1
|
Chauca-Cerrutti A, Inga M, Pasquel-Reátegui JL, Betalleluz-Pallardel I, Puma-Isuiza G. Optimization of extraction in supercritical fluids in obtaining Pouteria lucuma seed oil by response surface methodology and artificial neuronal network coupled with a genetic algorithm. Front Chem 2024; 12:1491479. [PMID: 39720553 PMCID: PMC11666378 DOI: 10.3389/fchem.2024.1491479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 12/26/2024] Open
Abstract
When processing lucuma (Pouteria lucuma), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40-60°C), pressure (100-300 bar), and CO2 flow rate (3-7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R2 values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I2/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO2 extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
Collapse
Affiliation(s)
- Alex Chauca-Cerrutti
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Marianela Inga
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - José Luis Pasquel-Reátegui
- Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, San Martin, Peru
| | | | - Gustavo Puma-Isuiza
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
2
|
Barp L, Miklavčič Višnjevec A, Moret S. Analytical Determination of Squalene in Extra Virgin Olive Oil and Olive Processing By-Products, and Its Valorization as an Ingredient in Functional Food-A Critical Review. Molecules 2024; 29:5201. [PMID: 39519842 PMCID: PMC11547617 DOI: 10.3390/molecules29215201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Squalene is a bioactive compound with significant health benefits, predominantly found in extra virgin olive oil (EVOO) and its processing by-products. This critical review explores the analytical determination of squalene in EVOO and various by-products from olive oil production, highlighting its potential as a valuable ingredient in functional foods. An overview of existing analytical methods is provided, focusing on different approaches to sample preparation before analytical determination, evaluating their effectiveness in quantifying squalene concentrations. Studies not primarily centered on analytical methodologies or squalene quantification were excluded. A critical gap identified is the absence of an official method for squalene determination, which hinders comparability and standardization across studies, underscoring the importance of developing a reliable, standardized method to ensure accurate quantification. The valorization of squalene involves advocating for its extraction from olive oil processing by-products to enhance sustainability in the olive oil industry. By recovering squalene, the industry can not only reduce waste but also enhance functional food products with this health-promoting compound. Additionally, there is a need for economically sustainable and environmentally friendly extraction techniques that can be scaled up for industrial application, thus contributing to a circular economy within the olive oil sector.
Collapse
Affiliation(s)
- Laura Barp
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia;
| | - Sabrina Moret
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
3
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
4
|
Yang H, Zhou P, Li X, Shen L. A green and efficient approach for the simultaneous extraction and mechanisms of essential oil and lignin from Cinnamomum camphora: Process optimization based on deep learning. Int J Biol Macromol 2024; 277:134215. [PMID: 39074705 DOI: 10.1016/j.ijbiomac.2024.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The utilization and economic benefits of biomass resources can be maximized through rational design and process optimization. In this study, an innovative approach for the simultaneous extraction of essential oil and lignin from Cinnamomum camphora leaves by deep eutectic solvent (DES) and optimization of the process parameters was achieved using deep learning tools. With the water content of 40 %, liquid-solid ratio of 9.00 mL/g, and distillation time of 51.81 min, the yields of the essential oil and lignin reached 3.15 ± 0.02 % and 9.75 ± 0.15 %, respectively. Notably, the efficiency of simultaneous extraction of essential oil improved by 23 % compared to that of traditional steam distillation. Moreover, the extraction mechanism of the process was clarified. The connection between lignin with cellulose and hemicellulose was disintegrated by the DES, resulting in lignin shedding and hence accelerating the dissolution of essential oil. Moreover, the compositions of lignin and essential oil were also identified.
Collapse
Affiliation(s)
- Hongxiang Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Liqun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
5
|
Sánchez C, Rodríguez A, Reinoso F, Dovale-Rosabal G, Romero N, Espinosa A, Pando ME, Claria B, Valenzuela R, Char C, Aubourg SP. Optimization of Oil and Tocopherol Extraction from Maqui ( Aristotelia chilensis (Mol.) Stuntz) by Supercritical CO 2 Procedure. Antioxidants (Basel) 2024; 13:845. [PMID: 39061913 PMCID: PMC11273519 DOI: 10.3390/antiox13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study focused on the oil extraction from freeze-dried maqui (Aristotelia chilensis) by supercritical fluid extraction with carbon dioxide (SFE-CO2). The basic objective was to optimize the oil yield and the tocopherol concentration. A Box/Behnken experimental design was developed with three processing variables: supercritical pressure (74, 187, and 300 bar), temperature (35, 48, and 60 °C), and extracting time (30, 135, and 240 min). Multiple optimizations, based on the combination of factor levels at 274 bar, 240 min, and 60 °C, led to the highest oil yield and tocopherol values. The validation of the optimized conditions of maqui oil extraction led to an oil yield of 8% and values of 735, 53, and 97 (mg·kg-1 oil) for α-tocopherol, α-tocotrienol, and γ-tocopherol, respectively. A higher concentration of tocopherol compounds was observed when compared to the employment of the conventional extracting method. The optimized SFE-CO2 method led to an oil extract exhibiting higher Hydrophilic-Oxygen Radical Absorbance Capacity (H-ORAC) assay and total phenol content (22 μmol Trolox equivalents·g-1 oil and 28 mg gallic acid equivalents·g-1 oil) than the oil obtained by the conventional procedure. A practical and accurate oil extraction is proposed for obtaining tocopherol-enriched oil including high concentrations of valuable lipophilic antioxidants.
Collapse
Affiliation(s)
- Camila Sánchez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Francisca Reinoso
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Gretel Dovale-Rosabal
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile; (A.E.); (M.E.P.); (R.V.)
| | - María Elsa Pando
- Department of Medical Technology, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile; (A.E.); (M.E.P.); (R.V.)
| | - Benjamín Claria
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Rodrigo Valenzuela
- Department of Medical Technology, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile; (A.E.); (M.E.P.); (R.V.)
| | - Cielo Char
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile; (C.S.); (F.R.); (G.D.-R.); (N.R.); (B.C.); (C.C.)
| | - Santiago P. Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
6
|
Frattaruolo L, Durante M, Cappello MS, Montefusco A, Mita G, Cappello AR, Lenucci MS. The ability of supercritical CO 2 carrot and pumpkin extracts to counteract inflammation and oxidative stress in RAW 264.7 macrophages stimulated with LPS or MDA-MB-231 cell-conditioned media. Food Funct 2023; 14:10083-10096. [PMID: 37870074 DOI: 10.1039/d3fo03159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Maria Stella Cappello
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| |
Collapse
|
7
|
Guo Z, Luo Z, Wu S, Yang C, Xiao T, Zhao Y. Optimization of Extraction and Separation Process of Notoginsenoside Fc from Panax notoginseng Leaves. Molecules 2023; 28:molecules28093915. [PMID: 37175326 PMCID: PMC10179949 DOI: 10.3390/molecules28093915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Response surface methodology (RSM) was used to determine the optimal conditions for ultrasound-assisted extraction (UAE) of Notoginsenoside Fc (Fc) from panax notoginseng leaves. The experiment utilized a Box-Behnken design (BBD) and separation conditions were optimized. The optimum extraction conditions were as follows: extraction time = 1.5 h, ethanol concentration = 86%, liquid-to-solid ratio = 19:1. The experimentally obtained values were in accordance with the values predicted by the RSM model. We determined that the RSM model was able to successfully simulate the optimal extraction of Fc from the leaves. Further, Fc was enriched from Panax notoginseng through nine macroporous resins, and HPD-100 macroporous resins were selected for preliminary enrichment of Fc due to its economic costs and benefits. Subsequently, octadecyl silane (ODS) column chromatography was used to improve the purity of Fc to over 90% after separation by ODS column chromatography. Fc with a purity greater than 95% can be obtained by recrystallization. This is the first study that has focused on the extraction and enrichment of Fc from Panax notoginseng leaves using macroporous resin combined with ODS column chromatography, which provides the possibility for further application of Fc.
Collapse
Affiliation(s)
- Zhenghong Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhonghua Luo
- China School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao Wu
- China School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunhong Yang
- China School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Department of Pharmaceutic Preparation of Chinese Medicine, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
8
|
Rivero-Pino F, Millan-Linares MC, Villanueva-Lazo A, Fernandez-Prior Á, Montserrat-de-la-Paz S. In vivo evidences of the health-promoting properties of bioactive compounds obtained from olive by-products and their use as food ingredient. Crit Rev Food Sci Nutr 2023; 64:8728-8740. [PMID: 37096486 DOI: 10.1080/10408398.2023.2203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Olea europaea L. is the source of virgin olive oil (VOO). During its extraction, a high amount of by-products (pomace, mill wastewaters, leaves, stones, and seeds) is originated, which possess an environmental problem. If the generation of waste cannot be prevented, its economic value must be recovered and its effects on the environment and climate change must be avoided or minimized. The bioactive compounds (e.g., phenols, pectins, peptides) of these by-product fractions are being investigated as nutraceutical due to the beneficial properties it might have. In this review, the aim is to summarize the in vivo studies carried out in animals and humans with bioactive compounds exclusively obtained from olive by-products, aiming to demonstrate the potential health benefits these products can exert, as well as to describe its use in the food industry as bioactive ingredient. Several food matrices have been fortified with olive by-products fractions, leading to an improvement of properties. Animal and human studies suggest the benefits of ingesting olive-derived products to promote health. However, the investigation until now is scarce and consequently, well-designed human studies are required in order to fully address and confirm the safety and health-promoting properties of olive oil by-products.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Alvaro Villanueva-Lazo
- Department of Food & Health, Instituto de la Grasa, Spanish National Research Council (IG-CSIC), Seville, Spain
| | - África Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Sergio Montserrat-de-la-Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Yoosefian SH, Ahmadi E, Mohammad‐Razdari A. Combination of gamma irradiation and storage condition for improving mechanical and physical postharvest characteristics of fresh garlic cloves. Food Sci Nutr 2023; 11:1463-1476. [PMID: 36911819 PMCID: PMC10002959 DOI: 10.1002/fsn3.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was the discrimination and optimization of irradiation effect under physical and mechanical experiments on garlic. The samples were irradiated with 0, 75, and 150 Gy doses and stored at 4 and 18°C for 5 months. Physical, mechanical, and color properties were measured in the period of storage. Based on the results, all irradiated garlic samples had less quality variation than control samples. Response surface methodology (RSM) optimized dose, storage time, and temperature of the stored garlic which was 75 Gy, 2 months, and 17°C, respectively. In addition, after finding the optimal dose, time, and temperature, the most effective factor as weight loss was obtained and the data were classified by the principal component analysis (PCA) approach. The results showed that the PCA method had a high ability to classify and separate the data obtained from measuring the physicochemical properties of garlic and cover 99% variance of data. Moreover, partial least square (PLS) was applied for predicting weight loss data with R2 0.9999. As well, a mechanical test was investigated for finding the best situation and duration of storage condition. Finally, irradiation prevented the destruction of garlic and saved garlic in the best quality as compared with control or nonirradiated samples. After all this, it can be decided to keep garlic in warehouses and transfer this product with minimum damage.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Biosystem Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Ebrahim Ahmadi
- Department of Biosystem Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Ayat Mohammad‐Razdari
- Department of Mechanical Engineering of BiosystemsShahrekord UniversityShahrekordIran
| |
Collapse
|
10
|
Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, Afzal MF, Noreen S, Aziz Z, Al-Farga A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:2457-2476. [DOI: 10.1080/10942912.2022.2144884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sumaya Kainat
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Pristina, Kosovo
| | | | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zaira Aziz
- General Medicine, Pakistan institute of Medical Sciences, Islamabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb Yemen
| |
Collapse
|
11
|
Smaali A, Berkani M, Benmatti H, Lakhdari N, Al Obaid S, Alharbi SA, Fakhreddine B, Ines A, Marouane F, Rezania S, Lakhdari N. Degradation of Azithromycin from aqueous solution using Chlorine-ferrous- oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. ENVIRONMENTAL RESEARCH 2022; 214:114026. [PMID: 35977588 DOI: 10.1016/j.envres.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 μM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 μM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.
Collapse
Affiliation(s)
- Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Hadjer Benmatti
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Belhadef Fakhreddine
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole université des frères Mentouri Constantine 1, Ain Bey, 25000, Constantine, Algeria
| | - Amri Ines
- Laboratoire SARL HupPharma 25100, Constantine, Algeria
| | - Fateh Marouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
12
|
Application of response surface methodology (RSM) for optimization of the supercritical CO2 extract of oil from Zanthoxylum bungeanum pericarp: Yield, composition and gastric protective effect. Food Chem X 2022; 15:100391. [PMID: 36211759 PMCID: PMC9532734 DOI: 10.1016/j.fochx.2022.100391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Supercritical carbon-dioxide (SC-CO2) extract is an effective technology for flavor components of Z. bungeanum pericarp. About 11.07 % oil yield can be obtained under the optimized parameters of 30 MPa, 43 °C, and 75 min. Limonene, linalool, hydroxy-α-sanshool and hydroxy-β-sanshool are the major flavor components of SZB. SZB supplementation could be employed as a gastric protective agent/additive for human health. Nineteen potential biomarkers were identified as the potential biomarkers contributed to the gastric protective effect of SZB.
Supercritical carbon-dioxide (SC-CO2) is a promising two-phase technology for flavor components (volatile oil and alkylamides) extract from Zanthoxylum bungeanum pericarp. However, the gastric protective effect of SC-CO2 extract from Z. bungeanum (SZB) have not been systematically investigated. In this study, response surface methodology (RSM) was employed to optimize the yield of SZB, and the average yield of 11.07 % were obtained under optimal parameters (30 MPa, 43 °C and time 75 min). Here, limonene, linalool and hydroxy-α-sanshool were identified as the main compounds of SZB by GC–MS and UPLC-Q-Extractive Orbitrap/MS analysis. When the gastric protective effect of SZB (5, 10 and 20 mg/kg, p.o.) were evaluated, significant increase in body weight and organ indexes of rat, and decreased gastric lesion were observed. Furthermore, nineteen serum metabolites were regarded as the potential biomarkers for the gastric protective effect of SZB. Collectively, this study provides a comprehensive perspective into the chemical composition analysis and gastric protective effect of Z. bungeanum SC-CO2 extract.
Collapse
|
13
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
14
|
Papadaki E, Tsimidou MZ. Edible oils from olive drupes as a source of bioactive pentacyclic triterpenes. Is there a prospect for a health claim authorization? Food Chem 2022; 381:132286. [PMID: 35123226 DOI: 10.1016/j.foodchem.2022.132286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
Virgin olive oil and olive-pomace oil constitute high nutritional value edible oils due to the presence of oleic acid and a variety of bioactives. Among the latter, the group of pentacyclic triterpenes (PcTr) is the least studied. This review provides an insight into the biosynthesis of PcTr in the olive fruit, mainly of oleanane-type, and the factors influencing their transfer to the oil. Particular attention is given to the extraction methods along with the liquid and gas chromatography coupled to mass spectrometry protocols used for the discrimination and determination of PcTr. The in vivo bioactive properties of PcTr through the intake of these oils against cardiovascular diseases, liver dysfunction, obesity and diabetes are presented with a prospect of a future health claim authorization. Gaps in literature are pointed out to support this goal.
Collapse
Affiliation(s)
- Eugenia Papadaki
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
15
|
Leite A, Domínguez R, Vasconcelos L, Ferreira I, Pereira E, Pinheiro V, Outor-Monteiro D, Rodrigues S, Lorenzo JM, Santos EM, Andrés SC, Campagnol PCB, Teixeira A. Can the Introduction of Different Olive Cakes Affect the Carcass, Meat and Fat Quality of Bísaro Pork? Foods 2022; 11:foods11111650. [PMID: 35681400 PMCID: PMC9180486 DOI: 10.3390/foods11111650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to evaluate the effect of the inclusion of different olive cakes in the diet of Bísaro pigs on the carcass, meat and fat. The carcasses of 40 animals fed a diet with five treatments (T1—Basic diet and commercial feed; T2—Basic diet + 10% crude olive cake; T3—Basic diet + 10% olive cake, two phases; T4—Basic diet + 10% exhausted olive cake; T5—Basic diet + 10% exhausted olive cake + 1% olive oil) were used to study the effect on carcass traits, physicochemical meat quality and lipid composition of meat and backfat. There were no significant differences between treatments for the conformation measurements performed, except for the length at the seventh and last rib (p < 0.05). The percentage of prime cuts of the carcass in Bísaro pig is within the values indicated by the Portuguese Standard 2931. No significant differences between treatments for body weight, pH and carcass weight were found. The values of ultimate pH (5.7), L* (51−52), b* (11−12) and SF (3.4−4.2) observed confirm a non-exudative and firm meat without quality deviations, such as DFD or PSE. Thus, as a general conclusion, the inclusion of different olive cakes in the diet of Bísaro pigs did not cause any negative consequences on the carcass characteristics and conformation as well as in the meat and lipidic quality. In addition, the inclusion of this olive industry by-product in the animal diet would be an important contribution to solving the problem of the great environmental impact from olive-mill wastewaters from the extractive industries.
Collapse
Affiliation(s)
- Ana Leite
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
- Food Technology, Faculty of Sciences Ourense, University of Vigo, 32004 Ourense, Spain;
| | - Rubén Domínguez
- Research, Meat Technology Centre of Galicia (CTC), Rua Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Lia Vasconcelos
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Iasmin Ferreira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Etelvina Pereira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Victor Pinheiro
- Veterinary and Animal Reserach Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (V.P.); (D.O.-M.)
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Reserach Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (V.P.); (D.O.-M.)
| | - Sandra Rodrigues
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - José Manuel Lorenzo
- Food Technology, Faculty of Sciences Ourense, University of Vigo, 32004 Ourense, Spain;
- Research, Meat Technology Centre of Galicia (CTC), Rua Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Eva María Santos
- Chemistry Academic Area, Autonomus University of the State of Hidalgo, Carr. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma, Pachuca 42183, Mexico;
| | - Silvina Cecilia Andrés
- Center for Research and Development in Food Cryotechnology (CIDCA, CONICET-CICPBA-UNLP), National University of La Plata UNLP, 47 y 116, La Plata 1900, Argentina;
| | - Paulo C. B. Campagnol
- Department of Food Science and Technology, University of Santa Maria—USM, Santa Maria 97105-900, Brazil;
| | - Alfredo Teixeira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
- Correspondence:
| |
Collapse
|
16
|
Xia Z, Li Y, Li R, He X, Chen L, Li B, Liu S, Zhang G, Dong J, Li M, Tian Y. Supercritical CO 2 extraction of fermented soybean lipids against erastin-induced ferroptosis in rat pheochromocytoma cells. Food Chem 2022; 377:132051. [PMID: 35008017 DOI: 10.1016/j.foodchem.2022.132051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
The optimum supercritical carbon dioxide (SC-CO2) extraction of fermented soybean lipids (FSE-C) was as follows: 35 °C, 30 MPa, and 2.40 ± 0.19% moisture content using response surface methodology. The fatty acid composition of FSE-C contained more palmitic acid and α-linolenic acid and less linoleic acid than unfermented soybean lipids (SE-C). FSE-C had higher contents of minor active components (phytosterols, squalene, total flavonoid, and total polyphenol) than SE-C. The protective effects of FSE-C on erastin-induced ferroptosis were investigated to reveal the potential mechanisms of action characterized by increasing cell viability and glutathione concentrations, attenuating levels of intracellular Fe2+ ion, lipid peroxidation, and ROS, as well as modifying mRNA expression (GPx4, SLC7A11, ACSL4, and LPCAT3) and lipid metabolism. These findings suggest that FSE-C is a class of active ingredients against erastin-induced ferroptosis and warrants further exploration and utilization as a functional food.
Collapse
Affiliation(s)
- Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Ruihong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Xuanhui He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Li Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shijun Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
17
|
Enhancing the nutritional value of Portulaca oleracea L. by using soilless agronomic biofortification with zinc. Food Res Int 2022; 155:111057. [DOI: 10.1016/j.foodres.2022.111057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
|
18
|
Azhar FNA, Taha MF, Mat Ghani SM, Ruslan MSH, Md Yunus NM. Experimental and Mathematical Modelling of Factors Influencing Carbon Dioxide Absorption into the Aqueous Solution of Monoethanolamine and 1-Butyl-3-methylimidazolium Dibutylphosphate Using Response Surface Methodology (RSM). Molecules 2022; 27:molecules27061779. [PMID: 35335143 PMCID: PMC8953549 DOI: 10.3390/molecules27061779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
This paper investigated the solubility of carbon dioxide (CO2) in an aqueous solution of monoethanolamine (MEA) and 1-butyl-3-methylimidazolium dibutylphosphate ((BMIM)(DBP)) ionic liquid (IL) hybrid solvents. Aqueous solutions of MEA-(BMIM)(DBP) hybrid solvents containing different concentrations of (BMIM)(DBP) were prepared to exploit the amine’s reactive nature, combined with the IL’s non-volatile nature for CO2 absorption. Response surface methodology (RSM) based on central composite design (CCD) was used to design the CO2 solubility experiments and to investigate the effects of three independent factors on the solubility of CO2 in the aqueous MEA-(BMIM)(DBP) hybrid solvent. The three independent factors were the concentration of (BMIM)(DBP) (0–20 wt.%), temperature (30 °C–60 °C) and pressure of CO2 (2–30 bar). The experimental data were fitted to a quadratic model with a coefficient of determination (R2) value of 0.9791. The accuracy of the developed model was confirmed through additional experiments where the experimental values were found to be within the 95% confidence interval. From the RSM-generated model, the optimum conditions for CO2 absorption in aqueous 30 wt% MEA-(BMIM)(DBP) were 20 wt% of (BMIM)(DBP), a temperature of 41.1 °C and a pressure of 30 bar.
Collapse
Affiliation(s)
- Fatin Nor Arissa Azhar
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Mohd Faisal Taha
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.M.M.G.); (N.M.M.Y.)
- Correspondence: ; Tel.: +60-05-368-7660
| | - Siti Musliha Mat Ghani
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.M.M.G.); (N.M.M.Y.)
| | | | - Noor Mona Md Yunus
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.M.M.G.); (N.M.M.Y.)
| |
Collapse
|
19
|
Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022; 14:nu14030623. [PMID: 35276982 PMCID: PMC8838233 DOI: 10.3390/nu14030623] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Oleanolic acid, a pentacyclic triterpenoid ubiquitously present in the plant kingdom, is receiving outstanding attention from the scientific community due to its biological activity against multiple diseases. Oleanolic acid is endowed with a wide range of biological activities with therapeutic potential by means of complex and multifactorial mechanisms. There is evidence suggesting that oleanolic acid might be effective against dyslipidemia, diabetes and metabolic syndrome, through enhancing insulin response, preserving the functionality and survival of β-cells and protecting against diabetes complications. In addition, several other functions have been proposed, including antiviral, anti-HIV, antibacterial, antifungal, anticarcinogenic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipidemic and anti-atherosclerotic activities, as well as interfering in several stages of the development of different types of cancer; however, due to its hydrophobic nature, oleanolic acid is almost insoluble in water, which has led to a number of approaches to enhance its biopharmaceutical properties. In this scenario, the present review aimed to summarize the current knowledge and the research progress made in the last years on the extraction and characterization of oleanolic acid and its biological activities and the underlying mechanisms of action.
Collapse
|
20
|
Medeiros Vicentini-Polette C, Rodolfo Ramos P, Bernardo Gonçalves C, Lopes De Oliveira A. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem X 2021; 12:100166. [PMID: 34825173 PMCID: PMC8604745 DOI: 10.1016/j.fochx.2021.100166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Free fatty acid profile in vegetable oils was determined. The extraction process may influence the free fatty acid profile. Linoleic and oleic acids were present in higher proportions. The methodology applied was satisfactory for qualitative analysis.
This study determined the total acidity, fatty acids profile (TFAs), and free fatty acids (FFAs) present in sunflower and soybean oils obtained by green processes (supercritical carbon dioxide-scCO2 and pressurized liquid extraction-PLE). The determination of the primary fatty acids responsible for product acidity can provide a higher quality product. Sunflower (scCO2/PLE-ethanol) and soybean (PLE-ethanol/PLE-hexane) samples were evaluated. The TFAs profile was determined by gas chromatography - mass spectrometry. The total FFAs content was determined by titrimetric method. For the qualitative determination of the FFAs present in the oils, a new technique capable of repeatably identifying the main FFAs was applied, using GC/MS. The primary fatty acids (palmitic, stearic, oleic, linoleic, eicosenoic, and linolenic) were present in all samples, both as TFAs and FFAs. However, fatty acids of lesser intensity showed variations. The applied methodology provided relevant data on the FAs that cause acidity in vegetable oils obtained by green processes.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini-Polette
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Paulo Rodolfo Ramos
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Cintia Bernardo Gonçalves
- (in memoriam) LES, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Alessandra Lopes De Oliveira
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
21
|
Preparation and aroma analysis of flavonoid-rich ginkgo seeds fermented using rice wine starter. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Otero P, Garcia-Oliveira P, Carpena M, Barral-Martinez M, Chamorro F, Echave J, Garcia-Perez P, Cao H, Xiao J, Simal-Gandara J, Prieto M. Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci Technol 2021; 116:1084-1104. [DOI: 10.1016/j.tifs.2021.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Rani H, Sharma S, Bala M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heena Rani
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Manju Bala
- FG & OP Division ICAR‐Central Institute of Post‐Harvest Engineering and Technology Ludhiana Punjab India
| |
Collapse
|
24
|
Supercritical CO2 extraction, structural analysis and bioactivity of polysaccharide from Grifola frondosa. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Cerón-Martínez LJ, Hurtado-Benavides AM, Ayala-Aponte A, Serna-Cock L, Tirado DF. A Pilot-Scale Supercritical Carbon Dioxide Extraction to Valorize Colombian Mango Seed Kernel. Molecules 2021; 26:molecules26082279. [PMID: 33920056 PMCID: PMC8071016 DOI: 10.3390/molecules26082279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colombian mango production, which exceeded 261,000 t in 2020, generates about 40% of the whole fruit as solid waste, of which more than 50% are seed kernels (over 52,000 t solid by-product); though none is currently used for commercial purposes. This study reports the results of the supercritical carbon dioxide (scCO2) extraction of an oil rich in essential fatty acids (EFAs) from revalorized mango seed kernels and the optimization of the process by the Response Surface Methodology (RSM). In pilot-scale scCO2 experiments, pressure (23–37 MPa) and temperature (52–73 °C) were varied, using 4.5 kg of CO2. The highest experimental oil extraction yield was 83 g/kg (37 MPa and 63 °C); while RSM predicted that 84 g/kg would be extracted at 35 MPa and 65 °C. Moreover, by fine-tuning pressure and temperature it was possible to obtain an EFA-rich lipid fraction in linoleic (37 g/kg) and α-linolenic (4 g/kg) acids, along with a high oleic acid content (155 g/kg), by using a relatively low extraction pressure (23 MPa), which makes the process a promising approach for the extraction of oil from mango waste on an industrial scale, based on a circular economy model.
Collapse
Affiliation(s)
- Leidy J. Cerón-Martínez
- Grupo de Investigación en Tecnologías Emergentes en Agroindustria (TEA), Agroindustrial Engineering Faculty, Universidad de Nariño, 1175 Pasto, Colombia; (L.J.C.-M.); (A.M.H.-B.)
| | - Andrés M. Hurtado-Benavides
- Grupo de Investigación en Tecnologías Emergentes en Agroindustria (TEA), Agroindustrial Engineering Faculty, Universidad de Nariño, 1175 Pasto, Colombia; (L.J.C.-M.); (A.M.H.-B.)
| | | | - Liliana Serna-Cock
- School of Engineering and Administration, Universidad Nacional de Colombia, 763533 Palmira, Colombia;
| | - Diego F. Tirado
- Grupo de Investigación en Innovación y Desarrollo Agropecuario y Agroindustrial (IDAA), Universidad de Cartagena, Campus Piedra de Bolívar, 130015 Cartagena de Indias, Colombia
- Correspondence:
| |
Collapse
|
26
|
Shen D, Kou X, Wu C, Fan G, Li T, Dou J, Wang H, Zhu J. Cocktail enzyme-assisted alkaline extraction and identification of jujube peel pigments. Food Chem 2021; 357:129747. [PMID: 33892359 DOI: 10.1016/j.foodchem.2021.129747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 01/31/2023]
Abstract
Jujube peel (JP) is rich in pigments, which appears red to deep red in color. This study optimized conditions for cocktail enzyme-assisted extraction of jujube peel pigments based on response surface method (RSM). A Box-Behnken design (BBD) was utilized to analyze the effects of buffer liquid volume (BLV), pH, temperature, and incubation time on the total polyphenols content (TPC), total flavonoids content (TFC) and color (L*, a*, b*). Optimal extraction conditions, for the highest concentrations of TPC, TFC and a* values, were 16 mL BLV, pH 7.0, temperature 43 °C, and incubation time 97 min. Finally, concentrations and identities of the eight main constituents (p-coumaric acid, (-)-epicatechin, quercetin-3-O-robinobioside, rutin, kaempferol 3-O-robinobioside, quercetin 3-O-α-l-arabinosyl-(1 → 2)-α-l-rhamnoside, quercetin 3-O-β-d-xylosyl-(1 → 2)-α-l-rhamnoside, quercetin) in jujube peel pigments were determined using UPLC-MS/MS. The study provides guidance for valorisation of jujube peel, specifically valuable food-safe pigments, during industrial production.
Collapse
Affiliation(s)
- Dongbei Shen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinfeng Dou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Hanbo Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| |
Collapse
|
27
|
Supercritical CO 2 Extraction of Phytocompounds from Olive Pomace Subjected to Different Drying Methods. Molecules 2021; 26:molecules26030598. [PMID: 33498727 PMCID: PMC7865472 DOI: 10.3390/molecules26030598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the β-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while β-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.
Collapse
|
28
|
Wen Y, Xu L, Xue C, Jiang X, Wei Z. Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules 2020; 25:molecules25215076. [PMID: 33139648 PMCID: PMC7662938 DOI: 10.3390/molecules25215076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The consumption of vegetable oil is an important way for the body to obtain tocols. However, the impact of oil types and grades on the tocopherol and tocotrienol contents in vegetable oils is unclear. In this study, nine types of traditional edible oils and ten types of self-produced new types of vegetable oil were used to analyze eight kinds of tocols. The results showed that the oil types exerted a great impact on the tocol content of traditional edible oils. Soybean oils, corn oils, and rapeseed oils all could be well distinguished from sunflower oils. Both sunflower oils and cotton seed oils showed major differences from camellia oils as well as sesame oils. Among them, rice bran oils contained the most abundant types of tocols. New types of oil, especially sacha inchi oil, have provided a new approach to obtaining oils with a high tocol content. Oil refinement leads to the loss of tocols in vegetable oil, and the degree of oil refinement determines the oil grade. However, the oil grade could not imply the final tocol content in oil from market. This study could be beneficial for the oil industry and dietary nutrition.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Jiang
- Correspondence: (X.J.); (Z.W.); Tel.: +86-532-82032597 (Z.W.)
| | - Zihao Wei
- Correspondence: (X.J.); (Z.W.); Tel.: +86-532-82032597 (Z.W.)
| |
Collapse
|
29
|
Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020; 9:foods9111553. [PMID: 33121076 PMCID: PMC7693019 DOI: 10.3390/foods9111553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides, comprising 6 (α), 7 (β), or 8 (γ) glucose residues, used to prepare oil-in-water emulsions and improve oil stability towards degradation. In this research, the aptitude of α-, β-, and γ-CDs to form complexes with a supercritical CO2 extracted lycopene-rich tomato oil (TO) was comparatively assessed. TO/CD emulsions and the resulting freeze-dried powders were characterized by microscopy, Fourier transform infrared-attenuated total reflection (FTIR-ATR), and differential scanning calorimetry (DSC), as well as for their antioxidant activity. Furthermore, carotenoid stability was monitored for 90 days at 25 and 4 °C. Confocal and SEM microscopy revealed morphological differences among samples. α- and β-CDs spontaneously associated into microcrystals assembling in thin spherical shells (cyclodextrinosomes, Ø ≈ 27 µm) at the oil/water interface. Much smaller (Ø ≈ 9 µm) aggregates were occasionally observed with γ-CDs, but most TO droplets appeared "naked". FTIR and DSC spectra indicated that most CDs did not participate in TO complex formation, nevertheless structurally different interfacial complexes were formed. The trolox equivalent antioxidant capacity (TEAC) activity of emulsions and powders highlighted better performances of α- and β-CDs as hydrophobic antioxidants-dispersing agents across aqueous media. Regardless of CDs type, low temperature slowed down carotenoid degradation in all samples, except all-[E]-lycopene, which does not appear efficiently protected by any CD type in the long storage period.
Collapse
|
30
|
Gan Y, Xu D, Zhang J, Wang Z, Wang S, Guo H, Zhang K, Li Y, Wang Y. Rana chensinensis Ovum Oil Based on CO 2 Supercritical Fluid Extraction: Response Surface Methodology Optimization and Unsaturated Fatty Acid Ingredient Analysis. Molecules 2020; 25:E4170. [PMID: 32933060 PMCID: PMC7570602 DOI: 10.3390/molecules25184170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Rana chensinensis ovum oil (RCOO) is an emerging source of unsaturated fatty acids (UFAs), but it is lacking in green and efficient extraction methods. In this work, using the response surface strategy, we developed a green and efficient CO2 supercritical fluid extraction (CO2-SFE) technology for RCOO. The response surface methodology (RSM), based on the Box-Behnken Design (BBD), was used to investigate the influence of four independent factors (pressure, flow, temperature, and time) on the yield of RCOO in the CO2-SFE process, and UPLC-ESI-Q-TOP-MS and HPLC were used to identify and analyze the principal UFA components of RCOO. According to the BBD response surface model, the optimal CO2-SFE condition of RCOO was pressure 29 MPa, flow 82 L/h, temperature 50 °C, and time 132 min, and the corresponding predicted optimal yield was 13.61%. The actual optimal yield obtained from the model verification was 13.29 ± 0.37%, and the average error with the predicted value was 0.38 ± 0.27%. The six principal UFAs identified in RCOO included eicosapentaenoic acid (EPA), α-linolenic acid (ALA), docosahexaenoic acid (DHA), arachidonic acid (ARA), linoleic acid (LA), and oleic acid (OA), which were important biologically active ingredients in RCOO. Pearson correlation analysis showed that the yield of these UFAs was closely related to the yield of RCOO (the correlation coefficients were greater than 0.9). Therefore, under optimal conditions, the yield of RCOO and principal UFAs always reached the optimal value at the same time. Based on the above results, this work realized the optimization of CO2-SFE green extraction process and the confirmation of principal bioactive ingredients of the extract, which laid a foundation for the green production of RCOO.
Collapse
Affiliation(s)
- Yuanshuai Gan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Dongliang Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Jianqiu Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Zhongyao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Shihan Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin 130118, China;
| | - Hongye Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Kexin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Yajing Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; (Y.G.); (D.X.); (J.Z.); (Z.W.); (H.G.); (K.Z.); (Y.L.)
| |
Collapse
|