1
|
Dos Santos IIP, Silva MDCC, Ferraz CG, Ribeiro PR. Flavonoids, biphenyls and xanthones from the genus Clusia: chemistry, biological activities and chemophenetics relevance. Nat Prod Res 2025; 39:579-592. [PMID: 38498692 DOI: 10.1080/14786419.2024.2330515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Clusia is one of the most important genera of the Clusiaceae family, comprising up to 400 species. This review describes the identification of twenty-two flavonoids from Clusia species, which includes five flavonols (1-4 and 11), six flavones (5-10), one catechin (12), one flavanone (13), and nine biflavonoids (14-22). O- and C-glycosylation are frequently observed amongst these flavonoids. Furthermore, seven biphenyls (23-29) and nine xanthones (30-38) have been isolated from Clusia species. Biphenyls and xanthones show limited occurrence within the genus, but together with biosynthetic insights, they might offer important chemophenetics leads for the consolidation of the genus Clusia within the Clusiaceae family. Altogether, this work provides an overview of the chemistry of the genus Clusia in terms of flavonoids, biphenyls and xanthones, as well as it discusses biological activities and chemophenetics of the isolated compounds, when appropriate.
Collapse
Affiliation(s)
- Ismirna I P Dos Santos
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Maria do Carmo C Silva
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| |
Collapse
|
2
|
Zengin G, Cetiz MV, Abul N, Gulcin I, Caprioli G, Piatti D, Ricciutelli M, Koyuncu I, Yuksekdag O, Bahşi M, Güler O, Aumeeruddy MZ, Mahomoodally MF. Establishing a link between the chemical composition and biological activities of Gladiolus italicus Mill. from the Turkish flora utilizing in vitro, in silico and network pharmacological methodologies. Toxicol Mech Methods 2025; 35:146-166. [PMID: 39246014 DOI: 10.1080/15376516.2024.2397387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Five solvent extracts (n-hexane, ethyl acetate, ethanol, ethanol/water (70%), and water) of Gladiolus italicus Mill. from Turkey were evaluated for chemical and biological properties. METHODS Antioxidant activities, inhibitory properties against key enzymes involved in the etiology of chronic diseases were tested, as well as cytotoxic effects on different cell lines. Chemical characterization was also carried out to determine the most abundant compounds of each extract. RESULTS The highest total phenolic content (TPC) was observed in the water extract while highest TFC in ethanol/water extract. The most abundant compounds in the extracts were hyperoside (69041.06 mg kg-1), isoquercitrin (46239.49 mg kg-1), delphindin-3,5-diglucoside (42043.81 mg kg-1), myricetin (21486.61 mg kg-1), and kaempferol-3-glucoside (21199.76 mg kg-1). Molecular dynamic (MD) simulations confirmed the structural stability and dynamic conformational integrity of these complexes over a period of 100 ns. In network pharmacology, A total of 657 unique target genes were screened: 52 associated with programmed cell death-1 (PD-1), 85 with vascular endothelial growth factor receptor-2 (VEGFR2), and 130 with fibroblast growth factor receptor-2 (FGFR2), identifying crucial gene interactions for these proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, revealing significant interactions and pathways such as the advanced glycation end products (AGE) and their receptors (RAGE) signaling pathway in diabetic complications and T- helper 17 (Th17) cell differentiation, among others. This elucidation of complex networks involving key genes like AKT Serine/Threonine Kinase 1 (AKT1), MYC proto-oncogene (MYC), tumor protein 53 (TP53), Interleukin 6 (IL6), and tumor necrosis factor (TNF) provides a promising foundation for the development of targeted therapies in the treatment of non-communicable diseases. CONCLUSION These results show that G. italicus could be a natural source of potent antioxidants and enzyme inhibitors which need to be further explored for the development of biopharmaceuticals.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mehmet Veysi Cetiz
- Department of Bioinformatics, Biozentrum der Universität Würzburg, Würzburg, Germany
| | - Nurgul Abul
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Massimo Ricciutelli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Muammer Bahşi
- Faculty of Education, Department of Primary Education, Firat University, Elazig, Turkey
| | - Osman Güler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | | | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| |
Collapse
|
3
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03811-x. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
4
|
Troshkova N, Politanskaya L, Bagryanskaya I, Chuikov I, Wang J, Ilyina P, Mikhalski M, Esaulkova I, Volobueva A, Zarubaev V. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers 2024; 28:3635-3660. [PMID: 38153637 DOI: 10.1007/s11030-023-10769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.
Collapse
Affiliation(s)
- Nadezhda Troshkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Larisa Politanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090.
| | - Irina Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Igor Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Jiaying Wang
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk, Russian Federation, 630090
| | - Polina Ilyina
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Mikhail Mikhalski
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Iana Esaulkova
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Alexandrina Volobueva
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Vladimir Zarubaev
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| |
Collapse
|
5
|
Zhou P, Li X, Jiang Z, Zhou J, Shen L. Facile construction of pectin-based hesperidin microcapsules: Solubilization, stability, loading process, and release mechanism. Food Chem 2024; 451:139505. [PMID: 38703732 DOI: 10.1016/j.foodchem.2024.139505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Constructing carrier materials with polysaccharides to enhance the solubility of insoluble active ingredients is a crucial strategy for improving bioavailability. This research constructed pectin-based hesperidin microcapsules (PHM) through self-assembly processes in the deep eutectic solvent, improving the solubility, storage stability, and bioavailability of hesperidin (HES). PHM exhibited high encapsulation efficiency (91.7%) and loading capacity (11.5%), with a small particle size (1.73 μm). The interaction mechanism was clarified through physical characterization and density functional theory (DFT) calculations. The vitro release demonstrated that the release ratio of PHM was only 6.4% in simulated gastric fluid (SGF), but reached 80.9% in simulated intestinal fluid (SIF). The release mechanism of PHM in SGF followed Fickian diffusion, while in SIF followed skeleton dissolution diffusion with a stable rate. Furthermore, the cell cytotoxicity experiments confirmed the remarkable biocompatibility of PHM toward human colon cells, which suggested its potential application in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zhi Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Hunan Prima Drug Research Center Co., Ltd, Changsha 410329, Hunan, China.
| | - Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liqun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
6
|
Zhang JN, Pei ZD, Wang WY, Zhao MY, Pei WH, Zhang H, Yin HB, Wang TM, Xin GZ, Xie M, Kang TG, Chen YH, Song HP. Integration of High-Resolution LC-Q-TOF Mass Spectrometry and Multidimensional Chemical-Biological Analysis to Detect Nanomolar-Level Acetylcholinesterase Inhibitors from Different Parts of Zanthoxylum nitidum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17328-17342. [PMID: 39045647 DOI: 10.1021/acs.jafc.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 μM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.
Collapse
Affiliation(s)
- Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Dong Pei
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Yu Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Han Pei
- Macau University of Science and Technology, Macau 999078, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tian-Min Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
7
|
Le AT, Ha HA, Al-Ansari MM, Elankathirselvan K, Al-Humaid LA. Aristolochia bracteolata flower extract based phytosynthesis and characterization of AgNPs: Antimicrobial, antidiabetic, and antioxidant activities potential assessment. ENVIRONMENTAL RESEARCH 2024; 251:118729. [PMID: 38492832 DOI: 10.1016/j.envres.2024.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The study was carried out to evaluate the effectiveness of the Aristolochia bracteolata water flower extract-mediated AgNPs synthesis and assess their antimicrobial potential. According to the experimental and analytical results, A. bracteolata flower extract can produce valuable AgNPs. The characteristic features of these AgNPs were assessed with UV-visible spectrophotometer, Fourier transform-infrared spectroscopy, Transmission Electron Microscope, Scanning Electron Microscopy, as well as. Under UV-vis. spectrum results, showed major peak at 430 nm and recorded essential functional groups responsible for reducing, capping, and stabilizing AgNPs by FT-IR analysis. In addition, the size and shape of the synthesized AgNPs were found as 21.11-25.17 nm and spherical/octahedral shape. The A. bracteolata fabricated NPs showed remarkable antimicrobial activity against fish bacterial pathogens (V. parahaemolytics, Serratia sp., B. subtilis, and E. coli) as well as common fungal pathogens (A. niger, C. albicans, A. flavus, and A. terreus) at the quantity of 100 μg mL-1 than positive controls. Nevertheless, it was not effective against human bacterial pathogens. It concludes that AgNPs synthesized from A. bracteolata aqueous flower extract have excellent antimicrobial activity and may have a variety of biomedical applications.
Collapse
Affiliation(s)
- Anh-Tuan Le
- Faculty of Odonto-Stomatology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam.
| | - Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Kasber Elankathirselvan
- Department of Chemistry, Tiruvallur University, Serkkadu, Vellore, 632 115, Tamil Nadu, India
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
8
|
Zheng M, Zhang W, Lu S. The characterization of the pectin/alginate nanoparticle for encapsulation of hydroxypropyl-β-cyclodextrin-complexed naringin and its effects on cellular uptake and oxidative stress in Caco-2 cells. Int J Biol Macromol 2024; 263:130398. [PMID: 38403221 DOI: 10.1016/j.ijbiomac.2024.130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Naringin (NR) and hydroxypropyl-β-cyclodextrin (HPCD) can form a water-soluble complex, but it is unstable. This study aimed to investigate the characterization of the pectin/alginate hydrogel nanoparticles (HNPs) loading HPCD-complexed naringin. The encapsulation efficiency and loading capacity of the HNPs for NR were found to be 79.23 % ± 1.31 % and 23.79 % ± 0.67 %, respectively. HNPs had an average diameter of 409.5 ± 8.5 nm, a PDI of 0.237 ± 0.014, and a zeta-potential of -33.5 ± 0.2. FTIR, XRD, and DSC analysis confirmed that the NR-HPCD complex was embedded into the HNPs. In simulated gastrointestinal digestion, the HNPs exhibited a lower cumulative release rate compared to free NR. In Caco-2 cells, the HNPs were more efficiently transported into the cells. Consequently, the HNPs resulted in a greater decrease in ROS levels, more recovery of mitochondrial membrane potential and higher content of glutathione. This study provided a carrier for encapsulating NR, making it possible for use in food or functional food.
Collapse
Affiliation(s)
- Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Wenjuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Ngoc Mai TT, Minh PN, Phat NT, Duong TH, Minh An TN, Dang VS, Van Hue N, Tri MD. Antimicrobial and alpha-glucosidase inhibitory flavonoid glycosides from the plant Mussaenda recurvata: in vitro and in silico approaches. RSC Adv 2024; 14:9326-9338. [PMID: 38505391 PMCID: PMC10950057 DOI: 10.1039/d4ra00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Seven flavonoid glycosides were isolated from the aerial portions of Mussaenda recurvata during a phytochemical analysis. This comprised one novel component, ecurvoside, and six well-studied compounds, namely astragalin, isoquercitrin, nicotiflorin, rutin, hesperidin, and neohesperidin. The chemical structures of compounds were identified using spectroscopic techniques and a comparison with previously published studies. Alpha-glucosidase inhibition testing was carried out on all isolated compounds. The compounds evaluated have IC50 values between 35.6 and 239.1 g mL-1, indicating a moderate degree of inhibition. In vitro antimicrobial activities of compounds 1-7 have screened against the bacteria Pseudomonas aeruginosa (P. aeruginosa), methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus faecalis (Strep. faecalis), and fungi: Candida albicans (C. albicans), Trichophyton mentagrophytes (T. mentagrophytes), and Microsporum gypseum (M. gypseum), where compound 6 showed excellent activity against fungi T. mentagrophytes with an MIC value of 12.5 μM. In accordance with the molecular docking study, ecurvoside (1) or pose 472 interacted well with the 3TOP enzyme: PDB and the molecular dynamic simulations proved that the complex of ecurvoside and 3TOP has a stable simulation time of 50-100 ns and the significant residual amino acids in 3TOP are relative to interactions more than one time such as Asp 960, Glu 961, Lys 1088, Glu 1095, Arg 1097, Gly 1102, Thr 1103, Gln 1109, Glu 1178: A chain and Glu 1095, Thr 1101, and Asp 1107: B chain. The docking studies of compounds 1-7 to the enzyme 2VF5 explain the general mechanism to inhibit bacteria and proved that compound 6 (pose 370) inhibited stronger than compound 7 (pose 362) and compound 5 (pose 280), and compounds 1 to 4 do not interact well with 2VF5.
Collapse
Affiliation(s)
- Tran Thi Ngoc Mai
- Institute of Applied Sciences, HUTECH University 475A Dien Bien Phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
| | - Phan Nhat Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| | - Nguyen Tan Phat
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| | - Thuc Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 748342 Ho Chi Minh City Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Van Son Dang
- Institute of Applied Sciences, HUTECH University 475A Dien Bien Phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
- Institute of Tropical Biology, Vietnam Academy of Science and Technology 85 Tran Quoc Toan Street, District 3 Ho Chi Minh City 700000 Vietnam
| | - Nguyen Van Hue
- University of Agriculture and Forestry, Hue University 52000 Vietnam
| | - Mai Dinh Tri
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Duan B, Zhang Y, Feng Z, Liu Z, Tao N. Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105835. [PMID: 38582597 DOI: 10.1016/j.pestbp.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 μL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-β-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.
Collapse
Affiliation(s)
- Bin Duan
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Yonghua Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Zhao Feng
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Zhaoguo Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China.
| |
Collapse
|
11
|
Bernardino-Nicanor A, Fernández-Avalos S, Juárez-Goiz JMS, Montañez-Soto JL, González-Cruz L. The In Vitro Inhibitory Activity of Pacaya Palm Rachis versus Dipeptidyl Peptidase-IV, Angiotensin-Converting Enzyme, α-Glucosidase and α-Amylase. PLANTS (BASEL, SWITZERLAND) 2024; 13:400. [PMID: 38337933 PMCID: PMC10856824 DOI: 10.3390/plants13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The pacaya palm (Chamaedorea tepejilote Liebm) is an important food that is commonly consumed in Mexico and Central America due to its nutritive value. It is also used as a nutraceutical food against some chronic diseases, such as hypertension and hyperglycemia. However, few reports have indicated its possible potential. For this reason, the goal of this research was to evaluate the effects of the enzymatic activity of the pacaya palm inflorescence rachis on both hypertension and hyperglycemia and the effects of thermal treatments on the enzymatic activity. The enzymatic inhibition of ACE (angiotensin-converting enzyme), DPP-IV (dipeptidyl peptidase-IV), α-glucosidase and α-amylase were evaluated, all with powder extracts of pacaya palm inflorescences rachis. The results indicated that thermally treated rachis showed increased enzymatic inhibitory activity against α-amylase and DPP-IV. However, all rachis, both with and without thermal treatment, showed low- or no enzymatic activity against α-glucosidase and ACE. Apparently, the mechanism of action of the antidiabetic effect of rachis is mediated by the inhibition of α-amylase and DPP-IV and does not contribute with a significant effect on enzymes involved in the hypertension mechanism. Finally, the properties of the extract were modified via the extraction method and the temperature tested.
Collapse
Affiliation(s)
- Aurea Bernardino-Nicanor
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - Stephanie Fernández-Avalos
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - José Mayolo Simitrio Juárez-Goiz
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - José Luis Montañez-Soto
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del, Instituto Politécnico Nacional, Jiquilpan, Michoacan C.P. 59510, Mexico;
| | - Leopoldo González-Cruz
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| |
Collapse
|
12
|
Lee JE, An BJ, Jo C, Min B, Paik HD, Ahn DU. The elastase and melanogenesis inhibitory and anti-inflammatory activities of phosvitin phosphopeptides produced using high-temperature and mild-pressure (HTMP) pretreatment and enzyme hydrolysis combinations. Poult Sci 2023; 102:102680. [PMID: 37120871 PMCID: PMC10172692 DOI: 10.1016/j.psj.2023.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 05/02/2023] Open
Abstract
This study aimed to determine the skin protective effect of egg yolk phosvitin phosphopeptides (PPPs). Phosvitin was separated from the egg yolk, and PPPs were produced using high-temperature and mild-pressure (HTMP) pretreatment and enzyme-sterilization hydrolysis combinations. The elastase and melanogenesis inhibitory activities and anti-inflammatory effects of egg yolk PPPs were determined. All PPPs significantly inhibited elastase activity, but the PPPs prepared with HTMP pretreatment and trypsin-sterilization (HTMP-T-S) combination suppressed the tyrosinase activity the most. PPPs (3 mg/mL) inhibited the α-melanocyte-stimulating hormone-induced melanin production in B16F10 melanoma cells by 31.18 to 38.58%. In addition, PPPs effectively inhibited nitric oxide (NO) production in the LPS (lipopolysaccharide)-stimulated RAW 264.7 macrophages, and the PPPs from HTMP-T-S exhibited the highest inhibitory activity. The protein expressions of pro-inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2 were down-regulated by the PPPs from the HTMP-T-S. Therefore, PPPs could be used as an anti-melanogenic, anti-elastase, and anti-inflammatory agent for humans and skin care products.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong Jeun An
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan 38578, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byungrok Min
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
13
|
Goswami MJ, Dutta U, Seema T, Bharali SJ, Yanka H, Tag H, Bharali P, Kakati D. Antioxidant and Antidiabetic Properties of Extracts from Three Underutilized Food Plants of North East India. Chem Biodivers 2023; 20:e202200718. [PMID: 36562215 DOI: 10.1002/cbdv.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Three underutilized leafy vegetables Sarcochlamys pulcherrima (Roxb.) Gaudich (SP), Ipomoea aquatica Forssk. (IA) and Zanthoxylum rhetsa (Roxb.) DC (ZR) were extracted with different solvents viz. 95 % ethyl alcohol, methanol and hot water. The extracts were evaluated for their antioxidant potential via DPPH, ABTS and FRAP assay along with electroanalytical studies using cyclic voltammetry. The antidiabetic potential was determined by recording their α-amylase and α-glucosidase inhibitory assay. The total phenolic content (TPC), total flavonoid content (TFC) and the liquid chromatography-mass spectrometry (LC/MS) based phytochemical profiles of the extracts were also determined. All three extracts of SP exhibited significant antioxidant capacity. The antidiabetic potential of the IA and ZR extracts was found to be higher than or at par with that of standard acarbose. LC/MS studies reveal the presence of hitherto reported antioxidant and antidiabetic compounds like gamma-aminobutyric acid, cinnamic acid, caffeic acid, α-viniferin, piperlonguminine, niacin, kaempferol, etc., in the extracts.
Collapse
Affiliation(s)
- Manab Jyoti Goswami
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Utpal Dutta
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Tage Seema
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Sourav Jyoti Bharali
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India.,Rajiv Gandhi Institute of Petroleum Technology (AEI), Sibasagar, Assam, 785697, India
| | - Hage Yanka
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Hui Tag
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| | - Pankaj Bharali
- Center for Infectious Diseases, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Gjaziabad, India
| | - Dwipen Kakati
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| |
Collapse
|
14
|
Pradhan SP, Swain S, Sa N, Pilla SN, Behera A, Sahu PK, Chandra Si S. Photocatalysis of environmental organic pollutants and antioxidant activity of flavonoid conjugated gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121699. [PMID: 35940068 DOI: 10.1016/j.saa.2022.121699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The unique properties of nanomaterials have the potential application in different fields of biomedical application along with the management of environmental pollutants. This research work involved the isolation of hesperidin from the orange peel and the preparation of hesperidin gold nanoparticles by the chemical reduction method. The high substrate specificity and lower band gap enable the excitation of gold nanoparticles in visible light. Hence gold nanoparticles are chosen nowadays for the management and removal of organic pollutants. The efficacy of hesperidin gold nanoparticles was evaluated by the photocatalytic activity on organic dyes and pollutants like methyl orange, methylene blue, bromocresol green, and 4 - nitro phenol with sodium borohydride as reducing agent and the antioxidant study by scavenging of free radicals of DPPH, ABTS, and hydroxyl free radicals of hydrogen peroxide. The kinetics of photocatalytic degradation of organic dyes and 4 - nitro phenol was found to follow the first order with rate constants of 10 × 10-3, 37 × 10-3, 23 × 10-3 and 49 × 10-3 min-1 for methyl orange, methylene blue, bromocresol green and 4 - nitro phenol respectively. The hesperidin gold nanoparticles showed significant antioxidant activity as compared to ascorbic acid as standard. The flavonoid conjugated gold nanoparticles can be an efficient antioxidant and photocatalyst for the management of different diseases and wastewater treatment respectively.
Collapse
Affiliation(s)
| | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
15
|
Politanskaya L, Wang J, Troshkova N, Chuikov I, Bagryanskaya I. One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wang Z, Yang B, Chen X, Huang P, Chen K, Ma Y, Agarry IE, Kan J. Optimization and comparison of nonconventional extraction techniques for soluble phenolic compounds from brocade orange (
Citrus sinensis
) peels. J Food Sci 2022; 87:4917-4929. [DOI: 10.1111/1750-3841.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Zhirong Wang
- College of Food Science Southwest University Beibei Chongqing PR China
- School of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | - Bing Yang
- College of Food Science and Technology Hebei Agricultural University Baoding Hebei PR China
| | - Xuhui Chen
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Pimiao Huang
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Kewei Chen
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| | - Yuan Ma
- School of Food and Bioengineering Xihua University Chengdu PR China
| | | | - Jianquan Kan
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| |
Collapse
|
17
|
Arikan B, Ozfidan-Konakci C, Alp FN, Zengin G, Yildiztugay E. Rosmarinic acid and hesperidin regulate gas exchange, chlorophyll fluorescence, antioxidant system and the fatty acid biosynthesis-related gene expression in Arabidopsis thaliana under heat stress. PHYTOCHEMISTRY 2022; 198:113157. [PMID: 35271935 DOI: 10.1016/j.phytochem.2022.113157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The impacts of exogenous rosmarinic acid (RA, 100 μM) and/or hesperidin (HP, 100 μM) were evaluated in improving tolerance on the gas exchange, chlorophyll fluorescence and efficiencies, phenomenological fluxes of photosystems, antioxidant system and gene expression related to the lipid biosynthesis under heat stress. For this purpose, Arabidopsis thaliana was grown under RA and HP with heat stress (S, 38 °C) for 24 h(h). As shown in gas exchange parameters, heat stress caused mesophyll efficiency and non-stomatal restrictions. Both alone and combined forms of RA and HP to stress-treated A. thaliana alleviated the disturbance of carbon assimilation, transpiration rate and internal CO2 concentrations. Stress impaired the levels of energy flow reaching reaction centers of PSII and the photon capture ability of active reaction centers. RA and/or HP enhanced photosystems' structural/functional characteristics and photosynthetic performance. Histochemical staining and biochemical analyses revealed that heat stress caused the oxidation in A. thaliana. By activating several defensive mechanisms, RA and/or HP could reverse the harm caused by radical production. Both alone and combined forms of RA and HP removed superoxide anion radical (O2•-) accumulation, inducing superoxide dismutase (SOD). The common enzyme that scavenged hydrogen peroxide (H2O2) at all three applications (S + RA, S + HP and S + RA + HP) was POX. Also, only RA could utilize the ascorbate (AsA) regeneration in response to stress, suggesting increased ascorbate peroxidase (APX), monodehydroascorbate (MDHAR) and dehydroascorbate (DHAR) activities. However, the regeneration/redox state of AsA and glutathione (GSH) did not maintain under S + HP and S + RA + HP. While RA had no positive influence on the saturated fatty acids under stress, HP increased the total saturated fatty acids (primarily palmitic acid). Besides, the combined application of RA + HP effectively created the stress response by increasing the expression of genes involved in fatty acid synthesis. The synergetic interactions of RA and HP could explain the increased levels of saturated fatty acids in combining these compounds. The data obtained from the study will contribute to the responses of phenolic compounds in plants to heat stress.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
18
|
Li P, Yao X, Zhou Q, Meng X, Zhou T, Gu Q. Citrus Peel Flavonoid Extracts: Health-Beneficial Bioactivities and Regulation of Intestinal Microecology in vitro. Front Nutr 2022; 9:888745. [PMID: 35685878 PMCID: PMC9171401 DOI: 10.3389/fnut.2022.888745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Citrus peel and its extracts are rich in flavonoids, which are beneficial to human health. In this study, the extraction, component analysis, biological activity and intestinal microbiota regulation of citrus peel flavonoid extracts (CPFEs) were investigated. CPFEs from 14 Chinese cultivars were purified by ultrasound-assisted extraction and XAD-16 macroporous resin. The total flavonoid content of lemon was greatest at 103.48 ± 0.68 mg/g dry weight (DW) by NaNO2-Al(NO3)3-NaOH spectrophotometry. Using high-performance liquid chromatography–diode array detection, the highest concentrations of naringin, hesperidin and eriocitrin were found in grapefruit (52.03 ± 0.51 mg/g DW), chachiensis (43.02 ± 0.37 mg/g DW) and lemon (27.72 ± 0.47 mg/g DW), respectively. Nobiletin was the most polymethoxylflavone in chachiensis at 16.91 ± 0.14 mg/g DW. CPFEs from chachiensis and grapefruit had better antioxidant activity, α-glucosidase inhibitory and sodium glycocholate binding ability. In addition, chachiensis and grapefruit CPFEs had positive effects on intestinal microecology, as evidenced by a significant increase in the relative abundance of Bifidobacterium spp., and production of short-chain fatty acids, especially acetic acid, by a simulated human intestinal model. Collectively, our results highlight the biological function of CPFEs as prebiotic agents, indicating their potential use in food and biomedical applications.
Collapse
|
19
|
Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Res Int 2022; 153:110958. [DOI: 10.1016/j.foodres.2022.110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
|
20
|
Lim SB. Organic Acid-Catalyzed Subcritical Water Hydrolysis of Immature Citrus unshiu Pomace. Foods 2021; 11:foods11010018. [PMID: 35010143 PMCID: PMC8750635 DOI: 10.3390/foods11010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Immature Citrus unshiu pomace (ICUP) was hydrolyzed under organic acid-catalyzed, subcritical water (SW) conditions to produce flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) and aglycons (hesperetin and naringenin) with high biological activities. The results of single-factor experiments showed that with 8 h of hydrolysis and an increasing citric acid concentration, the yield of flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) increased from 0 to 7% citric acid. Afterward, the hesperetin-7-O-glycoside yield remained constant (from 7 to 19% citric acid) while the pruning yield decreased with 19% of citric acid, whereas the aglycon yield increased continuously. In response surface methodology analysis, a citric acid concentration and hydrolysis duration of 13.34% and 7.94 h were predicted to produce the highest monoglucoside yield of 15.41 mg/g, while 18.48% citric acid and a 9.65 h hydrolysis duration produced the highest aglycon yield of 10.00 mg/g. The inhibitory activities of the SW hydrolysates against pancreatic lipase (PL) and xanthine oxidase (XO) were greatly affected by citric acid concentration and hydrolysis duration, respectively. PL and α-glucosidase inhibition rates of 88.2% and 62.7%, respectively, were achieved with 18.48% citric acid and an 8 h hydrolysis duration, compared to 72.8% for XO with 16% citric acid and 12 h of hydrolysis. This study confirms the potential of citric acid-catalyzed SW hydrolysis of ICUP for producing flavonoid monoglucosides and aglycons with enhanced enzyme inhibitory activities.
Collapse
Affiliation(s)
- Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
21
|
Wang Z, Chen X, Zhong T, Li B, Yang Q, Du M, Zalán Z, Kan J. Bioeffector Pseudomonas fluorescens ZX Elicits Biosynthesis and Accumulation of Functional Ingredients in Citrus Fruit Peel: A Promising Strategy for a More Sustainable Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13810-13820. [PMID: 34751564 DOI: 10.1021/acs.jafc.1c05709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Preharvest application of biocontrol agents is a promising strategy for promoting biosynthesis and accumulation of functional ingredients in fruit crops. In this study, we sought to evaluate the potential of Pseudomonas fluorescens ZX in stimulating the primary and secondary metabolism of citrus fruit peel. Pretreatment with P. fluorescens ZX was found to significantly affect the concentrations and profiles of both primary and secondary metabolites. More importantly, using P. fluorescens ZX suspension to increase inoculation numbers during fruit development typically elicited stronger stimulus effects, and multiple applications of P. fluorescens ZX significantly improved the biosynthesis process of beneficial compounds, resulting in their abundant accumulation in the peel. In fruit pretreated four times with P. fluorescens ZX, hesperidin, sinensetin, nobiletin, synephrine, and pectin were increased by approximately 26.0, 31.3, 44.8, 19.7, and 23.1%, respectively, compared to the untreated control. Collectively, these results indicated that, as a biostimulant, preharvest application of P. fluorescens ZX is an effective, affordable, ecological, and ecofriendly alternative agricultural technique for exploiting citrus crops. This approach is also promising for increasing the value of citrus fruit peel (currently regarded primarily as processing waste), thereby allowing industrial agricultural practices to move one step closer toward a circular economy.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
| | - Xuhui Chen
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Tao Zhong
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
| | - Bin Li
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Qingqing Yang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| |
Collapse
|
22
|
Long WY, Zhao GH, Wu Y. Hesperetin inhibits KSHV reactivation and is reversed by HIF1α overexpression. J Gen Virol 2021; 102. [PMID: 34747688 DOI: 10.1099/jgv.0.001686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is important for both viral propagation and KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Hesperetin, a citrus polyphenolic flavonoid, has antioxidant, anti-inflammatory, hypolipidemic, cardiovascular and anti-tumour effects. However, the effects of hesperetin on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that hesperetin induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. Hesperetin inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harbouring cells. We also confirmed that HIF1α promotes the RTA transcriptional activities and lytic cycle-refractory state of KSHV-infected cells. Hesperetin suppresses HIF1α expression to inhibit KSHV lytic reactivation. These results suggest that hesperetin may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Wen-Ying Long
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| | - Guo-Hua Zhao
- Neurology Department, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| | - Yao Wu
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| |
Collapse
|
23
|
Visvanathan R, Williamson G. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Crit Rev Food Sci Nutr 2021; 63:2178-2202. [PMID: 34496701 DOI: 10.1080/10408398.2021.1971945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Citrus fruits are a rich source of (poly)phenols, a group of dietary bioactive compounds that protect against developing type 2 diabetes. Our review critically evaluates how experimental in vitro and animal models have elucidated some of the underlying mechanisms on how citrus (poly)phenols affect the markers of type 2 diabetes. According to animal studies, the beneficial effects derived from consuming citrus compounds appear to be related to long-term effects, rather than acute. There are some notable effects from citrus (poly)phenol metabolites on post-absorptive processes, such as modulation of hepatic glucose metabolism and insulin sensitivity in target tissues, but with a more modest effect on digestion and sugar absorption within the gut. Experimental studies on cells and other systems in vitro have indicated some of the possible mechanisms involved, but ∼70% of the studies utilized unrealistically high concentrations and forms of the compounds, compromising physiological relevance. Future studies should discuss the relevance of concentration used in in vitro experiments, relative to the proposed site of action, and also examine the role of catabolites produced by the gut microbiota. Finally, it is important to examine the relationship between the gut microbiota and bioavailability on the action of citrus (poly)phenols.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| |
Collapse
|
24
|
Study on the change of flavonoid glycosides to aglycones during the process of steamed bread containing tartary buckwheat flour and antioxidant, α-glucosidase inhibitory activities evaluation in vitro. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Zeng J, Hu W, Li H, Liu J, Zhang P, Gu Y, Yu Y, Wang W, Wei Y. Purification of linarin and hesperidin from Mentha haplocalyx by aqueous two-phase flotation coupled with preparative HPLC and evaluation of the neuroprotective effect of linarin. J Sep Sci 2021; 44:2496-2503. [PMID: 33857350 DOI: 10.1002/jssc.202001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 01/21/2023]
Abstract
The volatile oil of Mentha haplocalyx is widely used in medicine, food, and cosmetics. However, a large amount of its residue after steam extraction of volatile oil is abandoned, resulting in a waste of resources. The method of aqueous two-phase flotation coupled with preparative high-performance liquid chromatography was established for the separation and purification of nonvolatile active compounds from Mentha haplocalyx for the first time. The parameters of the two-phase aqueous flotation were optimized. Under the optimal conditions including flotation solvent PEG 1000 aqueous solution (1:1, w/w), pH 5, (NH4 )2 SO4 concentration of 350 g/L in aqueous phase, N2 flow rate of 20 mL/min, and flotation time of 20 min, the flotation efficiency of linarin, hesperidin, and didymin was 82.24, 76.38, and 89.33%, respectively. The linarin and hesperidin with the high purities of 95.8 and 97.2%, respectively, were obtained by using preparative high performance liquid chromatography. The neuroprotective effect of linarin against H2 O2 -induced oxidative stress in rat hippocampal neurons was investigated. The experimental result indicated that linarin could alleviate H2 O2 -induced oxidative stress. The work indicated that the combination of aqueous two-phase flotation and preparative high performance liquid chromatography is a feasible and practical method for the purification of nonvolatile active substances from Mentha haplocalyx, which would provide a reference process for the comprehensive utilization of M. haplocalyx. Especially, linarin might be used as a good source of natural neuroprotectants.
Collapse
Affiliation(s)
- Jiajia Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Weilun Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Peng Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yanxiang Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yingchun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wenjuan Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|