1
|
Lv Y, Jia W, Zhu W, Ma L, Sun C, Su X, Zhao X. Green and efficient extraction of dihydroquercetin from Larix gmelinii logging residue using ultra-high pressure assisted micellar medium: A study on the extraction mechanism. Food Chem 2025; 483:144267. [PMID: 40245619 DOI: 10.1016/j.foodchem.2025.144267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Dihydroquercetin (DHQ) exhibited exceptional antioxidant capacity and was widely utilized in the field of food processing. A new method combining green micellar sodium dodecyl sulfate (SDS) with ultra-high pressure extraction (UHPE) was established to extract DHQ from Larix gmelinii Logging Residue (LLR). Under optimal extraction conditions (cycle times of four, extraction pressure of 338 MPa, solid-to-liquid ratio of 1: 25, SDS concentration of 69 mg/mL), the DHQ extraction rate reached 92.08 ± 1.09 %. In vitro antioxidant experiments showed that LLR extract had good antioxidant ability. The key properties of the micellar and the extraction mechanism were analyzed from various perspectives, the enhanced extraction driven by micellar was synergistically coupled with the mass transfer promoted by UHPE, resulting in an efficient extraction. This study emphasizes that utilizing harvesting residues can reduce resource waste while providing valuable food ingredients (DHQ), with both economic and environmental feasibility, and potential applications in the food industries.
Collapse
Affiliation(s)
- Yue Lv
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Wenqiang Jia
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Wen Zhu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Leiying Ma
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xiaoxia Su
- Landscape architecture, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heilongjiang, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
2
|
Song Y, Lee J, Kwon HK, Kim M, Shin S, Kim S, Son H, Park C, Yoo HY. Efficient Ultrasound-Assisted Extraction of Bioactive Molecules from Brown Macroalga Sargassum horneri: Optimal Extraction, Antioxidant and Cytotoxicity Evaluation. Int J Mol Sci 2025; 26:2749. [PMID: 40141391 PMCID: PMC11943217 DOI: 10.3390/ijms26062749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
Sargassum horneri (SH) is a promising marine bioresource for producing bioactive compounds. Recently, the biological functions (including anti-inflammatory, antioxidant, and anticancer activities) of SH extracts have been revealed; however, efficient extraction processes to produce bioactive molecules (such as tannin and phenol) have not been carefully designed. In this study, the ultrasound-assisted extraction process was optimized based on the response surface methodology (RSM) to efficiently produce tannin and phenol from SH. Significant RSM models (p < 0.05) for predicting tannin and phenol yields were developed, and prethanol A concentration, temperature, and solid loading were significantly affected by tannin or phenol yield (p < 0.05). Following numerical optimization, the tannin and phenol yields achieved 14.59 and 13.83 mg/g biomass, respectively, under optimal conditions (39.1% solvent, 61.9 °C, 52.0 g/L solid loading, and 49.0% amplitude), similar to the model-predicted values (12.95 and 13.37 mg/g, respectively). Then, time profiling under optimal conditions determined the optimal time as 10.0 min, resulting in the highest yield (15.88 mg tannin and 14.55 mg phenol/g). The extracts showed antioxidant activity (IC50: 79.86 μg/mL) comparable to that of ascorbic acid (vitamin C). It was found to be particularly non-toxic, raising its potential as a functional ingredient in food or cosmetics.
Collapse
Affiliation(s)
- Yunseok Song
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hyeok Ki Kwon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Minji Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Soeun Shin
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hyerim Son
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
3
|
Okeke UJ, Micucci M, Mihaylova D, Cappiello A. The effects of experimental conditions on extraction of polyphenols from African Nutmeg peels using NADESs-UAE: a multifactorial modelling technique. Sci Rep 2025; 15:4890. [PMID: 39930029 PMCID: PMC11811197 DOI: 10.1038/s41598-025-88233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Extraction of polyphenolic compounds from African nutmeg (Monodora myristica (Gaertn.)) peels using natural acidic deep eutectic solvents coupled to ultrasound-assisted extraction (NADESs-UAE) followed many factors at a time (MFAT) screening with response surface optimization was investigated. Fourteen different NADESs based on citric acid as hydrogen bond acceptor (HBA) were designed and tested. Sucrose, fructose, xylitol, glycerol, glycine, and glucose were used as hydrogen bond donors (HBDs). The responses studied are total phenolic compounds (TPC), total flavonoid compounds (TFC), and antioxidant activity (AA) based on cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). The UAE procedure was optimized with the most efficient NADES. Quadratic models produced satisfactory fitting of the experimental data regarding TPC (R2 = 0.9999, p < 0.0001), TFC (R2 = 0.9991, p < 0.0001), and AA- CUPRAC (R2 = 0.9988, p < 0.0001) and FRAP (R2 = 1.000, P < 0001). Ultrasound temperature 30°c, extraction time 5 min, solvent volume 25 ml, and solvent concentration 90% (v/v) were considered optimal conditions for the extraction models resulting in TPC 1290.9 ± 5.6 mg/g GAE db, TFC 2398.7 ± 23 µg/g QE db, CUPRAC 38.46 ± 0.4.4 µmol/g TE db, and FRAP 26.15 ± 0.11µmol/g TE db, respectively.
Collapse
Affiliation(s)
- Udodinma Jude Okeke
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Matteo Micucci
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy.
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Achile Cappiello
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
4
|
Luangsakul N, Kunyanee K, Kusumawardani S, Ngo TV. Intelligent model and optimization of ultrasound-assisted extraction of antioxidants and amylase enzyme from Gnaphalium affine D. Don. ULTRASONICS SONOCHEMISTRY 2025; 112:107162. [PMID: 39577066 PMCID: PMC11625157 DOI: 10.1016/j.ultsonch.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
The study uses ultrasound-assisted extraction to recovery the antioxidant and amylase enzyme from Gnaphalium affine D. Don, namely "chewcut" in Thailand. The study involves two statistical methods: artificial neural networks (ANN) and response surface methodology (RSM) to model and optimize extraction procedure for improving the yield of antioxidant and amylase enzyme activity (AEA). Both RSM and ANN showed the potential to predict and find the optimal extraction conditions. However, ANN model could give more accurate values compared with validation test. ANN model found that under optimal conditions (temperature: 65.92 °C, ultrasonic power: 58.22 %, extraction time: 37.95 min), the total phenolic compounds, total flavonoid compounds, antioxidant activity and AEA were 218.35 ± 0.34 mgGAE/g, 0.554 ± 0.045 mgQE/g, 84.2 ± 0.2 %, 364.14 ± 1.35 mg-maltose/g. This is the first report on amylase potential of chewcut, which could be further served as the natural enzyme source. Moreover, by adding its bioactive compounds, it may be possible to improve nutraceutical properties and quality of products.
Collapse
Affiliation(s)
- Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kannika Kunyanee
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sandra Kusumawardani
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tai Van Ngo
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
5
|
Zhou X, Guo N, Zhang F, Zhuo K, Zhu G. Improving stability and bioavailability of ACNs based on Gellan gum-whey protein isolate nanocomplexes. Food Chem X 2024; 24:102050. [PMID: 39703377 PMCID: PMC11656087 DOI: 10.1016/j.fochx.2024.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Blueberry anthocyanins (ACNs) have been widely applied in the food industry and medicine due to their numerous beneficial properties. However, the stability of ACNs is extremely poor. This study aimed to develop a delivery system for ACNs using nanocomplexes prepared from gellan gum (GG) and whey protein isolate (WPI) via Maillard reaction. The effects of the GG-WPI nanocomplexes on the stability, antioxidant capacity, and bioavailability of ACNs were investigated. FTIR, fluorescence spectroscopy, and UV-vis absorption spectroscopy revealed covalent bonding between the GG and WPI in the nanocomplexes. The nanocomplex demonstrated a good loading efficiency for ACNs (60.34 %), with a particle size of 368.42 nm. It also showed better stability and bioaccessibility than free ACNs, and their DPPH radical scavenging capacity reached a maximum of 63.11 %. Our research is significant for developing novel multifunctional foods and constructing high-performance food delivery systems.
Collapse
Affiliation(s)
- Xin Zhou
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Na Guo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Fangyan Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Kaili Zhuo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Guilan Zhu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| |
Collapse
|
6
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
7
|
Lu R, Qiu L, Dong S, Xue Q, Lu Z, Zhai R, Wang Z, Yang C, Xu L. Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy. Foods 2024; 13:3761. [PMID: 39682832 DOI: 10.3390/foods13233761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Scientific evaluation of pear maturity is important for commercial reasons. Near-infrared spectroscopy is a non-destructive method that could be used for rapid assessment of pear maturity. The aim of this study was to develop a reasonable and effective method for the assessment of Starkrimson pear maturity using near-infrared technology. Partial least squares regression and five classification methods were used for analysis of the data. Among the indices used with the competitive adaptive reweighting-partial least squares regression method for quantitation, the visual ripeness index had the best modeling effect (Rp2: 0.87; root mean square error of prediction: 0.39). The classification model constructed with the visual ripeness index and post-ripeness score gave a cross-validation neural network model with the best classification effect and the highest accuracy (classification accuracy: 88.7%). The results showed that combination of quality indices with near-infrared spectroscopy was effective for rapidly evaluating the maturity of Starkrimson pears.
Collapse
Affiliation(s)
- Ruitao Lu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Linqian Qiu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Shijia Dong
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Qiyang Xue
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Zhaohui Lu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
9
|
Sun P, Yang W, Sun T, Tang Y, Li M, Cheng S, Chen G. Effects of ultrasonic-assisted natural deep eutectic solvent on the extraction rate, stability and antifungal ability of polyphenols from Cabernet Sauvignon seeds. Food Res Int 2024; 191:114674. [PMID: 39059936 DOI: 10.1016/j.foodres.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Ultrasonic-assisted extraction using a natural deep eutectic solvent (UAE-NADES) is an efficient method for extracting grape seed polyphenols (GSPs). In this study, response surface methodology was used to optimize the extraction of GSPs with UAE-NADES, and the theoretical extraction rate of GSPs was 139.014 mg GAE/g, the actual extraction rate was 135.78 ± 1.3 mg GAE/g. A pseudo-second-order kinetic extraction fitting was established to simulate the extraction process and mechanism (R2 > 0.99). Analysis of antioxidant capacity, Fourier-infrared spectroscopy and scanning electron microscopy revealed that UAE-NADES works synergetically to maintain the stability of extracted GSPs. The results of high-performance liquid chromatography showed that catechin (41.14 mg/g) is the main component of GSPs in the extract. The UAE-NADES extraction of GSPs can inhibit the growth of Alternaria alternata at 0.25 mg GAE/g, while the GSPs extracted by other methods can effectively inhibit the growth of Alternaria alternata at 0.35 mg GAE/g. Thus, this study demonstrates that UAE-NADES is a high-efficiency means of extracting GSPs and, in a wider sense, is a promising extraction technology for the green utilization of waste resources.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China
| | - Wanting Yang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China
| | - Tongrui Sun
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China
| | - Yisong Tang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China
| | - Mengru Li
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China
| | - Shaobo Cheng
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China; Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China.
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi 832000, PR China; Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
10
|
Huang H, Guo S, Xu Y, Ettoumi FE, Fang J, Yan X, Xie Z, Luo Z, Cheng K. Valorization and protection of anthocyanins from strawberries (Fragaria×ananassa Duch.) by acidified natural deep eutectic solvent based on intermolecular interaction. Food Chem 2024; 447:138971. [PMID: 38461718 DOI: 10.1016/j.foodchem.2024.138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
This study introduces an innovative approach for the valorization and protection of anthocyanins from 'Benihoppe' strawberry (Fragaria × ananassa Duch.) based on acidified natural deep eutectic solvent (NADES). Choline chloride-citric acid (ChCl-CA, 1:1) was selected and acidified to enhance the valorization and protection of anthocyanins through hydrogen bond. The optimal conditions (ultrasonic power of 318 W, extraction temperature of 61 °C, liquid-to-solid ratio of 33 mL/g, ultrasonic time of 19 min), yielded the highest anthocyanins of 1428.34 μg CGE/g DW. UPLC-Triple-TOF/MS identified six anthocyanins in acidified ChCl-CA extract. Stability tests indicated that acidified ChCl-CA significantly increased storage stability of anthocyanins in high temperature and light treatments. Molecular dynamics results showed that acidified ChCl-CA system possessed a larger diffusion coefficient (0.05 m2/s), hydrogen bond number (145) and hydrogen bond lifetime (4.38 ps) with a reduced intermolecular interaction energy (-1329.74 kcal/mol), thereby efficiently valorizing and protecting anthocyanins from strawberries.
Collapse
Affiliation(s)
- Hao Huang
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China; College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Shengrong Guo
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jie Fang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Xiaowei Yan
- College of Food and Biological Engineering, Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou 542899, People's Republic of China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co., Ltd., Lishui 323302, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, People's Republic of China.
| |
Collapse
|
11
|
Ahmad R, Aldholmi M, Alqathama A, Al Nahab HZ, Almutawah AI. A comprehensive LCMS/MS characterization for the green extracted cucurbitane-triterpenoid glycosides from bitter melon (Momordica charantia) fruit. Food Chem 2024; 445:138479. [PMID: 38387310 DOI: 10.1016/j.foodchem.2024.138479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
A first-time green extraction and LCMSMS analysis for karavilosides (KVs) VIII, X, and XI in different parts (skin, pith, and seed) of the fresh and dried fruit of bitter melon (BM) is reported herein. Ultrasonication for green extraction whereas, LCMS/MS for KVs quantification were used. More extract yield (675.80 ± 163.57 mg/g) was observed for the dried fruit parts compared to the fresh BM-fruit parts (513.20 ± 75.42 mg/g). The fresh skin (343.40 ± 54.07 mg/4g) and dried seeds (311.80 and 77.95 ± 38.98) exhibited more yield whereas, the solvent yield (mg/4mg) observed was; H2O (651.70) > EtOH (227.20) > EtAC (163.30) > ACT (146.80). The LCMS/MS yield for the KVs revealed a descending order; KVXI (2376.44 ppb) > KVX (639.17 ppb) > KVVIII (599.83 ppb). More correlation was seen for the solvent Vs extract yield whereas, the KVs revealed more correlation for the BM-fruit part (P = 0.05). The study comprehensively characterized the parts of fresh and dried BM-fruits in terms of extract yield and KVs amount.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia.
| | - Mohammed Aldholmi
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hasan Zaki Al Nahab
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Alhassan Ibrahim Almutawah
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
12
|
Zhang S, Lin S, Zhang J, Liu W. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from Vitis davidii Foex. pomace: Optimization, identification, antioxidant activity and stability. Heliyon 2024; 10:e33066. [PMID: 38988524 PMCID: PMC11234101 DOI: 10.1016/j.heliyon.2024.e33066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
An efficient and environmentally friendly extraction method utilizing an ultrasonic-assisted natural deep eutectic solvent (UAE-NADES) was developed for the extraction of anthocyanins from Vitis davidii Foex. A screening process was conducted to evaluate seven different NADESs, resulting in the selection of a high-efficiency NADES (choline chloride-glycerol (ChGly)). To analyze the influence of significant factors and their interactive effects on the total anthocyanin content (TAC), response surface methodology (RSM) was employed. Furthermore, the conditions of extraction were optimized to attain the most productive yield of total anthocyanin content. The theoretical optimal conditions were determined to be a liquid‒solid ratio of 34.46 mL/g, an extraction temperature of 322.79 K and an ultrasonic power of 431.67 W, under which the verification TAC value (3.682 ± 0.051 mg/g) was highly consistent with the theoretical value (3.690 mg/g). Seventeen anthocyanins were identified by UPLC‒MS/MS. The contents of the main anthocyanins peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, malvidin-3-O-5-O-(6-O-coumaroyl)-diglucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside in the ChGly extracts were significantly higher than those in the acid‒alcohol extract. Stability assays showed that the stability of anthocyanins in ChGly is higher than that in acidified alcohol at higher temperature, pH and stronger illumination. In vitro antioxidant results showed that the antioxidant capacities of the compounds extracted through the use of UAE-NADES were higher than those extracted using acidified alcohol. Additionally, the thermal behavior of anthocyanin extracts was further characterized through DSC analysis, highlighting the influence of ChGly or acidic ethanol. The results indicate that UAE-NADES exhibits a significant effect on the extraction of anthocyanins from plant byproducts, suggesting that its potential for use in the food sector is considerable.
Collapse
Affiliation(s)
- Shushu Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shuhua Lin
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
| | - Juhua Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
- Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wei Liu
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| |
Collapse
|
13
|
Pusty K, Kumar Dash K, Giri S, Raj GVSB, Tiwari A, Shaikh AM, Béla K. Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. ULTRASONICS SONOCHEMISTRY 2024; 102:106762. [PMID: 38211496 PMCID: PMC10825368 DOI: 10.1016/j.ultsonch.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The present investigation studied the effect of process parameters on the extraction of phytochemicals from red cabbage by the application of ultrasonication and temperature. The solvent selected for the study was deep eutectic solvent (DES) prepared by choline chloride and citric acid. The ultrasound assisted extraction process was modeled using adaptive neuro-fuzzy inference system (ANFIS) algorithm and integrated with the genetic algorithm for optimization purposes. The independent variables that influenced the responses (total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content) were ultrasonication power, temperature, molar ratio of DES, and water content of DES. Each ANFIS model was formed by the training of three Gaussian-type membership functions (MF) for each input, trained by a hybrid algorithm with 500 epochs and linear type MF for output MF. The ANFIS model predicted each response close to the experimental data which is evident by the statistical parameters (R2>0.953 and RMSE <1.165). The integrated hybrid ANFIS-GA algorithm predicted the optimized condition for the process parameters of ultrasound assisted extraction of phytochemicals from red cabbage was found to be 252.114 W for ultrasonication power, 52.715 °C of temperature, 2.0677:1 of molar ratio of DES and 25.947 % of water content in DES solvent with maximum extraction content of responses, with fitness value 3.352. The relative deviation between the experimental and ANFIS predicted values for total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content was found to be 1.849 %, 3.495 %, 2.801 %, and 4.661 % respectively.
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India; Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - G V S Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| | - Kovács Béla
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
14
|
Yuxuan A, Xiaoqin L, Songtao L, Jinmiao T, Xiaxia F, Kaili C, Lichao Z, Zhuoyu L. Polyphenols from whole millet grain (Setaria italica) alleviate glucose and lipid homeostasis in diet-induced obese mice by increasing endogenous GLP-1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7785-7797. [PMID: 37548615 DOI: 10.1002/jsfa.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Foxtail millet (Setaria italica) is a whole millet grain that has been considered for improving the disorder of glucose and lipid metabolism. The purpose of the work is to explore the extraction and enrichment of polyphenols from foxtail millets which can regulate the disorder of glucose and lipid metabolism by increasing endogenous GLP-1 (glucagon-like peptide-1). RESULTS The optimum ultrasound-assisted extraction (UAE) of foxtail millet polyphenols (FMPs) was as follows: 70 °C and 400 W and 70% ethanol concentration, further purification using macroporous resin. In vitro, the FMP eluent of 60% ethanol (FMP-60) has the best effect in promoting GLP-1 secretion from L cells among the different active components of FMP. Millet polyphenols (MPs) were obtained from finishing foxtail millet with the bran removed by the same extraction and purification method. Compared with MP-60, FMP-60 mainly included eight active phenolic constituents and contained more ferulic acid, p-coumaric acid, 2-hydroxycinnamic acid, and coniferaldehyde. After gavage treatment of diet-induced obese (DIO) mice with FMP-60, FMP-60 promoted endogenous GLP-1 secretion in mice and ameliorated disorders of glucolipid metabolism in DIO mice. CONCLUSION FMP-60 could improve glucose homeostasis and ameliorates metabolic disease by promoting the endogenous GLP-1 level and preventing weight gain in DIO mice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- An Yuxuan
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - La Xiaoqin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Li Songtao
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Tian Jinmiao
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Fan Xiaxia
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cui Kaili
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhang Lichao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Li Zhuoyu
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
16
|
Manickam S, Camilla Boffito D, Flores EMM, Leveque JM, Pflieger R, Pollet BG, Ashokkumar M. Ultrasonics and sonochemistry: Editors' perspective. ULTRASONICS SONOCHEMISTRY 2023; 99:106540. [PMID: 37542752 PMCID: PMC10430610 DOI: 10.1016/j.ultsonch.2023.106540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Ultrasonic waves can induce physical and chemical changes in liquid media via acoustic cavitation. Various applications have benefitted from utilizing these effects, including but not limited to the synthesis of functional materials, emulsification, cleaning, and processing. Several books and review articles in the public domain cover both fundamental and applied aspects of ultrasonics and sonochemistry. The Editors of the Ultrasonics Sonochemistry journal possess diverse expertise in this field, from theoretical and experimental aspects of acoustic cavitation to materials synthesis, environmental remediation, and sonoprocessing. This article provides Editors' perspectives on various aspects of ultrasonics and sonochemistry that may benefit students and early career researchers.
Collapse
Affiliation(s)
- Sivakumar Manickam
- University of Technology Brunei, Faculty of Engineering, Gadong, Brunei Darussalam.
| | | | | | - Jean-Marc Leveque
- University Savoie Mont Blanc, Department of Sciences and Mountain Training, Le Bourget du Lac, France
| | - Rachel Pflieger
- Université Montpellier, Marcoule Institute in Separation Chemistry (ICSM), Marcoule, France
| | - Bruno G Pollet
- Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | |
Collapse
|
17
|
Liu Z. A review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. Int J Biol Macromol 2023; 242:124804. [PMID: 37182636 DOI: 10.1016/j.ijbiomac.2023.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
A large amount of vegetable-fruit-based waste (VFBW) belonging to agricultural waste is produced around the world every year, imposing a huge burden on the environment and sustainable development. VFBW contains a lot of water and useful organic compounds (e.g., cellulose, minerals, starch, proteins, organic acids, lipids, and soluble sugars). Taking into account the composition characteristics and circular economy of VFBW, many new emerging conversion technologies for the treatment of VFBW (such as hydrothermal gasification, ultrasound-assisted extraction, and synthesis of bioplastics) have been developed. This review summarizes the current literature discussing the technical parameters, process, mechanism, and characteristics of various emerging conversion methods, as well as analyzing the application, environmental impact, and bio-economy of by-products from the conversion process, to facilitate solutions to the key problems of engineering cases using these methods. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| |
Collapse
|
18
|
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, Agliata J, Li Q, Wan C, Somavat P. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. ULTRASONICS SONOCHEMISTRY 2023; 95:106418. [PMID: 37094478 PMCID: PMC10149314 DOI: 10.1016/j.ultsonch.2023.106418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Lucas Kuehnel
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Qianwei Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
19
|
Matei PL, Deleanu I, Brezoiu AM, Chira NA, Busuioc C, Isopencu G, Cîlțea-Udrescu M, Alexandrescu E, Stoica-Guzun A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023; 28:molecules28062486. [PMID: 36985462 PMCID: PMC10053259 DOI: 10.3390/molecules28062486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Ultrasound-assisted extraction (UAE) was applied to extract oil from blackberry (BB) seeds. The effect of UAE conditions on oil recovery and quality was investigated. Favorable experimental conditions (ultrasound intensity (UI), extraction temperature, and time) were investigated using response surface methodology (RSM). A Box–Behnken design was used to predict optimized conditions for BB seed oil extraction. These conditions were as follows: 13.77 W/cm2 UI, 45 °C extraction temperature, and 15 min extraction time. The experimental value obtained for extraction efficiency under optimal conditions was 87 ± 0.34%, in good agreement with the optimized predicted value. UAE does not affect the oil composition and confers higher antioxidant values in BB seed oil in comparison with Soxhlet extraction.
Collapse
Affiliation(s)
- Petronela L. Matei
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Iuliana Deleanu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ana M. Brezoiu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Nicoleta A. Chira
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gabriela Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Mihaela Cîlțea-Udrescu
- Department of Biotechnologies, Bioresources and Bioproducts for Bioeconomy, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Department of Heterogeneous Systems, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Anicuta Stoica-Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| |
Collapse
|
20
|
Yu S, Sun J, Wang Q, Wu J, Liu J. Extraction of bioactive polysaccharide from Ulva prolifera biomass waste toward potential biomedical application. Int J Biol Macromol 2023; 235:123852. [PMID: 36870648 DOI: 10.1016/j.ijbiomac.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Ulva prolifera macroalgae blooming caused by water eutrophication seriously affects the marine ecological environment. Exploring an efficient approach to turning algae biomass waste into high-value-added products is significant. The present work aimed to demonstrate the feasibility of the bioactive polysaccharide extraction from Ulva prolifera and to evaluate its potential biomedical application. A short autoclave process was proposed and optimized using the response surface methodology to extract Ulva polysaccharides (UP) with high molar mass. Our results indicated that UP with high molar mass (9.17 × 105 g/mol) and competitive radical scavenging activity (up to 53.4 %) could be effectively extracted with the assistance of Na2CO3 (1.3 %, wt.) at a solid-liquid ratio of 1/10 in 26 min. The obtained UP mainly composes of galactose (9.4 %), glucose (73.1 %), xylose (9.6 %), and mannose (4.7 %). The biocompatibility of the UP and its potential application as a bioactive ingredient in 3D cell culture has been evaluated and confirmed by confocal laser scanning microscopy and fluorescence microscope imaging inspection. This work demonstrated the feasibility of extracting bioactive sulfated polysaccharides with potential applications in biomedicine from biomass waste. Meanwhile, this work also provided an alternative solution to deal with the environmental challenges incurred by algae blooming worldwide.
Collapse
Affiliation(s)
- Sujie Yu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qianqian Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Wu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Kingdecor (Zhejiang) Co., Ltd., 20 South Tianhu road, 324022 Quzhou, Zhejiang, China.
| |
Collapse
|
21
|
Gui H, Dai J, Tian J, Jiang Q, Zhang Y, Ren G, song B, Wang M, Saiwaidoula M, Dong W, Li B. The isolation of anthocyanin monomers from blueberry pomace and their radical-scavenging mechanisms in DFT study. Food Chem 2023; 418:135872. [PMID: 37001355 DOI: 10.1016/j.foodchem.2023.135872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
This study explored the isolation of anthocyanin monomers using a medium- and high-pressure separation technique as a means to increase the added value of a by-product of the blueberry juice industry. Six anthocyanin monomers were isolated with a purity of 95% and identified as mono-galactoside, glucoside, and isomers of delphinidin, malvidin, and even malvidin-3-O-arabinoside, malvidin-3-(6″-acetyl)-O-glucoside by LC-MS and 1H NMR. Following the conformation search, the computer calculation manifested the active sites of six anthocyanins (C4'-OH) and their stabilities based on the structural and energy parameters. The DPPH tests demonstrated that delphinidin glycoside's free radical scavenging ability (89.93 ± 2.03 % and 86.50 ± 3.16 %) was significantly higher than that of malvidin (80.39 ± 1.30 % and 81.02 ± 0.45 %), and that malvidin's capacity was improved by conjugation arabinoside (87.48 ± 2.39 %) and acetylated glucoside (88.39 ± 1.37 %), which was compatible with the computer calculation.
Collapse
|
22
|
Kavuncuoglu H, Yalcin H, Dogan M. Development of (TiO2-ZnO)/LDPE based active nanocomposite films and detection of migration to minced beef during storage using response surface methodology. Food Chem 2023; 402:134278. [DOI: 10.1016/j.foodchem.2022.134278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
|
23
|
da Silva Moura M, da Silva Gomes da Costa B, Giaconia MA, de Andrade RR, Braga ARC, Braga MB. Jaboticaba powders production by freeze‐drying: Influence of octenyl succinic anhydride‐modified starch concentrations over anthocyanins and physical properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Milena da Silva Moura
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | | | | | - Rafael Ramos de Andrade
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
- Department of Biosciences Universidade Federal de São Paulo (UNIFESP) Santos SP Brazil
| | - Matheus Boeira Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| |
Collapse
|
24
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
25
|
Zhu SC, Shi MZ, Yu YL, Cao J. Optimization of mechanically assisted coamorphous dispersion extraction of hydrophobic compounds from plant tea (Citri Reticulatae Pericarpium) using water. Food Chem 2022; 393:133462. [PMID: 35751220 DOI: 10.1016/j.foodchem.2022.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to establish a novel mechanically assisted coamorphous dispersion extraction (MADE) method for the extraction of hydrophobic compounds (hesperidin, nobiletin and tangeretin) from Citri Reticulatae Pericarpium using water. The surface morphology, particle size distributions, phase states and functional groups of the coground product surface were characterized by Scanning Electron Microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The parameters affecting the efficiency of extraction method were optimized by single-factor experiments and response surface methodology. The method showed good linear relationships in the range of 1-500 μg/mL with correlation coefficients (R2) ≥ 0.9990, low limits of detection ranging from 3.0 to 28.3 ng/mL, and acceptable recoveries ranging from 87.0 to 91.0%. Therefore, the proposed MADE method is a promising, efficient and organic solvent-free method for the extraction of hydrophobic compounds from plant tea.
Collapse
Affiliation(s)
- Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
26
|
Zhang X, Wang S, Wu Q, Battino M, Giampieri F, Bai W, Tian L. Recovering high value-added anthocyanins from blueberry pomace with ultrasound-assisted extraction. Food Chem X 2022; 16:100476. [PMID: 36277868 PMCID: PMC9579799 DOI: 10.1016/j.fochx.2022.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Food waste blueberry pomace offers a high potential to recover anthocyanins. Ultrasonic-assisted extraction of anthocyanins was optimized by Box-Behnken design. The optimal parameters of ultrasonic treatment were 40 °C and 400 W for 40 min. Highly purified blueberry anthocyanins were obtained after SCX cation exchange. Malvidin was the main anthocyanins in the purified fractions from blueberry pomace.
Food waste is a potential source to replace fresh materials for obtaining functional ingredients. Blueberry pomace contains considerable amounts of anthocyanins. In this study, we investigated ultrasonic-assisted extraction (UAE) of anthocyanins from blueberry pomace. We used a Box-Behnken design (BBD) to screen and optimize the important factors influencing yield. The optimum extraction conditions were a temperature of 40 °C, an ultrasonic power of 400 W and an extraction time of 40 min. The optimum yield was 108.23 mg/100 g DW. In addition, we used a cation column to separate anthocyanins, and optimized the chromatographic conditions of HPLC to analyze and identify the main anthocyanins. Thirteen anthocyanins were found in blueberry pomace, of which Malvidin-3-Galactoside (22.65 %) was the highest. These findings provide a theoretical basis and optimized process parameters for the recovery of high value-added anthocyanins from blueberry pomace with ultrasound-assisted extraction, thus facilitating the comprehensive utilization of blueberry pomace.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Songen Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Qixia Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy,Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China,Corresponding authors.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China,Corresponding authors.
| |
Collapse
|
27
|
Effects of ultrasound-assisted Fenton treatment on structure and hypolipidemic activity of apricot polysaccharides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Acidified glycerol as a one-step efficient green extraction and preservation strategy for anthocyanin from blueberry pomace: New insights into extraction and stability protection mechanism with molecular dynamic simulation. Food Chem 2022; 390:133226. [PMID: 35597084 DOI: 10.1016/j.foodchem.2022.133226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
In present work, green and efficient glycerol solvent system was coupled with pulse-probe ultrasonication for one-step extraction and preservation of anthocyanin from blueberry pomace. Under optimal conditions (40 min, 174 W, 18.6 mL/g, 20% of glycerol fraction), extraction yield was 23.07 ± 0.09 mg C3GE/g DW. The extracted anthocyanins were characterized by UPLC-Triple-TOF/MS and 10 anthocyanins compounds were tentatively identified. Stability of anthocyanins influenced by solvents were evaluated in varying temperature, pH and light exposure conditions, demonstrating higher stability of anthocyanins in glycerol solvent system than methanol one. Furthermore, mechanism of high efficiency extraction and stability of anthocyanin using glycerol were investigated by quantum chemical calculation with molecular dynamic simulation. Larger solvent accessible surface area (127.16 nm2), hydrogen bonds number (228.16) and hydrogen bonds lifetime (4.35 ps), and lower intermolecular interaction energy (-1080.48 kJ/mol) between anthocyanin and glycerol were responsible for better extraction and preservation of anthocyanins using glycerol system.
Collapse
|
29
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Huang P, Jin W, Xu S, Jin L, Chen J, Zhang T, Mao K, Wan H, He Y. Optimization of smashing tissue and ultrasonic extraction of tanshinones and their neuroprotective effect on cerebral ischemia/reperfusion injury by inhibiting parthanatos. Food Funct 2022; 13:9658-9673. [PMID: 36040108 DOI: 10.1039/d2fo01902g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green smashing tissue and ultrasonic (STU) extraction method, which combines smashing tissue and ultrasonic-assisted extraction, was developed for the first time. The extraction of tanshinones from Salvia miltiorrhiza Bunge (SM) was taken as an example to discuss the practicability of this method. Taking the total yield of eight tanshinones as an evaluation index, response surface methodology (RSM) and artificial neural network (ANN) models were used to optimize the extraction parameters, and these two models were also compared by investigating the extract yield of tanshinones and the antioxidant activity of the obtained SM extract. The optimal STU conditions by ANN were as follows: an ethanol concentration of 73%, a liquid/solid ratio of 30 mL g-1, a smashing tissue time of 97 s and an ultrasonic time of 40 min. Under these optimal conditions, the yield of the eight components was 0.30% ± 0.12, which was greater than 0.28% ± 0.03 optimized by RSM. The IC50 values of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) of the obtained extract were 55.25 ± 3.72 μg mL-1 and 67.33 ± 2.62 μg mL-1, respectively, which were better than those of 75.49 ± 4.33 μg mL-1 and 112.10 ± 5.98 μg mL-1, respectively, optimized by RSM. Furthermore, the SM extract was found to exert neuroprotective effects by inhibiting parthanatos in middle cerebral artery occlusion/reperfusion (MCAO/R)-induced rats. The results supported the use of the SM extract, which was obtained by STU, as a potential product in the cosmetics, medicine, and food industries.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jianzhen Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Kunjun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
31
|
Javed M, Belwal T, Huang H, Xu Y, Ettoumi FE, Li L, Fang X, Luo Z. Generation and stabilization of CO 2 nanobubbles using surfactants for extraction of polyphenols from Camellia oleifera shells. J Food Sci 2022; 87:4027-4039. [PMID: 35975757 DOI: 10.1111/1750-3841.16272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Camellia oleifera shells are abundant in polyphenolic compounds. Green extraction methods of polyphenolic compounds are essential to ensure product quality, efficiency, process cost, environment, and safety. This study investigated the effect of Tween 80 and Rhamnolipid surfactants on the production and utilization of stabilized carbon dioxide nanobubbles (CO2 -NBs). The results confirmed the presence of the CO2 -NBs in ultra-pure water with a concentration of 8.45 ± 1.05 × 108 ml-1 , among which the stable CO2 -NBs possessed a mean size of 40-90 nm and a negative zeta potential (-41.6 ± 1.3 mV). Further, the efficiency of CO2 -NBs combined with ultrasonication (CO2 -NBs-Rh-UAE) was evaluated to extract polyphenols from Camellia oleifera shells (waste). The CO2 -NBs treatment with ultrasonication showed the highest total phenolic content (TPC) and total flavonoid content (TFC) (36.75 ± 0.22 mg GAE/g DW and 24.06 ± 0.22 mg RE/g DW, respectively). Overall, this study demonstrated an innovative approach for producing, stabilizing, and utilizing biosurfactant stabilized CO2 -NBs to extract polyphenolic compounds from the waste agricultural products. These findings highlighted the potential application of biosurfactant-stabilized CO2 -NBs.
Collapse
Affiliation(s)
- Miral Javed
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Hao Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China.,Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xuezhi Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China.,Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Ultrasound-Assisted Extraction of Anthocyanins from Malus ‘Royalty’ Fruits: Optimization, Separation, and Antitumor Activity. Molecules 2022; 27:molecules27134299. [PMID: 35807546 PMCID: PMC9268470 DOI: 10.3390/molecules27134299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Red Malus ‘Royalty’ fruits are rich in anthocyanins. This study aimed to obtain the optimal parameters for the extraction and separation of anthocyanins from Malus ‘Royalty’ fruits and to evaluate the inhibitory effect of the enriched anthocyanin fraction on gastric cancer cells. Ultrasonic-assisted extraction was used for the extraction of the anthocyanins of Malus ‘Royalty’ fruit, and the extraction results showed that the optimum parameters were an extraction temperature of 20 °C, a solid–liquid ratio of 1:6 (g/mL), ethanol and formic acid contents of 70% and 0.4%, respectively, an extraction time of 40 min, and an ultrasonic power of 300 W. The optimum extraction parameters to achieve the highest anthocyanin yield by a single-factor experiment coupled with response surface methodology were identified. The separation results showed that the AB-8 macroporous resin was a better purifying material, with 60% ethanol as an adsorbent, and the adsorption–desorption equilibrium times were 6 h and 1 h, respectively. Cyanidin-3-galactoside was the main body composition separation of anthocyanins by a high-performance liquid chromatography-diode array detector. The antitumor activity results showed that the anthocyanins of Malus ‘Royalty’ fruits have a significant inhibitory effect on the gastric cancer cell line BGC-803. The in vitro cell viability test of CCK-8 showed that the inhibitory effect on tumor cells was more significant with the increased anthocyanin concentration, with a half maximal inhibitory concentration (IC50) value of 105.5 μg/mL. The cell morphology was observed by an inverted microscope, and it was found that the backbone of BGC-803 treated with a high concentration of anthocyanins was disintegrated and the nucleoplasm was concentrated. The mechanism of apoptosis was analyzed by Western blotting, and the results showed that with increasing anthocyanin concentration in the medium, the expression levels of the proapoptotic proteins Bax and Bak increased, and the expression levels of the antiapoptotic proteins Bcl-2 and Bcl-xL decreased, which coordinated the regulation of cell apoptosis. This research suggests that the enriched anthocyanin fraction from Malus ‘Royalty’ fruits have potential antitumor and adjuvant therapeutic effects on gastric cancer.
Collapse
|
33
|
Huang H, Zhu Y, Fu X, Zou Y, Li Q, Luo Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem 2022; 380:132216. [DOI: 10.1016/j.foodchem.2022.132216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
34
|
Cui T, Li J, Li N, Li F, Song Y, Li L. Optimization of ultrasonic-assisted extraction of arbutin from pear fruitlets using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Javed M, Belwal T, Ruyuan Z, Xu Y, Li L, Luo Z. Optimization and Mechanism of Phytochemicals Extraction from Camellia Oleifera Shells Using Novel Biosurfactant Nanobubbles Solution Coupled with Ultrasonication. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
He S, Wang X, Chen J, Li X, Gu W, Zhang F, Cao G, Yu J. Optimization of the Ultrasonic-Assisted Extraction Technology of Steroidal Saponins from Polygonatum kingianum Collett & Hemsl and Evaluating Its Quality Planted in Different Areas. Molecules 2022; 27:1463. [PMID: 35268565 PMCID: PMC8911577 DOI: 10.3390/molecules27051463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonatum kingianum Collett & Hemsl is one of the famous traditional Chinese herbs with satisfactory therapeutic effects on invigorating Qi, nourishing Yin and moistening lungs, in which steroidal saponins are one class of important active substances. The main purpose is to determine the optimal extraction technology of steroidal saponins and evaluate the quality of P. kingianum planted in five different areas. The optimal ultrasonic-assisted extraction (UAE) technology was established by using single-factor experiments and the response surface methodology (RSM), and the determination method of high-performance liquid chromatography (HPLC) for dioscin and diosgenin, two primary types of acid-hydrolyzed steroidal saponins, was constructed with good linear range and precision. The results showed that UAE was an efficient extraction method for steroidal saponins, and the extraction yield was significantly affected by the liquid-solid ratio. The optimal extraction technology was generated following a liquid-solid ratio of 10:1 (mL/g), an ethanol concentration of 85% (v/v), an extraction time of 75 min, an extraction temperature of 50 °C and three extractions, of which these parameters were in line with the predicted values calculated by RSM. Considering only dioscin and diosgenin, the quality of P. kingianum planted at five sample plots presented non-significant difference. However, the content of diosgenin in Pingbian Prefecture (PB) was higher than that of the other four areas with a value of 0.46 mg/g. Taken together, the optimal UAE technology for P. kingianum steroidal saponins was determined via RSM. The quality evaluation revealed that there was a non-significant difference among P. kingianum planted in different areas based on the contents of the sum of dioscin and diosgenin. This work has important reference value for the exploitation and utilization of P. kingianum.
Collapse
Affiliation(s)
- Sen He
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
- Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xifu Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| | - Jiaqiang Chen
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| | - Xiaogang Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| | - Wen Gu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| | - Fan Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| | - Guanhua Cao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
- Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jie Yu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.H.); (X.W.); (J.C.); (X.L.); (W.G.); (F.Z.)
| |
Collapse
|
37
|
Shen D, Labreche F, Wu C, Fan G, Li T, Dou J, Zhu J. Ultrasound-assisted adsorption/desorption of jujube peel flavonoids using macroporous resins. Food Chem 2022; 368:130800. [PMID: 34403997 DOI: 10.1016/j.foodchem.2021.130800] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
The work explored the process of ultrasound-assisted adsorption/desorption to efficiently purify jujube peel flavonoids (JPFs) using macroporous resins (MRs). The impact of ultrasound power and temperature on the adsorption/desorption features of JPFs on MRs were studied. The maximum adsorption (80.21 ± 2.11 mg/g) /desorption (76.22 ± 1.68 mg/g) capacity of total flavonoids content were obtained. The pseudo-second-order kinetic and Freundlich isotherm models better described the whole process of ultrasound-assisted adsorption. The adsorption process was spontaneous, physical, and dominated by multilinear intraparticle diffusion. Ultrasound mainly enhanced the adsorption capacity by strengthening the formation of hydrogen bonds and increasing the surface roughness of MRs. Besides, the principal individual flavonoid ((+)-Catechin, (-)-Epicatechin, Rutin, Quercetin-3-O-robinobioside) content of JPFs in ultrasound treatment was 2-3 times that of shaking treatment, and biological activities were significantly increased. Overall, as a low-cost green technology, ultrasound can improve the properties of MRs and better purify JPFs.
Collapse
Affiliation(s)
- Dongbei Shen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Faiza Labreche
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinfeng Dou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
38
|
Yeasmen N, Orsat V. Green extraction and characterization of leaves phenolic compounds: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-39. [PMID: 34904469 DOI: 10.1080/10408398.2021.2013771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although containing significant levels of phenolic compounds (PCs), leaves biomass coming from either forest, agriculture, or the processing industry are considered as waste, which upon disposal, brings in environmental issues. As the demand for PCs in functional food, pharmaceutical, nutraceutical and cosmetic sector is escalating day by day, recovering PCs from leaves biomass would solve both the waste disposal problem while ensuring a valuable "societal health" ingredient thus highly contributing to a sustainable food chain from both economic and environmental perspectives. In our search for environmentally benign, efficient, and cost-cutting techniques for the extraction of PCs, green extraction (GE) is presenting itself as the best option in modern industrial processing. This current review aims to highlight the recent progress, constraints, legislative framework, and future directions in GE and characterization of PCs from leaves, concentrating particularly on five plant species (tea, moringa, stevia, sea buckthorn, and pistacia) based on the screened journals that precisely showed improvements in extraction efficiency along with maintaining extract quality. This overview will serve researchers and relevant industries engaged in the development of suitable techniques for the extraction of PCs with increasing yield.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Quebec, Canada.,Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
39
|
Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Evaluation of the Antioxidant Activity, Deodorizing Effect, and Antibacterial Activity of 'Porotan' Chestnut By-Products and Establishment of a Compound Paper. Foods 2021; 10:foods10051141. [PMID: 34065309 PMCID: PMC8161069 DOI: 10.3390/foods10051141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Chestnuts are widely cultivated for their edible portion (kernel), whereas the non-edible parts are discarded. To enable the utilization of the by-products of processed chestnuts, we separated them into green and brown burs, shells, inner skin, and leaves, and analyzed the bioactive properties of the ground components. We also created a composite paper, comprising the inner skin, and examined its deodorant properties. It was revealed that the inner skin had the highest functionality and showed potent antioxidant, antibacterial, and deodorant properties. Furthermore, when we produced a paper, containing 60% inner skin, and examined its deodorant properties, we found that it was highly effective in deodorizing ammonia and acetic acid gases. These results show that the inner skin of chestnuts is a promising material for developing hygiene and other products.
Collapse
|
41
|
Pascoalino LA, Reis FS, Prieto MA, Barreira JCM, Ferreira ICFR, Barros L. Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules 2021; 26:molecules26092624. [PMID: 33946249 PMCID: PMC8124571 DOI: 10.3390/molecules26092624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.
Collapse
Affiliation(s)
- Liege A. Pascoalino
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| |
Collapse
|
42
|
Fu X, Wang D, Belwal T, Xu Y, Li L, Luo Z. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chem 2021; 355:129577. [PMID: 33799236 DOI: 10.1016/j.foodchem.2021.129577] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
An excellent high-efficiency natural deep eutectic solvent (NADES, ChCl-MA) was screened out and integrated with pulse-ultrasonication technique for extracting phenolic compounds from Carya cathayensis Sarg. peels (CCSPs). Single factor experiment combined with response surface methodology (RSM) using Box-Behnken design (BBD) were employed to investigate significant factors and optimize their influence on extraction of phenolic compounds. Significant synergistic effect triggered by ChCl-MA based pulse-ultrasonication over other methods used alone were proved by comparative study concerning a variety of bioactive components and antioxidant activities. The second-order kinetic model was developed and validated (R2 > 0.99) to describe the extraction process and its mechanism; and second-order kinetic extraction rate constant (k), saturation concentration (Cs), and initial extraction rate (h) were calculated. FT-IR, DSC and SEM results further demonstrated synergistic effect and influence during extraction. Overall, this study provided a green and high-efficiency alternative for the recovery of various phenolics compounds from plant source by-products.
Collapse
Affiliation(s)
- Xizhe Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, University, Hangzhou, People's Republic of China
| | - Di Wang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, University, Hangzhou, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, University, Hangzhou, People's Republic of China.
| | - Yanqun Xu
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, University, Hangzhou, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang, University, Hangzhou, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China; Fuli Institute of Food Science, Hangzhou, People's Republic of China.
| |
Collapse
|
43
|
Liang Z, Liang H, Guo Y, Yang D. Cyanidin 3- O-galactoside: A Natural Compound with Multiple Health Benefits. Int J Mol Sci 2021; 22:ijms22052261. [PMID: 33668383 PMCID: PMC7956414 DOI: 10.3390/ijms22052261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) is one of the most widespread anthocyanins that positively impacts the health of animals and humans. Since it is available from a wide range of natural sources, such as fruits (apples and berries in particular), substantial studies were performed to investigate its biosynthesis, chemical stability, natural occurrences and content, extraction methods, physiological functions, as well as potential applications. In this review, we focus on presenting the previous studies on the abovementioned aspects of Cy3Gal. As a conclusion, Cy3Gal shares a common biosynthesis pathway and analogous stability with other anthocyanins. Galactosyltransferase utilizing uridine diphosphate galactose (UDP-galactose) and cyanidin as substrates is unique for Cy3Gal biosynthesis. Extraction employing different methods reveals chokeberry as the most practical natural source for mass-production of this compound. The antioxidant properties and other health effects, including anti-inflammatory, anticancer, antidiabetic, anti-toxicity, cardiovascular, and nervous protective capacities, are highlighted in purified Cy3Gal and in its combination with other polyphenols. These unique properties of Cy3Gal are discussed and compared with other anthocyanins with related structure for an in-depth evaluation of its potential value as food additives or health supplement. Emphasis is laid on the description of its physiological functions confirmed via various approaches.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Yizhan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-10-6273-7129
| |
Collapse
|
44
|
UPLC-ESI-MS/MS Analysis and Evaluation of Antioxidant Activity of Total Flavonoid Extract from Paeonia lactiflora Seed Peel and Optimization by Response Surface Methodology (RSM). BIOMED RESEARCH INTERNATIONAL 2021; 2021:7304107. [PMID: 33681378 PMCID: PMC7906810 DOI: 10.1155/2021/7304107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023]
Abstract
In this study, the ultrasound-assisted extraction (UAE) of flavonoid from Paeonia lactiflora seed peel was optimized by response surface methodology (RSM). Single-factor experiments and a three-factor three-level Box-Behnken design (BBD) were performed to explore the effects of the following parameters on flavonoid extraction: ethanol concentration (X1), liquid-solid ratio (X2), and ultrasonic time (X3). The results showed that the optimal flavonoid yield (10.9045 mg RE/g) was as follows: ethanol concentration 62.93%, ultrasonic time 64.56 min, and liquid-solid ratio 24.86 mL/g. The optimized extract of P. lactiflora seed shell was further analyzed by UPLC-ESI-MS/MS, and 20 main flavonoids were identified and quantified, among which protocatechuic acid, vanillic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzaldehyde had the highest content. Furthermore, the results of the antioxidant test showed that the P. lactiflora seed peel extract obtained under optimized UAE conditions exhibited good antioxidant activity. The experimental results showed that ultrasound-assisted extraction was a fast, efficient, and simple method for extracting active ingredients from P. lactiflora seed peel, thereby making this byproduct a promising source of compounds in food and healthcare sectors.
Collapse
|
45
|
Nekkaa A, Benaissa A, Mutelet F, Canabady-Rochelle L. Rhamnusalaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants (Basel) 2021; 10:300. [PMID: 33669348 PMCID: PMC7920288 DOI: 10.3390/antiox10020300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Rhamnus alaternus, is a wild-growing shrub, belonging to the Rhamnaceae family. Widely distributed in the Mediterranean basin, R. alaternus is used in the usual medicine in numerous countries, mostly Tunisia, Algeria, Morocco, Spain, France, Italy, and Croatia. A large number of disorders-including dermatological complications, diabetes, hepatitis, and goiter problems-can be treated by the various parts of R. alaternus (i.e., roots, bark, berries, and leaves). Several bioactive compounds were isolated from R. alaternus, including flavonoids, anthocyanins, and anthraquinones, and showed several effects such as antioxidant, antihyperlipidemic, antigenotoxic, antimutagenic, antimicrobial, and antiproliferative. This review summarizes the updated information concerning the botanical description, distribution, extraction processes applied on R. alaternus, and its ethnopharmacology, toxicity, phytochemistry, and pharmacological effects.
Collapse
Affiliation(s)
- Amine Nekkaa
- Process Engineering Laboratory for Sustainable Development and Health Products, Department of Process Engineering, National Polytechnic School of Constantine—Malek Bennabi, Constantine 25000, Algeria
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Akila Benaissa
- Laboratory of Process Engineering for the Environment (LIPE), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider University, Constantine 3, Constantine 25000, Algeria;
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | | |
Collapse
|
46
|
Li J, Cui Y, Liu D, Li M, Gao J, Ye J. Development of a sample pretreatment device integrating ultrasonication, centrifugation and ultrafiltration, its application on rapid on-site screening of illegally added chemical components in heat-clearing, detoxicating Chinese patent medicines followed by electrospray ionization-ion mobility spectrometry. J Pharm Biomed Anal 2020; 194:113767. [PMID: 33279301 DOI: 10.1016/j.jpba.2020.113767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022]
Abstract
In this paper, a simple and rapid sample pretreatment device integrating ultrasonication, centrifugation and ultrafiltration (UCU) was reported for preparation of trace analytes in complex matrices. The UCU device was composed of two parts, A and B. The sample and extraction solvent were put into Part B for ultrasonic extraction. Subsequently, Part A and Part B were integrated and sealed for centrifugation and ultrafiltration. Finally, the ultrafiltrate in Part A was taken out for subsequent detection. After optimization, the device was applied to rapid on-site screening of five illegally added chemical components in heat-clearing and detoxicating Chinese patent medicines by combining with electrospray ionization-ion mobility spectrometry (ESI-IMS). The method showed good performance in terms of linearity with correlation coefficients (R2) above 0.9976 and limits of detection (LODs) in the range of 0.049-0.391 μg mL-1. The recoveries were from 96.5 % to 100.8 %. The whole analysis process was within 11 min. The proposed method was further compared with other methods reported in the literature and the advantages and considerations were also explored. The results demonstrated that it was a simple, fast and accurate technique. The establishment of this method not only greatly improved the experimental efficiency but also avoided potential sample pollution brought by multiple sample transfer, and could provide a powerful means for rapid on-site analysis of trace analytes in complex matrices.
Collapse
Affiliation(s)
- Junmei Li
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yixuan Cui
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Di Liu
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Mengjiao Li
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jinglin Gao
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiang Ye
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China.
| |
Collapse
|
47
|
Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods 2020; 9:foods9101409. [PMID: 33020421 PMCID: PMC7599779 DOI: 10.3390/foods9101409] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Raspberries have been reported to contain abundant anthocyanins and other active compounds. To extract anthocyanins from raspberries more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this paper. The extraction process was optimized by response surface methodology coupled with a genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins 1.378 ± 0.009 mg/g from raspberry powder via UADESE were obtained at a water content of 29%, ultrasonic power of 210 W, extraction temperature of 51 °C and extraction time of 32 min. The AB-8 macroporous resin combined with the high-speed counter current chromatography (HSCCC) method were further used to isolate and purify the anthocyanins extracts obtained under optimum extraction conditions, and the structure of purified anthocyanins components were identified by UV-Visible spectrophotometer (UV-Vis), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS/MS), 1H nuclear magnetic resonance (NMR) and 13C-NMR spectra. The two anthocyanins (cyanidin-3-glucoside with a purity of 92.25% and cyanidin-3-rutinoside with a purity of 93.07%) identified were consistent with those present in raspberries. These findings provided an effective and feasible method for extraction, isolation and purification of anthocyanins from natural plant resources.
Collapse
|
48
|
Ultrasound-Assisted Extraction Optimization of α-Glucosidase Inhibitors from Ceratophyllum demersum L. and Identification of Phytochemical Profiling by HPLC-QTOF-MS/MS. Molecules 2020; 25:molecules25194507. [PMID: 33019644 PMCID: PMC7582508 DOI: 10.3390/molecules25194507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Ceratophyllum demersum L. (CDL) is a traditional Chinese herb to treat many diseases, but research on its anti-diabetic activity is not available. In this research, the α-glucosidase inhibitory ability and phytochemical constituents of CDL extract were firstly studied. Optimal ultrasound-assisted extraction conditions for α-glucosidase inhibitors (AGIs) were optimized by single factor experiment and response surface methodology (RSM), which was confirmed as 70% methanol, liquid-to-solid ratio of 43 (mL/g), extraction time of 54 min, ultrasonic power of 350 W, and extraction temperature of 40 °C. The lowest IC50 value for α-glucosidase inhibition was 0.15 mg dried material/mL (mg DM/mL), which was much lower than that of acarbose (IC50 value of 0.64 mg DM/mL). In total, 80 compounds including 8 organic acids, 11 phenolic acids, 25 flavonoids, 21 fatty acids, and 15 others were identified or tentatively identified from CDL extract by HPLC-QTOF-MS/MS analysis. The results suggested that CDL could be a potential source of α-glucosidase inhibitors. It can also provide useful phytochemical information for research into other bioactivities.
Collapse
|
49
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
50
|
Belwal T, Singh G, Jeandet P, Pandey A, Giri L, Ramola S, Bhatt ID, Venskutonis PR, Georgiev MI, Clément C, Luo Z. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol Adv 2020; 43:107600. [PMID: 32693016 DOI: 10.1016/j.biotechadv.2020.107600] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
Anthocyanins, the color compounds of plants, are known for their wide applications in food, nutraceuticals and cosmetic industry. The biosynthetic pathway of anthocyanins is well established with the identification of potential key regulatory genes, which makes it possible to modulate its production by biotechnological means. Various biotechnological systems, including use of in vitro plant cell or tissue cultures as well as microorganisms have been used for the production of anthocyanins under controlled conditions, however, a wide range of factors affects their production. In addition, metabolic engineering technologies have also used the heterologous production of anthocyanins in recombinant plants and microorganisms. However, these approaches have mostly been tested at the lab- and pilot-scales, while very few up-scaling studies have been undertaken. Various challenges and ways of investigation are proposed here to improve anthocyanin production by using the in vitro plant cell or tissue culture and metabolic engineering of plants and microbial culture systems. All these methods are capable of modulating the production of anthocyanins , which can be further utilized for pharmaceutical, cosmetics and food applications.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China.
| | - Gopal Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Aseesh Pandey
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Lalit Giri
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Sudipta Ramola
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|