1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
He L, Wu L, Li J. Sulfated peptides and their receptors: Key regulators of plant development and stress adaptation. PLANT COMMUNICATIONS 2024; 5:100918. [PMID: 38600699 PMCID: PMC11211552 DOI: 10.1016/j.xplc.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.
Collapse
Affiliation(s)
- Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wang D, Ren X, Meng L, Zheng R, Li D, Kong Q. Exogenous Phytosulfokine α (PSKα) Alleviates Chilling Injury of Kiwifruit by Regulating Ca 2+ and Protein Kinase-Mediated Reactive Oxygen Species Metabolism. Foods 2023; 12:4196. [PMID: 38231680 DOI: 10.3390/foods12234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Kiwifruit fruit stored at low temperatures are susceptible to chilling injury, leading to rapid softening, which therefore affects storage and marketing. The effect of 150 nM mL-1 of exogenous phytosulfokine α (PSKα) on reactive oxygen species (ROS) metabolism, Ca2+ signaling, and signal-transducing MAPK in kiwifruit, stored at 0 °C for 60 days, was investigated. The results demonstrated that PSKα treatment effectively alleviated chilling injury in kiwifruit, with a 15% reduction in damage compared to the control on day 60. In addition, PSKα enhanced the activities and gene expression levels of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), Ca2+-ATPase, and mitogen-activated protein kinase (MAPK). In contrast, the activities and gene expression levels of NADPH oxidase (NOX) were inhibited, leading to a lower accumulation of O2- and H2O2, which were 47.2% and 42.2% lower than those in the control at the end of storage, respectively. Furthermore, PSKα treatment enhanced the calmodulin (CaM) content of kiwifruit, which was 1.41 times that of the control on day 50. These results indicate that PSKα can mitigate chilling injury and softening of kiwifruit by inhibiting the accumulation of ROS, increasing antioxidant capacity by inducing antioxidant enzymes, activating Ca2+ signaling, and responding to MAPK protein kinase. The present results provide evidence that exogenous PSKα may be taken for a hopeful treatment in alleviating chilling injury and maintaining the quality of kiwifruit.
Collapse
Affiliation(s)
- Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lingkui Meng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Renyu Zheng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Ezati P, Rhim JW, Molaei R, Rezaei Z. Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Exogenous phytosulfokine α (PSKα) alleviates chilling injury of banana by modulating metabolisms of nitric oxide, polyamine, proline, and γ-aminobutyric acid. Food Chem 2022; 380:132179. [DOI: 10.1016/j.foodchem.2022.132179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
7
|
Huska D, Mayorga-Martinez CC, Zelinka R, Pumera M. Magnetic Biohybrid Robots as Efficient Drug Carrier to Generate Plant Cell Clones. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200208. [PMID: 35535470 DOI: 10.1002/smll.202200208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Micro/nanorobots represent a new generation of micromachines that can accomplish various tasks, such as loading and transporting specific targets or pharmaceuticals for a given application. Biohybrid robots consisting of biological cells (bacteria, sperm, and microalgae) combined with inorganic particles to control or propel their movement are of particular interest. The skeleton of these biohybrid robots can be used to load biomolecules. In this work, the authors create biohybrid robots based on tomato plants by coculturing ferromagnetic nanoparticles (Fe3 O4 ) with tomato callus cells. The tomato-based biohybrid robots (Tomato-Biobots) containing Fe3 O4 nanoparticles are driven by a transversely rotating magnetic field. In addition, biohybrid robots are used to load vitamin C, to generate clones of tomato cells. It is shown that the presence of Fe3 O4 does not affect the growth of tomato callus. This study opens a wide range of possibilities for the use of biohybrid robots@Fe3 O4 to deliver conventional agrochemicals, including fertilizers, pesticides, and herbicides, and allows for a gradual and sustained release of nutrients and agrochemicals, leading to precise dosing that reduces the amount of agrochemicals used. This conceptually new type of micromachine with application to plants and agronomy shall find broad use in this field.
Collapse
Affiliation(s)
- Dalibor Huska
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Radim Zelinka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40447, Taiwan
| |
Collapse
|
8
|
Aghdam MS, Ebrahimi A, Sheikh-Assadi M. Phytosulfokine α (PSKα) delays senescence and reinforces SUMO1/SUMO E3 ligase SIZ1 signaling pathway in cut rose flowers (Rosa hybrida cv. Angelina). Sci Rep 2021; 11:23227. [PMID: 34853400 PMCID: PMC8636500 DOI: 10.1038/s41598-021-02712-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Roses are widely used as cut flowers worldwide. Petal senescence confines the decorative quality of cut rose flowers, an impressively considerable economic loss. Herein, we investigated the SUMO1/SUMO E3 ligase SIZ1 signaling pathway during bud opening, and petal senescence of cut rose flowers. Our results exhibited that the higher expression of SUMO1 and SUMO E3 ligase SIZ1 during bud opening was accompanied by lower endogenous H2O2 accumulation arising from higher expression and activities of SOD, CAT, APX, and GR, promoting proline accumulation by increasing P5CS expression and activity and enhancing GABA accumulation by increasing GAD expression and activity. In harvested flowers, lower expressions of SUMO1 and SUMO E3 ligase SIZ1 during petal senescence were associated with higher endogenous H2O2 accumulation due to lower expression and activities of SOD, CAT, APX, and GR. Therefore, promoting the activity of the GABA shunt pathway as realized by higher expression and activities of GABA-T and SSADH accompanied by increasing OAT expression and activity for sufficiently supply proline in rose flowers during petal senescence might serve as an endogenous antisenescence mechanism for slowing down petals senescence by avoiding endogenous H2O2 accumulation. Following phytosulfokine α (PSKα) application, postponing petal senescence in cut rose flowers could be ascribed to higher expression of SUMO1 and SUMO E3 ligase SIZ1 accompanied by higher expression and activities of SOD, CAT, APX, and GR, higher activity of GABA shunt pathway as realized by higher expression and activities of GAD, GABA-T, and SSADH, higher expression and activities of P5CS and OAT for supplying proline and higher expression of HSP70 and HSP90. Therefore, our results highlight the potential of the PSKα as a promising antisenescence signaling peptide in the floriculture industry for postponing senescence and extending the vase life of cut rose flowers.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Amin Ebrahimi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Morteza Sheikh-Assadi
- Department of Horticultural Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
9
|
Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS. Small signaling molecules in plant response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153534. [PMID: 34601338 DOI: 10.1016/j.jplph.2021.153534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Cold stress is one of the harsh environmental stresses that adversely affect plant growth and crop yields in the Qinghai-Tibet Plateau. However, plants have evolved mechanisms to overcome the impact of cold stress. Progress has been made in understanding how plants perceive and transduce low-temperature signals to tolerate cold stress. Small signaling molecules are crucial for cellular signal transduction by initiating the downstream signaling cascade that helps plants to respond to cold stress. These small signaling molecules include calcium, reactive oxygen species, nitric oxide, hydrogen sulfide, cyclic guanosine monophosphate, phosphatidic acid, and sphingolipids. The small signaling molecules are involved in many aspects of cellular and physiological functions, such as inducing gene expression and activating hormone signaling, resulting in upregulation of the antioxidant enzyme activities, osmoprotectant accumulation, malondialdehyde reduction, and photosynthesis improvement. We summarize our current understanding of the roles of the small signaling molecules in cold stress in plants, and highlight their crosstalk in cold signaling transduction. These discoveries help us understand how the plateau plants adapt to the severe alpine environment as well as to develop new crops tolerating cold stress in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Su
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tengguo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Pintos FM, Hasperué JH, Ixtaina P, Vicente AR, Lemoine ML, Rodoni LM. Short light exposure preserves broccoli head quality and nutrients during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico M. Pintos
- Laboratorio de Investigación en Productos Agroindustriales (LIPA)Facultad de Ciencias Agrarias y Forestales La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Joaquín H. Hasperué
- Laboratorio de Investigación en Productos Agroindustriales (LIPA)Facultad de Ciencias Agrarias y Forestales La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Pablo Ixtaina
- Laboratorio de Acústica y Luminotecnia (LAL)‐Comisión de Investigaciones Científicas (CIC) MB Gonnet Argentina
| | - Ariel R. Vicente
- Laboratorio de Investigación en Productos Agroindustriales (LIPA)Facultad de Ciencias Agrarias y Forestales La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - M. Laura Lemoine
- Laboratorio de Investigación en Productos Agroindustriales (LIPA)Facultad de Ciencias Agrarias y Forestales La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Luis M. Rodoni
- Laboratorio de Investigación en Productos Agroindustriales (LIPA)Facultad de Ciencias Agrarias y Forestales La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
11
|
Chevilly S, Dolz-Edo L, López-Nicolás JM, Morcillo L, Vilagrosa A, Yenush L, Mulet JM. Physiological and Molecular Characterization of the Differential Response of Broccoli ( Brassica oleracea var. Italica) Cultivars Reveals Limiting Factors for Broccoli Tolerance to Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10394-10404. [PMID: 34445860 PMCID: PMC8528380 DOI: 10.1021/acs.jafc.1c03421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Broccoli is a cruciferous crop rich in health-promoting metabolites. Due to several factors, including anthropogenic global warming, aridity is increasing in many cultivation areas. There is a great demand to characterize the drought response of broccoli and use this knowledge to develop new cultivars able to maintain yield under water constraints. The aim of this study is to characterize the drought response at the physiological and molecular level of different broccoli (Brassica oleracea L. var. Italica Plenck) cultivars, previously characterized as drought-sensitive or drought-tolerant. This approach aims to identify different traits, which can constitute limiting factors for drought stress tolerance in broccoli. For this purpose, we have compared several physiological parameters and the complete profiles of amino acids, primary metabolites, hormones, and ions of drought-tolerant and drought-sensitive cultivars under stress and control conditions. We have found that drought-tolerant cultivars presented higher levels of methionine and abscisic acid and lower amounts of urea, quinic acid, and the gluconic acid lactone. Interestingly, we have also found that a drought treatment increases the levels of most essential amino acids in leaves and in florets. Our results have established physiological and molecular traits useful as distinctive markers to predict drought tolerance in broccoli or which could be reliably used for breeding new cultivars adapted to water scarcity. We have also found that a drought treatment increases the content of essential amino acids in broccoli.
Collapse
Affiliation(s)
- Sergio Chevilly
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - Laura Dolz-Edo
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - José M. López-Nicolás
- Departamento
de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Luna Morcillo
- Fundación
Centro de Estudios Ambientales del Mediterráneo, Joint Research
Unit University of Alicante—CEAM, University of Alicante, 03080 Alicante, Spain
| | - Alberto Vilagrosa
- Fundación
Centro de Estudios Ambientales del Mediterráneo, Joint Research
Unit University of Alicante—CEAM, University of Alicante, 03080 Alicante, Spain
| | - Lynne Yenush
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
| | - José M. Mulet
- Instituto
de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas, 46022 Valencia, Spain
- . Tel: +34 96 387
77 75. Fax: +34 96 387 78 59
| |
Collapse
|
12
|
Shekari A, Hassani RN, Aghdam MS, Rezaee M, Jannatizadeh A. The effects of melatonin treatment on cap browning and biochemical attributes of Agaricus bisporus during low temperature storage. Food Chem 2021; 348:129074. [DOI: 10.1016/j.foodchem.2021.129074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/03/2023]
|
13
|
Aghdam MS, Alikhani-Koupaei M, Khademian R. Delaying Broccoli Floret Yellowing by Phytosulfokine α Application During Cold Storage. Front Nutr 2021; 8:609217. [PMID: 33869261 PMCID: PMC8047079 DOI: 10.3389/fnut.2021.609217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
During postharvest life, broccoli suffers from floret yellowing confining its economic and nutritional value. The objective of the present study was to explore the mechanisms employed by phytosulfokine α (PSKα) at 150 nM for delaying floret yellowing in broccoli during storage at 4°C for 28 days. Our results showed that the higher endogenous accumulation of hydrogen sulfide (H2S) resulting from the higher gene expression and activities of l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) in broccoli floret treated with 150 nM PSKα may serve as an endogenous signaling molecule for delaying senescence. Moreover, the suppressed ethylene biosynthesis in broccoli floret treated with 150 nM PSKα might be ascribed to lower gene expression and activities of ACC synthase (ACS) and ACC oxidase (ACO). Furthermore, lower gene expression and activities of Mg2+ dechelatase (MDC), pheophytinase (PPH), and pheophorbide a oxygenase (PaO) might be the reasons for the higher accumulation of chlorophyll in broccoli floret treated with 150 nM PSKα. Based on our findings, exogenous PSKα application could be employed as signaling bioactive hormone for retarding floret yellowing of broccoli during storage at 4°C for 28 days.
Collapse
Affiliation(s)
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Education Complex of Saravan, Saravan, Iran
| | - Raheleh Khademian
- Department of Genetic and Plant Breeding, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
14
|
Huang H, Wang D, Belwal T, Dong L, Lu L, Zou Y, Li L, Xu Y, Luo Z. A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem 2021; 356:129704. [PMID: 33831827 DOI: 10.1016/j.foodchem.2021.129704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.
Collapse
Affiliation(s)
- Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Di Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Li Dong
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ling Lu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ying Zou
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
15
|
Aghdam MS, Flores FB. Employing phytosulfokine α (PSKα) for delaying broccoli florets yellowing during cold storage. Food Chem 2021; 355:129626. [PMID: 33780792 DOI: 10.1016/j.foodchem.2021.129626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/01/2023]
Abstract
The yellowing of florets limits the economic and nutritional value of broccoli during postharvest. We investigated mechanisms of action of 150 nM phytosulfokine α (PSKα) for delaying florets yellowing in broccoli during cold storage. Our results showed that SUMO E3 ligase (SIZ1) gene expression was higher in florets treated with PSKα, which may prevent endogenous H2O2 accumulation, resulting from the higher activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Besides, higher expression of methionine sulfoxide reductase and cysteine peroxiredoxin genes, concomitant with higher expression of heat shock proteins 70/90 genes, may arise from higherexpression of SIZ1 gene. Lower expression and activity of phospholipase D and lipoxygenase may be liable for membrane integrity protection featured by lower malondialdehyde accumulation in florets treated with PSKα. Additionally,florets treated with PSKα exhibited higher endogenous cytokinin accumulation which may arise from higher expression of isopentenyl transferase gene, concomitant with lower expression of cytokinin oxidase gene.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran.
| | | |
Collapse
|
16
|
de Souza JV, Kondal M, Zaborniak P, Cairns R, Bronowska AK. Controlling the Heterodimerisation of the Phytosulfokine Receptor 1 (PSKR1) via Island Loop Modulation. Int J Mol Sci 2021; 22:1806. [PMID: 33670396 PMCID: PMC7918699 DOI: 10.3390/ijms22041806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing a pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between a leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor's island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of the PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel "druggable" binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
Collapse
Affiliation(s)
- João V. de Souza
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Matthew Kondal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Piotr Zaborniak
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Ryland Cairns
- Fontus Environmental, High Garth, Thirsk YO7 3PX, UK;
| | - Agnieszka K. Bronowska
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| |
Collapse
|
17
|
Aghdam MS, Alikhani-Koupaei M. Exogenous phytosulfokine α (PSKα) applying delays senescence and relief decay in strawberry fruits during cold storage by sufficient intracellular ATP and NADPH availability. Food Chem 2020; 336:127685. [PMID: 32758803 DOI: 10.1016/j.foodchem.2020.127685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Herein, we employed exogenous phytosulfokine α (PSKα) for delaying senescence and lessening decay in strawberry fruits during storage at 4 °C for 18 days. Our results showed that the strawberry fruits treated with 150 nM PSKα exhibited lower expression of poly-ADP-ribose polymerase 1 (PARP1) gene, leading to a higher intracellular NAD+ availability, beneficial for a sufficient provision of intracellular NADP+ with the activity of NAD kinase (NADK). Moreover, higher activities of glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and methylenetetrahydrofolate dehydrogenase (MTHFD) may be the reason for the sufficient intracellular availability of NADPH in strawberry fruits treated with 150 nM PSKα. In addition, strawberry fruits treated with 150 nM PSKα exhibited a sufficient availability of ATP resulted from higher activities of succinate dehydrogenase (SDH) and cytochrome c oxidase (CCO). Therefore, our results indicate that exogenous PSKα could be beneficial for delaying senescence and reducing decay in strawberry fruits during cold storage.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran.
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran.
| |
Collapse
|