1
|
Mohamed N, Hamed M, Mansour FR, Zarad W, Emara S, Shawky A. Luminescent Carbon Dots From Biomass Waste for the Sensitive Determination of Ascorbic Acid in Tablet Dosage Forms. LUMINESCENCE 2025; 40:e70072. [PMID: 39748266 DOI: 10.1002/bio.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/12/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method. A variety of techniques, including transmission electron microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier-transform infrared spectroscopy, were employed to characterize the PSP-based NACQDs. The NACQDs were used as probes for FL analysis of ASA, where the addition of ASA caused fluorescence quenching of the NACQDs. The developed method demonstrated good linearity (r = 0.996), sensitivity, accuracy (percentage recovery ranging from 99.36% to 100.35%), and precision (%RSD less than 0.21%) in the quantification of ASA in the range of 0.3-15 μg/mL. The method's LOD and LOQ values were 0.1 and 0.3 μg/mL, respectively. The successful analysis of ASA in tablet formulations demonstrated the practicality of the proposed method. Greenness assessment tools highlighted its superior eco-friendliness compared to reference techniques.
Collapse
Affiliation(s)
- Nehal Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa Zarad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samy Emara
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Ahmed Shawky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
2
|
Yao J, Meng Q, Xu Q, Fu H, Xu H, Feng Q, Cao X, Zhou Y, Huang H, Bai C, Qiao R. A novel BN aromatic module modified near-infrared fluorescent probe for monitoring carbon monoxide-releasing molecule CORM-3 in living cells and animals. Talanta 2024; 280:126734. [PMID: 39173248 DOI: 10.1016/j.talanta.2024.126734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/15/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.
Collapse
Affiliation(s)
- Junxiong Yao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China
| | - Qixing Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Huimin Fu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang, 332005, China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.
| |
Collapse
|
3
|
Zhang W, Sun X, Liu H, Shang L, Ma R, Li X, Jia L, He S, Li C, Wang H. Self-Powered Photoelectrochemistry Biosensor for Ascorbic Acid Determination in Beverage Samples Based on Perylene Material. Molecules 2024; 29:5254. [PMID: 39598645 PMCID: PMC11596541 DOI: 10.3390/molecules29225254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often causing its content in food to change. It is important to develop a sensitive and accurate photoelectrochemistry (PEC) biosensor for detecting ascorbic acid. The shortage of PEC materials with long illumination wavelengths and low bias voltages impedes the development of ascorbic acid biosensors. Herein, a 3,4,9,10-perylenetetracarboxylic dianhydride (PDA) self-assembly rod material was firstly reported to show significant photocurrent increases to ascorbic acid at 630 nm illumination and 0 V vs. Ag/AgCl. Moreover, the PDA self-assembly rod material was used as a PEC platform to detect ascorbic acid. This self-powered PEC biosensor exhibited a linear response for ascorbic acid from 5 μM·L-1 to 400 μM·L-1; the limit of detection was calculated to be 4.1 μM·L-1. Compared with other ascorbic acid biosensors, the proposed self-powered PEC biosensor shows a relatively wide linear range. In addition, the proposed self-powered PEC biosensor exhibits good practicability in beverage samples.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xinyang Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Hong Liu
- Dongying Ecological Environment Agency, Dongying 257000, China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Rongna Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xiaojian Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Liping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| |
Collapse
|
4
|
Brunetti B. Electrochemical Sensors and Biosensors for the Determination of Food Nutritional and Bioactive Compounds: Recent Advances. SENSORS (BASEL, SWITZERLAND) 2024; 24:6588. [PMID: 39460069 PMCID: PMC11511335 DOI: 10.3390/s24206588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The significance of food nutrients and bioactive compounds in human health has driven the development of many methods for their determination in different matrices. Among these, electroanalysis has gained popularity due to its cost-effectiveness, rapidity, and, in many cases, portability and minimal sample treatment. This review highlights key advances in electrochemical sensors and biosensors from 2019 to the present. Given the variability and the challenges of managing food matrices, the focus is limited to methods that have been thoroughly assessed for their applicability to real samples. The technical characteristics and analytical performance of the proposed sensors are discussed, along with breakthrough features and future trends.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS)DeFENS, University of Milan, Via Celoria 2, I-20133 Milan, Italy
| |
Collapse
|
5
|
Lima D, Singh V, Bulleeraz K, Lussier JA, Kuss S. Electrifying Fruit Juice: Integrating Applied Electroanalytical Chemistry into the Undergraduate Curriculum. JOURNAL OF CHEMICAL EDUCATION 2024; 101:2938-2946. [PMID: 39007077 PMCID: PMC11238731 DOI: 10.1021/acs.jchemed.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Electroanalytical chemistry has been advanced through portable devices, providing methods and sensors for the detection of analytes with high sensitivity and accuracy. This subfield of electrochemistry has the potential to be utilized in industry and analytical quality control, in general. This results in an increasing demand for trained personnel, capable of operating benchtop and portable electroanalytical equipment. Although electrochemical techniques are routinely taught in theoretical undergraduate courses, they need to be more often incorporated into experimental didactic activities. Herein, we describe the application of an effective, hands-on, and low-maintenance experiment that can enhance the learning experience of electroanalytical methods and their use in industrial quality control settings. This activity is based on the detection of ascorbic acid (vitamin C) by employing cyclic voltammetry at unmodified glassy carbon electrodes (GCE) in real juice samples. This didactic experiment teaches students about the theoretical concepts of cyclic voltammetry, three-electrode cell setup, chemical reversibility, data treatment, and quantitative analysis. This teaching approach was conducted in a second-year analytical chemistry course and was easily adapted to social distancing measures imposed by the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | - Karishma Bulleeraz
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| | - Joey A. Lussier
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| | - Sabine Kuss
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| |
Collapse
|
6
|
Liu Y, Sun G, Ma P, Song D. Combining fluorescent quantum dots with transition metal oxide shell as core-shell nanocomposite for turn-on sensing of ascorbic acid. Talanta 2024; 271:125687. [PMID: 38271843 DOI: 10.1016/j.talanta.2024.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Ascorbic acid (AA) is an essential vitamin in humans, and numerous AA detection studies have been conducted. Most quantum dots (QDs)-based approaches depend on redox reactions involving AA, and they require the introduction of an intermediate (e.g., metal ions, OPD, TMB) or the assembly of fluorescent substances with nanosheets (such as MnO2) that can be degraded by AA. These methods are complex, unstable, and are susceptible to interferences. To address these problems, a core-shell fluorescence probe was developed for turn-on sensing of AA. The transition metal oxide shell FeOOH was generated around the surface of CuInZnS QDs to quench the fluorescence. In the presence of AA, the FeOOH shell was decomposed into Fe2+ and the fluorescence of QDs was recovered. Using a physical shell, the obtained nanocomposite realized direct AA detection, avoiding the effects of interfering substances caused by QDs exposure. Moreover, our probe showed great potential in point-of-care tests and was readily adapted for use as a smartphone-assisted paper sensor.
Collapse
Affiliation(s)
- Yibing Liu
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China; Advanced Institute of Materials Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
7
|
Luis-Sunga M, Carinelli S, García G, González-Mora JL, Salazar-Carballo PA. Electrochemical Detection of Bisphenol A Based on Gold Nanoparticles/Multi-Walled Carbon Nanotubes: Applications on Glassy Carbon and Screen Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:2570. [PMID: 38676187 PMCID: PMC11054518 DOI: 10.3390/s24082570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Bisphenol A (BPA) has been classified as an endocrine-disrupting substance that may cause adverse effects on human health and the environment. The development of simple and sensitive electrochemical biosensors is crucial for the rapid and effective quantitative determination of BPA. This work presents a study on electrochemical sensors utilizing gold nanoparticle-modified multi-walled carbon nanotubes (CNT/AuNPs). Glassy carbon electrodes (GCEs) and screen-printed electrodes (SPEs) were conveniently modified and used for BPA detection. AuNPs were electrodeposited onto the CNT-modified electrodes using the galvanostatic method. The electrodes were properly modified and characterized by using Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance analysis (EIS). The electrochemical response of the sensors was studied using differential pulse voltammetry (DPV) and constant potential amperometry (CPA) for modified GCE and SPE electrodes, respectively, and the main analytical parameters were studied and optimized. Problems encountered with the use of GCEs, such as sensor degradation and high limit of detection (LOD), were overcome by using modified SPEs and a flow injection device for the measurements. Under this approach, an LOD as low as 5 nM (S/N = 3) was achieved and presented a linear range up to 20 μM. Finally, our investigation addressed interference, reproducibility, and reusability aspects, successfully identifying BPA in both spiked and authentic samples, including commercial and tap waters. These findings underscore the practical applicability of our method for accurate BPA detection in real-world scenarios. Notably, the integration of SPEs and a flow injection device facilitated simplified automation, offering an exceptionally efficient and reliable solution for precise BPA detection in water analysis laboratories.
Collapse
Affiliation(s)
- Maximina Luis-Sunga
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, Universidad de la Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain; (M.L.-S.); (J.L.G.-M.); (P.A.S.-C.)
- Departamento de Química, Instituto Universitario de Materiales y Nanotecnología, Universidad de la Laguna, P.O. Box 456, 38200 La Laguna, Spain;
| | - Soledad Carinelli
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, Universidad de la Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain; (M.L.-S.); (J.L.G.-M.); (P.A.S.-C.)
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Gonzalo García
- Departamento de Química, Instituto Universitario de Materiales y Nanotecnología, Universidad de la Laguna, P.O. Box 456, 38200 La Laguna, Spain;
| | - José Luis González-Mora
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, Universidad de la Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain; (M.L.-S.); (J.L.G.-M.); (P.A.S.-C.)
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia, Universidad de la Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Pedro A. Salazar-Carballo
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, Universidad de la Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain; (M.L.-S.); (J.L.G.-M.); (P.A.S.-C.)
| |
Collapse
|
8
|
Shi Y, Wang L, Hu Y, Zhang Y, Le W, Liu G, Tomaschek M, Jiang N, Yetisen AK. Contact lens sensor for ocular inflammation monitoring. Biosens Bioelectron 2024; 249:116003. [PMID: 38227993 DOI: 10.1016/j.bios.2024.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Contact lens sensors have been emerging as point-of-care devices in recent healthcare developments for ocular physiological condition monitoring and diagnosis. Fluorescence sensing technologies have been widely applied in contact lens sensors due to their accuracy, high sensitivity, and specificity. As ascorbic acid (AA) level in tears is closely related to ocular inflammation, a fluorescent contact lens sensor incorporating a BSA-Au nanocluster (NC) probe is developed for in situ tear AA detection. The NCs are firstly synthesized to obtain a fluorescent probe, which exhibits high reusability through the quench/recover (KMnO4/AA) process. The probe is then encapsulated with 15 wt% of poly(vinyl alcohol) (PVA) and 1.5 wt% of citric acid (CA) film, and implemented on a closed microfluidic contact lens sensing region. The laser-ablated microfluidic channel in contact lens sensors allows for tear fluid to flow through the sensing region, enabling an in-situ detection of AA. Meanwhile, a smartphone application accompanied by a customized 3D printed readout box is developed for image caption and algorism to quantitative analysis of AA levels. The contact lens sensor is tested within the readout box and the emission signal is collected through the smartphone camera at room temperature with an achieved LOD of 0.178 mmol L-1 (0.0-1.2 mmol L-1). The operational and storage lifetime is also evaluated to characterize the sensor properties and resulted in 20 h and 10 days, respectively. The reusable AA contact lens sensor is promising to lead to an alternative accessible diagnostic method for ocular inflammation in point-of-care settings.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Yihan Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Wenhao Le
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Guohui Liu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Michael Tomaschek
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
9
|
Lin Z, Zeng Q, Yao W, Chen W, Cai C, Yang J, Lin X, Chen W. A fluorescence "turn-on" sensor for ascorbic acid in fruit juice and beverage based on ascorbate oxidase-like activity of citric acid-derived carbon dots. Food Chem 2024; 437:137928. [PMID: 37976784 DOI: 10.1016/j.foodchem.2023.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Citric acid-derived carbon dots (CA-CDs) without any modifications were found to have the ascorbate oxidase (AAO)-like activity. The CA-CDs have high affinity for ascorbic acid (AA), which is similar to natural AAO. The robustness of CA-CDs is greater than that of AAO. Based on the AAO mimetic activity of CA-CDs, a sensitive turn-on mode and natural enzyme-free fluorescence detection method has been developed for AA in some fruit juice and beverage samples with satisfied recoveries. This study provides CDs-based AAO mimetic nanozymes to replace the expensive natural enzymes or heavy metal-based nanozymes, which will show great potential in biological and food assays.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Qi Zeng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Wensong Yao
- College of Medical Sciences, Ningde Normal University, Ningde 352100, China.
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Chuangui Cai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Jialin Yang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
10
|
Pei K, Xu J, Wu D, Qi L, Ma L, Zhang R, Qi W. A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages utilizing luminol-embedded iron-based metal-organic frameworks. Food Chem 2024; 434:137417. [PMID: 37738811 DOI: 10.1016/j.foodchem.2023.137417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023]
Abstract
A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages was developed utilizing luminol-embedded iron-based metal-organic frameworks (luminol@Fe-DOBDC MOFs). Luminol@Fe-DOBDC MOFs with fluorescent emissions at 430 nm and 540 nm under excitation wavelength of 365 nm were applied to detect ascorbic acid on the basis of ascorbic acid triggering the reduction of Fe3+ into Fe2+. In the presence of ascorbic acid, fluorescent intensity at 540 nm was increased significantly while fluorescent intensity at 430 nm was changed slightly. Two emission peaks separated by 110 nm can eliminate environmental interferences by built-in self-calibration of ratiometric signal, enhancing the sensitivity and accuracy. The increasing ratiometric fluorescent intensity (I540 nm/I430 nm) has linear relationship with the concentration of ascorbic acid from 0.2 to 30 μM with limit of detection of 70 nM. It is an efficient, sensitive and accurate platform to detect ascorbic acid in commercial beverages using transition-metal-based MOFs.
Collapse
Affiliation(s)
- Kanglin Pei
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Jianyang Xu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Di Wu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Lin Qi
- China Tobacco Hongyunhonghe Tobacco (group) Co., Ltd., Kunming 650231, PR China
| | - Lingyan Ma
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Renwen Zhang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenjing Qi
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
11
|
Meng Q, Yao J, Chen M, Dong Y, Liu X, Zhao S, Qiao R, Bai C, Qu C, Miao H. Using Cu 2+ to regulate the emission feature of near-infrared fluorescent sensor with AIE: To detect ascorbic acid in food samples and its application in bioimaging. Anal Chim Acta 2023; 1276:341602. [PMID: 37573096 DOI: 10.1016/j.aca.2023.341602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Conventional ascorbic acid (AA) detection methods such as chromatography, capillary electrophoresis, colorimetry, electrochemical detection, and enzymatic analysis require expensive equipment and complicated operation. Simple, rapid, and accurate AA detection is essential to inspect food quality, diagnose diseases, and assess immunity in humans. In this study, the first near-infrared fluorescence sensor DBHM with aggregation-induced emission was developed to detect AA under the involvement of Cu2+. The DBHM + Cu2+ sensor showed high sensitivity to AA with a limit of detection of 2.37 μM. The AA detection mechanism was investigated by optical studies, 1H NMR titration, high-resolution mass spectrometry, and infrared spectroscopy. AA was detected qualitatively and quantitatively by the DBHM + Cu2+ sensor in beverages, fruits, and Vitamin C tablets using a dual-mode (fluorescence and smartphone app) sensing platform. The new sensing system also showed low toxicity and excellent bioimaging in HeLa cells, C. elegans, and mice. This sensor could advance AA detection technology in the food industry and has potential bioimaging applications.
Collapse
Affiliation(s)
- Qian Meng
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Shuyang Zhao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui, 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China.
| |
Collapse
|
12
|
Shi X, Li J, Xiong Y, Liu Z, Zhan J, Cai B. Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection. NANOSCALE 2023; 15:6629-6635. [PMID: 36951617 DOI: 10.1039/d3nr00488k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
Collapse
Affiliation(s)
- Xiaoyue Shi
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, 266061 Qingdao, China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China.
| | - Ziyu Liu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, NHC Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China.
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.
| |
Collapse
|
13
|
Zhong Z, Xie A, Pan J, Li M, Wang J, Jiang S, Lin J, Zhu S, Luo S. Well-matched core–shell NiO@LaMnO3/MWCNTs p-p homotype heterojunction for ascorbic acid detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Development and Optimization of Electrochemical Method for Determination of Vitamin C. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The focus of this work was to develop a simple electrochemical method for the determination of vitamin C (VitC) by using a specially constructed microelectrode made from pyrolytic graphite sheet (PGS). A procedure for quantifying VitC in a real sample was established. VitC shows a single quasi-reversible reaction. The method was optimized, and analytical determination was performed by using cyclic voltammetry and square wave voltammetry for electroanalytical purposes. The obtained results show a linear response of the PGS electrode in a wide concentrations range. For the lower concentration range, 0.18–7.04 µg L−1, the sensitivity is 11.7 µAcm−2/mgL−1, while for the higher concentration range, 10.6–70.4 µg L−1, the sensitivity is 134 µAcm−2/mgL−1, preserving the linearity of 0.998 and 0.999. The second objective was to determine the effect of the addition of five different types of “green” biowaste on plant growth, VitC content, and antioxidant activity in arugula (Eruca sativa L.) using the developed method. After three weeks of cultivation, small differences in growth and large differences in certain nutritional characteristics were observed. The addition of black coffee makes the soil slightly alkaline and causes a significant increase in VitC content and antioxidant activity.
Collapse
|
15
|
Fernandes Loguercio L, Thesing A, da Silveira Noremberg B, Vasconcellos Lopes B, Kurz Maron G, Machado G, Pope MA, Lenin Villarreal Carreno N. Direct Laser Writing of Poly(furfuryl Alcohol)/Graphene Oxide Electrodes for Electrochemical Determination of Ascorbic Acid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anderson Thesing
- Institute of Physics Universidade Federal do Rio Grande do Sul CEP 91501-970 Porto Alegre RS Brazil
| | - Bruno da Silveira Noremberg
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Bruno Vasconcellos Lopes
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Guilherme Kurz Maron
- Postgraduate Program in Biotechnology Technology Development Center Federal University of Pelotas CEP 96010-900 Capão do Leão RS Brazil
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste CEP 50740-545 Recife PE Brazil
| | - Michael A. Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology University of Waterloo N2L 3G1 Ontario Canada
| | | |
Collapse
|
16
|
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical Methods for the Analysis of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2427-2449. [PMID: 35188762 DOI: 10.1021/acs.jafc.1c06350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The milk and dairy industries are some of the most profitable sectors in many countries. This business requires close control of product quality and continuous testing to ensure the safety of the consumers. The potential risk of contaminants or degradation products and undesirable chemicals necessitates the use of fast, reliable detection tools to make immediate production decisions. This review covers studies on the application of electrochemical methods to milk (i.e., voltammetric and amperometric) to quantify different analytes, as reported over the last 10 to 15 years. The review covers a wide range of analytes, including allergens, antioxidants, organic compounds, nitrogen- and aldehyde containing compounds, biochemicals, heavy metals, hydrogen peroxide, nitrite, and endocrine disruptors. The review also examines pretreatment procedures applied to milk samples and the use of novel sensor materials. Final perspectives are provided on the future of cost-effective and easy-to-use electrochemical sensors and their advantages over conventional methods.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
17
|
Electrochemical Detection of Ascorbic Acid in Oranges at MWCNT-AONP Nanocomposite Fabricated Electrode. NANOMATERIALS 2022; 12:nano12040645. [PMID: 35214973 PMCID: PMC8877794 DOI: 10.3390/nano12040645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/22/2023]
Abstract
Ascorbic acid (AA) is an essential vitamin in the body, influencing collagen formation, as well as norepinephrine, folic acids, tryptophan, tyrosine, lysine, and neuronal hormone metabolism. This work reports on electrochemical detection of ascorbic acid (AA) in oranges using screen-print carbon electrodes (SPCEs) fabricated with multi-walled carbon nanotube- antimony oxide nanoparticle (MWCNT-AONP) nanocomposite. The nanocomposite-modified electrode displayed enhanced electron transfer and a better electrocatalytic reaction towards AA compared to other fabricated electrodes. The current response at the nanocomposite-modified electrode was four times bigger than the bare electrode. The sensitivity and limit of detection (LOD) at the nanocomposite modified electrode was 0.3663 [AA]/µM and 140 nM, respectively, with linearity from 0.16–0.640 μM and regression value R2 = 0.985, using square wave voltammetry (SWV) for AA detection. Two well-separated oxidation peaks were observed in a mixed system containing AA and serotonin (5-HT); and the sensitivity and LOD were 0.0224 [AA]/µA, and 5.85 µΜ, respectively, with a concentration range from 23 to 100 µM (R2 = 0.9969) for AA detection. The proposed sensor outperformed other AA sensors reported in the literature. The fabricated electrode showed great applicability with excellent recoveries ranging from 99 to 107 %, with a mean relative standard deviation (RSD) value of 3.52 % (n = 3) towards detecting AA in fresh oranges.
Collapse
|
18
|
Zhong Y, Zou Y, Yang X, Lu Z, Wang D. Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots. Mikrochim Acta 2021; 189:19. [PMID: 34877612 DOI: 10.1007/s00604-021-05124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
A rapid and facile method is reported for the detection of ascorbic acid using molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescence sensor. Water-soluble and biocompatible MoS2 QDs with the maximum fluorescence emission at 506 nm have been successfully synthesized by hydrothermal method and specific detection for ascorbic acid (AA) was constructed to utilize the modulation of metal ion on the fluorescence of MoS2 QDs and the affinity and specificity between the ligand and the metal ion. The fluorescence of MoS2 QDs was quenched by the irreversible static quenching of Fe3+ through the formation of a MoS2 QDs/Fe3+ complex, while the pre-existence of AA can retain the fluorescence of MoS2 QDs through the redox reaction between AA and Fe3+. Based on this principle, a good linear relationship was obtained in the AA concentration range 1 to 150 μM with a detection limit of 50 nM. The proposed fluorescent sensing strategy was proven to be highly selective, quite simple, and rapid with a requirement of only 5 min at room temperature (RT), which is particularly useful for rapid and easy analysis. Satisfactory results were obtained when applied to AA determination in fruits, beverages, and serum samples as well as AA imaging in living cells, suggesting its great potential in constructing other fluorescence detection and imaging platforms.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Yibiao Zou
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Xianhong Yang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
19
|
|
20
|
Abstract
The engineering of an efficient electrochemical sensor based on a bismuth sulfide/reduced graphene oxide (Bi2S3/rGO) composite to detect ascorbic acid (AA) is reported. The Bi2S3 nanorods/rGO composite was synthesized using a facile hydrothermal method. By varying the amount of graphene oxide (GO) added to the synthesis, the morphology and size of Bi2S3 nanorods anchored on the surface of rGO can be tuned. Compared to a bare glassy carbon electrode (GCE), the GCE modified with Bi2S3/rGO composite presented enhanced electrochemical performance, which was attributed to the optimal electron transport between the rGO support and the loaded Bi2S3 as well as to an increase in the number of active catalytic sites. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis of Bi2S3/rGO/GCE demonstrate that the active Bi2S3/rGO layer on GCE plays an important role in the electrochemical behavior of the sensor. In particular, the Bi2S3/rGO/GCE sensor shows a wide detecting range (5.0–1200 μM), low detection limit (2.9 µM), good sensitivity (268.8 μA mM−1 cm−2), and sufficient recovery values (97.1–101.6%) for the detection of ascorbic acid.
Collapse
|
21
|
Wu A, Ding H, Zhang W, Rao H, Wang L, Chen Y, Lu C, Wang X. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages. Food Chem 2021; 363:130325. [PMID: 34139516 DOI: 10.1016/j.foodchem.2021.130325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/22/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
A colorimetric and fluorescence turn-on dual-signal assay was developed for the determination of ascorbic acid (AA). Because the ultraviolet absorption of the oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) overlapped with the fluorescence emission of glutathione stabilized Au nanoclusters (AuNCs), the fluorescence of AuNCs can be quenched by oxTMB. When AA was added, the blue oxTMB was reduced to colorless TMB, and the fluorescence of AuNCs was restored simultaneously. The decrease in absorbance and increase in fluorescence signal depended on the concentration of AA. In the determination range of 0.5 to 200 μM, the detection limits (LOD) for AA were as low as 0.15 µM and 0.22 µM for fluorometric and colorimetric, respectively. The established probe was used successfully for AA detection in living cells and beverages.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hao Ding
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
22
|
Reanpang P, Mool-Am-Kha P, Upan J, Jakmunee J. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta 2021; 232:122493. [PMID: 34074450 DOI: 10.1016/j.talanta.2021.122493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023]
Abstract
A simple, rapid, and cost-effective flow injection amperometric (FI-Amp) sensor for sensitive determination of uric acid (UA) was developed based on a new combination of carbon black (CB) and graphene oxide (GO) modified screen-printed carbon electrode (SPCE). The CB-GO nanocomposites were simply synthesized and modified on the working electrode surface to increase electrode conductivity and enhance the sensitivity of UA determination via the electrocatalytic activity toward UA oxidation. The morphologies and electrochemical properties of the synthesized nanomaterials were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The modified electrode was incorporated with FI-Amp to improve UA detection's sensitivity, stability, and automation. Some parameters affecting sensitivity were optimized, including pH of the electrolyte solution, applied potential, amount of CB-GO suspension, flow rate, injection volume, and reaction coil length. Using an applied potential of +0.35 V (vs Ag/AgCl), the anodic current was linearly proportional to UA concentration over the range of 0.05-2000 μM with a detection limit of 0.01 μM (3 S/N). Besides, the developed method provides a sample throughput of 25 injections h-1, excellent sensitivity (0.0191 μA/μM), selectivity, repeatability (RSD 3.1%, n = 7), and stability (RSD 1.08%, n = 50). The proposed system can tolerate potential interferences commonly found in human urine. Furthermore, a good correlation coefficient between the results obtained from the FI-Amp sensor and a hospital laboratory implies that the proposed system is accurate and can be utilized for UA detection in urine samples.
Collapse
Affiliation(s)
- Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand
| | - Pijika Mool-Am-Kha
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jantima Upan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
23
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
24
|
Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide-modified glassy carbon electrode. Anal Bioanal Chem 2021; 414:5309-5318. [PMID: 33890118 DOI: 10.1007/s00216-021-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L-1, linear range from 3.0 to 50 μmol L-1 and 1.0 to 50 μmol L-1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.
Collapse
|
25
|
Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int J Mol Sci 2021; 22:3316. [PMID: 33804997 PMCID: PMC8037795 DOI: 10.3390/ijms22073316] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.
Collapse
Affiliation(s)
- Carlos Sainz-Urruela
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
| | - Soledad Vera-López
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|
26
|
Jayeoye TJ, Sirimahachai U, Rujiralai T. Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles. Carbohydr Polym 2021; 255:117376. [PMID: 33436207 DOI: 10.1016/j.carbpol.2020.117376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
A sensitive detection strategy for ascorbic acid (AA), using sodium alginate reduced/stabilized gold nanoparticles (SA-AuNPs) as the optical probe, is reported. The SA-AuNPs were prepared by mixing gold salt and SA under stirring for 2 h at room temperature, without any further steps. The mixture was aged at 4 °C overnight, after which a faint-purple colloidal solution of SA-AuNPs was obtained. Characterization shows that the synthesis is incapable of reducing all Au3+ to Au°, but rather to mixture of Au°/Au+. The addition of AA to the SA-AuNPs probe reduced completely all Au+ to new AuNPs which were deposited on the pre-formed SA-AuNPs seed, leading to size increment and absorption spectra enhancement. The assay exhibited a good linearity between 12.5 and 150.0 μM AA and low limit of quantification of 11.2 μM. It was further used for AA quantitation in vitamin C injection and fruit juice with satisfactory accuracy and precision.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand; Department of Chemistry/Biochemistry/Molecular Biology, Alex-Ekwueme Federal University, Ndufu-Alike-Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Uraiwan Sirimahachai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.
| |
Collapse
|
27
|
Kaewjua K, Nakthong P, Chailapakul O, Siangproh W. Flow-based System: A Highly Efficient Tool Speeds Up Data Production and Improves Analytical Performance. ANAL SCI 2021; 37:79-92. [PMID: 32981899 DOI: 10.2116/analsci.20sar02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we cite references from the period between 2015 and 2020 related to the use of a flow-based system as a tool to obtain a modern analytical system for speeding up data production and improving performance. Based on a great deal of concepts for automatic systems, there are several research groups introduced in the development of flow-based systems to increase sample throughput while retaining the reproducibility and repeatability as well as to propose new platforms of flow-based systems, such as microfluidic chip and paper-based devices. Additionally, to apply a developed system for on-site analysis is one of the key features for development. We believe that this review will be very interested and useful for readers because of its impact on developing novel analytical systems. The content of the review is categorized following their applications including quality control and food safety, clinical diagnostics, environmental monitoring and miscellaneous.
Collapse
Affiliation(s)
- Kantima Kaewjua
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Prangthip Nakthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Bangkok, 10330, Thailand
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand.
| |
Collapse
|
28
|
Pan Y, Zuo J, Hou Z, Huang Y, Huang C. Preparation of Electrochemical Sensor Based on Zinc Oxide Nanoparticles for Simultaneous Determination of AA, DA, and UA. Front Chem 2020; 8:592538. [PMID: 33324612 PMCID: PMC7723903 DOI: 10.3389/fchem.2020.592538] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
ZnO nanoparticles (NPs) were synthesized using a hydrothermal method. Scanning electron microscope (SEM) and X-ray diffraction have been used for characterizing the synthesized ZnO NPs. An electrochemical sensor was fabricated using ZnO NPs–modified glassy carbon electrode for simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The proposed electrochemical sensor exhibited excellent detection performance toward three analytes, demonstrating that it can potentially be applied in clinical applications. The results indicated the ZnO NPs–modified electrode can detect AA in the concentrations range between 50 and 1,000 μM. The ZnO NPs–modified electrode can detect DA in the concentrations range between 2 and 150 μM. The ZnO NPs–modified electrode can detect UA in the concentrations range between 0.2 and 150 μM. The limits of detections of AA, DA, and UA using ZnO NPs–modified electrode were calculated to be 18.4, 0.75, and 0.11 μM, respectively.
Collapse
Affiliation(s)
- Yuanzhi Pan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Central Academe, Shanghai Electric Group Co., Ltd., Shanghai, China.,Zhenjiang Hongxiang Automation Technology Co., Ltd., Zhenjiang, China
| | - Junli Zuo
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong School of Medicine, Shanghai, China
| | - Zhongyu Hou
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cancan Huang
- Beijing Kanghong Biomedical Co., Ltd., Beijing, China
| |
Collapse
|
29
|
Curulli A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020; 25:E5759. [PMID: 33297366 PMCID: PMC7730649 DOI: 10.3390/molecules25235759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
30
|
In situ self-assembled cationic lanthanide metal organic framework membrane sensor for effective MnO 4- and ascorbic acid detection. Anal Chim Acta 2020; 1142:211-220. [PMID: 33280699 DOI: 10.1016/j.aca.2020.10.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Developing portable membrane sensors to accurately detect the biomolecule ascorbic acid (AA) is extremely important for food safety and human health. Herein, we successfully design and synthesize a novel cationic metal organic framework (Eu-pbmc, Hpbmc = 2-(pyridine-2-yl)-1H-benzimidazole-5-carboxylic acid) and assemble polyacrylonitrile/Eu-pbmc membrane (PEM) by an in-situ growth strategy. Benefiting from the appreciable loading of Eu-pbmc nanoparticles and high water permeation flux, PEM possesses effective detection for MnO4- with a limit of detection (LOD) of 17 nM. Utilizing the cationic porous framework, we load MnO4- into PEM and construct a "on-off-on" system for effective AA detection. The oxidative MnO4- can be reduced by AA and the resulting turn-on luminescence can reflect the concentration of AA. Compared with pure Eu-pbmc crystals, PEM exhibits improved AA detection performance with LOD of 48 nM and detection time of 1 min via a concise detection operation. The stable membrane sensor realizes an accurate detection in real biological samples, meeting the practical requirement. Moreover, an IMP logic gate is helpful to analyze MnO4- and AA in water. The proposed novel luminescence platform as well as reasonable "on-off-on" luminescence mode provide a promising method for AA detection.
Collapse
|
31
|
Nickel ferrite nanoparticles on a carbonaceous matrix and their colorimetric assay for ascorbic acid detection. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|