1
|
Vadher KR, Sakure AA, Mankad PM, Rawat A, Bishnoi M, Kondepudi KK, Patel A, Sarkar P, Hati S. A comparative study on antidiabetic and anti-inflammatory activities of fermented whey and soy protein isolates and the release of biofunctional peptides: an in vitro and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3826-3842. [PMID: 39893650 DOI: 10.1002/jsfa.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND This study aims to evaluate the antidiabetic and anti-inflammatory activities of Lacticaseibacillus rhamnosus (M9) MTCC 25516 during the fermentation of whey and soy protein isolates. It also seeks to characterize protein profiles, identify multifunctional peptides, and assess structural changes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) gel electrophoresis, Fourier-transform infrared (FTIR) spectroscopy, and confocal laser scanning microscopy (CLSM). RESULTS Fermentation with Lacticaseibacillus rhamnosus (M9) significantly enhanced antidiabetic activity, with optimal peptide production at a 25 mL L-1 inoculation rate for 48 h at 37 °C. Proteolytic activity reduced inflammatory markers (IL-6, TNF-α, IL-1β, NO) in RAW 267.4 cells. SDS-PAGE and 2D gel electrophoresis revealed distinct protein profiles, with 19 and 49 protein spots in whey and soy isolates, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) identified multifunctional peptides, and FTIR spectroscopy confirmed structural changes post-fermentation. Confocal microscopy further revealed protein modifications. CONCLUSION Fermentation of whey and soy protein isolates with Lacticaseibacillus rhamnosus (M9) enhances antidiabetic and anti-inflammatory properties. Optimal conditions (25 mL L-1 inoculation, 48-h incubation) improved peptide production, with analytical techniques confirming structural and functional changes. These findings suggest fermented protein isolates could be valuable in functional foods with health benefits. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Pooja M Mankad
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Gandhinagar, India
| | - Anita Rawat
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
2
|
Ramezan M, Arzhang P, Shin AC. Milk-derived bioactive peptides in insulin resistance and type 2 diabetes. J Nutr Biochem 2025; 138:109849. [PMID: 39870329 DOI: 10.1016/j.jnutbio.2025.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Diabetes is a global health issue affecting over 6% of the world and 11% of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs). Taken from casein or whey fractions of various milks, MBAPs exhibit diverse health-promoting properties. Specific interactions between these peptides and enzymes involved in glucose digestion and metabolism have been examined, leading to the identification of some key peptides exerting the effects. This review emphasizes the positive impact of MBAPs on glycemic control through various mechanisms. Different cell lines have been used to investigate MBAPs' effects on insulin signaling, inflammation, and oxidative stress. Preclinical in vivo studies have also shown that MBAPs lower glucose, stimulate insulin, and reduce inflammation. Human trials further substantiate these findings and suggest the potential utility of milk protein hydrolysates containing MBAPs in individuals with insulin resistance or T2D to improve insulin action and glucose homeostasis.
Collapse
Affiliation(s)
- Marjan Ramezan
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Andrew C Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
3
|
Jin R, Liu C, Song J, Liang D, Lin R, Ren Z, Li C, Shang J, Yang S. Dynamic gastrointestinal digestion of tilapia (Oreochromis mossambicus) skin gelatin: changes of hydrolysate properties and dipeptidyl peptidase IV inhibitory activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3317-3325. [PMID: 39723440 DOI: 10.1002/jsfa.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND It is important to study the physicochemical properties of tilapia (Oreochromis mossambicus) skin gelatin and the changes in dipeptidyl peptidase IV (DPP-IV) inhibition activity during gastrointestinal digestion in order to understand and exploit the potential of tilapia as a source of DPP-IV inhibitory peptides. RESULTS The DPP-IV inhibition of fish-skin gelatin increased from 9.92 ± 0.76% to 36.75 ± 0.98%, and further to 51.06 ± 1.23%, following simulated intestinal digestion for a period of 60 min. After gastric digestion, the degree of hydrolysis (DH) was 18.19 ± 0.48%, the average molecular weight (AMW) was 219 ± 7.19 kDa, the sum of charged groups was -5.08 ± 0.32, and the surface hydrophobicity of the hydrolysate was 24.81 ± 0.25. After intestinal digestion, these values changed to 27.72 ± 0.47%, 146.56 ± 8.16 kDa, -8.09 ± 0.32, and 13.04 ± 0.53, respectively. The DH and sum of charged groups exhibited positive correlations with DPP-IV inhibition (0.94 and 0.71, respectively), but AMW showed a negative correlation (-0.96). MATLAB fit functions were applied to predict theoretical inhibition values, with the fitted equation: DPP-IV inhibition = 2.5885 × DH - 0.0983 × AMW - 1.0047 × sum of charged groups + 3.5118. The test set for the multiple linear regression model demonstrated an R2 equal to or greater than 0.8. CONCLUSION The DH, AMW, and sum of charged groups in the hydrolysate correlated with DPP-IV inhibition, and the fitted equation predicted DPP-IV inhibition effectively in tilapia skin gelatin. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Cheng Li
- Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jiaqi Shang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
4
|
Czelej M, Garbacz K, Czernecki T, Rachwał K, Wawrzykowski J, Waśko A. Whey Protein Enzymatic Breakdown: Synthesis, Analysis, and Discovery of New Biologically Active Peptides in Papain-Derived Hydrolysates. Molecules 2025; 30:1451. [PMID: 40286053 PMCID: PMC11990292 DOI: 10.3390/molecules30071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Bioactive peptides derived from milk proteins offer promising potential that can be unlocked through hydrolysis. Enzymatic hydrolysis is particularly noteworthy because of its mild conditions and its efficacy in producing peptides with various biological activities. This study focused on creating whey protein hydrolysates using three enzymes: pepsin, trypsin, and papain. The degree of hydrolysis and the antioxidant properties of the resulting peptides were evaluated, and papain demonstrated the highest degree of hydrolysis, leading to its selection for further investigation. LC-MS was employed to identify peptide sequences from the papain-derived hydrolysate, resulting in the identification of 107 distinct peptide sequences These peptides were predicted to exhibit a range of potential biological activities, including antihypertensive, antidiabetic, antioxidant, antimicrobial, and immunomodulatory effects, as well as roles in regulating glucose homeostasis, maintaining cardiovascular health, and supporting overall metabolic function. In vitro tests revealed the significant antioxidant and antibacterial properties of the hydrolysate, confirming the potential of papain-derived peptides for use in functional food and pharmaceutical applications. The novelty of this study lies in the identification of novel peptides with promising biological activities. Additional in vitro and in vivo studies are required to fully elucidate the health benefits of these peptides.
Collapse
Affiliation(s)
- Michał Czelej
- Biolive Innovation Sp. z.o.o., Dobrzańskiego 3, 20-262 Lublin, Poland (K.G.)
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Katarzyna Garbacz
- Biolive Innovation Sp. z.o.o., Dobrzańskiego 3, 20-262 Lublin, Poland (K.G.)
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (T.C.); (A.W.)
| |
Collapse
|
5
|
De Fazio R, Di Francesco A, Di Ciccio PA, Cunsolo V, Britti D, Lomagistro C, Roncada P, Piras C. Detection of Bioactive Peptides' Signature in Podolica Cow's Milk. Foods 2025; 14:877. [PMID: 40077579 PMCID: PMC11898676 DOI: 10.3390/foods14050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this study was to identify and characterize the bioactive peptide profile of Podolica cow's milk. This dairy product is known for its nutritional properties related to the presence of peculiar lipids and is a typical breed traditionally reared in southern Italy. Using top-down peptidomics, we identified 2213 peptides in milk samples from four different farms, with 19 matching bioactive sequences. Bioactivities include dipeptidyl peptidase-IV (DPP-IV) inhibition, angiotensin-converting enzyme (ACE) inhibition, antioxidant activity, enhanced calcium uptake, and other peptides with potential antimicrobial effects. DPP-IV-inhibitory peptides (e.g., LDQWLCEKL and VGINYWLAHK) suggest potential for type 2 diabetes management, while ACE inhibitors (such as YLGY and FFVAPFPEVFGK) could support cardiovascular health by reducing hypertension. Antimicrobial peptides such as SDIPNPIGSENSEK and VLNENLLR showed broad spectrum of activity against various harmful microorganisms, positioning Podolica milk as a promising source for natural antimicrobial agents. Additionally, peptides with osteoanabolic, antianxiety, and immunomodulatory properties further highlight the multifaceted health benefits associated with this type of milk. Our findings underline the functional richness of Podolica milk peptides with various bioactivity properties, which could enhance the value of derived dairy products and contribute to sustainable agricultural practices. Future research will aim to explore these bioactivity properties in vivo, establishing a foundation for functional foods and supplements based on Podolica milk.
Collapse
Affiliation(s)
- Rosario De Fazio
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95124 Catania, Italy; (A.D.F.); (V.C.)
| | - Pierluigi Aldo Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Torino, Italy;
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95124 Catania, Italy; (A.D.F.); (V.C.)
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro (CISVetSUA), 88100 Catanzaro, Italy
| | - Carmine Lomagistro
- Associazione Regionale Allevatori Calabria (A.R.A. Calabria), 88046 Lamezia Terme, Italy;
| | - Paola Roncada
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
| | - Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro (CISVetSUA), 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Dang K, Lan J, Wang Y, Pan D, Du L, Suo S, Dang Y, Gao X. Screening and evaluation of novel DPP-IV inhibitory peptides in goat milk based on molecular docking and molecular dynamics simulation. Food Chem X 2025; 25:102217. [PMID: 39974530 PMCID: PMC11838108 DOI: 10.1016/j.fochx.2025.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Virtual screening techniques have gained much attention as a means of studying bioactive peptides. This study aimed to screen DPP-IV inhibitor peptides in goat milk after simulated digestion in vitro combined with molecular docking and dynamics simulations. By evaluating the docking energy and active sites, and by analyzing RMSD, RMSF, and Rg values, two novel peptides, GPFPLL and LPYPY, were successfully screened and identified. GPFPLL and LPYPY were found to exhibit high inhibitory activity against DPP-IV (IC50 of 130.68 ± 10.38 μM and 179.52 ± 18.89 μM, respectively). Both GPFPLL and LPYPY stably bound to S1 and S1' in DPP-IV, and both demonstrated competitive inhibition of DPP-IV. The inhibition of DPP-IV by GPFPLL and LPYPY after in vitro digestion reached 31.90 % ± 1.80 % and 39.37 % ± 0.90 %, respectively. In a Caco-2 cell experiment, GPFPLL and LPYPY exhibited significant inhibition of DPP-IV, reaching 46.53 % ± 3.48 % and 65.98 % ± 2.87 %, respectively, when the concentration of each peptide was 2 mg/mL. The results of this study suggest that using molecular docking and dynamics simulations to screen novel peptides is an effective approach, and the identified peptides GPFPLL and LPYPY show potential for diabetes management.
Collapse
Affiliation(s)
- Kuo Dang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Lan
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yanli Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Lihui Du
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shikun Suo
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Kapoor DU, Gaur M, Kumar A, Ansari MN, Prajapati B. Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges. Curr Protein Pept Sci 2025; 26:41-56. [PMID: 39171470 DOI: 10.2174/0113892037319188240806074731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Department of Pharmaceutics, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302017, Rajasthan, India
| | - Akash Kumar
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Bhupendra Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| |
Collapse
|
8
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Xie Y, Wang J, Wang S, He R, Wang Z, Zhao L, Ge W. Preparation, characterization, and mechanism of DPP-IV inhibitory peptides derived from Bactrian camel milk. Int J Biol Macromol 2024; 277:134232. [PMID: 39098667 DOI: 10.1016/j.ijbiomac.2024.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
In this study, double enzyme hydrolysis significantly enhanced the DPP-IV inhibition rate compared to single enzyme. The α + K enzymes exhibited the highest inhibition rate. Ultrasonic pretreatment for 30 min improved the hydrolysis efficiency and DPP-IV inhibition rate, potentially due to the structural changes in hydrolysates, such as the increased surface hydrophobicity, and reduced particle size, α-helix and β-turn. Six peptides were screened and verified in vitro. QPY, WPEYL, and YPPQVM displayed competitive inhibition, while LPAAP and IPAPSFPRL displayed mixed competitive/non-competitive inhibition. The interactions between these six peptides and DPP-IV primarily occurred through hydrogen bonds, electrostatic and hydrophobic interactions. Network pharmacological analysis indicated that LPAAP might inhibit DPP-IV activity trough interactions with diabetes-related targets such as CASP3, HSP90AA1, MMP9, and MMP9. These results uncover the potential mechanism of regulating blood glucose by camel milk hydrolysates, establishing camel milk peptide as a source of DPP-IV inhibitory peptide.
Collapse
Affiliation(s)
- Yuxia Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangshuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Chen Q, Wang C, Huang W, Chen F, Hu H, Yang C, He Q, Yu X. Novel dipeptidyl peptidase IV inhibitory peptides derived from sesame proteins: Screening, mechanisms and anti-hyperglycemic effects in zebrafish larvae. INDUSTRIAL CROPS AND PRODUCTS 2024; 215:118682. [DOI: 10.1016/j.indcrop.2024.118682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
He B, Lian Y, Xue H, Zhou Y, Wei Y, Ma J, Tan Y, Wu Y. DPP-IV Inhibitory Peptide against In Vitro Gastrointestinal Digestion Derived from Goat's Milk Protein and Its Activity Enhancement via Amino Acid Substitution. Foods 2024; 13:2721. [PMID: 39272487 PMCID: PMC11395612 DOI: 10.3390/foods13172721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Goat milk protein can release a variety of bioactive peptides after digestion, while most of them are digested into free amino acids or dipeptides via the GI tract. We investigated the peptide profiles of goat milk protein following in vitro gastrointestinal digestion using LC-MS/MS and identified 683 bioactive peptides, including 105 DPP-IV inhibitory peptides. Among these peptides, ILDKVGINY (IL), derived from β-lactoglobulin, was found to be high in content and resistance to digestion. Herein, we explore the effect of amino acid residue substitution at the second N-terminus on its DPP-IV inhibitory activity. Three 9 polypeptide fragments (peptide IL, IP, and II) were synthesized and subjected to molecular docking and activity analysis. The peptide IL demonstrated the highest affinity for DPP-IV with a binding energy of -8.4 kcal/mol and a moderate IC50 value of 1.431 mg/mL determined based on the Caco-2 cell model. The replacement of specific amino acid residues by Pro and Leu led to an increase in the hydrophobic force interaction between the inhibitor peptide and DPP-IV. The inhibition rates of the three peptides were significantly different (p < 0.05). Peptide II containing an Ile residue instead of Leu resulted in a significant enhancement of DPP-IV inhibitory activity, with an IC50 value of 0.577 mg/mL. The GRAVY changes in the three peptides were consistent with the trend of the inhibitory rates. Therefore, the GRAVY of peptides and branch-chain amino acids should be considered in its activity improvement. The present study revealed the presence and activity of DPP-IV inhibitory peptides in goat milk, providing important insights for further investigation of their potential food functionality and health benefits.
Collapse
Affiliation(s)
- Baoyuan He
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanhui Lian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haiyan Xue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yi Wei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jun Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yalin Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yawen Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
13
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
14
|
Zhang Y, Zhu Y, Bao X, Dai Z, Shen Q, Wang L, Xue Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0391. [PMID: 38887277 PMCID: PMC11182572 DOI: 10.34133/research.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from β-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.
Collapse
Affiliation(s)
- Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| | - Liyang Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- School of Clinical Medicine,
Tsinghua University, Beijing 100084, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
15
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
16
|
Saadi S, Makhlouf C, Nacer NE, Halima B, Faiza A, Kahina H, Wahiba F, Afaf K, Rabah K, Saoudi Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr Rev Food Sci Food Saf 2024; 23:e13288. [PMID: 38284584 DOI: 10.1111/1541-4337.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Chaalal Makhlouf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University of Bejaia, Bejaia, Algeria
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Boughellout Halima
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Adoui Faiza
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Hafid Kahina
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Equipe MaQuaV, Laboratoire Bioqual INATAA, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Falek Wahiba
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kheroufi Afaf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kezih Rabah
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
| | - Zineddine Saoudi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| |
Collapse
|
17
|
Sivaraman SA, Sabareesh V. An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides. Curr Protein Pept Sci 2024; 25:267-285. [PMID: 38173201 DOI: 10.2174/0113892037287976231212104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.
Collapse
Affiliation(s)
- Sachithanantham Annapoorani Sivaraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
18
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
19
|
Zhang S, Li ZM, Feng Y, Yu S, Li Z, Zhang D, Wang C. DPP-IV Inhibitory Peptides from Coix Seed Prolamins: Release, Identification, and Analysis of the Interaction between Key Residues and Enzyme Domains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14575-14592. [PMID: 37748081 DOI: 10.1021/acs.jafc.3c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides can regulate type 2 diabetes by inhibiting the cleavage of glucagon-like peptide-1 and prolonging its half-life. The development of DPP-IV inhibitory peptides is still a hot topic. The primary structure of coix seed prolamins contains peptide sequence fragments that potentially inhibit DPP-IV; however, limited information is available regarding the extraction of peptides from coix seeds and the analysis of their conformational relationships. In this study, novel coix seed prolamin-derived peptides were obtained through single hydrolysis and double-enzyme stepwise hydrolysis. The inhibitory activity of these peptides against DPP-IV was evaluated to explore new functional properties of coix seeds. The results evidenced that the step-by-step enzymolysis (papain and alcalase) compared to single enzymolysis promoted the secondary structure disruption of the hydrolysates, enhanced the β-turn structure, significantly increased the content of peptides below 1 kDa, and exhibited a substantial increase in DPP-IV inhibitory activity (97% inhibition). Three nontoxic DPP-IV inhibitory peptides, namely, LPFYPN, TFFPQ, and ATFFPQ (IC50 = 70.24, 176.87, 268.31 μM), were isolated and identified. All three peptides exhibited strong interactions with DPP-IV (all KA values >103). LPFYPN exhibited competitive inhibition, while TFFPQ and ATFFPQ demonstrated mixed competitive-noncompetitive inhibition. Hydrogen bonding and hydrophobic interactions were the main contributors to the coix seed prolamin peptides binding to DPP-IV. The central residue was a key amino acid in the parent peptide sequence, forming a more stable π-π stacking with residues in the active pocket, which may facilitate peptide activity. This study provides theoretical support for the development of coix seed-derived hypoglycemic peptides.
Collapse
Affiliation(s)
- Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Zhi-Ming Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
| | - Shibo Yu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
- Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, PR China
| |
Collapse
|
20
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
21
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5917-5943. [PMID: 37027889 PMCID: PMC11966776 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food
& Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
22
|
Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022; 14:nu14204275. [PMID: 36296965 PMCID: PMC9607871 DOI: 10.3390/nu14204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients.
Collapse
|
23
|
Technological role and metabolic profile of two probiotic EPS-producing strains with potential application in yoghurt: impact on rheology and release of bioactive peptides. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022; 64:2053-2075. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dipeptidyl Peptidase IV (DPP-IV) inhibitory peptides are attracting increasing attention, owing to their potential role in glycemic regulation by preventing the inactivation of incretins. However, few reviews have summarized the current understanding of DPP-IV inhibitory peptides and their knowledge gaps. This paper reviews the production, identification and structure-activity relationships (SAR) of DPP-IV inhibitory peptides. Importantly, their bioavailability and hypoglycemic effects are critically discussed. Unlike the traditional method to identifying peptides after separation step by step, the bioinformatics approach identifies peptides via virtual screening that is more convenient and efficient. In addition, the bioinformatics approach was also used to investigate the SAR of peptides. Peptides with proline (Pro) or alanine (Ala) residue at the second position of N-terminal are exhibit strong DPP-IV inhibitory activity. Besides, the bioavailability of DPP-IV inhibitory peptides is related to their gastrointestinal stability and cellular permeability, and in vivo studies showed that the glucose homeostasis has been improved by these peptides. Especially, the intestinal transport of DPP-IV inhibitory peptides and cell biological assays used to evaluate their potential role in glycemic regulation are innovatively summarized. For further successful development of DPP-IV inhibitory peptides in glycemic regulation, future study should elucidate their SAR and in vivo hypoglycemic effects .
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
26
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
27
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
28
|
Kumar A, Kumar M H S, C S R, Sabikhi L, Naik N L. Dipeptidyl peptidase‐IV inhibitory potential of alpha‐lactalbumin extracted from milk of
Gir
cows: A
Bos indicus
species. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ashok Kumar
- Rajasthan Cooperative Dairy Federation Jaipur Rajasthan 302 015India
| | - Sathish Kumar M H
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Rajani C S
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001India
| | - Laxmana Naik N
- Dairy Chemistry Section SRS‐ICAR‐NDRI Bengaluru Karnataka 560 030 India
| |
Collapse
|
29
|
Luo F, Fu Y, Ma L, Dai H, Wang H, Chen H, Zhu H, Yu Y, Hou Y, Zhang Y. Exploration of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Silkworm Pupae ( Bombyx mori) Proteins Based on In Silico and In Vitro Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3862-3871. [PMID: 35230117 DOI: 10.1021/acs.jafc.1c08225] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed at exploring dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae proteins by in silico analysis and in vitro assessments. In silico analysis of 274 silkworm pupae proteomes indicated that DPP-IV inhibitory peptides can be released from silkworm pupae proteins. In vitro assessments revealed that pepsin and bromelain led to better production of DPP-IV inhibitory peptides from silkworm pupae protein. Notably, peptide fractions (<1 kDa) from pepsin- and bromelain-treated hydrolysates exhibited more potent DPP-IV inhibitory activities. Two novel DPP-IV inhibitory peptides (Leu-Pro-Pro-Glu-His-Asp-Trp-Arg and Leu-Pro-Ala-Val-Thr-Ile-Arg) were identified by LC-MS/MS with IC50 values of 261.17 and 192.47 μM, respectively. Enzyme kinetics data demonstrated that these two peptides displayed a mixed-type DPP-IV inhibition mode, which was further validated by molecular docking data. Overall, in silico analysis combined with in vitro assessments can serve as an effective and rapid approach for discovery of DPP-IV peptides from silkworm pupae proteins.
Collapse
Affiliation(s)
- Fali Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
30
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
31
|
Xie D, Du L, Lin H, Su E, Shen Y, Xie J, Wei D. In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Generation, characterization and molecular binding mechanism of novel dipeptidyl peptidase-4 inhibitory peptides from sorghum bicolor seed protein. Food Chem 2022; 369:130888. [PMID: 34474286 DOI: 10.1016/j.foodchem.2021.130888] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022]
Abstract
Food proteins and their constituent peptides impart huge health benefits besides their nutritional attributes. Sorghum bicolor protein hydrolysates (SPH) and derived bioactive peptides generated by simulated gastrointestinal digestion were studied for DPP-4 inhibitory properties using in vitro and in situ assays. Identified peptides, LSICGEESFGTGSDHIR (PEP1), SLGESLLQEDVEAHK (PEP2) and QLRDIVDK (PEP4) displayed potent DPP-4 inhibition with IC50 values of 73.5, 82.5 and 8.55 µM respectively. DPP-4 inhibition mechanism by the peptides was investigated by DPP4-peptide inhibition kinetics, molecular docking and microscale thermophoresis binding studies. The peptides bound to DPP-4 with micromolar affinities and PEP4 showed significantly increased affinity. The mixed type enzyme inhibition by peptides suggested that the peptides either block the active site of DPP-4 or changes the enzyme conformation via a secondary binding site. Overall, the results demonstrate that sorghum seeds are an adequate source of peptides with DPP-4 inhibitory properties that could be used in functional food formulations.
Collapse
|
33
|
Chen H, Sun Y, Zhao H, Qi X, Cui H, Li Q, Ma Y. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice. Food Funct 2022; 13:9878-9892. [DOI: 10.1039/d2fo01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Lactalbumin peptide Asp-Gln-Trp (DQW) alleviates hepatic insulin resistance via activating the IRS1/PI3K/AKT pathway and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice.
Collapse
Affiliation(s)
- Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Haiding Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Hui Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Qiming Li
- New Hope Dairy Co, Ltd, Chengdu, 610063, Sichuan, China
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, 610000, Sichuan, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| |
Collapse
|
34
|
Tombul hazelnut ( Corylus avellana L.) peptides with DPP-IV inhibitory activity: In vitro and in silico studies. Food Chem X 2021; 12:100151. [PMID: 34888520 PMCID: PMC8636861 DOI: 10.1016/j.fochx.2021.100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Cold press technology generates high quality value-added oil products along with highly stable oilseed cakes. Hazelnut cakes are characterized by high protein concentrations that can be industrially valorized. Here, using an aqueous extraction scheme along with enzymatic proteolysis and FPLC (fast protein liquid chromatography)-based fractionation, a variety of hazelnut peptide fractions with varying bioactive properties were manufactured and their sequences were determined based on mass spectrometry. DPP-IV inhibitory attributes were determined based on an in vitro DPP-IV assay and in silico techniques were administered for for the analysis of overall bioactive potential and DPP-IV inhibitory characteristics of peptides. Based on these investigations, 256 peptides were identified in 81 different fractions. The majority of fractions were characterized with low to moderate DPP-IV inhibitory activity possibly due to their dilute nature. Some hazelnut peptides were characterized by comparable IC50 values as the positive control (Diprotin-A). The most influential 7 peptides were shown to generate higher docking scores than the control. The main interaction mechanism between hazelnut peptides and DPP-IV possibly depended on hydrophobic interactions. While further concentration could enhance the DPP-IV inhibitory potential of hazelnut peptides, hazelnut cakes represent a sustainable resource of potentially antidiabetic peptides.
Collapse
|
35
|
Santos-Hernández M, Cermeño M, Recio I, FitzGerald RJ. In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food Funct 2021; 12:12372-12380. [PMID: 34854453 DOI: 10.1039/d1fo00641j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary proteins are involved in the regulation of glucose homeostasis by different mechanisms. Food protein digestion products are reported to inhibit dipeptidyl peptidase IV (DPP-IV), induce incretin secretion or directly exert an insulinotropic effect in pancreatic β-cells. This study illustrates the DPP-IV inhibitory activity of gastric and intestinal digests of casein, whey and egg white proteins determined in vitro, using Gly-Pro-AMC, and in situ using non-differentiated Caco-2 cells. Comparable trends in the DPP-IV inhibitory profiles were obtained by these two methods although the extent of inhibition in situ was consistently lower than the inhibition observed in vitro. Casein intestinal digests and whey protein gastric and intestinal digests showed potent DPP-IV inhibitory activities in Caco-2 cells with IC50 values ranging from 0.8 to 1.2 mg mL-1. The absorbed fraction of the intestinal digests from whey and egg white protein induced insulin secretion in BRIN-BD11 cells when determined using a two-tiered cellular model (Caco-2 and BRIN-BD11). However, the gastric digests from the same substrates showed no insulin secretion. This may be related to limited trans-epithelial transport through the Caco-2 monolayer of the gastric digestion products. However, both, gastric and intestinal digests were able to induce insulin secretion in BRIN-BD11 cells when the monolayer was composed of a co-culture of STC-1 and Caco-2 cells. This result may be attributed to the activation of STC-1 cells and subsequent incretin secretion, induced by the gastric digest, as shown by an enhanced intracellular calcium uptake.
Collapse
Affiliation(s)
- Marta Santos-Hernández
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain.,Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| | - Maria Cermeño
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| | - Isidra Recio
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| |
Collapse
|
36
|
Xiang X, Lang M, Li Y, Zhao X, Sun H, Jiang W, Ni L, Song Y. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus vannamei) head. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:122990. [PMID: 34735973 DOI: 10.1016/j.jchromb.2021.122990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
DPP-IV plays a key role for regulation of glucose metabolism in the body. The object of this study was to obtain DPP-IV inhibitors from discarded but protein-rich Penaeus vannamei (P. vannamei) head, and to explore the potential mechanism between DPP-IV and its inhibitors. P. vannamei head protein was hydrolyzed by five food grade proteases, respectively. The animal protease hydrolysate showed the highest inhibitory active. Then the hydrolysate was sequentially separated by ultrafiltration, gel filtration chromatography and reversed phase high-performance liquid chromatography (RP-HPLC), the peptides sequences were identified by LC-MS/MS and four potential peptides YPGE, VPW, HPLY, YATP showed superior DPP-IV inhibitory activity. Meanwhile, molecular docking effectively explored their mechanism through formed hydrogen bonds and hydrophobic regions. The four peptides showed better DPP-IV inhibitory activity stability with heating treatment, pH (1-10) treatment, and in vitro gastrointestinal digestion. Our results demonstrated that the protein hydrolysate from discarded P. vannamei head can be considered as a promising natural source of DPP-IV inhibitor for helping to improve glycaemic control in Type 2 diabetes.
Collapse
Affiliation(s)
- Xi Xiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huimin Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiwei Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
37
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
38
|
Engineering Concanavalin B to Release Bioactive Peptides against Metabolic Syndrome. Foods 2021; 10:foods10071554. [PMID: 34359424 PMCID: PMC8307266 DOI: 10.3390/foods10071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome is a severe public health issue characterized by multiple metabolic disturbances. Current treatments prescribe a particular drug for each of them, producing multiple side effects. As a first step towards a more integral approach, we applied our recently described methodology to design single proteins, based in the Concanavalin B scaffold (1CNV), that contain several bioactive peptides (BPs), including antioxidant and lipid-lowering activities as well as inhibitors of dipeptidyl peptidase IV (DPPIV) and the angiotensin converting enzyme. Modified Concanavalin (CNV44), the designed protein that showed the best in silico properties, was expressed in high yields in E. coli and purified to homogeneity. After in vitro digestion with gastrointestinal enzymes, all the biological activities tested where higher in CNV44 when compared to the non-modified protein 1CNV, or to other previous reports. The results presented here represent the first in vitro evidence of a modified protein with the potential to treat metabolic syndrome and open the venue for the design of proteins to treat other non-communicable diseases.
Collapse
|
39
|
Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14060586. [PMID: 34207217 PMCID: PMC8234173 DOI: 10.3390/ph14060586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/02/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia that is predominantly caused by insulin resistance or impaired insulin secretion, along with disturbances in carbohydrate, fat and protein metabolism. Various therapeutic approaches have been used to treat diabetes, including improvement of insulin sensitivity, inhibition of gluconeogenesis, and decreasing glucose absorption from the intestines. Recently, a novel approach has emerged using dipeptidyl peptidase-IV (DPP-IV) inhibitors as a possible agent for the treatment of T2DM without producing any side effects, such as hypoglycemia and exhaustion of pancreatic β-cells. DPP-IV inhibitors improve hyperglycemic conditions by stabilizing the postprandial level of gut hormones such as glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides, which function as incretins to help upregulate insulin secretion and β-cell mass. In this review, we summarized DPP-IV inhibitors and their mechanism of inhibition, activities of those isolated from various natural sources, and their capacity to overcome oxidative stress in disease conditions.
Collapse
|
40
|
Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5582245. [PMID: 34234885 PMCID: PMC8219413 DOI: 10.1155/2021/5582245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Bioactive peptides (BPs) are fragments of 2-15 amino acid residues with biological properties. Dietary BPs derived from milk, egg, fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length, sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element in oxidative stress; peroxisome proliferator-activated-γ, CCAAT/enhancer-binding protein-α, and sterol regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs and provides novel insights in the maintenance of redox balance and metabolic diseases of human.
Collapse
Affiliation(s)
- Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Singh BP, Aluko RE, Hati S, Solanki D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit Rev Food Sci Nutr 2021; 62:4593-4606. [PMID: 33506720 DOI: 10.1080/10408398.2021.1877109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lifestyle-related diseases constitute a major concern in the twenty-first century, with millions dying worldwide each year due to chosen lifestyles and associated complications such as obesity, type 2 diabetes, hypertension, and hypercholesterolemia. Although synthetic drugs have been shown to be quite effective in the treatment of these conditions, safety of these compounds remains a concern. Natural alternatives to drugs include food-derived peptides are now being explored for the prevention and treatment of lifestyle-related complications. Peptides are fragments nascent in the primary protein sequences and could impart health benefits beyond basic nutritional advantages. Evidence suggests that by controlling adipocyte differentiation and lipase activities, bioactive peptides may be able to prevent obesity. Bioactive peptides act as agents against type 2 diabetes because of their ability to inhibit enzymatic activities of DPP-IV, α-amylase, and α-glucosidase. Moreover, bioactive peptides can act as competitive inhibitors of angiotensin-converting enzyme, thus eliciting an antihypertensive effect. Bioactive peptides may have a hypocholesterolemic effect by inhibiting cholesterol metabolism pathways and cholesterol synthesis. This review addresses current knowledge of the impact of food-derived bioactive peptides on lifestyle diseases. In addition, future insights on the clinical trials, allergenicity, cytotoxicity, gastrointestinal stability, and regulatory approvals have also been considered.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Subrota Hati
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| | - Divyang Solanki
- SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
42
|
Addai FP, Lin F, Wang T, Kosiba AA, Sheng P, Yu F, Gu J, Zhou Y, Shi H. Technical integrative approaches to cheese whey valorization towards sustainable environment. Food Funct 2020; 11:8407-8423. [PMID: 32955061 DOI: 10.1039/d0fo01484b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whey, a byproduct of cheese production, is often treated as an industrial dairy waste. A large volume of this product is disposed of annually due to inadequate bioconversion approaches. With its high pollutant load, disposal without pretreatment has raised a lot of environmental concerns alerting the need to seek optimal methods for adequately extracting and utilizing its organic content. In recent years, several techniques for whey valorization have emerged which may serve as interventionary measures against its environmental effects after disposal. In this review, we discuss five major approaches, by which whey can be converted into eco-friendly products, to significantly cut whey wastage. The approaches to whey valorization are therefore examined under the following perspectives: whey as a raw material for the production of bioethanol and prebiotic oligosaccharides via β-galactosidase and microbe catalyzed reactions, for the production of refined lactose as an excipient for pharmaceutical purposes, and the clinical significance of whey hydrolysates and their antifungal activity in food processing.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, P. R. China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Pengcheng Sheng
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, P. R. China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| |
Collapse
|
43
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
44
|
Dang J, Du Y, Wang Q, Dawa Y, Chen C, Wang Q, Ma J, Tao Y. Preparative isolation of arylbutanoid-type phenol [(-)-rhododendrin] with peak tailing on conventional C18 column using middle chromatogram isolated gel column coupled with reversed-phase liquid chromatography. J Sep Sci 2020; 43:3233-3241. [PMID: 32521119 DOI: 10.1002/jssc.202000468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/27/2023]
Abstract
Reversed-phase liquid chromatography coupled with middle chromatogram isolated gel column was employed for the efficient preparative separation of the arylbutanoid-type phenol [(-)-rhododendrin] from Saxifraga tangutica. Universal C18 (XTerra C18) and XCharge C18 columns were compared for (-)-rhododendrin fraction analysis and preparation. Although tailing and overloading occurred on the XTerra C18 column, the positively charged reversed-phase C18 column (XCharge C18) overcame these drawbacks, allowing for favorable separation resolution, even when loading at a on a preparative scale (3.69 mg per injection). The general separation process was as follows. First, 365.0 mg of crude (-)-rhododendrin was enriched from 165 g Saxifraga tangutica extract via a middle chromatogram isolated gel column. Second, separation was performed on an XTerra C18 preparative column, from which 73.8 mg of the target fraction was easily obtained. Finally, the 24.0 mg tailing peak of (-)-rhododendrin on XTerra C18 column was selectively purified on the XCharge C18 analytical column. These results demonstrate that the tailing nonalkaloid peaks can be effectively used for preparative isolation on XCharge C18 columns.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P. R. China
| | - Yurong Du
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, P. R. China
| | - Qi Wang
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, P. R. China
| | - YangZom Dawa
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, P. R. China
| | - Chengbiao Chen
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, P. R. China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P. R. China
| | - Jianbin Ma
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, P. R. China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P. R. China
| |
Collapse
|