1
|
Kang L, Li X, Zhao X, Liu T, Jin Y, Duan Y. Effects of L-arginine supplementation on fat deposition and meat quality in growing lambs: Interactions with gut microbiota and metabolic signalling pathways. Food Chem 2025; 479:143677. [PMID: 40081064 DOI: 10.1016/j.foodchem.2025.143677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Arginine (ARG) improves meat quality and fat deposition; however, its effects on gut microbiota-mediated lipid metabolism in lambs remain unclear. Twenty-four lambs were divided into control (fed a basal diet) and ARG groups (with 1 % ARG added). In the ARG group, backfat thickness, shear force in the longissimus thoracis (LT) muscle, and C16:0 and SFA contents in the subcutaneous adipose tissue (SAT) were reduced, whereas the eye muscle area, a* value, and intramuscular fat, C18:2n-6c, C20:4n-6, C20:5n-3, and PUFA contents in the LT were elevated. Moreover, the ARG group exhibited higher levels of Prevotella, Akkermansia, Faecalibacterium, SCFAs, and GLP-1 in the colon, and lower serum triglyceride and glucose levels. Interestingly, ARG differentially regulated lipid metabolism in the SAT and LT via the GLP-1R/AMPK and triglyceride metabolism signalling pathways. Overall, ARG addition may optimise gut microbiota composition, fat deposition, and meat quality, providing application guidance for regulating fat deposition in lambs.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xuan Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
2
|
Zhang Y, Li T, Ding X, Liu L, Ma R, Qin W, Yan C, Wang C, Zhang J, Keerman M, Niu Q. F-53B disrupts energy metabolism by inhibiting the V-ATPase-AMPK axis in neuronal cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137111. [PMID: 39793390 DOI: 10.1016/j.jhazmat.2025.137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as in vitro models. Our findings demonstrated that F-53B inhibited the expression of V-ATPase B2 and reduced V-ATPase activity, leading to an increase in lysosomal pH, decreased expression of TRPML1, and lysosomal Ca2 + accumulation. In turn, led to reduced the expression of CaMKK2 and phosphorylated AMPK (p-AMPK). Ultimately, mitochondria were damaged, evidenced by increased mitochondrial reactive oxygen species, mitochondrial membrane potential, and impaired mitochondrial oxidative phosphorylation, as shown by reduced NDUFS1 expression and diminished respiratory chain complex I activity. F-53B reduced the expression of the key glycolytic protein PFKFB3. Notably, V-ATPase B2 overexpression indirectly activates AMPK. Furthermore, resveratrol, an AMPK agonist, alleviates mitochondrial dysfunction and increases ATP production by promoting the recovery of mitochondria and glycolytic pathways. These findings elucidate a novel mechanism by which F-53B induces neurotoxicity through the V-ATPase-AMPK axis, and indicate V-ATPase and AMPK as potential therapeutic targets.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Tingting Li
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Xueman Ding
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Li Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Runjiang Ma
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Wenqi Qin
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Chulin Yan
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Chun Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Jingjing Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Mulatibieke Keerman
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China.
| | - Qiang Niu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China.
| |
Collapse
|
3
|
He M, Zhang Y, Zhai Y, Li Y, Yang G, Yu S, Xiao H, Song Y. Trilobatin regulates glucose metabolism by ameliorating oxidative stress and insulin resistance in vivo and in vitro. J Pharm Pharmacol 2025; 77:236-248. [PMID: 38642915 DOI: 10.1093/jpp/rgae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES Trilobatin, a glycosylated dihydrochalcone, has been reported to have anti-diabetic properties. However, the underlying mechanism remains unexplained. METHODS In this investigation, the regulation of trilobatin on glucose metabolism of insulin resistance (IR)-HepG2 cells and streptozocin (STZ)-induced mice and its mechanism were evaluated. KEY FINDINGS Different doses of trilobatin (5, 10 and 20 μM) increased glucose consumption, glycogen content, hexokinase (HK), and pyruvate kinase (PK) activity in IR-HepG2 cells. Among them, the HK and PK activity in IR-HepG2 cells treated with 20 μM trilobatin were 1.84 and 2.05 times than those of the IR-group. The overeating, body and tissue weight, insulin levels, liver damage, and lipid accumulation of STZ-induced mice were improved after feeding with different doses of trilobatin (10, 50, and 100 mg/kg/d) for 4 weeks. Compared with STZ-induced mice, fasting blood glucose decreased by 61.11% and fasting insulin (FINS) increased by 48.6% after feeding trilobatin (100 mg/kg/d). Meanwhile, data from quantitative real-time polymerase chain reaction (qRT-PCR) revealed trilobatin ameliorated glycogen synthesis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway in IR-HepG2 cells and in STZ-induced mice. Furthermore, in vitro and in vivo experiments showed that trilobatin ameliorated oxidative stress by regulating the mRNA expression of nuclear erythroid-2 related factor 2 (Nrf2)/kelch-like ECH associated protein-1 (Keap-1) pathway as well as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1). CONCLUSIONS Our research reveals a novel pharmacological activity of trilobatin: regulating glucose metabolism through PI3K/Akt/GSK-3β and Nrf2/Keap-1 signaling pathways, improving insulin resistance and reducing oxidative stress. Trilobatin can be used as a reliable drug resource for the treatment of glucose metabolism disorders.
Collapse
Affiliation(s)
- Ming He
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuqing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhan Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yaping Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Guorui Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Haifang Xiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
4
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
5
|
Hamed M, Abou Khalil NS, Alghriany AA, El-Din H. Sayed A. The protective effects of dietary microalgae against hematological, biochemical, and histopathological alterations in pyrogallol-intoxicated Clarias gariepinus. Heliyon 2024; 10:e40930. [PMID: 39759355 PMCID: PMC11699231 DOI: 10.1016/j.heliyon.2024.e40930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Microalgae have well-established health benefits for farmed fish. Thus, this study aims to explore the potential protective effects of Spirulina platensis, Chlorella vulgaris, and Moringa oleifera against pyrogallol-induced hematological, hepatic, and renal biomarkers in African catfish (Clarias gariepinus), as well as the histopathological changes in the liver and kidney. Fish weighing 200 ± 25 g were divided into several groups: group 1 served as the control, group 2 was exposed to 10 mg/L of pyrogallol, and groups 3, 4, and 5 were exposed to the same concentration of pyrogallol, supplemented with S. platensis at 20 g/kg diet, C. vulgaris at 50 g/kg diet, and M. oleifera at 5 g/kg diet, respectively, for 15 days. Exposure to pyrogallol led to decreased packed cell volume (PCV) and lymphocyte count, but these effects were alleviated by microalgae interventions. C. vulgaris and M. oleifera equally restored PCV and increased lymphocyte counts. Supplementation with C. vulgaris and M. oleifera successfully normalized both neutrophil and eosinophil counts. Pyrogallol intoxication engenders an increase in glycemic status, but C. vulgaris and M. oleifera effectively mitigated this rise. Pyrogallol-exposed fish exhibited signs of renal dysfunction, with increased serum creatinine and total cholesterol levels. A significant decrease in both erythrocytic cellular and nuclear abnormalities was observed following supplementation with microalgae. C. vulgaris and M. oleifera showed promise in decreasing serum glucose and creatinine levels, and improving hematological parameters, while S. platensis exhibited limited efficacy in this regard. Exposure to pyrogallol led to a notable decrease in serum superoxide dismutase activity and total antioxidant capacity (TAC), accompanied by an increase in serum malondialdehyde (MDA) levels. Diets enriched with C. vulgaris and M. oleifera effectively restored these parameters to normal levels, whereas S. platensis did not induce significant changes. None of the microalgae improved TAC except for M. oleifera, which significantly enhanced it. MDA levels returned to control levels equally and significantly across all groups. Interleukin-6 levels did not exhibit significant differences between any of the groups. Collectively, the histopathological changes induced by pyrogallol were most prominently alleviated in the pyrogallol + C. vulgaris and pyrogallol + M. oleifera groups, and to a limited degree in the pyrogallol + S. platensis group. While the tested microalgae did not cause hepatic or renal dysfunction, they did lead to metabolic abnormalities. The incorporation of microalgae into the diet holds significant importance in mitigating the metabolic and histological toxicity of pyrogallol and should be considered in the formulation of fish feed.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of veterinary Medicine, Badr University, Assuit, Egypt
| | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
6
|
Zou Y, Mei C, Liu F, Xing D, Pang D, Li Q. The lipase inhibitory effect of mulberry leaf phenolic glycosides: The structure-activity relationship and mechanism of action. Food Chem 2024; 458:140228. [PMID: 38964110 DOI: 10.1016/j.foodchem.2024.140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
The present study found for the first time that phenolic glycosides were an important material basis for mulberry leaves to inhibit lipase. The corresponding IC50 for hyperoside, rutin, astragalin and quercetin were 68, 252, 385 and 815 μg/mL respectively. The inhibitory effect was ranked as monoglycosides > phenolic hydroxyl groups > disaccharides on the benzone ring. Hyperoside bound to lipase in competitive inhibition type with one binding site, while the others bound to lipase in a mixed inhibition type by two similar sites. All four compounds altered the microenvironment and secondary conformation of lipase through static quenching. The docking score, stability, and binding energy were consistent with the compound inhibitory activity. The main binding between compounds and lipase amino acid residues were spontaneously though hydrophobic interactions and hydrogen bonding. The strong hydrogen bonds formed with SER-152 inside the lipase pocket, might be important for the strong inhibitory activity of hyperoside.
Collapse
Affiliation(s)
- Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chunying Mei
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dongxu Xing
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Daorui Pang
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
7
|
Mohammed DM, Salem MB, Elzallat M, Hammam OA, Suliman AA. Moringa oleifera L. mediated zinc oxide nano-biofertilizer alleviates non-alcoholic steatohepatitis via modulating de novo lipogenesis pathway and miRNA-122 expression. FOOD BIOSCI 2024; 60:104286. [DOI: 10.1016/j.fbio.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2024]
|
8
|
Zhao Y, Zhang Y, Yang H, Xu Z, Li Z, Zhang Z, Zhang W, Deng J. A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks). Food Chem 2024; 443:138517. [PMID: 38295564 DOI: 10.1016/j.foodchem.2024.138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Leaves and stalks, which account for about 45% and 25% of broccoli biomass, respectively, are usually discarded during broccoli production, leading to the waste of green resources. In this study, the phytochemical composition and antioxidant capacity of broccoli florets and their by-products (leaves and stalks) were comprehensively analyzed. The metabolomics identified several unique metabolites (e.g., scopoletin, Harpagoside, and sinalbin) in the leaves and stalks compared to florets. Notably, the leaves were found to be a rich source of flavonoids and coumarins, with superior antioxidant capacity. The random forest model and correlation analysis indicated that flavonoids, coumarin, and indole compounds were the important factors contributing to the antioxidant activity. Moreover, the stalks contained higher levels of carbohydrates and exhibited better antioxidant enzyme activity. Together, these results provided valuable data to support the comprehensive utilization of broccoli waste, the development of new products, and the expansion of the broccoli industry chain.
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Bajaber MA, Hameed A, Hussain G, Noreen R, Ibrahim M, Batool S, Qayyum MA, Farooq T, Parveen B, Khalid T, Kanwal P. Chitosan nanoparticles loaded with Foeniculum vulgare extract regulate retrieval of sensory and motor functions in mice. Heliyon 2024; 10:e25414. [PMID: 38352784 PMCID: PMC10862683 DOI: 10.1016/j.heliyon.2024.e25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Perveen Kanwal
- Department of Chemistry, The Women University of Multan, Multan, 66000, Pakistan
| |
Collapse
|
10
|
Adarthaiya S, Sehgal A. Moringa oleifera Lam. as a potential plant for alleviation of the metabolic syndrome-A narrative review based on in vivo and clinical studies. Phytother Res 2024; 38:755-775. [PMID: 38015048 DOI: 10.1002/ptr.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The metabolic syndrome (MetS) refers to the co-occurrence of risk factors, including hyperglycaemia, increased body weight, hypertension and dyslipidemia, which eventually lead to diabetes and cardiovascular disease, a common health problem worldwide. Recently, there has been an increasing interest in the use of plant-based products for the management of MetS, because of their less detrimental and more beneficial effects. Moringa oleifera (Moringaceae), commonly known as drumstick, is cultivated worldwide for its nutritional and medicinal properties. This review focuses on the in vivo and human studies concerning the potential of M. oleifera in the alleviation of MetS and its comorbidities. The search for relevant articles was carried out in PubMed and Google Scholar databases. Randomised controlled and clinical trials from the PubMed database were included in this review. The results suggested that the administration of M. oleifera, in vivo, shows clear signs of improvement in MetS indices. Despite fewer human studies, the existing data documented convincing results that uphold the potential of M. oleifera against MetS. Therefore, future research discussing the probable mechanism of action is much needed which could further assure the usage of M. oleifera in the treatment regimen of MetS.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
11
|
Tong A, Li Z, Liu X, Ge X, Zhao R, Liu B, Zhao L, Zhao C. Laminaria japonica polysaccharide alleviates type 2 diabetes by regulating the microbiota-gut-liver axis: A multi-omics mechanistic analysis. Int J Biol Macromol 2024; 258:128853. [PMID: 38134985 DOI: 10.1016/j.ijbiomac.2023.128853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The hypoglycemic effects of low-molecular-weight Laminaria japonica polysaccharide (LJO) were investigated in type 2 diabetes mellitus (T2DM) mice, focusing on its effect on the microbiome, metabolome, and transcriptome. The findings demonstrated that LJO significantly reduced fasting blood glucose levels, insulin levels, and inflammatory factors. Additionally, LJO induced changes in gut microbiota composition and increased the concentrations of cecal short-chain fatty acids. Analysis of transcriptomics and metabolomics data revealed that LJO primarily altered the endocrine and digestive systems, signal transduction, and lipid metabolism. It led to a decrease in palmitic acid levels and an increase in glutathione levels. Real-time quantitative polymerase chain reaction assay suggested that LJO upregulated Irs1 expression, consequently reducing insulin resistance. These findings strongly suggest that LJO holds promise in ameliorating T2DM and may serve as a potential dietary supplement for patients with T2DM.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health; Beijing Technology and Business University, Beijing 100048, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Runfan Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lina Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Masoumvand M, Ramezani E, Rahimi VB, Askari VR. Promising Influences of Moringa oleifera in Functional Foods against Metabolic Syndrome: A Comprehensive and Mechanistic Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1355-1370. [PMID: 38279759 DOI: 10.2174/0118715303269893231207071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Metabolic syndrome (MetS) is now considered a global issue with a growing financial and health impact. Numerous herbal alternatives have been examined and researched due to the ever-increasing demand for new medications to treat metabolic syndrome disorders. People have empirically employed Moringa oleifera (MO), a native plant to several Asian nations, for a variety of diseases. We sought to examine recent research on MO in MetS and its potential mechanism of action in the current review. Four databases, including PubMed, Scopus, Web of Sciences, and Google Scholar, were thoroughly searched, and the data were then compiled. In total, 146 papers covering nonclinical and clinical MO investigations in metabolic syndromerelated disorders are included in this study. Numerous research confirmed MO's positive impact on the control of blood glucose, blood pressure, hyperlipidemia, and obesity. Many molecular processes have been investigated, including increasing glucose transporter type 4 (GLUT4) expression, inhibition of β-Hydroxy-β-methylglutaryl-coenzyme A (HMG-CoA), α-glucosidase inhibiting, AMP-activated protein kinase (AMPK) activation, and other suggested mechanisms. The current review established much data favoring MO's potential advantages in metabolic syndrome. However, further research involving human studies is required in this area to determine whether Moringa can effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Mohammad Masoumvand
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Ramezani
- Department of Nutrition, Faculty of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Ren Y, Mao S, Zeng Y, Chen S, Tian J, Ye X. Pectin from Citrus unshiu Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites. Foods 2023; 12:4094. [PMID: 38002152 PMCID: PMC10670317 DOI: 10.3390/foods12224094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Yujun Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
15
|
Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, Esmaeilizadeh M, Nikpasand N, Einafshar E, Ghorbani A. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother 2023; 167:115502. [PMID: 37734266 DOI: 10.1016/j.biopha.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with diabetes are at risk for liver disorders including glycogen hepatopathy, non-alcoholic fatty liver disease, cirrhosis, and hepatic fibrosis. The pathophysiological mechanisms behind diabetic hepatopathy are complex, some of them include fatty acid accumulation, increased reactive oxygen species, increased advanced glycation end-products, hyperactivity of polyol pathways, increased apoptosis and necrosis, and promotion of fibrosis. A growing number of studies have shown that herbal extracts and their active phytochemicals have antihyperglycemic properties and beneficial effects on diabetic complications. The current review, for the first time, focused on herbal agents that showed beneficial effects on diabetic hepatopathy. For example, animal studies have shown that Moringa oleifera and Morus alba improve liver function in both type-1 and type-2 diabetes. Also, evidence from clinical trials suggests that Boswellia serrata, Juglans regia, Melissa officinalis, Portulaca oleracea, Silybum marianum, Talapotaka Churna, and Urtica dioica reduce serum liver enzymes in diabetic patients. The main active ingredient of these plants to protect the liver seems to be phenolic compounds such as niazirin, chlorogenic acid, resveratrol, etc. Mechanisms responsible for the hepatoprotective activity of herbal agents include improving glucose metabolism, restoring adipokines levels, antioxidant defense, and anti-inflammatory activity. Several signaling pathways are involved in hepatoprotective effects of herbal agents in diabetes, such as phosphoinositide 3-kinase, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase.
Collapse
Affiliation(s)
- Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Esmaeilizadeh
- Innovative Medical Research Center, Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloofar Nikpasand
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Zhou L, Song Y, Jiang Y, Wei Y, Jiang S, Chen Y, Ye J, Shao X. Physicochemical properties and anti-diabetic ability of polysaccharides from a thinned peach fruit. Food Funct 2023; 14:8876-8892. [PMID: 37698234 DOI: 10.1039/d3fo03041e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Thinned peach fruit is a by-product with abundant yields. However, it is barely utilized. This study aimed to study the physicochemical properties and anti-diabetic ability of polysaccharides (PPSs) from a thinned peach fruit to investigate its application potential. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) characterizations were performed together with tests to determine rheology properties, monosaccharide composition, and molecular weight of the obtained polysaccharide. Moreover, the antioxidant activity, α-amylase inhibitory activity, binding abilities to bile salts, and effects on type 2 diabetic mice were analyzed. The results indicated that PPS consisted of two components with molecular weights of 287.38 kDa and 12.02 kDa, accounting for 89.83% and 10.17% of the composition, respectively. The dominant monosaccharides were galactose, galacturonic acid, and arabinose, exhibiting α-configurations. The concentration was positively related to the viscosity of PPS. As the temperature was increased from 25 °C to 37 °C and the pH from 2.0 to 7.0, the viscosity decreased. The IC50 values for scavenging DPPH and ABTS were around 0.22 and 1.47 mg mL-1. Also, PPS could inhibit α-amylase ability and bind bile salts. The administration of PPS significantly inhibited emaciation, organ damage, improved oral glucose tolerance and insulin resistance, enhanced the content of short-chain fatty acids (SCFAs), and regulated blood lipid profiles and the composition and structure of colon microbiota in type-2 diabetic mice. These results provide new evidence for the potential of PPS as a bioactive ingredient with anti-diabetic properties for use in the food industry.
Collapse
Affiliation(s)
- Leyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yu Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yi Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Jianfen Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
17
|
Su X, Lu G, Ye L, Shi R, Zhu M, Yu X, Li Z, Jia X, Feng L. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv 2023; 13:24353-24384. [PMID: 37588981 PMCID: PMC10425832 DOI: 10.1039/d3ra03584k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Moringa oleifera Lam. is an edible therapeutic plant that is native to India and widely cultivated in tropical countries. In this paper, the current application of M. oleifera was discussed by summarizing its medicinal parts, active components and potential mechanism. The emerging products of various formats such as drug preparation and product application reported in the last years were also clarified. Based on literature reports, the unique components and biological activities of M. oleifera need to be further studied. In the future, a variety of new technologies should be applied to the development of M. oleifera products, to enrich the varieties of dosage forms, improve the bitter taste masking technology, and make it better for use in the fields of food and medicine.
Collapse
Affiliation(s)
- Xinyue Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Guanzheng Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ruyu Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xinming Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 P. R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
18
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
19
|
Yan Z, Cao X, Sun S, Sun B, Gao J. Inhibition of GSK3B phosphorylation improves glucose and lipid metabolism disorder. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166726. [PMID: 37146915 DOI: 10.1016/j.bbadis.2023.166726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Hepatic glycolipid metabolism disorder is considered as one of the key pathogenic factors for many chronic diseases. Revealing the molecular mechanism of metabolic disorder and exploring drug targets are crucial for the treatment of glucose and lipid metabolic diseases. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be associated with the pathogenesis of various metabolic diseases. Herein, GAPDH-knockdown ZFL cells and GAPDH-downregulation zebrafish exhibited significant lipid deposition increase and glycogen reduction, thus inducing glucose and lipid metabolism disorders. Using high-sensitivity mass spectrometry-based proteomic and phosphoproteomic analysis, we identified 6838 proteins and 3738 phosphorylated proteins in GAPDH-knockdown ZFL cells. The protein-protein interaction network and DEPPs analyses showed that gsk3baY216 were involved in lipid and glucose metabolism, which was verified by In vitro study. The enzyme activity analysis and cell staining results showed that HepG2 and NCTC-1469 cells transfected with GSK3BY216F plasmid had significantly lower glucose and insulin levels, the decreased lipid deposition, and the increased glycogen synthesis than those transfected with GSK3BY216E plasmid, suggesting that inhibition of GSK3B phosphorylation could significantly improve GSK3B hyperphosphorylation-induced glucose tolerance impairment and insulin sensitivity reduction. To our knowledge, this is the first multi-omic study of GAPDH-knockdown ZFL cells. This study provides insights into the molecular mechanism of glucose and lipid metabolic disorder, and provides potential targets (kinases) for the treatments of human glucose and lipid metabolic diseases.
Collapse
Affiliation(s)
- Ze Yan
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Bajaber MA, Hussain G, Farooq T, Noreen R, Ibrahim M, Umbreen H, Batool S, Rehman K, Hameed A, Farid MF, Khalid T. Nanosuspension of Foeniculum Vulgare Promotes Accelerated Sensory and Motor Function Recovery after Sciatic Nerve Injury. Metabolites 2023; 13:metabo13030391. [PMID: 36984831 PMCID: PMC10058352 DOI: 10.3390/metabo13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The seed extract of Foeniculum vulgare (FV) was used for the preparation of a nanosuspension (NS) with an enhanced bioavailability of phytoconstituents. Subsequently, it was employed as a potent source of polyphenols, such as quercetin and kaempferol, to accelerate the regeneration and recovery of motor and sensory function in injured nerves. The NS was administered through daily gauging as NS1 (0.5 mg/mL) and NS2 (15 mg/mL), at a dose rate of 2 g/kg body weight until the end of the study. The NS-mediated retrieval of motor functions was studied by evaluating muscle grip strength and the sciatic functional index. The recovery of sensory functions was assessed by the hotplate test. Several well-integrated biochemical pathways mediate the recovery of function and the regeneration of nerves under controlled blood glucose and oxidative stress. Consequently, the NS-treated groups were screened for blood glucose, total antioxidant capacity (TAC), and total oxidant status (TOS) compared to the control. The NS administration showed a significant potential to enhance the recuperation of motor and sensory functions. Moreover, the oxidative stress was kept under check as a result of NS treatments to facilitate neuronal generation. Thus, the nanoformulation of FV with polyphenolic contents accelerated the reclamation of motor and sensory function after nerve lesion.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan 60000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan, Multan 60000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| |
Collapse
|
22
|
In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis. Foods 2023; 12:foods12040715. [PMID: 36832790 PMCID: PMC9956223 DOI: 10.3390/foods12040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.
Collapse
|
23
|
Selected Seeds as Sources of Bioactive Compounds with Diverse Biological Activities. Nutrients 2022; 15:nu15010187. [PMID: 36615843 PMCID: PMC9823554 DOI: 10.3390/nu15010187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Seeds contain a variety of phytochemicals that exhibit a wide range of biological activities. Plant-derived compounds are often investigated for their antioxidant, anti-inflammatory, immunomodulatory, hypoglycemic, anti-hypercholesterolemic, anti-hypertensive, anti-platelet, anti-apoptotic, anti-nociceptive, antibacterial, antiviral, anticancer, hepatoprotective, or neuroprotective properties. In this review, we have described the chemical content and biological activity of seeds from eight selected plant species-blackberry (Rubus fruticosus L.), black raspberry (Rubus coreanus Miq.), grape (Vitis vinifera L.), Moringa oleifera Lam., sea buckthorn (Hippophae rhamnoides L.), Gac (Momordica cochinchinensis Sprenger), hemp (Cannabis sativa L.), and sacha inchi (Plukenetia volubilis L). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, and SCOPUS. Numerous preclinical, and some clinical studies have found that extracts, fractions, oil, flour, proteins, polysaccharides, or purified chemical compounds isolated from the seeds of these plants display promising, health-promoting effects, and could be utilized in drug development, or to make nutraceuticals and functional foods. Despite that, many of these properties have been studied only in vitro, and it's unsure if their effects would be relevant in vivo as well, so there is a need for more animal studies and clinical trials that would help determine if they could be applied in disease prevention or treatment.
Collapse
|
24
|
Imran M, Hussain G, Hameed A, Iftikhar I, Ibrahim M, Asghar R, Nisar I, Farooq T, Khalid T, Rehman K, Assiri MA. Metabolites of Moringa oleifera Activate Physio-Biochemical Pathways for an Accelerated Functional Recovery after Sciatic Nerve Crush Injury in Mice. Metabolites 2022; 12:1242. [PMID: 36557280 PMCID: PMC9788086 DOI: 10.3390/metabo12121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the functional metabolites of Moringa oleifera (MO) were screened to evaluate their possible role in accelerated functional retrieval after peripheral nerve injury (PNI). MO leaves were used for extract preparation using solvents of different polarities. Each dry extract was uniformly mixed in rodents' chow and supplemented daily at a dose rate of 2 g/kg body weight from the day of nerve crush until the completion of the trial. The sciatic functional index (SFI) and muscle grip strength were performed to assess the recovery of motor functions, whereas the hotplate test was performed to measure the regain of sensory functions. An optimal level of oxidative stress and a controlled glycemic level mediates a number of physio-biochemical pathways for the smooth progression of the regeneration process. Therefore, total oxidant status (TOS), total antioxidant capacity (TAC) and glycemic levels were analyzed in metabolite-enriched extract-treated groups compared to the control. The supplementation of polar extracts demonstrated a significantly high potential to induce the retrieval of sensory and motor functions. Further, they were highly effective in controlling oxidative stress, facilitating accelerated nerve generation. This study has highlighted MO as a sustainable source of nutritive metabolites and a valuable target for drug development.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Iftikhar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rahat Asghar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Izzat Nisar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tanzila Khalid
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| |
Collapse
|
25
|
Liu WL, Wu BF, Shang JH, Wang XF, Zhao YL, Huang AX. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism. PHARMACEUTICAL BIOLOGY 2022; 60:810-824. [PMID: 35587996 PMCID: PMC9122383 DOI: 10.1080/13880209.2022.2056207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Moringa oleifera Lam. (Moringaceae) (MO) is an important food plant that has high nutritional and medical value. However, there is limited information on whether its seeds can improve sleep. OBJECTIVE This study investigated the effects of MO seed ethanol extracts (EEMOS) on sleep activity improvement and examined the underlying mechanisms. MATERIALS AND METHODS Male ICR mice were placed into six groups (n = 12) and treated as follows: Control (sodium carboxymethyl cellulose, 20 mL/kg), estazolam tablets (2 mg/kg), EEMOS (1, 2 g/kg) and kaempferol (1, 2 mg/kg). These samples were successively given intragastric for 14 d. Locomotor activity assay, pentobarbital-induced sleeping and pentetrazol-induced seizures tests were utilized to examine the sedative-hypnotic effects (SHE) of EEMOS. RESULTS Compared with the control group, the results revealed that EEMOS (2 g/kg) and KA (2 mg/kg) possessed good SHE and could significantly elevate the levels of γ-aminobutyric acid and reduce the levels of glutamic acid in the mouse hypothalamus (p < 0.05). Moreover, SHE was blocked by picrotoxin, flumazenil and bicuculline (p < 0.05). EEMOS (2 g/kg) and KA (2 mg/kg) significantly upregulated the protein expression levels of glutamic acid decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice (p < 0.05), not affecting glutamic acid decarboxylase-67 (GAD67) and γ2-subunit expression levels (p > 0.05). Additionally, they cause a significant increase in Cl- influx in human cerebellar granule cells at a concentration of 8 µg/mL (p < 0.05). DISCUSSION AND CONCLUSIONS These findings demonstrated that EEMOS could improve sleep by regulating GABAA-ergic systems, and encourage further clinical trials to treat insomnia.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, QuJing, People’s Republic of China
| | - Bai-Fen Wu
- Yunnan University of Business Management, Kunming, People’s Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
| | - Ai-Xiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
26
|
Wang F, Yang G, Zhou Y, Song H, Xiong L, Wang L, Shen X. Pharmacokinetics of niazirin from
Moringa oleifera
Lam in rats by UPLC‐MS/MS: Absolute bioavailability and dose proportionality. EFOOD 2022. [DOI: 10.1002/efd2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Fang Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Gaohong Yang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Yang Zhou
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Haizhong Song
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Ling Xiong
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Luanfeng Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| | - Xinchun Shen
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing People's Republic of China
| |
Collapse
|
27
|
Roglia V, Potestà M, Minchella A, Bruno SP, Bernardini R, Lettieri-Barbato D, Iacovelli F, Gismondi A, Aquilano K, Canini A, Muleo R, Colizzi V, Mattei M, Minutolo A, Montesano C. Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism. Front Mol Biosci 2022; 9:1012359. [PMID: 36465560 PMCID: PMC9715436 DOI: 10.3389/fmolb.2022.1012359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 09/21/2023] Open
Abstract
A balanced diet is critical for human health, and edible plants play an important role in providing essential micronutrients as well as specific microRNAs (miRNAs) that can regulate human gene expression. Here we present the effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism. Through in silico studies we identified the potential genes involved in lipid metabolism targeted by mol-miRs. To this end, we tested the efficacy of an aqueous extract of MO seeds (MOES), as suggested in traditional African ethnomedicine, or its purified miRNAs. The biological properties of MO preparations were investigated using a human derived hepatoma cell line (HepG2) as a model. MOES treatment decreased intracellular lipid accumulation and induced apoptosis in HepG2. In the same cell line, transfection with mol-miRs showed similar effects to MOES. Moreover, the effect of the mol-miR pool was investigated in a pre-obese mouse model, in which treatment with mol-miRs was able to prevent dysregulation of lipid metabolism.
Collapse
Affiliation(s)
- Valentina Roglia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Potestà
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | | | - Stefania Paola Bruno
- Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | - Maurizio Mattei
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| |
Collapse
|
28
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
29
|
Monraz-Méndez CA, Escutia-Gutiérrez R, Rodriguez-Sanabria JS, Galicia-Moreno M, Monroy-Ramírez HC, Sánchez-Orozco L, García-Bañuelos J, De la Rosa-Bibiano R, Santos A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Moringa oleifera Improves MAFLD by Inducing Epigenetic Modifications. Nutrients 2022; 14:nu14204225. [PMID: 36296907 PMCID: PMC9611907 DOI: 10.3390/nu14204225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 01/03/2023] Open
Abstract
Background and aims. Metabolic Associated Fatty Liver Disease (MAFLD) encompasses a spectrum of diseases from simple steatosis to nonalcoholic steatohepatitis (NASH). Here, we investigated the hepatoprotective role of Moringa oleifera aqueous extract on hepatic miRNAs, genes and protein expression, as well as histological and biochemical parameters in an experimental model of NASH. Methods. Male C57BL/6J mice were fed with a high fat diet (HFD, 60% lipids, 42 gr/L sugar in water) for 16 weeks. Moringa extract was administered via gavage during the final 8 weeks. Insulin Tolerance Test (ITT) and HOMA-IR were calculated. Serum levels of insulin, resistin, leptin and PAI-1 and hepatic expression of miR-21a-5p, miR-103-3p, miR-122-5p, miR-34a-5p and SIRT1, AMPKα and SREBP1c protein were evaluated. Alpha-SMA immunohistochemistry and hematoxylin-eosin, Masson’s trichrome and sirius red staining were made. Hepatic transcriptome was analyzed using microarrays. Results. Animals treated with Moringa extract improved ITT and decreased SREBP1c hepatic protein, while SIRT1 increased. Hepatic expression of miR-21a-5p, miR-103-3p and miR-122-5p, miR34a-5p was downregulated. Hepatic histologic analysis showed in Moringa group (HF + MO) a significant decrease in inflammatory nodules, macro steatosis, fibrosis, collagen and αSMA reactivity. Analysis of hepatic transcriptome showed down expression of mRNAs implicated in DNA response to damage, endoplasmic reticulum stress, lipid biosynthesis and insulin resistance. Moringa reduced insulin resistance, de novo lipogenesis, hepatic inflammation and ER stress. Conclusions. Moringa prevented progression of liver damage in a model of NASH and improved biochemical, histological and hepatic expression of genes and miRNAs implicated in MAFLD/NASH development.
Collapse
Affiliation(s)
- C. Alejandra Monraz-Méndez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Rebeca Escutia-Gutiérrez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jonathan Samael Rodriguez-Sanabria
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Marina Galicia-Moreno
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramírez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Laura Sánchez-Orozco
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesus García-Bañuelos
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ricardo De la Rosa-Bibiano
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey 64849, Nuevo Leon, Mexico
| | - Juan Armendáriz-Borunda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey 64849, Nuevo Leon, Mexico
- Correspondence: (J.A.-B.); (A.S.-R.); Tel.: +52-3310585200 (ext. 34006) (J.A.-B. & A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (J.A.-B.); (A.S.-R.); Tel.: +52-3310585200 (ext. 34006) (J.A.-B. & A.S.-R.)
| |
Collapse
|
30
|
Mulberry Leaf Extract Improves Metabolic Syndrome by Alleviating Lipid Accumulation In Vitro and In Vivo. Molecules 2022; 27:molecules27165111. [PMID: 36014355 PMCID: PMC9416217 DOI: 10.3390/molecules27165111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic syndrome (MS) is a metabolic disease with multiple complications. Mulberry leaf extract (MLE) is rich in flavonoids and has great potential in alleviating glucose and lipid metabolism disorders. This study evaluated the effect and mechanism of MLE on the alleviation of MS. The components of the MLE were analyzed, and then the regulation of lipid metabolism by MLE in vitro and in vivo was determined. In a hepatocyte model of oleic acid-induced lipid accumulation, it was found that MLE alleviated lipid accumulation and decreased the expression of genes involved in lipogenesis. Furthermore, MLE improved obesity, insulin resistance, plasma lipid profile, and liver function in MS mice after a 15-week intervention. MLE decreased the expression of SREBP1, ACC, and FAS through the AMPK signaling pathway to inhibit lipid synthesis and increase the level of CPT1A to promote lipid decomposition to achieve its hypolipidemic effect. Meanwhile, MLE was also shown to affect the composition of the gut microbiota and the production of short-chain fatty acids, which contributed to the alleviation of lipid accumulation. Our results suggest that MLE can improve MS by improving lipid metabolism through multiple mechanisms and can be developed into dietary supplements for the improvement of MS.
Collapse
|
31
|
Mthiyane FT, Dludla PV, Ziqubu K, Mthembu SXH, Muvhulawa N, Hlengwa N, Nkambule BB, Mazibuko-Mbeje SE. A Review on the Antidiabetic Properties of Moringa oleifera Extracts: Focusing on Oxidative Stress and Inflammation as Main Therapeutic Targets. Front Pharmacol 2022; 13:940572. [PMID: 35899107 PMCID: PMC9310029 DOI: 10.3389/fphar.2022.940572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Moringa oleifera is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of Moringa oleifera leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia. Interestingly, as major complications implicated in the progression of diabetes, including organ damage, Moringa oleifera leaf and seed extracts could efficiently block the detrimental effects of oxidative stress and inflammation in these preclinical models. Notably, these extracts (especially leaf extracts) showed enhanced effects in strengthening intracellular antioxidant defences like catalase, superoxide dismutase, and glutathione to lower lipid peroxidation products and reduce prominent pro-inflammatory markers such as tumor necrosis factor-α, interleukin (1L)-β, IL-6, monocyte chemoattractant protein-1 and nitric oxide synthase. From animal models of diabetes, the common and effective dose of leaf extracts of Moringa oleifera was 100-300 mg/kg, within the treatment duration of 2-8 weeks. Whereas supplementation with approximately 20 g leaf powder of Moringa oleifera for at least 2 weeks could improve postprandial blood glucose in subjects with prediabetes or diabetes. Although limited clinical studies have been conducted on the antidiabetic properties of Moringa oleifera, current findings provide an important platform for future research directed at developing this plant as a functional food to manage diabetic complications.
Collapse
Affiliation(s)
- Fikile T. Mthiyane
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mafikeng, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
32
|
Auth PA, da Silva GR, Amaral EC, Bortoli VF, Manzano MI, de Souza LM, Lovato ECW, Ribeiro-Paes JT, Gasparotto Junior A, Lívero FADR. Croton urucurana Baill. Ameliorates Metabolic Associated Fatty Liver Disease in Rats. Front Pharmacol 2022; 13:886122. [PMID: 35668935 PMCID: PMC9164250 DOI: 10.3389/fphar.2022.886122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Metabolic associated fatty liver disease (MAFLD) affects a quarter of the worldwide population, but no drug therapies have yet been developed. Croton urucurana Baill. (Euphorbiaceae) is a medicinal species, that is, widely distributed in Brazil. It is used in popular medicine to treat gastrointestinal, cardiovascular, and endocrine system diseases. However, its hepatoprotective and lipid-lowering effects have not yet been scientifically investigated. Aim of the study: The present study investigated the effects of an extract of C. urucurana in a rat model of MAFLD that was associated with multiple risk factors, including hypertension, smoking, and dyslipidemia. Material and Methods: The phytochemical composition of C. urucurana was evaluated by liquid chromatography-mass spectrometry. Spontaneously hypertensive rats received a 0.5% cholesterol-enriched diet and were exposed to cigarette smoke (9 cigarettes/day for 10 weeks). During the last 5 weeks, the animals were orally treated with vehicle (negative control [C-] group), C. urucurana extract (30, 100, and 300 mg/kg), or simvastatin + enalapril (two standard reference drugs that are commonly used to treat dyslipidemia and hypertension, respectively). One group of rats that were not exposed to these risk factors was also evaluated (basal group). Blood was collected for the analysis of cholesterol, triglyceride, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels. The liver and feces were collected for lipid quantification. The liver was also processed for antioxidant and histopathological analysis. Results: The main constituents of the C. urucurana extract were flavonoids, glycosides, and alkaloids. The model successfully induced MAFLD, reflected by increases in AST and ALT levels, and induced oxidative stress in the C- group. Treatment with the C. urucurana extract (300 mg/kg) and simvastatin + enalapril decreased plasma and hepatic lipid levels. In contrast to simvastatin + enalapril treatment, C. urucurana reduced AST and ALT levels. Massive lesions were observed in the liver in the C- group, which were reversed by treatment with the C. urucurana extract (300 mg/kg). Conclusion:C. urucurana extract exerted promising hepatoprotective and lipid-lowering effects in a preclinical rat model of MAFLD.
Collapse
Affiliation(s)
- Pablo Alvarez Auth
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Eduarda Carolina Amaral
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | - Victor Fajardo Bortoli
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Lauro Mera de Souza
- Institute of Research Pelé Pequeno Príncipe, Pequeno Príncipe Faculty, Curitiba, Brazil
| | - Evellyn Claudia Wietzikoski Lovato
- Laboratory of Neurosciences, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Post-Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Post-Graduate in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| |
Collapse
|
33
|
Xu Y, Chen G, Guo M. Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front Nutr 2022; 9:854882. [PMID: 35619958 PMCID: PMC9127542 DOI: 10.3389/fnut.2022.854882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera (M. oleifera), widely used in tropical and subtropical regions, has been reported to possess good anti-aging benefits on skincare. However, the potential bioactive components responsible for its anti-aging effects, including anti-collagenase, anti-elastase, and anti-hyaluronidase activities, have not been clarified so far. In this study, M. oleifera leaf extracts were first conducted for anti-elastase and anti-collagenase activities in vitro by spectrophotometric and fluorometric assays, and the results revealed that they possessed good activities against skin aging-related enzymes. Then, multi-target bio-affinity ultrafiltration coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS) was applied to quickly screen anti-elastase, anti-collagenase, and anti-hyaluronidase ligands in M. oleifera leaf extracts. Meanwhile, 10, 8, and 14 phytochemicals were screened out as the potential anti-elastase, anti-collagenase, and anti-hyaluronidase ligands, respectively. Further confirmation of these potential bioactive components with anti-aging target enzymes was also implemented by molecule docking analysis. In conclusion, these results suggest that the M. oleifera leaves might be a very promising natural source of anti-aging agent for skincare, which can be further explored in the cosmetics and cosmeceutical industries combating aging and skin wrinkling.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Effects of Moringa oleifera Lam. Supplementation on Inflammatory and Cardiometabolic Markers in Subjects with Prediabetes. Nutrients 2022; 14:nu14091937. [PMID: 35565903 PMCID: PMC9099674 DOI: 10.3390/nu14091937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Different parts of the Moringa oleifera Lam. (MO) tree are consumed as food or food supplements for their nutritional and medicinal value; however, very few human studies have been published on the topic. The current work was aimed to provide ancillary analysis to the antidiabetic effects previously reported in a double-blind, randomized, placebo-controlled, parallel group intervention conducted in patients with prediabetes. Thus, the effect of MO leaves on blood and fecal inflammatory markers, serum lipid profile, plasma antioxidant capacity and blood pressure was studied in participants who consumed 6 × 400 mg capsule/day of MO dry leaf powder (MO, n = 31) or placebo (PLC, n = 34) over 12 weeks. Differences between groups were assessed using each biomarker’s change score with, adjustment for fat status and the baseline value. In addition, a decision tree analysis was performed to find individual characteristics influencing the glycemic response to MO supplementation. No differences in the biomarker’s change scores were found between the groups; however, the decision tree analysis revealed that plasma TNF-α was a significant predictor of the subject’s HbA1c response (improvement YES/NO; 77% correct classification) in the MO group. In conclusion, TNF-α seems to be a key factor to identify potential respondents to MO leaf powder.
Collapse
|
35
|
Bharadwaj S, Devi GS, Sarma P, Deka B, Barge SR, Kashyap B, Sheikh Y, Manna P, Borah JC, Talukdar NC. Prophylactic role of Premna herbacea, a dietary leafy vegetable in managing hepatic steatosis via regulating AMPK/SREBP1/ACC/HMGCR signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Louisa M, Patintingan CGH, Wardhani BWK. Moringa Oleifera Lam. in Cardiometabolic Disorders: A Systematic Review of Recent Studies and Possible Mechanism of Actions. Front Pharmacol 2022; 13:792794. [PMID: 35431967 PMCID: PMC9006177 DOI: 10.3389/fphar.2022.792794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiometabolic disorders (CMD) have become a global emergency and increasing burden on health and economic problems. Due to the increasing need for new drugs for cardiometabolic diseases, many alternative medicines from plants have been considered and studied. Moringa oleifera Lam. (MO), one of the native plants from several Asian countries, has been used empirically by people for various kinds of illnesses. In the present systematic review, we aimed to investigate the recent studies of MO in CMD and its possible mechanism of action. We systematically searched from three databases and summarized the data. This review includes a total of 108 papers in nonclinical studies and clinical trials of MO in cardiometabolic-related disorders. Moringa oleifera, extracts or isolated compound, exerts its effect on CMD through its antioxidative, anti-inflammatory actions resulting in the modulation in glucose and lipid metabolism and the preservation of target organ damage. Several studies supported the beneficial effect of MO in regulating the gut microbiome, which generates the diversity of gut microbiota and reduces the number of harmful bacteria in the caecum. Molecular actions that have been studied include the suppression of NF-kB translocation, upregulation of the Nrf2/Keap1 pathway, stimulation of total antioxidant capacity by reducing PKCζ activation, and inhibiting the Nox4 protein expression and several other proposed mechanisms. The present review found substantial evidence supporting the potential benefits of Moringa oleifera in cardiovascular or metabolic disorders.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bantari W. K. Wardhani
- Department of Pharmacology, Faculty of Military Pharmacy, Indonesia Defense University, West Java, Indonesia
| |
Collapse
|
37
|
Wang R, Zhang L, Zhang Q, Zhang J, Liu S, Li C, Wang L. Glycolipid Metabolism and Metagenomic Analysis of the Therapeutic Effect of a Phenolics-Rich Extract from Noni Fruit on Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2876-2888. [PMID: 35175775 DOI: 10.1021/acs.jafc.1c07441] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phenolics of noni fruit possess antihyperglycemic activity; however, the molecular mechanisms remain unclear. To understand the potential effects it has on type 2 diabetes (T2D), the glycolipid metabolism and gut microbiota regulation of phenolic-rich extracts from noni fruit (NFEs) were investigated. The results indicated that NFE could remarkably ameliorate hyperglycemia, insulin resistance, oxidative stress, and glycolipid metabolism via the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway in T2D mice. Furthermore, metagenomic sequencing results revealed that NFE intervention modulated the gut microbiota composition in T2D mice, characterized by increased abundance of unclassified_o_Bacteroidales, Alistipes, Prevotella, Lactobacillus, and Akkermansia and decreased abundance of Oscillibacter, Desulfovibrio, and significantly decreased the pathways related to carbohydrate metabolism, translation, amino acid metabolism, and nucleotide metabolism. Taken together, the results provided new evidence that the hypoglycemic and hypolipidemic activities of NFE in T2D were likely attributed to the activation of the liver AMPK pathway and modulation of gut microbiota.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Qingyang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
- School of Science, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
38
|
Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem 2021; 374:131755. [PMID: 34883426 DOI: 10.1016/j.foodchem.2021.131755] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
This study explored the anti-obesity effect of 6-shogaol and the underlying mechanisms by using Network pharmacology for the prediction and verification of molecular targets and pathways of 6-shogaol against obesity. Furthermore, the results were verified by molecular docking and cell experiments. A total of 86 core targets of 6-shogaol towards obesity were identified. Among them, AKT1 and PIK3CA were confirmed by using the molecular docking. In 3T3-L1 preadipocyte model, 6-shogaol significantly inhibited proliferation and differentiation, reducing the accumulation of lipid droplets. Compared with the control group, the inhibition rates of 6-shogaol on TG and TC were 90.8% and 40.0%, respectively. Additionally, 6-shogaol down-regulated the expression of PPAR-γ and C/EBP-α, while it decreased the phosphorylation of IRS-1, PI3K and AKT. This study, for the first time, confirmed the effect of 6-shogaol on improving obesity through PI3K/AKT pathway. An anti-obesity bioactivity study was further recommended for the development of novel anti-obesity products.
Collapse
|
39
|
Li F, Li Q, Zhang Y, Zhou X, Yi R, Zhao X. Effects of Xylooligosaccharides on Lipid Metabolism, Inflammation, and Gut Microbiota in C57BL/6J Mice Fed a High-Fat Diet. Front Pharmacol 2021; 12:791614. [PMID: 34880767 PMCID: PMC8645984 DOI: 10.3389/fphar.2021.791614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Xylooligosaccharide (XOS) is a source of prebiotics with multiple biological activities. The present study aimed to investigate the effects of XOS on mice fed a high-fat diet. Mice were fed either a normal diet or a high-fat diet supplemented without or with XOS (250 and 500 mg/kg), respectively, for 12 weeks. The results showed that the XOS inhibited mouse weight gain, decreased the epididymal adipose index, and improved the blood lipid levels, including triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels. Moreover, XOS reduced the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated the damage to the liver caused by the high-fat diet. XOS also reduced hyperlipidemia-associated inflammatory responses. Additionally, quantitative real-time polymerase chain reaction results showed that XOS intervention activated the AMP-activated protein kinase (AMPK) pathway to regulate the fat synthesis, decomposition, and β oxidation; upregulated the mRNA expression levels of carnitine palmitoyl transferase 1 (CPT-1), peroxisome proliferator-activated receptors α (PPAR-α), and cholesterol 7-alpha hydroxylase (CYP7A1); and downregulated the mRNA expression levels of acetyl-CoA carboxylase (ACC), CCAAT/enhancer-binding protein alpha (C/EBPα), and lipoprotein lipase (LPL). On the other hand, XOS enhanced the mRNA expression levels of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the small intestine; increased the strength of the intestinal barrier; and optimized the composition of the intestinal microbiota. Therefore, it was concluded that XOS regulated the intestinal barrier, changed the intestinal microecology, and played an important role in preventing hyperlipidemia through the unique anatomical advantages of the gut-liver axis.
Collapse
Affiliation(s)
- Fang Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Qian Li
- Department of Nuclear Medicine, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
40
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
41
|
Tian S, Wang Y, Li X, Liu J, Wang J, Lu Y. Sulforaphane Regulates Glucose and Lipid Metabolisms in Obese Mice by Restraining JNK and Activating Insulin and FGF21 Signal Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13066-13079. [PMID: 34706542 DOI: 10.1021/acs.jafc.1c04933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The most common complications of obesity are metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), hyperglycemia, and low-grade inflammation. Sulforaphane (SFN) is a hydrolysate of glucosinolate (GLS) that is found in large quantities in cruciferous vegetables. The objective of this research was to evaluate the mechanism by which SFN relieves obesity complications in obese mice. C57BL/6J mice were fed a high-fat diet to induce obesity and treated daily with 10 mg/(kg body weight (bw)) SFN for 8 weeks, while a positive control group was treated daily with 300 mg/(kg bw) metformin. Our results indicated that SFN attenuated NAFLD, inflammation, oxidative stress, adipose tissue hypertrophy, and insulin resistance, as well as regulated glucose and lipid metabolism. SFN regulated glucose and lipid metabolism by deactivating c-Jun N-terminal kinase (JNK) and blocking the inhibitory effect of the insulin signaling pathway. SFN also regulated glucose metabolism by alleviating fibroblast growth factor 21 (FGF21) resistance. Our research provides an empirical basis for clinical treatment with SFN in obesity.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
| |
Collapse
|
42
|
Luo D, Mu T, Sun H. Sweet potato ( Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct 2021; 12:4117-4131. [PMID: 33977940 DOI: 10.1039/d0fo02733b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hypoglycemic effects and potential mechanism of sweet potato leaf polyphenols (SPLP) on type 2 diabetes mellitus (T2DM) were investigated. Results showed that oral administration of SPLP to mice could alleviate body weight loss, decrease fasting blood glucose levels (by 64.78%) and improve oral glucose tolerance compared with those of untreated diabetic mice. Furthermore, increased fasting serum insulin levels (by 100.11%), ameliorated insulin resistance and improved hepatic glycogen (by 126.78%) and muscle glycogen (increased by 135.85%) were observed in the SPLP treatment group. SPLP also could reverse dyslipidemia, as indicated by decreased total cholesterol, triglycerides, low density lipoprotein-cholesterol and promoted high density lipoprotein-cholesterol. Histopathological analysis revealed that SPLP could relieve liver inflammation and maintain the islet structure to inhibit β-cell apoptosis. A quantitative real-time polymerase chain reaction confirmed that SPLP could up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3β signaling pathway to improve glucose metabolism and up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glucose transporter 4 signaling pathway in the skeletal muscle to enhance glucose transport. This study provides useful information to support the application of SPLP as a natural product for the treatment of T2DM.
Collapse
Affiliation(s)
- Dan Luo
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| |
Collapse
|
43
|
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin Improves Glucose and Lipid Metabolism Disorders by Regulating the AMPK/PI3K/AKT Signaling Pathway in Insulin-Resistant HepG2 Cells and HFD/STZ-Induced C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5618-5627. [PMID: 33979145 DOI: 10.1021/acs.jafc.1c01109] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products with minor side effects have been reported to be an effective adjuvant therapy for glucose and lipid metabolism disorders. Chrysin, a flavone, has a wide range of physiological effects, such as antioxidant, anti-inflammatory, anti-diabetes, anti-hyperlipidemia, and hepatoprotective. This study was designed to explore the effects and mechanism of chrysin on metabolic syndrome using insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. The results indicated that chrysin significantly decreased insulin resistance, oxidative stress, inflammation, and liver injury. In addition, chrysin improved glycogen synthesis and fatty acid oxidation and inhibited gluconeogenesis and fatty acid synthesis by regulating GSK3β, G6Paes, PEPCK, SREBP1, FAS, and ACC1. Furthermore, the results of western blot and real-time PCR experiments demonstrated that chrysin modulated glucose and lipid metabolism through the AMPK/PI3K/AKT signaling pathway. Treatment with the AMPK inhibitor verified that AMPK activation is positively correlated with chrysin activity on glycolipid metabolism. This study confirms that chrysin is a potential treatment for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Xiao-Chen Zhang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Yu-Yan Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Shao-Wei Liu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| |
Collapse
|
44
|
Yan S, Wang K, Wang X, Ou A, Wang F, Wu L, Xue X. Effect of fermented bee pollen on metabolic syndrome in high-fat diet-induced mice. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Peter EL, Nagendrappa PB, Hilonga S, Tuyiringire N, Ashuro E, Kaligirwa A, Sesaazi CD. Pharmacological reflection of plants traditionally used to manage diabetes mellitus in Tanzania. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113715. [PMID: 33358853 DOI: 10.1016/j.jep.2020.113715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing national prevalence of diabetes mellitus (DM) and its complications have overstretched the health care system in Tanzania and influenced patients to use herbal medicines as alternative therapeutic strategies. Therefore, an urgent need exists to validate the safety and efficacy of plants used locally. AIM OF THE STUDY To identify plants used for the management of DM in Tanzania and analyses their pharmacological, phytochemistry, and safety evidence with a special focus on the mechanism of action. METHODS Researchers searched Medline, web of science, and Scopus for published articles. Also, specialized herbarium documents of Muhimbili Institute of traditional medicine were reviewed. Articles were assessed for relevance, quality, and taxonomical accuracy before being critically reviewed. RESULTS We identified 62 plant species used locally for DM management. Moringa oleifera Lam. and Cymbopogon citratus (D.C) stapf were the most mentioned. Fifty-four phytochemicals from 13 species had DM activities. These were mainly; polyphenolics, phytosterols, and triterpenoids. Extracts, fractions, and pure compounds from 18 species had in vitro antidiabetic activities of which 14 had α-glucosidase and α-amylase inhibition effects. The most studied -Momordica charantia L. increased; glucose uptake and adiponectin release in 3T3-L1 adipocytes, insulin secretion, insulin receptor substrate-1 (IRS-1), GLUT-4 translocation, and GLP-1 secretion; and inhibited protein tyrosine phosphatase 1 B (PTP1B). Preclinical studies reported 30 species that lower plasma glucose with molecular targets in the liver, skeletal muscles, adipose tissues, pancreases, and stomach. While three species; Aspilia mossambiscensis (Oliv.) Willd, Caesalpinia bonduc (L.) Roxb, and Phyllanthus amarus Schumach. & Thonn. had mild toxicity in animals, 33 had no report of their efficacy in DM management or toxicity. CONCLUSION Local communities in Tanzania use herbal medicine for the management of DM. However, only a fraction of such species has scientific evidence. A. mossambiscensis, C. bonduc., and P. amarus had mild toxicity in animals. Together, our findings call for future researches to focus on in vitro, in vivo, and phytochemical investigation of plant species for which their use in DM among the local communities in Tanzania have not been validated.
Collapse
Affiliation(s)
- Emanuel L Peter
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Prakash B Nagendrappa
- Centre for Local Health Traditions & Policy, The University of Trans-disciplinary Health Sciences and Technology, Bengaluru, India.
| | - Samson Hilonga
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Naasson Tuyiringire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Efrata Ashuro
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Anita Kaligirwa
- Department of Pharmacology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Crispin Duncan Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| |
Collapse
|
46
|
Moura MHC, Donado-Pestana CM, Rodrigues L, Pessoa EVM, Rossi E Silva R, Festuccia WT, Genovese MI. Long-term supplementation with phenolic compounds from jaboticaba (Plinia jaboticaba (Vell.) Berg) reduces adiposophaty and improves glucose, lipid, and energy metabolism. Food Res Int 2021; 143:110302. [PMID: 33992322 DOI: 10.1016/j.foodres.2021.110302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Obesity is a critical public health problem worldwide that has been associated to non-communicable diseases (NCD), such as type 2 diabetes (T2DM), non-alcoholic fatty lipid diseases (NAFLD) and inflammatory diseases. Polyphenols from several food sources have been studied as one option against these health problems. Sabara jaboticaba (Plinia jaboticaba (Vell.) Berg) is a Brazilian berry rich in ellagic acid derivatives and anthocyanins. Here we investigated the effects of a phenolic-rich extract from Sabara jaboticaba (PEJ) in a diet-induced obesity animal model. PEJ at two doses, 50 mg gallic acid equivalent (GAE)/kg body weight (BW) and 100 mg GAE/kg BW, were administered by daily gavage to obese C57BL/6J mice for 14 weeks. PEJ prevented the excessive body weight and adiposity, adipocyte hypertrophy, inflammation, hyperglycemia, glucose intolerance, insulin resistance, hypercholesterolemia, and hepatic lipid accumulation, as well as increased energy expenditure. In conclusion, polyphenols from Sabara jaboticaba presented several powerful therapeutic properties relevant for fighting obesity and associated health problems.
Collapse
Affiliation(s)
- Márcio H C Moura
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos M Donado-Pestana
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil; Food Research Center FoRC, University of São Paulo, São Paulo, SP, Brazil
| | - Larissa Rodrigues
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erika V M Pessoa
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Rossi E Silva
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Willian T Festuccia
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Inés Genovese
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
47
|
Xu DX, Guo XX, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct 2021; 12:2726-2740. [PMID: 33681875 DOI: 10.1039/d0fo02761h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is an increasingly concerning global health issue, which is accompanied by disruption of glucose and lipid metabolisms. The aim of this study was to uncover the potential and molecular actions of puerarin, a phytochemical, for alleviating metabolic dysfunctions of glucose and lipid metabolisms. A rat model fed a high fat and high fructose diet and a HepG2 cell model challenged with fructose combined with free fatty acid were utilized to identify the effects of puerarin on obesity-associated insulin resistance and hepatic steatosis. The molecular mechanisms underlying puerarin treatment effects were further investigated using qRT-PCR and western blotting. Results show that puerarin significantly ameliorated features of obesity in rats, including bodyweight, hyperlipidemia, hyperglycemia, glucose/insulin intolerance, insulin resistance, hepatic steatosis, and oxidative stress, which are related to the activation of AMPK and PI3K/Akt pathways in the liver. Puerarin reduced lipid accumulation and caused a reduction of the mRNA expression of lipogenic genes such as SREBP-1c, FAS, SCD-1, and HMGCR, and an increment in the phosphorylation of AMPK and ACC in HepG2 cells. Moreover, puerarin ameliorated insulin resistance by increasing GLUT4 mRNA expression and activating the PI3K/Akt pathway. Treatment with the AMPK inhibitor compound C partially abolished the beneficial effects of puerarin on lipid accumulation and insulin resistance in HepG2 cells, which indicated that the protective effects of puerarin partially depend on the AMPK pathway. The present study indicates that puerarin shows potential as a functional food therapeutic for the treatment of obesity.
Collapse
Affiliation(s)
- Dong-Xue Xu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
48
|
Phenolic compounds from jaboticaba (Plinia jaboticaba (Vell.) Berg) ameliorate intestinal inflammation and associated endotoxemia in obesity. Food Res Int 2021; 141:110139. [PMID: 33642006 DOI: 10.1016/j.foodres.2021.110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Jaboticaba (Plinia jaboticaba (Vell.) Berg) is a Brazilian native fruit belonging to the Myrtaceae family. Previously it was demonstrated that phenolic-rich extracts from jaboticaba (PEJ) possess health-beneficial properties in diet-induced obesity; however, whether PEJ modulates the obesity-associated intestinal inflammatory status remains unclear. Thus, male C57BL/6J obese mice were fed a high-fat-sugar (HFS) diet and received PEJ at two doses, 50 mg gallic acid equivalent (GAE)/kg body weight (BW) (PEJ1 group), and 100 mg GAE/kg BW (PEJ2 group), or water (HFS group) by oral gavage for 14 weeks. PEJ groups presented a reduced body weight gain and adiposity and were protected against insulin resistance and dyslipidemia. In addition, PEJ prevented metabolic endotoxemia linked to an attenuation of the HFS diet-induced intestinal inflammation via down-regulation of pro-inflammatory mediators such as tumor necrosis factor (TNF-α), membrane transporter toll-like receptor-4 (TLR-4) and nuclear factor-κB (NF-κB) in the colon. These anti-inflammatory effects appear to be involved, at least in part, with an inhibition of the colonic inflammasome pathway of obese mice.
Collapse
|
49
|
Zhao S, Zhang S, Xu J, Hu L. Synthesis and comparative study of emulsifying and biological properties of triazolated glucolipids. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Zhang H, Hui J, Yang J, Deng J, Fan D. Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway. Eur J Pharmacol 2020; 887:173557. [PMID: 32946868 DOI: 10.1016/j.ejphar.2020.173557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Eurocristatine (ECT) is an alkaloid isolated from Eurotium cristatum, and it has been used in multiple applications. However, its use as a treatment for type 2 diabetes mellitus (T2DM) has not yet been reported. In this study, we investigated the anti-T2DM effect of ECT and explored its potential molecular mechanism. In vivo, after treatment with ECT (20, 40 mg/kg) for 6 weeks, fasting blood glucose (FBG) was remarkably reduced in db/db mice. Moreover, glucose tolerance, insulin sensitivity and hyperinsulinemia were ameliorated treatment with ECT. The values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) also showed that ECT could alleviate liver toxicity caused by diabetes in db/db mice. In vitro, ECT (15 and 30 μM) alleviated insulin resistance by increasing glucose consumption, glucose uptake and glycogen content in high glucose-induced HepG2 cells. The Western blotting (WB) results showed that ECT could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), increase the phosphorylation of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT) in vivo and in vitro. Besides, ECT improved the glycogen content by inhibiting the expression of glycogen synthase kinase3β (GSK3β) and promoting that of glycogen synthase (GS). Furthermore, administration of the PI3K/AKT signaling pathway inhibitor LY294002 abolished the beneficial effects of ECT. These findings are the first to verify that ECT has the potential to improve glucose metabolism and alleviate insulin resistance by activating the PI3K/AKT signaling pathway in db/db mice.
Collapse
Affiliation(s)
- Hui Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|