
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, P. O. Box 100, Lebanon.
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon.
| |
Collapse
|
41
|
Contreras MDM, Romero I, Moya M, Castro E. Olive-derived biomass as a renewable source of value-added products. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, Muddassir M, Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem 2020; 52:667-696. [PMID: 32954795 DOI: 10.1080/10408347.2020.1820851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Siti Hamidah Mohd-Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K, India
| | - Mohd Muddassir
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Gullón P, Gullón B, Astray G, Carpena M, Fraga-Corral M, Prieto MA, Simal-Gandara J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res Int 2020; 137:109683. [PMID: 33233259 DOI: 10.1016/j.foodres.2020.109683] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the last years, the consumption of olive oil has experienced a sharp rise due to its organoleptic and healthy properties and with this the wastes and by-products derived from the olive production and the olive oil industry have also increased causing important environmental and economic issues. However, the high content in bioactive compounds of these wastes and by-products makes that its recovery is both a great challenge and an excellent opportunity for the olive oil sector. AIM OF THE REVIEW This review encompasses the more outstanding aspects related to the advances achieved until date in the olive oil by-products valorisation and added-value applications for innovative functional foods. CONCLUSION Taking into account the information reported in this manuscript, the development of a multiproduct biorefinery in cascade using eco-friendly technologies interchangable seems a suitable stratety to obtaining high added value compounds from olive oil by-products with applications in the field of innovative functional foods. In addition, this would allow an integral valorization of these residues enhancing the profitability of the olive oil industry. On the other hand, the biocompounds fom olive oil by-products have been described by their interesting bioactivities with beneficial properties for the consumers' health; therefore, their incorporation into the formulation of functional foods opens new possibilities in the field of innovative foods. Future perspective: Despite the studies descibed in the literature, more research on the healthy properties of the recovered compounds and their interactions with food components is key to allow their reintegration in the food chain and therefore, the removal of the olive oil by-products.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - María Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - María Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
44
|
Abstract
The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.
Collapse
|
45
|
Lama-Muñoz A, Contreras MDM, Espínola F, Moya M, Romero I, Castro E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem 2020; 320:126626. [PMID: 32222659 DOI: 10.1016/j.foodchem.2020.126626] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Olive leaves are considered a promising source of bioactives such as phenolic compounds and mannitol. The extraction of high added value products is an issue of great interest and importance from the point of view of their exploitation. However, the content of these compounds can differ between cultivars and extraction methods. In this work, six olive leaves cultivars, including three wild cultivars, and two extraction processes (an innovative and alternative technique, pressurized liquid extraction, and a conventional Soxhlet extraction) were evaluated and compared towards the selective recovery of bioactive compounds. The wild cultivars showed the highest content of phenolic and flavonoid compounds, being oleuropein the compound present in higher amount. Findings also revealed that the highest mannitol content in the extracts was observed with the commercial cultivars, specifically in Arbequina. It is thus possible to decide which cultivars to use in order to obtain the highest yield of each bioproduct.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain.
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| |
Collapse
|
46
|
Contreras MDM, Lama-Muñoz A, Espínola F, Moya M, Romero I, Castro E. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chem 2020; 314:126218. [PMID: 31982857 DOI: 10.1016/j.foodchem.2020.126218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Olive leaves farmed from trees are valuable for the production of functional extracts. Nonetheless, olive leaves (containing thin branches), which are separated during olives cleaning in the mill, have received little attention. In this context, a multiple response optimization was performed to maximize at once the yield, total phenolic content, oleouropein and antioxidant activity obtained by ultrasound-assisted extraction of this low-cost byproduct. The optimum was achieved using the following operational parameters: solid-to-liquid ratio, 5.9%; ethanol concentration, 47%; extraction time, 50 min. This enabled to obtain an extract with both high level of oleuropein and antioxidant activity. Besides oleuropein, other minor phenolic compounds were characterized in the extract, which could contribute to the antioxidant activity as Pearson correlation suggested. After this extraction step, how the phenolic extraction affects the recovery/profile of other constituents was evaluated, looking for the integral valorization of this resource towards the zero-waste.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain.
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| |
Collapse
|
47
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
48
|
Optimization of Oleuropein and Luteolin-7-O-Glucoside Extraction from Olive Leaves by Ultrasound-Assisted Technology. ENERGIES 2019. [DOI: 10.3390/en12132486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The olive orchard cultivation in Mediterranean countries results in huge amounts of lignocellulosic biomass residues. One of the main residues are olive leaves. Olive leaves contain high concentrations of bioactive antioxidant compounds like oleuropein and luteolin-7-glucoside. The production of biactive compounds from olive leaves requires treatments capable of breaking the lignocellulosic structure. Current research focuses on use of inexpensive, quick, and not harmful to the environment treatments, searching a more simplified large-scale operation approach. Recently, advances in applied chemistry have led to possible new emerging industrial techniques like ultrasound-assisted extraction (UAE). This technology is a promising candidate as a green treatment solution for olive leaves utilization in a biorefinery. However, this application goes through prior optimization of technique and operating conditions. The goal of this study was to optimize the extraction of oleuropein and luteolin-7-glucoside from olive leaves through an investigation of the influence of key factors of ultrasound-assisted extraction using an experimental central composite design, in comparison with conventional Soxhlet extraction. The highest extraction efficiency and antioxidant capacity were obtained under optimal increment of temperature and amplitude conditions (40 °C and 30%, respectively). Values for oleuropein, luteolin-7-glucoside were 69.91 g/kg and 1.82 g/kg, respectively.
Collapse
|