1
|
Zhang Y, Xing B, Feng Q, Zhu Z, Ni X, Wang D, Li D. Fractionation on debranched waxy maize starch by gradient ethanol combined with annealing to improve in vitro digestion resistance and hydrothermal stability of type 3 resistant starch. Food Chem 2025; 480:143950. [PMID: 40120303 DOI: 10.1016/j.foodchem.2025.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Retrograded resistant starch (RS3), as a prebiotic, has attracted great attention owing to a good stability and an edible feature. This study aims to demonstrate how molecular weights, structural properties, in vitro digestibility and hydrothermal behaviors of RS3 are influenced by gradient ethanol fractionation assisted with annealing. Waxy maize dextrin (WMD) was sequentially precipitated by different volume ratios of dextrin solution to absolute ethanol in an order of 0.5:1, 1:1, and 1.5:1. RS3 prepared from WMD through tertiary precipitation (RWMD 1.5) exhibited higher resistance to digestibility and hydrothermal stability. This was attributed to the high production of slowly digestible starch (SDS, 63.1 %) and resistant starch (RS, 32.1 %), together with the highest peak temperature (101.3 °C) and gelatinization enthalpy (16.2 J/g). Moreover, RWMD 1.5 was largely formed by uniform and short WMD (weight-average molecular weight, 2.990 kDa), which thus caused the formation of homogeneous A-type crystals with ordered structures.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Postdoctoral Programme of Juxiangyuan Healthy Food (Zhongshan) Co., Ltd., 528437 Zhongshan, China
| | - Baofang Xing
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Zhiting Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Xinjing Ni
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dandan Li
- Wuhu Green Food Industry Research Institute Co., Ltd., 238300 Wuhu, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
2
|
Wang Y, Liu T, Han T, Xie J, Sun L, Zhang S, Dou B, Xin J, Quek SY, Zhang N. Construction and characterization of novel starch-oleic acid conjugates catalyzed by microwave-assisted lipase reaction. Int J Biol Macromol 2025; 306:141507. [PMID: 40015396 DOI: 10.1016/j.ijbiomac.2025.141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Corn starch and oleic acid were treated with microwave-assisted lipase catalysis under low moisture conditions. The effects of the treatments on the interaction, structural changes and binding mechanism between corn starch and oleic acid were investigated. After microwave treatment, some of the α-1,4 glycosidic bonds in corn starch were broken, causing linear starch to precipitate. The content of amylose increased from 23.40 % to 51.66 %. The structure facilitates an increase the degree of complexation. The complex index of corn starch-oleic acid complexes was 43.2 % and that of corn starch-oleic acid conjugates was 57.7 %. The structures of samples were studied using by Raman spectroscopy, X-ray diffraction, nuclear magnetic resonance carbon spectrum, and scanning electron microscopy. The results indicated that the esterification reaction promoted the complexation reaction, creating a more stable structure that was less prone to disintegration. Among them, the starch-oleic acid conjugated compounds' resistant starch content was the highest at 69.12 %. The thermal stability of the corn starch oleic acid conjugate has also increased compared to the corn starch-oleic acid complex, with ΔH increased from 26.77 % to 31.33 %. The present study confirmed that the microwave combined with lipase catalysis could produce resistant starch with a more stable structure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tianjiao Liu
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Tianyu Han
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Jinhui Xie
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Lirui Sun
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Shuai Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Boxin Dou
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China; State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Na Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China.
| |
Collapse
|
3
|
Zhiguang C, Haixia Z, Min C, Fayong G, Jing L. The fine structure of starch: a review. NPJ Sci Food 2025; 9:50. [PMID: 40210851 PMCID: PMC11985489 DOI: 10.1038/s41538-025-00414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Starch is an important renewable resource in nature. In this paper, the recent research advances in starch structure were systematically summarized from the granular and molecular levels. Meanwhile, the changes in starch multi-scale structures under different conditions were discussed. Furthermore, we redefine the growth ring structure of starch granule, and postulate a model for the fine structure of starch granule. It may provide important insights for the research of starch.
Collapse
Affiliation(s)
- Chen Zhiguang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province, 615000, China
| | - Zhong Haixia
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province, 615000, China.
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agricultural and Forestry Sciences, Qinghai University, Xichang, Qinghai Province, 810016, China.
| | - Chen Min
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province, 615000, China
| | - Gong Fayong
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province, 615000, China.
| | - Li Jing
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province, 615000, China.
| |
Collapse
|
4
|
Wang W, Liu S, Li Y, Yan J, Hu A, Zheng J. Effects of different pretreatment methods on the degree of substitution, structure, and physicochemical properties of synthesized malic acid sweet potato starch ester. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9434-9441. [PMID: 39056229 DOI: 10.1002/jsfa.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The preparation of malic acid starch ester (MSE) is mostly carried out using a high temperature method, but there are problems such as high energy consumption, long preparation time, and uneven heating. Microwave technology can be used to overcome these limitations. The semi-crystalline structure of starch granules hinders the modifier's access to the matrix, thus limiting the esterification reaction. Physical techniques can act on the interior of the starch to create a number of active sites, thereby facilitating the reaction of the starch with esterification reagents. Therefore, this study investigated the effect of starch pretreatment by microwave, heat-moisture, and ultrasonic techniques on the degree of substitution (DS), structure, and physicochemical properties of MSE synthesized by the microwave method. RESULTS The DS of MSE was increased after pretreatments. The modified starch obtained by different pretreatment methods did not show new characteristic peaks, while the MSE synthesized showed new absorption peaks near 1735 cm-1. The granular structure and morphology of the modified starch obtained by microwave and heat-moisture pretreatment were gelatinized and aggregated, while some of the starch particles of the modified starch obtained by ultrasonic pretreatment appeared pore-sized. The relative crystallinity and gelatinization enthalpy of the MSE were reduced, but the crystallization pattern remained as A-type. CONCLUSION Overall, the results suggest that various pretreatment methods can enhance the DS of MSE by disrupting the structure of starch. The findings of this study provide theoretical support for improving the DS of esterified starch. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Shiwei Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Jiatian Yan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| |
Collapse
|
5
|
Zhou L, Zheng X, Yan J, He X, McClements DJ, Qiu C, Dai L, Sun Q. Preparation of debranched starch with high thermal stability and crystallinity using a novel thermal cycling treatment. Carbohydr Polym 2024; 345:122583. [PMID: 39227111 DOI: 10.1016/j.carbpol.2024.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Herein, the effects of temperature cycling (4 °C/50 °C/100 °C) on the recrystallization, physicochemical properties, and digestibility of debranched starch (DBS) were investigated. Temperature cycling involved heating DBS to 100 °C to dissociate weak heat-sensitive crystalline structures and cooling to 4 °C to induce the rapid growth of crystal nuclei, followed by maintaining the temperature at 50 °C to promote orderly crystalline growth. This procedure aimed to increase the degree of crystalline structure in recrystallized DBS, thereby resulting in DBS that was heat- and digestion-resistant. Temperature cycling increased the dissociation temperature of DBS, and temperatures of up to 114.8 °C were attained after five cycling times. With increasing cycles, the crystalline structure of DBS transitioned from B-type to the more robust and compact A-type, and the crystallinity increased to ∼81.9 % (after seven cycles). Raman and Fourier transform infrared (FTIR) spectra indicated that temperature cycling enhanced the short-range ordered structure of DBS. Moreover, in vitro digestion experiments demonstrated that the resistant starch content of DBS increased to ∼61.9 % after eight cycles. To summarize, this study demonstrated a green and effective method for preparing heat-and digestion-resistant recrystallized DBS, which can be used for developing dietary supplements and low gastrointestinal staples.
Collapse
Affiliation(s)
- Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Xiyin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Jiahui Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China.
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
6
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
7
|
Cai Z, Jiang Y, Wang F, Liu J, Kan J, Zhang M, Qi X, Li L, Zhao S, Qian C. Study on Quality and Starch Characteristics of Powdery and Crispy Lotus Roots. Foods 2024; 13:3335. [PMID: 39456398 PMCID: PMC11507608 DOI: 10.3390/foods13203335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nine varieties of lotus root (Suining, Xinhe, Zaohua, Zhonghua, L0014, L0013, Cuiyu, L0011, and Zhenzhu) were selected as the research materials to compare their differences in physical, chemical, and starch characteristics before and after boiling, frying, and microwaving. The results showed that Zhenzhu, Xinhe, L0013, Cuiyu, and Zhonghua belong to the crispy lotus root type, while L0011, L0014, Zaohua, and Suining belong to the powdery lotus root type. Furthermore, the nine varieties were characterized for their starch by optical micrograph (OM), polarized micrograph (PM), scanning electron micrograph (SEM), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), carbon-13 cross-polarization/magic angle spinning nuclear magnetic resonance (13C CP/MAS NMR), and differential scanning calorimetry (DSC). The starch granule of powdery lotus root appeared to be larger than that of crispy lotus, and ATR-FTIR studies revealed that the outer layer of starch granules from nine different varieties of lotus root had a highly organized structure. Moreover, XRD and 13C CP/MAS NMR analyses revealed that starch from eight lotus varieties (Suining, Xinhe, Zaohua, Zhonghua, L0014, L0013, Cuiyu, L0011) belong to the A-crystal type, while starch from Zhenzhu belongs to the CA-crystal type. The starch from powdery lotus root exhibited higher crystallinity, as well as increased gelatinization temperature and enthalpy, indicating that its crystal structure was relatively superior compared to that of crispy lotus starch. The short-range order degree, crystallinity, gelatinization temperature, and heat enthalpy of lotus starch decreased after boiling and frying but increased to varying extents after microwaving. Additionally, the heat resistance and stability of starch particles from crispy lotus root were improved after microwave treatment.
Collapse
Affiliation(s)
- Zichen Cai
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Yaying Jiang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Fei Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Jun Liu
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Juan Kan
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Man Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| | - Xiaohua Qi
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.Q.); (L.L.); (S.Z.)
| | - Liangjun Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.Q.); (L.L.); (S.Z.)
| | - Shuping Zhao
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.Q.); (L.L.); (S.Z.)
| | - Chunlu Qian
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.C.); (Y.J.); (F.W.); (J.L.); (J.K.); (M.Z.)
| |
Collapse
|
8
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
9
|
Zhao Y, Tu D, Wang D, Xu J, Zhuang W, Wu F, Tian Y. Structural and property changes of starch derivatives under microwave field: A review. Int J Biol Macromol 2024; 256:128465. [PMID: 38029893 DOI: 10.1016/j.ijbiomac.2023.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Native starches are commonly modified for desired properties because of their limited applications. Among various modifications, microwave irradiation has been gaining strong interests and becoming a focal area to transform starch during the last few years. Such interests reside in microwave irradiation's high heating rates, lesser extent of loss in nutritional qualities, and so on when compared with other approaches. This review summaries the effects of microwave field on the structural (e.g. morphology characteristic, lamellae structure, crystallinity, and molecular structure) and physicochemical properties (e.g. pasting properties and gelatinization) of naturally existing starch derivatives. Different microwave-assisted chemical derivatizations can directly or indirectly affect starch structure from the macroscopic to the microscopic level, thereby resulting in various functionalities. Moreover, conventional starch modification processes can be optimized by applying microwave irradiation to obtain modified starch with high degree of substitution and low viscosity. The future research will help to better understand the structural changes of microwave-assisted starch chemical derivatization and thereby creating a wide range of functionalities.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Fuhan Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
11
|
Zhang W, Bao Y, Li HT. Altering structure and enzymatic resistance of high-amylose maize starch by irradiative depolymerization and annealing with palmitic acid as V-type inclusion compound. Carbohydr Polym 2023; 322:121343. [PMID: 37839846 DOI: 10.1016/j.carbpol.2023.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
This study explored a new physical modification approach to regulate enzymatic resistance of high-amylose starch for potentially better nutritional outcomes. High-amylose maize starch (HAMS) was subjected to chain depolymerization by electron beam irradiation (EBI), followed by inducing ordered structure through annealing in palmitic acid solution (APAS). APAS treatment significantly promotes the formation of ordered structure. Starch after the combinative modification showed up to 5.2 % increase in total crystallinity and up to 1.2 % increase in V-type fraction. The EBI-APAS modification led to increased gelatinization temperature (from 66.1 to 87.6 °C) and reduced final digested percentage under in vitro stimulated digestion conditions. The moderate extent of depolymerization resulted in higher enzymatic resistance, indicating that the extent of depolymerization is crucial in EBI-APAS modification. Pearson analysis showed a significant correlation between gelatinization onset temperature and digestion kinetic parameter (k1, rate constant of fast-phase digestion). Overall, the result suggests that ordered structures of degraded molecules induced by the combinative modification contribute to the enzymatic resistance of starch. This study sheds lights on future applications of EBI-APAS approach to regulate multi-scale structures and nutritional values of high-amylose starch.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
12
|
Zhuang W, Zheng S, Chen F, Gao S, Zhong M, Zheng B. Effects of Tremella fuciformis Mushroom Polysaccharides on Structure, Pasting, and Thermal Properties of Chinese Chestnuts ( Castanea henryi) Starch Granules under Different Freeze-Thaw Cycles. Foods 2023; 12:4118. [PMID: 38002176 PMCID: PMC10670311 DOI: 10.3390/foods12224118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the effect of Tremella fuciformis polysaccharides on the physicochemical properties of freeze-thawed cone chestnut starch. Various aspects, including water content, crystallinity, particle size, gelatinization, retrogradation, thermal properties, rheological properties, and texture, were examined. The results revealed that moderate freezing and thawing processes increased the retrogradation of starch; particle size, viscosity, shear type, hinning degree, and hardness decreased. After adding Tremella fuciformis polysaccharide, the particle size, relative crystallinity, and gelatinization temperature decreased, which showed solid characteristics. Consequently, the inclusion of Tremella fuciformis polysaccharide effectively countered dehydration caused by freezing and thawing, reduced viscosity, and prevented the retrogradation of frozen-thawed chestnut starch. Moreover, Tremella fuciformis polysaccharide played a significant role in enhancing the stability of the frozen-thawed chestnut starch. These findings highlight the potential benefits of incorporating Tremella fuciformis polysaccharides in starch-based products subjected to freeze-thaw cycles.
Collapse
Affiliation(s)
- Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Chen
- College of Modern Agricultural Technology, Fujian Vocational College of Agriculture, Fuzhou 350119, China;
| | - Shujuan Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Liu W, McClements DJ, Peng X, Jin Z, Chen L. Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Crit Rev Food Sci Nutr 2023; 65:612-626. [PMID: 37933826 DOI: 10.1080/10408398.2023.2278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Liang W, Zheng J, Liu X, Zhao W, Lin Q, Khamiddolov T, Zeng J, Gao H, Li W. Insight into how E-beam pretreatment promotes sodium hypochlorite oxidation for structure-property improvement of cassava starch: A molecular-level modulation mechanism. Food Res Int 2023; 173:113246. [PMID: 37803559 DOI: 10.1016/j.foodres.2023.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
To investigate the role of E-beam treatment on the structure-properties of oxidized starch, this study investigated the influence of E-beam (1, 3, 6 kGy) pretreatment combined with NaClO oxidation (1% and 3%) on the multi-scale structural, physicochemical, and digestive properties of cassava starch. Results showed that E-beam treatment did not affect the starch surface, but the oxidative modification increased granule surface roughness. Also, the synergistic modification preserved starch growth rings, FT-IR patterns and crystal types. Further investigations revealed that E-beam induced starch molecular degradation, leading to decreased molecular weight, depolymerization of long chains, and a loss of short-range order. Moreover, oxidation treatment exacerbated the disruption in starch molecular structure, as evidenced by crystallinity loss, viscosity, and enthalpy reduction. Notably, E-beam induces starch yellowing; however, oxidative modification increases starch whiteness. Additionally, the synergistic modification improved native starch's lower solubility and enhanced the resistant starch content. Results suggest that E-beam pretreatment can enhance oxidative modification by promoting the exposure of active sites of starch molecules without destroying starch structure and can be considered an advanced, green, and efficient pretreatment for modified starch in the future.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Temirlan Khamiddolov
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
15
|
Rostamabadi H, Demirkesen I, Hakgüder Taze B, Can Karaca A, Habib M, Jan K, Bashir K, Nemțanu MR, Colussi R, Reza Falsafi S. Ionizing and nonionizing radiations can change physicochemical, technofunctional, and nutritional attributes of starch. Food Chem X 2023; 19:100771. [PMID: 37780299 PMCID: PMC10534100 DOI: 10.1016/j.fochx.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Bengi Hakgüder Taze
- Usak University, Faculty of Engineering, Department of Food Engineering 1 Eylul Campus, 64000 Usak, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Monica R. Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Campus Universitário, s/n, 96010-900, Pelotas, RS, Brazil
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Sun Z, Sun X, Ge X, Lu Y, Zhang X, Shen H, Yu X, Zeng J, Gao H, Li W. Structural, rheological, pasting, and digestive properties of wheat A-starch: Effect of outshell removal combined with annealing. Int J Biol Macromol 2023:125401. [PMID: 37331531 DOI: 10.1016/j.ijbiomac.2023.125401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Wheat A- starch was subjected to single and combined CaCl2 and annealing (ANN) treatments. The influence of the treatment on wheat A- starch's structural, rheological, pasting, and digestive characteristics were studied. The results indicated that the application of CaCl2 treatment caused the removal of the outer layer of wheat A-starch, disrupted the integrity of the growth ring structure, and lowered the molecular weight of amylopectin and relative crystallinity. Meanwhile, the application of outshell removal combined with ANN treatment led to significant damage to the starch granules, resulting in a marked reduction in relative crystallinity, as well as the molecular weight of amylopectin and amylose. However, no changes were found in the non-Newtonian pseudoplastic behavior of starch after single or combined treatments. Furthermore, the combination of outshell removal and annealing treatment resulted in a decreased peak viscosity as well as trough viscosity of starch. Moreover, long-time ANN treatment had the potential to improve the resistant starch (RS) content of deshell starch.
Collapse
Affiliation(s)
- Zhuangzhuang Sun
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangxiang Sun
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yifan Lu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiuyun Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
17
|
Zhang G, Xuan Y, Lyu F, Ding Y. Microstructural, physicochemical properties and starch digestibility of brown rice flour treated with extrusion and heat moisture. Int J Biol Macromol 2023; 242:124594. [PMID: 37116848 DOI: 10.1016/j.ijbiomac.2023.124594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Effects of heat moisture treatment (HMT), extrusion treatment (ET), and the combination treatment (HMT-ET) on microstructural, physicochemical properties, and starch digestibility of brown rice flour (BRF) were investigated. With a rise in resistant starch (RS), melting temperature, and a decrease in swelling capacity (SC), peak viscosity, and apparent amylose content (AAC), the HMT-ET BRF showed a significant lower expected glycemic index (eGI) than HMT and ET. XRD and FTIR results showed ET, HMT-ET caused the transition of starch crystals from amorphous to crystalline region, suggesting the formation of the starch-lipid complex. The analysis of DSC and RVA proved HMT-ET flours induced starch gelatinization and inhibited the starch retrogradation of BRF compared with the other three flours. Correlation analysis suggested that the combined effect of HMT and ET was response for the changes in physicochemical properties and reduction of in vitro starch digestibility. Overall, the BRF after HMT-ET with improved physicochemical properties and starch digestibility could be better utilized as a good substitute for carbohydrate sources.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Xuan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
18
|
Sun X, Sun Z, Saleh AS, Lu Y, Zhang X, Ge X, Shen H, Yu X, Li W. Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chem 2023; 405:134837. [DOI: 10.1016/j.foodchem.2022.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
19
|
Li Z, Kong H, Li Z, Gu Z, Ban X, Hong Y, Cheng L, Li C. Designing liquefaction and saccharification processes of highly concentrated starch slurry: Challenges and recent advances. Compr Rev Food Sci Food Saf 2023; 22:1597-1612. [PMID: 36789798 DOI: 10.1111/1541-4337.13122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Starch-based sugars are an important group of starch derivatives used in food, medicine, chemistry, and other fields. The production of starch sugars involves starch liquefaction and saccharification processes. The production cost of starch sugars can be reduced by increasing the initial concentration of starch slurry. However, the usage of the highly concentrated starch slurry is characterized by challenges such as low reaction efficiency and poor product performance during the liquefaction and saccharification processes. In this study, we endeavored to provide a reference guide for improving high-concentration starch sugar production. Thus, we reviewed the effects of substrate concentration on the starch sugar production process and summarized several potential strategies. These regulation strategies, such as physical field pretreatment, complex enzyme-assisted, and temperature control, can significantly increase the starch concentration and mitigate the challenges of using highly concentrated starch slurry. We believe that highly concentrated starch sugar production will achieve a qualitative leap in the future. This review provides theoretical guidance and highlights the importance of high concentration in starch-based sugar production. Further studies are needed to explore the fine structure and enzyme attack mode during the liquefaction and saccharification processes to regulate the production of more targeted products.
Collapse
Affiliation(s)
- Zexi Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Zhong Y, Zhang Y, Zhu Z, Wang Y, Zeng Z, Liu C. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Garske RP, Mercali GD, Thys RCS, Cladera-Olivera F. Cassava starch and chickpea flour pre-treated by microwave as a substitute for gluten-free bread additives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:53-63. [PMID: 36618054 PMCID: PMC9813335 DOI: 10.1007/s13197-022-05586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 02/06/2023]
Abstract
There is an increasing demand for gluten-free products, which are regularly made by a combination of ingredients and additives. Microwave pre-treatment of gluten-free ingredients is an alternative to food additives because it may induce changes in protein and starch functional properties. In this context, this study aimed to apply microwave treatment in cassava starch and chickpea flour, analyzing their functional and thermal properties and their ability to substitute additives in gluten-free breads, comparing them to an additive-containing bread. All formulations were analyzed regarding their physical characteristics and quality parameters. The microwave-treated ingredients showed color, thermal properties and morphology changes. The bread made with chickpea flour treated with initial moisture of 40% showed the best quality parameters when compared to the control bread. The ingredients pre-treated with microwave have shown efficiency on gluten-free bakery additives substitution, allowing the use of a clean label terminology.
Collapse
Affiliation(s)
- Raquel Pischke Garske
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Florencia Cladera-Olivera
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| |
Collapse
|
22
|
Liang W, Zhao W, Liu X, Zheng J, Sun Z, Ge X, Shen H, Ospankulova G, Muratkhan M, Li W. Understanding how electron beam irradiation doses and frequencies modify the multiscale structure, physicochemical properties, and in vitro digestibility of potato starch. Food Res Int 2022; 162:111947. [DOI: 10.1016/j.foodres.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
|
23
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
24
|
Wu J, Xu S, Huang Y, Zhang X, Liu Y, Wang H, Zhong Y, Bai L, Liu C. Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chem 2022; 386:132819. [PMID: 35366635 DOI: 10.1016/j.foodchem.2022.132819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Superheated steam (SST) at different moisture contents (10% ∼ 30%) was used to prevent the agglomeration of kudzu starch during rapid pasting with hot water. Changes in pasting-related properties and multi-scale structures were investigated. At moisture content of 20%, SST dramatically reduced the agglomeration rate from 42.20% to 2.97% without destroying the microstructure of kudzu starch or deteriorating the rheological properties of kudzu starch paste, which was superior to the conventional pre-gelatinization treatment. The agglomeration was prevented mainly by decreasing the swelling power and increasing the pasting temperature of kudzu starch. The slight disruption of multi-scale structures may facilitate faster water absorption by kudzu starch, but it was not the primary prevention mechanism. Moreover, the solubility of kudzu starch was not related to the agglomeration, since it was significantly decreased by SST. Our findings could provide new insights into the rapid pasting of starchy powders or flours with hot water.
Collapse
Affiliation(s)
- Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shunqian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ying Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China
| | - Haoqiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yejun Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
25
|
Physicochemical, Pasting Properties and In Vitro Starch Digestion of Chinese Yam Flours as Affected by Microwave Freeze-Drying. Foods 2022; 11:foods11152324. [PMID: 35954090 PMCID: PMC9368656 DOI: 10.3390/foods11152324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Microwave freeze-drying (MFD) is a new freeze-drying technique, which differs from single microwave treatment; it involves simultaneous effects of microwave power, time, and the moisture state applied to the materials. In this study, the effects of MFD under various microwave power densities (0.5, 1.0, and 1.5 W/g) on the drying characteristics of Chinese yam slices and the physicochemical, pasting, and thermal properties as well as the starch digestibility of the flour were investigated using conventional hot air drying (HAD) at 50 °C as a control. Compared to HAD, MFD shortened the drying time up to 14.29~35.71%, with a higher drying efficiency at a high microwave power density (1.5 W/g). MFD yam flours provided benefits over HAD products in terms of color, water/oil absorption capacity, and solubility, exhibiting high hot-paste viscosity but low resistant starch content. The content of total starch and free glucose of the yam flour and its iodine blue value were significantly influenced by the drying method and the MFD process parameters (p < 0.05). MFD processing could disrupt the short-range ordered structure of yam starch. Among the MFD flours, samples dried by MFD at 1.5 W/g presented the highest ratio of peak intensity at 1047 and 1022 cm−1 (R1047/1022) value, gelatinization enthalpy, and resistant starch content. These results gave a theoretical foundation for the novel freeze-drying method that MFD applied to foods with a high starch content, enabling the production of a product with the desired quality.
Collapse
|
26
|
Gao X, Fu C, Li M, Qi X, Jia X. Effects of Biodegradation of Corn-Starch-Sodium-Alginate-Based Liquid Mulch Film on Soil Microbial Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148631. [PMID: 35886488 PMCID: PMC9317586 DOI: 10.3390/ijerph19148631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022]
Abstract
In response to the problems of the poor degradability and mechanical properties of liquid mulch, natural non-toxic polymer compound corn starch and sodium alginate were used to prepare fully biodegradable liquid mulch. The preparation conditions of the mulch were optimized, and the mechanical properties of the mulch and the changes in the microbial community in soil with the mulch degradation were analyzed. The corn-starch–sodium-alginate-based liquid mulch film had an optimum performance at a tensile strength of 0.145 MPa and an elongation at a break of 16.05%, which was attained by adding 33.33% sodium alginate, 50% glycerol 22 and 4% citric acid to corn starch after moist heat modification. Fourier transform infrared spectroscopy analysis showed that the -COOH in sodium alginate could interact with the -OH in starch and glycerol through hydrogen bonding, thus, resulting in a denser structure and better mechanical properties of the liquid mulch as a non-crystalline material. The soil burial degradation study of mulch revealed that corn-starch–sodium-alginate-based liquid mulch degraded completely at 25 days macroscopically, and mulch degradation increased soil organic matter content. Microbial kinetic analysis showed that the abundance and diversity of the bacterial community decreased with the degradation of the mulch, which was conducive to the optimization of the bacterial community structure and function. Arthrobacter of the class Actinomycetes became the dominant microorganism, and its abundance increased by 16.48-times at 14 days of mulch degradation compared with that before degradation, and Acidophilus phylum (14 days) decreased by 99.33%. The abundance of fungal communities was elevated in relation to the main functional microorganisms involved in liquid mulch degradation, with Alternaria and Cladosporium of the Ascomycete phylum Zygomycetes being the most active at the early stage of mulch degradation (7 days), and the relative abundance of Blastocystis was significantly elevated at the late stage of mulch degradation (14 days), which increased by 13.32%. This study provides important support for the green and sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Xia Gao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chenxing Fu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.L.); (X.Q.)
| | - Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.L.); (X.Q.)
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
27
|
Pulsed light, Pulsed Electric Field and Cold plasma modification of Starches: Technological Advancements & Effects on Functional Properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Kunyanee K, Van Ngo T, Kusumawardani S, Lungsakul N. Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. ULTRASONICS SONOCHEMISTRY 2022; 87:106055. [PMID: 35667221 PMCID: PMC9168174 DOI: 10.1016/j.ultsonch.2022.106055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
White rice samples, Chai-Nat1 (CN1) and Jasmin rice (KDML105), were treated with the ultrasound-chilling (UC) and combined with annealing treatments (UC + ANN 45, UC + ANN50, and UC + ANN55). Their physicochemical properties and in vitro glycemic index of rice samples were analyzed. UC + ANN treatments presented pasting temperature, gelatinization temperature and crystallinity increased whereas the glycemic index of both rice samples was decreased as compared to its native. Especially, UC + ANN55 treated rice produced the lowest glycemic index and starch hydrolysis. Moreover, UC + ANN treated CN1 rice exhibited delayed gelatinization temperature, increased gelatinization enthalpy, and decreased glycemic index than KDML105 rice. In addition, Pearson's correlation presented that UC + ANN and amylose content had a highly negative correlation with the glycemic index at p < 0.0.1. The result exhibited that UC followed by ANN show an effective way to modify starch granules with delayed starch hydrolysis reduced glycemic index and properties depending on annealing temperature and rice cultivar.
Collapse
Affiliation(s)
- Kannika Kunyanee
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tai Van Ngo
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sandra Kusumawardani
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naphatrapi Lungsakul
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
29
|
Chen X, Zhang Z, Ji N, Li M, Wang Y, Xiong L, Sun Q. The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Li Y, Peng Z, Wu D, Shu X. Improving hydrophilicity of wheat starch via sodium dodecyl sulphate treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Li
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Zhangchi Peng
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| |
Collapse
|
31
|
Zhang Z, Zhang M, Zhang B, Wang Y, Zhao W. Radio frequency energy regulates the multi-scale structure, digestive and physicochemical properties of rice starch. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Sun X, Saleh AS, Sun Z, Ge X, Shen H, Zhang Q, Yu X, Yuan L, Li W. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Radio frequency treatment improved the slowly digestive characteristics of rice flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Mohamed IO. Effects of processing and additives on starch physicochemical and digestibility properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Zdybel E, Wilczak A, Kapelko-Żeberska M, Tomaszewska-Ciosk E, Gryszkin A, Gawrońska A, Zięba T. Physicochemical Properties and Digestion Resistance of Acetylated Starch Obtained from Annealed Starch. Polymers (Basel) 2021; 13:4141. [PMID: 34883643 PMCID: PMC8659483 DOI: 10.3390/polym13234141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
One of the examples of physical starch modifications is the retention of a starch suspension in water having a temperature slightly lower than the pasting temperature (annealing). The aim of this study was to investigate the effect of the annealing process performed at various temperatures as the first stage of starch modification. The annealed starch preparations were then esterified using acetic acid anhydride. Finally, the annealed and acetylated starch preparations were determined for their properties. The annealing of starch before acetylation triggered changes in the properties of the modified preparations. It contributed to a higher degree of starch substitution with acetic acid residues and to the increased swelling power of starch. Both these properties were also affected by the annealing temperature. The highest resistance to amylolysis was found in the case of the starch preparation annealed at 53.5 °C and acetylated. The double modification involving annealing and acetylation processes increased the onset and end pasting temperatures compared to the acetylation alone. Similar observations were made for the consistency coefficient and yield point.
Collapse
Affiliation(s)
- Ewa Zdybel
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Aleksandra Wilczak
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wrocław, Poland;
| | - Małgorzata Kapelko-Żeberska
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Ewa Tomaszewska-Ciosk
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Artur Gryszkin
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Anna Gawrońska
- Institute of Sport, Tourism and Nutrition, Faculty of Biological Sciences, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
- Institute of Sport, Tourism and Nutrition, Faculty of Biological Sciences, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| |
Collapse
|
36
|
Fonseca LM, Halal SLME, Dias ARG, Zavareze EDR. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr Polym 2021; 274:118665. [PMID: 34702484 DOI: 10.1016/j.carbpol.2021.118665] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Heat-moisture treatment (HMT) and annealing are hydrothermal starch modifications. HMT is performed using high temperature and low moisture content range, whereas annealing uses excess of water, a long period of time, and temperature above the glass transition and below the gelatinization temperature. This review focuses on: research advances; the effect of HMT and annealing on starch structure and most important properties; combined modifications; and HMT-starch and annealed-starch applications. Annealing and HMT can be performed together or combined with other modifications. These combinations contribute to new applications in different areas. The annealed and HMT-starches can be used for pasta, candy, bakery products, films, nanocrystals, and nanoparticles. HMT has been studied on starch digestibility and promising data have been reported, due to increased content of slowly digestible and resistant starches. The starch industry is in constant expansion, and modification processes increase its versatility, adapting it for different purposes in food industries.
Collapse
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Shanise Lisie Mello El Halal
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
37
|
Wang J, Jiang X, Zheng B, Zhang Y. Structural and physicochemical properties of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4157-4166. [PMID: 34538900 PMCID: PMC8405777 DOI: 10.1007/s13197-020-04881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/13/2023]
Abstract
Lotus seed (LS) has a high starch content and possesses many useful functional properties, which are mainly attributed to its phenolic compound content. The objective of this study was to investigate the effect of microwave irradiation (MW) treatment on the structural and physicochemical properties of a lotus seed starch-chlorogenic acid (CA) blend. MW treatment appeared to promote the formation of LS-CA complexes and the modified starch displayed more rougher structures than native starch. The particle size distribution of starch remained approximately constant when the microwave power was 200 W, but increased sharply with further increases in microwave power; a similar trend was observed in the swelling and solubility of starch. XRD and FT-IR spectra show that MW treatment degraded the ordered crystalline structure of starch, facilitating exposure of the starch chains originally buried in the crystalline and amorphous regions within the grains. During this treatment, CA interacted with starch molecules by hydrogen bonding and form a LS-CA complex, which inhibited the self-assembly process of starch chains. These findings demonstrated the potential use of MW treatment in controlling the storage and processing quality of lotus seed, or other starchy foods rich in polyphenols.
Collapse
Affiliation(s)
- Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
38
|
Li C, Chen X, Jin Z, Gu Z, Rao J, Chen B. Physicochemical property changes and aroma differences of fermented yellow pea flours: role of Lactobacilli and fermentation time. Food Funct 2021; 12:6950-6963. [PMID: 34137413 DOI: 10.1039/d1fo00608h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to evaluate the physicochemical properties and aroma differences of yellow pea flours fermented by five lactic acid bacteria (LAB) strains including two Lactiplantibacillus, two Lactobacillus, and one Lacticaseibacillus with different fermentation time. The cell population and the pH of pea flour slurry, as well as the proximate chemical composition, amino acids, thermal and pasting properties, surface morphology, and aromatic differences of fermented flours were characterized. The cell population of all strains except for Lactobacillus helveticus was observed to reach above 107 CFU mL-1 after 24 h of fermentation. The fermentation with Lactobacilli resulted in the increase of amino acids and ash contents, and the reduction of fat content. Rapid viscosity analysis indicated that short time (18 h) fermentation with L. helveticus drastically improved the pasting properties of the flours by facilitating starch granule expansion. The aromatic compounds of the fermented yellow pea flours were highly reliant on the strains and fermentation time. The untargeted metabolomics analysis with the aid of multivariate data analysis can discriminate the aroma differences among the fermented yellow pea flours. L. acidophilus fermentation led to the production of three aromatic compounds which may contribute to an improved aromatic profile.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
39
|
Xiao W, Shen M, Ren Y, Rong L, Liu W, Chen X, Yang J, Li J, Xie J. Mesona chinensis polysaccharides promote molecular crosslinking and gel formation of debranched waxy maize starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Effect of Thermal and Non-Thermal Processing on the Nutritional Composition, Pasting Profile and Protein Secondary Structure of Alfalfa. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Alfalfa is an unconventional alternative legume and its potentiality for utilization can be improved by processing. In this study, alfalfa seeds were processed by different thermal and non-thermal techniques and evaluated for their physical properties, colour characteristics, nutritional composition, pasting profile and protein secondary structure. The results were analyzed using Principal Component Analysis to elucidate the effect of processing. Colour of the flour was more affected by thermal processing in comparison to non-thermal processing. Nutritional composition of alfalfa flour was significantly affected by germination as compared to other methods and germinated flour showed an increase in the protein content. All the processing treatments resulted in improving the pasting properties except for germination. Particularly, marked improvement in the pasting properties was observed by wet heat processing and soaking. ATR-FTIR exhibited change in the secondary structure of the protein as a result of processing and showed the dominance of intermolecular β-sheets in extrusion, germination and microwave treated flour and formation of anti-parallel β-sheets after dry heat processing. Wet heat processing and soaking treatment can be employed for alfalfa for enhancing its techno-functionality.
Collapse
|
41
|
Vendrell Calatayud M, Alcañiz Cosín D, De los Reyes Cánovas R, Castelló Gómez ML, Ortolá Ortolá MD. Modeling of the soaking and drying stages for Senia‐type precooked rice. Cereal Chem 2021. [DOI: 10.1002/cche.10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mario Vendrell Calatayud
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
| | - Diego Alcañiz Cosín
- Institute of Food Engineering for Development Universitat Politècnica de València Valencia Spain
- MICROBIOTECH S.L. (Company) Vilamarxant Spain
| | | | | | | |
Collapse
|
42
|
Zhao X, Xu X, Jin Y, Xu D, Zhang W, Wu F. Differences in Retrogradation Characteristics of Pregelatinized Rice Starch Prepared Using Different Water Content. STARCH-STARKE 2021. [DOI: 10.1002/star.202000213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xueying Zhao
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Dan Xu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| |
Collapse
|
43
|
Zhang K, Zhao D, Guo D, Tong X, Zhang Y, Wang L. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. Int J Biol Macromol 2021; 183:481-489. [PMID: 33933544 DOI: 10.1016/j.ijbiomac.2021.04.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
In this study, the effect of microwave-ultrasound or/and toughening treatment on the physicochemical, structural properties, and in vitro digestibility of A- and B-type granules isolated from wheat starch were investigated. From the SEM, microwave-ultrasound and toughening treatment (MU-T) led to the appearance of irregular and disrupted structure significantly and an increment in the resistant starch content of A- and B-type granule. Furthermore, the MU-T starch possessed the lowest swelling power, light transmittance, and gelatinization temperature range (Tc -To) and the highest ΔH. After MU-T, the relative crystallinity (RC) of X-ray pattern, Fourier transform infrared ratio of 1047/1022 cm-1, and the content of double helix and single helix of 13C CP/MAS NMR had increased significantly. In particular, there was a difference in the content of RS and SDS between A-starch granules and B-starch granules as well as their changes after modification (from 69.305% to 82.93 for A-starch and form 74.97% to 88.17 for B-starch, respectively), which was a similar trend with RC and helix content. This study indicated that, for both A-type granule and B-type granule starches, microwave-ultrasound and toughening treated samples had unique properties compared to singly modified starches.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Di Zhao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China.
| | - Dongxu Guo
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaofeng Tong
- Henan Agricultural University, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Yun Zhang
- Henan University of Technology, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Li Wang
- School of Food Science, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
44
|
Puelles‐Román J, Barroso NG, Cruz‐Tirado JP, Tapia‐Blácido DR, Angelats‐Silva L, Barraza‐Jáuregui G, Siche R. Annealing process improves the physical, functional, thermal, and rheological properties of Andean oca (
Oxalis tuberosa
) starch. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Noadia Genuario Barroso
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Jam Pier Cruz‐Tirado
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Delia Rita Tapia‐Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto Sao Paulo Brazil
| | - Luis Angelats‐Silva
- Laboratorio de Investigación Multidisciplinaria Universidad Privada Antenor Orrego Trujillo Peru
| | | | - Raúl Siche
- Facultad de Ciencias Agropecuarias Universidad Nacional de Trujillo Trujillo Peru
| |
Collapse
|
45
|
Oyeyinka SA, Akintayo OA, Adebo OA, Kayitesi E, Njobeh PB. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int J Biol Macromol 2021; 176:87-95. [PMID: 33577814 DOI: 10.1016/j.ijbiomac.2021.02.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Native starches are unsuitable for most industrial applications. Therefore, they are modified to improve their application in the industry. Starch may be modified using enzymatic, genetic, chemical, and physical methods. Due to the demand for safe foods by consumers, researchers are focusing on the use of cheap, safe and environmentally friendly methods such as the use of physical means for starch modification. Microwave heating of starch is a promising physical method for starch modification due to its advantages such as homogeneous operation throughout the whole sample volume, shorter processing time, greater penetration depth and better product quality. More recently, the use of synergistic methods for starch modification is being encouraged because they confer better functionality on starch than single methods. This review summarizes the present knowledge on the structure and physicochemical properties of starches from different botanical origins modified using microwave heating alone and in combination with other starch modification methods.
Collapse
Affiliation(s)
- Samson A Oyeyinka
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa; Department of Food Technology, College of Industrial Technology, Bicol University, Legazpi, Philippines.
| | - Olaide A Akintayo
- Department of Home Economics and Food Science, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Eugénie Kayitesi
- Department of Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa.
| |
Collapse
|
46
|
Chang R, Lu H, Bian X, Tian Y, Jin Z. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Zhang W, Zhan Z, Wang H, Shu Z, Wang P, Zeng X. Structural, pasting and sensory properties of rice from main and ratoon crops. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1950183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Inspection and Testing Center of Weifang, Weifang, China
| | - Zhan Zhan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haoxuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Pingping Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
48
|
Oyeyinka SA, Akinware RO, Bankole AT, Njobeh PB, Kayitesi E. Influence of microwave heating and time on functional, pasting and thermal properties of cassava starch. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samson A. Oyeyinka
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus Johannesburg 17011 South Africa
- School of Agriculture and Food Technology University of South Pacific Apia Samoa
| | - Ruth O. Akinware
- Department of Home Economics and Food Science Faculty of Agriculture University of Ilorin P.M.B. 1515 Nigeria
| | - Aishat T. Bankole
- Department of Home Economics and Food Science Faculty of Agriculture University of Ilorin P.M.B. 1515 Nigeria
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus Johannesburg 17011 South Africa
| | - Eugénie Kayitesi
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| |
Collapse
|
49
|
Huang S, Wang N, Zhang Y, Zhang F, Zheng J. Physical, thermal and structural properties of rice starch as affected by the addition of bamboo shoot shell fibres. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Huang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Nan Wang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Yue Zhang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Fusheng Zhang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Jiong Zheng
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| |
Collapse
|
50
|
Hu Y, He C, Zhang M, Zhang L, Xiong H, Zhao Q. Inhibition from whey protein hydrolysate on the retrogradation of gelatinized rice starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|