1
|
Yang Z, Cui Z, Zhang W. Isolation, purification and identification of antibacterial peptides from Jinhua ham broth and molecular simulation analyses of their interaction with bacterial porins. Food Chem 2025; 473:143026. [PMID: 39864175 DOI: 10.1016/j.foodchem.2025.143026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The bioactive peptides in Jinhua ham could be released into the broth during cooking. After comparing peptide antibacterial activity from Jinhua ham broth with varying cooking durations, the cooking-2-h broths were selected for further analysis using cation-exchange and reverse-phase-liquid chromatography. The purified peptide sequences were subsequently synthesized and tested for their antibacterial activity. Four peptides (IKKVVKQASEGP, LGRVPRGKKKL, LKGGKKQLQKL, and MDAIKKKMQMLK) were identified with IC50 values for S. typhimurium and S. aureus below 0.4 mg/mL. Molecular docking and dynamics simulations were employed to investigate the interaction between the four antibacterial peptides and the outer membrane protein F (Omp F) of the Salmonella membrane. All four peptides demonstrated binding energies with Omp F lower than -7 kcal/mol. Stability indicators in molecular dynamics showed minimal fluctuations, further confirming the compactness and stability of the peptide-Omp F complexes. Notably, all four peptides altered the conformation of Omp F, thereby enhancing cell membrane permeability.
Collapse
Affiliation(s)
- Ziyi Yang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wanga R, Danzeng Z, Yang J, Qu J, Zhu R, Li H, Tang H, Li C, Zhao K. Identification and exploration of the potential antiaging role of the novel antioxidant peptide DGGY derived from yak milk proteins. J Dairy Sci 2025:S0022-0302(25)00268-1. [PMID: 40252762 DOI: 10.3168/jds.2025-26381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
Yak milk has substantial nutritional value yet remains underutilized for high-value applications. Because yak milk is a rich source of bioactive peptides due to its elevated protein composition, this study investigated yak milk-derived peptides with antioxidant properties and their potential antiaging mechanisms. First, 8 major yak milk proteins were hydrolyzed in silico via BIOPEP. Compared with other enzymes, proteinase K plus subtilisin could generate more antioxidant peptides. Six potential antioxidant peptides were efficiently screened in silico; DGGY presented the strongest hydroxyl radical scavenging rate, and its antioxidant activity was further verified in Caenorhabditis elegans. Additionally, the results of network pharmacology analysis suggested an antiaging role of DGGY, which was validated in C. elegans; specifically, supplementation with DGGY (50 and 300 μg/mL) significantly extended the life span of C. elegans by regulating the expression of related genes (including sod-3, snk-1, daf-16, daf-2, and hsp-16.2). In summary, a novel yak milk protein-derived antioxidant peptide, DGGY, was efficiently screened and found to exert potential antiaging effects. This study provides a method for the high-value utilization of yak milk and novel information for antiaging research.
Collapse
Affiliation(s)
- Rubin Wanga
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P. R. China 315100; Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Zhandu Danzeng
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000
| | - Jinyong Yang
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000; Zhejiang Animal Husbandry Technology Promotion and Breeding Poultry Monitoring General Station, Hangzhou, China 310020
| | - Jiu Qu
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000
| | - Ruikai Zhu
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Huanhuan Li
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Honggang Tang
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P. R. China 315100.
| | - Ke Zhao
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021.
| |
Collapse
|
3
|
Abbas Z, Zhang J, Tong Y, Ahmad B, Wang J, Zhang H, Li Z, Wei X, Zhang R, Si D. Production and characterization of novel antioxidant peptides from mulberry leaf ferment using B. subtilis H4 and B. amyloliquefaciens LFB112. Food Chem 2025; 482:144022. [PMID: 40203694 DOI: 10.1016/j.foodchem.2025.144022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
The objective of this study was to isolate and characterize antioxidant peptides from mulberry leaves fermented with Bacillus subtilis H4 and Bacillus amyloliquefaciens LFB112. The results indicated that fraction F4 (<1 kDa) exhibited superior DPPH activity compared to the F1 (>10 kDa), F2 (3-10 kDa), and F3 (1-3 kDa) fractions, and cytoprotective effect against lipopolysaccharides (LPS)-induced oxidative stress in RAW264.7 cells. Three novel peptides, FRFDP, RFGG, and GPPLAFGGGP, were identified in the F4 fraction of the mulberry leaf ferment, and docking results showed that these peptides could form stable carbon (covalent) and hydrogen bonds to the active sites of Keap1, thus regulating the Keap1-Nrf2 pathway by blocking the Nrf2 binding sites on Keap1. These peptides significantly upregulated the mRNA expression of Nrf2, HO-1, and NQO1, providing indirect evidence of their potential to enhance cellular antioxidant defense via the possible activation of Keap1-Nrf2 pathway. Furthermore, these peptides showed good DPPH and ABTS scavenging activities, indicating their potential as antioxidant peptides. This study offers valuable insights into the integration of these novel peptides in developing mulberry leaf ferment as a functional food and their potential use as a feed additive.
Collapse
Affiliation(s)
- Zaheer Abbas
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China..
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Baseer Ahmad
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan 25000, Pakistan
| | - Junyong Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Haosen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhenzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China..
| | - Dayong Si
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China..
| |
Collapse
|
4
|
Duan T, Xu Z, Xiong S, Du H. Water-soluble chlorogenic acid-chitosan and polydatin-chitosan conjugates: antibacterial activity and inhibition of lipid and protein oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2190-2202. [PMID: 39467101 DOI: 10.1002/jsfa.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Chitosan (CS), an abundant alkaline polysaccharide, is valued for its biocompatibility, non-toxicity, and antibacterial properties. However, its limited solubility and modest antioxidant activity constrain its utility. Grafting polyphenols onto chitosan through the use of grafting reactions can enhance both the solubility and bioactivity of chitosan. Among the techniques employed, the free radical grafting method is favored for its simplicity, environmental sustainability, and its effectiveness in preserving biological activity. RESULTS In this study, chlorogenic acid (CGA) and polydatin (PLD) were conjugated successfully to chitosan by a Vc/H2O2 redox system. Analytical techniques such as ultraviolet-visible (UV-visible) spectroscopy, fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and proton nuclear magnetic resonance (1H NMR) were employed to confirm the formation of covalent bonding between the polyphenol molecules and the chitosan backbone. The novel conjugates displayed superior antioxidant properties in comparison with pristine chitosan, as evidenced by their enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, and hydroxyl radical scavenging capacities, and Fe2+ reducing power. Both CGA-CS and PLA-CS exhibited excellent lipid and protein oxidation inhibition capabilities. Furthermore, the conjugates were shown to have significant antibacterial effects against four common pathogenic bacteria: Pseudomonas fluorescens, Pseudomonas aeruginosa, Pseudomonas putida, and Staphylococcus aureus (P < 0.05). CONCLUSION The newly synthesized water-soluble polyphenol-chitosan conjugates demonstrated remarkable biological activity, particularly CGA-CS. This study offers new insights and a strong theoretical foundation for developing natural food preservation materials with potential applications in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianfang Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Zeru Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hongying Du
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Meng L, Yu D, Lin J, Hu Y, Peng N, Zhao S. Structural characterization, HepG2 cell cytoprotective ability, and antioxidant mechanism of novel antioxidant peptides identified from black soldier fly larvae (Hermetia illucens L.). Food Chem 2025; 463:141462. [PMID: 39357311 DOI: 10.1016/j.foodchem.2024.141462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
This study isolated a novel antioxidant peptide from black soldier fly larvae (BSFL) using enzymatic hydrolysis. Firstly, the BSFL enzymatic hydrolysate was fractionated through ultrafiltration, with the <3 kDa fraction exhibiting the strongest DPPH and ABTS radical scavenging activity. Subsequently, this fraction was further fractionated through gel filtration chromatography and RP-HPLC. Totally, 153 peptides were identified through LC-MS/MS analysis, from which a novel peptide EDEGTYKCVLS (Pep6) was screened according to activity prediction and verification. Pep6 exhibited high radical scavenging capacity and cytoprotective effect on HepG2 cells against H2O2 damage, meanwhile significantly increasing the intracellular antioxidant enzymes activity. Molecular docking analysis indicated that Pep6 competitively bound to Keap1, thereby inhibiting the formation of Keap1-Nrf2 complex, ultimately protecting cells from oxidative stress damage. In this study, a novel antioxidant peptide Pep6 was identified from BSFL, and its antioxidant mechanism was elucidated, providing a theoretical basis for its use as a natural antioxidant.
Collapse
Affiliation(s)
- Leying Meng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dandan Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianan Lin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongmei Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Zhao C, Wang Y, Ashaolu TJ. Antioxidative and mineral-binding food-derived peptides: Production, functions, metal complexation conditions, and digestive fate. Food Res Int 2025; 200:115471. [PMID: 39779082 DOI: 10.1016/j.foodres.2024.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The discovery of food-derived biopeptides is becoming increasingly prevalent in the scientific community. Some peptides possess multiple biological functions that can confer health benefits through various mechanisms following ingestion. The present review targets food-derived antioxidant and mineral-binding peptides (AMBPs) including their production procedure i.e., enzymolysis, separation, and purification (through membrane separation, gel filtration, ion exchange chromatography, and high-performance liquid chromatography), followed by mass spectrometry for identification. The most effective AMBPs exhibit radical scavenging activity, detoxification of excess metals, and reduction of lipid peroxidation to facilitate mineral bioavailability. The metal complexation of AMBPs necessitates an optimal metal-to-peptide ratio, specific ligands, precursors, and complexation reactions. The bioavailability and absorbability mechanisms of AMBPs are also elucidated, encompassing gastrointestinal stability, binding mode, and cell absorption machinery. Ultimately, further considerations regarding additional research on AMBPs are provided, which will assist researchers in conducting more comprehensive studies to promote the effective and safe use of AMBPs.
Collapse
Affiliation(s)
- Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
7
|
Zhang Y, Li Y, Ren T, Xiao P, Duan JA. Novel and efficient techniques in the discovery of antioxidant peptides. Crit Rev Food Sci Nutr 2024; 64:11934-11948. [PMID: 37585700 DOI: 10.1080/10408398.2023.2245052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As a research hotspot in food science and nutrition, antioxidant peptides can function by scavenging free radicals, inhibiting peroxides, and chelating metal ions. Therefore, how to efficiently discover and screen antioxidant peptides has become a key issue in research and production. Traditional discovery methods are time-consuming and costly, but also challenging to resolve the quantitative structure-activity relationship of antioxidant peptides. Several novel techniques, including artificial intelligence, molecular docking, bioinformatics, quantum chemistry, phage display, switchSENSE, surface plasmon resonance, and fluorescence polarization, are emerging rapidly as solutions. These techniques possess efficient capability for the discovery of antioxidant peptides, even with the potential for high-throughput screening. In addition, the quantitative structure-activity relationship can be resolved. Notably, combining these novel techniques can overcome the drawbacks of a single one, thus improving efficiency and expanding the discovery horizon. This review has summarized eight novel and efficient techniques for discovering antioxidant peptides and the combination of techniques. This review aims to provide scientific evidence and perspectives for antioxidant peptide research.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Gaviria YS, Zapata JE, Miedes D, Alegría A, Cilla A. Cytoprotective Effects of Antioxidant Peptides from Red Californian Worm ( Eisenia foetida) Hydrolysate on Differentiated Caco-2 Cells. Nutrients 2024; 16:3654. [PMID: 39519487 PMCID: PMC11547318 DOI: 10.3390/nu16213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES When prooxidants outweigh antioxidants, oxidative stress can occur, causing an accumulation of reactive oxygen species (ROS). This process can lead to cellular damage and plays a role in the development of numerous health conditions. This study aimed to investigate the cytoprotective effects on differentiated Caco-2 cells of hydrolysates derived from the red Californian worm (WH) and their fractions, identify the peptides responsible for this effect, and elucidate the mechanisms involved. METHODS The WH was obtained through hydrolysis with Alcalase 2.4 L and subsequently fractionated to two fractions (F > 3 kDa and F < 3 kDa) using a ceramic membrane with a molecular weight cutoff of 3 kDa. The peptides found in the F < 3 kDa fraction, demonstrating the highest cytoprotective activity, were then sequenced via liquid chromatography-mass spectrometry analysis (LC-MS/MS), and molecular docking was conducted to elucidate the underlying antioxidant mechanisms. RESULTS The hydrolysate of Eisenia foetida and its F < 3 kDa fraction exhibited no cytotoxicity, protected the cells from H2O2-induced oxidative stress (50% increase viability), preserved cell viability by restoring their redox status (ROS: 20% decrease, and glutathione (GSH): recovered to basal control levels) and cell cycle distribution, and decreased apoptosis (16%). Twenty-eight peptides were identified, with five showing antioxidant activity through stable interactions with myeloperoxidase (MPO) and Kelch-like ECH-associated protein 1 (Keap-1), KPEDWDDR being the peptide that presented the highest affinity with both molecules (-7.9 and -8.8 kCal/mol, respectively). CONCLUSIONS These results highlight the WH as a potential source of bioactive peptides for the management of oxidative stress.
Collapse
Affiliation(s)
- Yhoan S. Gaviria
- Nutrition and Food Technology Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia; (Y.S.G.); (J.E.Z.)
| | - José E. Zapata
- Nutrition and Food Technology Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia; (Y.S.G.); (J.E.Z.)
| | - Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| |
Collapse
|
9
|
Lee CH, Hamdan N, Nyakuma BB, Wong SL, Wong KY, Tan H, Jamaluddin H, Lee TH. Purification, identification and molecular docking studies of antioxidant and anti-inflammatory peptides from Edible Bird's Nest. Food Chem 2024; 454:139797. [PMID: 38797099 DOI: 10.1016/j.foodchem.2024.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-β due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Chia Hau Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norfadilah Hamdan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science & Computing, North-Eastern University, 0198 Gombe, Gombe State, Nigeria
| | - Syie Luing Wong
- Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ting Hun Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
10
|
Liu W, Liu R, Qin Q, Wang H, Zhang X, Meng G. Molecular docking and molecular dynamics simulation of wheat gluten-derived antioxidant peptides acting through the Keap1-Nrf2 pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8150-8161. [PMID: 38837798 DOI: 10.1002/jsfa.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND In our previous study, we successfully identified five peptides from wheat gluten: Ala-Pro-Ser-Tyr (APSY), Leu-Tyr (LY), Pro-Tyr (PY), Arg-Gly-Gly-Tyr (RGGY) and Tyr-Gln (YQ). Molecular docking and molecular dynamics simulation methods were employed to investigate the interaction between these antioxidant peptides and the Kelch-like ECH-associated protein 1 (Keap1 protein), revealing the molecular mechanism of their non-competitive binding. In addition, the total antioxidant capacity of the five peptides was determined using the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method. RESULTS The affinities of APSY, LY, PY, RGGY and YQ were -8.9, -8.3, -8.5, -9.1 and - 7.9 kcal mol-1, respectively. The five peptides effectively bound to Keap1 protein through hydrogen, π-σ, π-alkyl and alkyl interactions. Significant roles were observed for the P1 pocket residue ARG-415 and the P3 pocket residue ALA-556 in the interactions of the Keap1-peptide complexes. Molecular dynamics simulations further elucidated the dynamic process of peptide binding to the Keap1 protein. All five peptides formed stable complexes with Keap1 protein, with van der Waals forces playing crucial roles in these complex systems, indicative of the peptides' strong binding ability to Keap1 protein. The van der Waals forces were -178.74, -123.11, -134.36, -132.59, and -121.44 kJ mol-1 for the Keap1-APSY, Keap1-LY, Keap1-PY, Keap1-RGGY and Keap1-YQ complexes, respectively. These peptides exhibited excellent antioxidant effects. Among them, the YQ peptide exhibited the highest total antioxidant capacity, with an activity value of 1.18 ± 0.06 mmol Trolox equivalent (TE) L-1 at a concentration of 0.10 mg mL-1. The RGGY, PY, LY and APSY peptides followed in descending order, with activity values of 0.91 ± 0.05, 0.72 ± 0.06, 0.62 ± 0.04 and 0.60 ± 0.05 mmol TE L-1, respectively. CONCLUSION These results unveiled the molecular mechanism by which the five antioxidant peptides act on active pockets through the Keap1-Nrf2 signaling pathway, providing a theoretical basis for the development of antioxidants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenying Liu
- Engineering Laboratory for Agro Biomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Qingyu Qin
- Engineering Laboratory for Agro Biomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Hualei Wang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Ganlu Meng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| |
Collapse
|
11
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
12
|
Liu T, Hao J, Lei H, Chen Y, Liu L, Jia L, Gu J, Kang H, Shi J, He J, Song Y, Tang Y, Fan D. Recombinant collagen for the repair of skin wounds and photo-aging damage. Regen Biomater 2024; 11:rbae108. [PMID: 39323745 PMCID: PMC11422187 DOI: 10.1093/rb/rbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
The skin, being the body's primary defense mechanism, is susceptible to various injuries such as epidermal wounds, natural aging, and ultraviolet-induced damage. As a result, there is growing interest in researching skin repair methods. Traditional animal-derived collagen, widely available on the market, poses risks due to its immunogenicity and potential for viral contamination. In contrast, recombinant collagen sourced from human genes offers a safer alternative. To investigate the potential of human recombinant collagen in skin repair, our research team applied two types, type I human collagen (Col I) and CF-1552(I), to two different skin injury models: a wound-healing model and a photo-aging model. Our findings indicate that both Col I and CF-1552(I) effectively enhance wound healing and repair skin damaged by ultraviolet exposure. Notably, CF-1552(I) showed effects comparable to Col I in promoting cell proliferation in the wound-healing model and increasing malondialdehyde content in the photo-aging model, suggesting that CF-1552(I) may offer greater potential for skin repair compared to the larger Col I molecule.
Collapse
Affiliation(s)
- Taishan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Jiayun Hao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Yanru Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Lin Liu
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Liping Jia
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Juan Gu
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Huaping Kang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jingjing Shi
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jing He
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Yangbin Song
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Yuqi Tang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
13
|
Xia Y, Zhang W, Shi G, Wang C, Wang L, Shi L, Chen S, Chen L, Guo X, Wu W, Ding A, Zhang Y, Xiong G. Effects of brining, ultrasound, and ultrasound-assisted brining on quality characteristics of snakehead ( Channa argus) fillets. Food Sci Biotechnol 2024; 33:2509-2519. [PMID: 39144200 PMCID: PMC11319685 DOI: 10.1007/s10068-023-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 08/16/2024] Open
Abstract
The change of quality characteristics in snakehead fillets were investigated during brining, ultrasound, and ultrasound-assisted brining processing. Results showed that ultrasound and brine had significantly impact on the tissue microstructure and the color parameter of fillets. Compared to 60-min marination in deionized water, the shear force was reduced by 17.67 g by ultrasound, compared to 80-min marination in deionized water, the shear force was reduced by 28.68 g by brine. Brine significantly increased the water-holding capacity of fish fillets. Ultrasound resulted in increased random coils, β-turn and hydrophobic interaction, while brine significantly promoted the formation of the α-helix structure. The increase of the thermal stability of the myosin head was due to the synergistic effect of ultrasound and brine, but the decrease of the thermal stability of actin only associated with brine. The study provides the reference for the application of ultrasound-assisted brining technology to aquatic industry. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01506-8.
Collapse
Affiliation(s)
- Yuting Xia
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Wei Zhang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Gangpeng Shi
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Chao Wang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Anzi Ding
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Yun Zhang
- College of Tourism and Hotel Management, Hubei University of Economics, Wuhan, 430205 China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| |
Collapse
|
14
|
Liu P, Li W, Liu J, Mo X, Tang J, Lin J. Prokaryotic Expression, Purification, and Biological Properties of a Novel Bioactive Protein (PFAP-1) from Pinctada fucata. Mar Drugs 2024; 22:345. [PMID: 39195461 PMCID: PMC11355117 DOI: 10.3390/md22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pinctada fucata meat is the main by-product of the pearl harvesting industry. It is rich in nutrition, containing a lot of protein and peptides, and holds significant value for both medicine and food. In this study, a new active protein was discovered and expressed heterogeneously through bioinformatics analysis. It was then identified using Western blot, molecular weight, and mass spectrometry. The antibacterial activity, hemolysis activity, antioxidant activity, and Angiotensin-Converting Enzyme II (ACE2) inhibitory activity were investigated. An unknown functional protein was screened through the Uniprot protein database, and its primary structure did not resemble existing proteins. It was an α-helical cationic polypeptide we named PFAP-1. The codon-optimized full-length PFAP-1 gene was synthesized and inserted into the prokaryotic expression vector pET-30a. The induced expression conditions were determined with a final isopropyl-β-d-thiogalactoside (IPTG) concentration of 0.2 mM, an induction temperature of 15 °C, and an induction time of 16 h. The recombinant PFAP-1 protein, with low endotoxin and sterility, was successfully prepared. The recombinant PFAP-1 protein exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro, and the diameter of the inhibition zone was 15.99 ± 0.02 mm. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 37.5 μg/mL and 150 μg/mL, respectively, and its hemolytic activity was low (11.21%) at the bactericidal concentration. The recombinant PFAP-1 protein significantly inhibited the formation of MRSA biofilm and eradicated MRSA biofilm. It also demonstrated potent 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging activity with a half-maximal inhibitory concentration (IC50) of 40.83 μg/mL. The IC50 of ACE2 inhibition was 5.66 μg/mL. Molecular docking results revealed that the optimal docking fraction of PFAP-1 protein and ACE2 protein was -267.78 kcal/mol, with a confidence level of 0.913. The stable binding complex was primarily formed through nine groups of hydrogen bonds, three groups of salt bridges, and numerous hydrophobic interactions. In conclusion, recombinant PFAP-1 can serve as a promising active protein in food, cosmetics, or medicine.
Collapse
Affiliation(s)
- Peng Liu
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
- Guangxi Key Laboratory of Liver and Spleen Visceral Manifestations in Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Wenyue Li
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
| | - Jianbing Liu
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
| | - Xiaojian Mo
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
| | - Jiaxing Tang
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
| | - Jiang Lin
- School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China; (W.L.); (J.L.); (X.M.); (J.T.)
| |
Collapse
|
15
|
Wang L, Qu L, He B. Preparation, identification and molecular docking of two novel anti-aging peptides from perilla seed. Heliyon 2024; 10:e33604. [PMID: 39040309 PMCID: PMC11261800 DOI: 10.1016/j.heliyon.2024.e33604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Perilla seed meal is an important agricultural by-product of perilla oil extraction. The antioxidant and anti-aging activities of perilla seed meal protein hydrolysate were investigated, and the bioactive peptides were identified to maximize the utilization of perilla seed meal resources. Anti-aging peptides were identified using a combination of peptidomics and in silico bioinformatics. Furthermore, the potential molecular mechanism of these peptides was explored through molecular docking and RT-PCR. The results showed a significant anti-aging properties of F2 (MW 3 kDa ∼5 kDa) by inhibition of reactive oxygen species (ROS) production and β-galactosidase activity. Nine novel peptides were identified from F2 and subsequently synthesized to explore their bioactivities. The two peptides, NFF and PMR, were found to promote the proliferation of keratinocytes (HaCaT cells) and suppress the level of ROS and the activity of β-galactosidase. Both peptides exhibited a strong binding affinity with the Keap1 protein. Additionally, NFF and PMR downregulated the expression of matrix metalloproteinases (MMPs) and the degradation of collagens (COLs). The potential molecular mechanism underlying the anti-aging properties of perilla seed meal peptides might involve the competitive binding of Keap1 to facilitate the release of Nrf2 and activation of NF-κB signal pathway. This study provides a theoretical basis for the application of perilla seed meal peptides in functional cosmetics and presents a novel perspective for the investigation of additional food-derived peptides.
Collapse
Affiliation(s)
- Lingling Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, China
| | - Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, China
| | - Bingwei He
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
| |
Collapse
|
16
|
Igbokwe CJ, Feng Y, Louis H, Benjamin I, Quaisie J, Duan Y, Tuly JA, Cai M, Zhang H. Novel antioxidant peptides identified from coix seed by molecular docking, quantum chemical calculations and invitro study in HepG2 cells. Food Chem 2024; 440:138234. [PMID: 38145582 DOI: 10.1016/j.foodchem.2023.138234] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The aim of the study was to identify potent antioxidant peptides sourced from coix seed, analyze the structure-activity relationship through molecular docking and quantum chemical calculation. Molecular docking results showed that among thirteen peptides selected in silico, eight had favourable binding interaction with the Keap1-Kelch domain (2FLU). Promising peptides with significant binding scores were further evaluated using quantum calculation. It was shown that peptide FFDR exhibited exceptional stability, with a high energy gap of 5.24 eV and low Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) values. Furthermore, FFDR displayed the capacity to enhance the expression of Nrf2-Keap1 antioxidant genes (CAT, SOD, GSH-Px) and improved cellular redox balance by increasing reduced glutathione (GSH) while reducing oxidized glutathione (GSSG) and malonaldehyde (MDA) levels. These findings highlight the potential of coix seed peptides in developing novel, effective and stable antioxidant-based functional foods.
Collapse
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Chemistry and Nutrition Research Division, Food Research Institute, Accra, Ghana
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihua Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Xu B, Dong Q, Yu C, Chen H, Zhao Y, Zhang B, Yu P, Chen M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants (Basel) 2024; 13:479. [PMID: 38671926 PMCID: PMC11047381 DOI: 10.3390/antiox13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant peptides are a class of biologically active peptides with low molecular weights and stable antioxidant properties that are isolated from proteins. In this review, the progress in research on the activity evaluation, action mechanism, and structure-activity relationships of natural antioxidant peptides are summarized. The methods used to evaluate antioxidant activity are mainly classified into three categories: in vitro chemical, in vitro cellular, and in vivo animal methods. Also, the biological effects produced by these three methods are listed: the scavenging of free radicals, chelation of metal ions, inhibition of lipid peroxidation, inhibition of oxidative enzyme activities, and activation of antioxidant enzymes and non-enzymatic systems. The antioxidant effects of natural peptides primarily consist of the regulation of redox signaling pathways, which includes activation of the Nrf2 pathway and the inhibition of the NF-κB pathway. The structure-activity relationships of the antioxidant peptides are investigated, including the effects of peptide molecular weight, amino acid composition and sequence, and secondary structure on antioxidant activity. In addition, four computer-assisted methods (molecular docking, molecular dynamics simulation, quantum chemical calculations, and the determination of quantitative structure-activity relationships) for analyzing the structure-activity effects of natural peptides are summarized. Thus, this review lays a theoretical foundation for the development of new antioxidants, nutraceuticals, and cosmetics.
Collapse
Affiliation(s)
- Baoting Xu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Panling Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.X.); (Q.D.); (C.Y.); (H.C.); (B.Z.); (P.Y.)
- Shanghai Fanshun Edible Fungus Professional Cooperative, Shanghai 201317, China
| |
Collapse
|
18
|
Wu Y, Zhang J, Zhu R, Zhang H, Li D, Li H, Tang H, Chen L, Peng X, Xu X, Zhao K. Mechanistic Study of Novel Dipeptidyl Peptidase IV Inhibitory Peptides from Goat's Milk Based on Peptidomics and In Silico Analysis. Foods 2024; 13:1194. [PMID: 38672866 PMCID: PMC11049645 DOI: 10.3390/foods13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 μM and 213.99 ± 0.64 μM) and in situ (IC50 = 159.46 ± 17.40 μM and 154.96 ± 8.41 μM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.
Collapse
Affiliation(s)
- Yulong Wu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Ruikai Zhu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Hong Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Dapeng Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| |
Collapse
|
19
|
Meng M, She Z, Feng Y, Zhang J, Han R, Qi Y, Sun L, Sun H. Optimization of Extraction Process and Activity of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptide from Walnut Meal. Foods 2024; 13:1067. [PMID: 38611371 PMCID: PMC11012047 DOI: 10.3390/foods13071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In order to further realize the resource reuse of walnut meal after oil extraction, walnut meal was used as raw material to prepare polypeptide, and its angiotensin-converting enzyme (ACE) inhibitory activity was investigated. The ACE inhibitory peptides were prepared from walnut meal protein by alkaline solution and acid precipitation. The hydrolysis degree and ACE inhibition rate were used as indexes to optimize the preparation process by single-factor experiment and response surface method. The components with the highest ACE activity were screened by ultrafiltration, and their antioxidant activities were evaluated in vitro. The effect of gastrointestinal digestion on the stability of walnut peptide was analyzed by measuring molecular weight and ACE inhibition rate. The results showed that the optimal extraction conditions were pH 9.10, hydrolysis temperature 54.50 °C, and hydrolysis time 136 min. The ACE inhibition rate of walnut meal hydrolysate (WMH) prepared under these conditions was 63.93% ± 0.43%. Under the above conditions, the fraction less than 3 kDa showed the highest ACE inhibitory activity among the ACE inhibitory peptides separated by ultrafiltration. The IC50 value of scavenging ·OH free radical was 1.156 mg/mL, the IC50 value of scavenging DPPH free radical was 0.25 mg/mL, and the IC50 value of scavenging O2- was 3.026 mg/mL, showing a strong total reducing ability. After simulated gastrointestinal digestion in vitro, the ACE inhibitory rate of walnut peptide decreased significantly, but it still maintained over 90% ACE inhibitory activity. This study provides a reference for the application of low-molecular-weight walnut peptide as a potential antioxidant and ACE inhibitor.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ziyi She
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yinyin Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Junhan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yanlong Qi
- Research Institute of Farm Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830091, China;
| | - Lina Sun
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, No. 291 South Nanchang Road, Urumqi 830091, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| |
Collapse
|
20
|
Wang D, Wei G, Yang Y, Zou Y, Li X, Shi Y, Huang A. Identification and molecular mechanism of novel bifunctional peptides from Duroc × (Landrace × Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis. Food Res Int 2024; 180:114066. [PMID: 38395557 DOI: 10.1016/j.foodres.2024.114066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified from DLYH, originating mainly from myosin, actin, and the EF-hand domain-containing protein. Notably, two peptides, YDEAGPSIVH (YH10) and FAGDDAPRAVF (FF11), emerged as novel bioactive peptides with antioxidant and α-glucosidase inhibitory activities. Among these peptides, YH10 exhibited a high DPPH radical scavenging activity (IC50 = 1.93 mM), ABTS radical scavenging activity (IC50 = 0.10 mM), α-glucosidase inhibitory activity (IC50 = 2.13 mM), and good gastrointestinal tolerance. Molecular docking analysis showed that YH10 was bound to the ABTS and DPPH radicals and the active site of α-glucosidase (3A4A) primarily through hydrogen bonding and hydrophobic interactions. Furthermore, molecular dynamics (MD) simulation indicated that the YH10-3A4A complexes maintained stable and compact conformations. In conclusion, our findings indicated that peptide YH10 derived from DLYH possesses bifunctional properties of α-glucosidase inhibition and antioxidant activity, which could be beneficial for maintaining ham quality and promoting human health.
Collapse
Affiliation(s)
- Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
21
|
Zhang J, Wu Y, Tang H, Li H, Da S, Ciren D, Peng X, Zhao K. Identification, characterization, and insights into the mechanism of novel dipeptidyl peptidase-IV inhibitory peptides from yak hemoglobin by in silico exploration, molecular docking, and in vitro assessment. Int J Biol Macromol 2024; 259:129191. [PMID: 38184042 DOI: 10.1016/j.ijbiomac.2023.129191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 μM), DEV (IC50 = 339.45 μM), and HCDKL (IC50 = 632.93 μM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Yulong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Se Da
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Dajie Ciren
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
22
|
Du B, Zhang C, Deng G, Zhang S, Wang S, Guan Y, Huang Y. Identification of novel antioxidant collagen peptides for preventing and treating H 2 O 2 -induced oxidative stress in HepG2 cells through in vitro and in silico approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:849-859. [PMID: 37690095 DOI: 10.1002/jsfa.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Nowadays, the prevalence of oxidative stress-related chronic diseases is increasing. The identification of novel antioxidant collagen peptides to counteract oxidative stress for individuals' health has gained significant attention. RESULTS In this study, collagen peptides with antioxidant activities were separated and identified by ion chromatography, reversed-phase high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. The identified antioxidant collagen peptides were further screened by molecular docking for Keap1-targeted peptide inhibitors and their theoretical interaction mechanisms were investigated. Four novel antioxidant collagen peptides, GPAGPIGPVG, GPAGPpGPIG, ISGPpGPpGPA and IDGRPGPIGPA, with high binding affinity to Keap1 were selected. Molecular docking results demonstrated that the putative antioxidant mechanism of the four antioxidant collagen peptides contributed to their blockage of Keap1-Nrf2 interactions. The results of antioxidant activity of the four antioxidant collagen peptides proved that IDGRPGPIGPA exerted a high scavenging capacity for DPPH and ABTS free radicals, while GPAGPpGPIG improved the resistance of cells to hydrogen peroxide-induced oxidative damage by promoting the activation of intracellular antioxidant enzymes and the production of reduced glutathione in human hepatoma (HepG2) cells. CONCLUSION The antioxidant collagen peptides (GPAGPIGPVG, GPAGPpGPIG, ISGPpGPpGPA and IDGRPGPIGPA) will be developed as novel functional food for human health in the near future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bowei Du
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chao Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Guiya Deng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuai Zhang
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
| | - Yaqin Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
Guo X, Liu J, Wang C, Wen Z, Zheng B. The Antioxidant Mechanism of Peptides Extracted from Tuna Protein Revealed Using a Molecular Docking Simulation. Antioxidants (Basel) 2024; 13:166. [PMID: 38397764 PMCID: PMC10886046 DOI: 10.3390/antiox13020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Tuna protein serves as a significant source of bioactive peptides, and its functional properties can be elucidated through predictive modeling, followed by experimental validation. In this study, the active polypeptides were obtained from tuna protein via enzymatic hydrolysis (TPP), and their peptide sequences were determined. Furthermore, the potential activity of these peptides was predicted, focusing on antioxidant peptides, and compared to the sequence library of known antioxidant peptides to identify common structural motifs. The accuracy of the prediction results was confirmed through in vitro antioxidant assays and molecular docking studies. We identified seven specific peptide segments derived from tuna protein that exhibit antioxidant potential, accounting for approximately 15% of all active peptides. Molecular docking and cell experiments were employed to provide compelling evidence for the presence of antioxidant peptides within tuna protein. This study not only lays a solid foundation for studying the structure of active peptides but also opens up a novel avenue for an expedited assessment of their properties.
Collapse
Affiliation(s)
- Xiaojun Guo
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China; (X.G.); (J.L.)
| | - Jiaxin Liu
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China; (X.G.); (J.L.)
| | - Cheng Wang
- Xianghu Laboratory, Hangzhou 311231, China
| | - Zhengshun Wen
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China; (X.G.); (J.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Bin Zheng
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China; (X.G.); (J.L.)
| |
Collapse
|
24
|
Zhong W, He J, Huang W, Yin G, Liu G, Cao Y, Miao J. Effect of the phosphorylation structure in casein phosphopeptides on the proliferation, differentiation, and mineralization of osteoblasts and its mechanism. Food Funct 2023; 14:10107-10118. [PMID: 37874279 DOI: 10.1039/d3fo03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 μg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 μg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jian He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Guangling Yin
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
25
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
26
|
Zhu D, Yuan Z, Wu D, Wu C, El-Seedi HR, Du M. The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
27
|
Zhang J, Li X, Zhao K, Li H, Liu J, Da S, Ciren D, Tang H. In vitro digestion and fermentation combined with microbiomics and metabolomics reveal the mechanism of superfine yak bone powder regulating lipid metabolism by altering human gut microbiota. Food Chem 2023; 410:135441. [PMID: 36652799 DOI: 10.1016/j.foodchem.2023.135441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The effects of superfine yak bone powder (YBP) on human gut microbiota (HGM) were investigated by in vitro digestion and fermentation combined with microbiomics and metabolomics. Results showed that size reduction and protein structural degradation during digestion allowed superfine YBP to release more Ca2+ than CaCO3 powders with similar particle size. Moreover, the indigestible YBP further influenced HGM and was associated with increased occurrence of beneficial bacteria such as Megasphaera spp., Megamonas spp., Acidaminococcus spp., and Prevotella spp. The altered HGM was associated with greater production of short-chain fatty acids with 4-6 carbon atoms. Furthermore, the indigestible YBP was associated with up-regulation of many lipid-related metabolites, including taurine, secondary bile acids, saturated long-chain fatty acids, and ω-3/ω-6 polyunsaturated fatty acids, which modulated favorably lipid metabolic pathways. These findings implied the potential activity of superfine YBP as a food fortifier in favorably altering HGM community structure and regulating lipid metabolism.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jingnan Liu
- School of Life Science & Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, PR China
| | - Se Da
- Gonyal Animal Husbandry Technology and Industry Co Naqu, Tibet 852014, PR China
| | - Dajie Ciren
- Gonyal Animal Husbandry Technology and Industry Co Naqu, Tibet 852014, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
28
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
29
|
Study of the antiaging effects of bird's nest peptide based on biochemical, cellular, and animal models. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
30
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Tyagi A, Chelliah R, Banan-Mwine Daliri E, Sultan G, Madar IH, Kim N, Shabbir U, Oh DH. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2023; 404:134747. [PMID: 36444095 DOI: 10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
Abstract
Oxidative stress is known to cause cell apoptosis, tissue damage, and pathological changes in the body, but antioxidant peptides are renowned radical scavengers. This study investigated the antioxidative and protective effect of six novel peptides obtained after microbial fermentation of brown rice. The selected peptides (MW ≤ 8 KDa), namely AVPYPQ (P1), ILTAV (P2), LGDVIGVP (P3), NPIFDYVLLP (P4), VAPFPEV (P5), and VLPVPK (P6) exhibited strong antioxidant potential against in vitro radicals with IC50 values for DPPH (5.12 ± 0.9-12.54 ± 0.6 µg/ml), ABTS (5.97 ± 0.2-14.20 ± 1.5 µg/ml), FRAP (4.98 ± 2.2-12.19 ± 0.8 µg/ml) and PSC (9.71 ± 0.5-17.84 ± 1.3 µg/ml),respectively. Additionally, these peptides reduced ROS concentrations in Caco-2 cells treated with hydrogen peroxide. In silico studies indicated all six peptides had a higher binding score for the Keap1-Kelch domain than TX6, a potential Keap1 reference ligand. These findings suggest peptides derived from fermented brown rice might be functional components in foods.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | | | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Inamul Hasan Madar
- Department of Pharmacology, Saveetha College and Hospitals, Chennai 600077, Tamil Nadu, India
| | - Namehyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
32
|
Dou B, Wu X, Xia Z, Wu G, Guo Q, Lyu M, Wang S. Multiple Bioactivities of Peptides from Hydrolyzed Misgurnus anguillicaudatus. Molecules 2023; 28:molecules28062589. [PMID: 36985560 PMCID: PMC10053552 DOI: 10.3390/molecules28062589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 μg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.
Collapse
Affiliation(s)
- Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zihan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghao Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| |
Collapse
|
33
|
Tonolo F, Grinzato A, Bindoli A, Rigobello MP. From In Silico to a Cellular Model: Molecular Docking Approach to Evaluate Antioxidant Bioactive Peptides. Antioxidants (Basel) 2023; 12:antiox12030665. [PMID: 36978913 PMCID: PMC10045749 DOI: 10.3390/antiox12030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The increasing need to counteract the redox imbalance in chronic diseases leads to focusing research on compounds with antioxidant activity. Among natural molecules with health-promoting effects on many body functions, bioactive peptides are gaining interest. They are protein fragments of 2–20 amino acids that can be released by various mechanisms, such as gastrointestinal digestion, food processing and microbial fermentation. Recent studies report the effects of bioactive peptides in the cellular environment, and there is evidence that these compounds can exert their action by modulating specific pathways. This review focuses on the newest approaches to the structure–function correlation of the antioxidant bioactive peptides, considering their molecular mechanism, by evaluating the activation of specific signaling pathways that are linked to antioxidant systems. The correlation between the results of in silico molecular docking analysis and the effects in a cellular model was highlighted. This knowledge is fundamental in order to propose the use of bioactive peptides as ingredients in functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università, 35020 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alberto Bindoli
- Institute of Neuroscience (CNR), Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
34
|
Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure-activity relationships. Food Chem 2023; 404:134701. [DOI: 10.1016/j.foodchem.2022.134701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
35
|
Yang Z, Cai J, Boateng EF, Xing L, Zhang W. Insight into Antioxidant Activity and Peptide Profile of Jinhua Ham Broth Peptides at Different Cooking Times. Antioxidants (Basel) 2023; 12:antiox12030606. [PMID: 36978854 PMCID: PMC10045146 DOI: 10.3390/antiox12030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
This present study aimed to investigate the effects of various cooking times (1 h, 1.5 h, 2 h, 2.5 h, named as JHBP-1, JHBP-1.5, JHBP-2, JHBP-2.5) on the antioxidant activity and peptide profile of Jinhua ham broth peptides (JHBP). The peptides extracted from uncooked ham were used as an uncooked group with the name of JHBP-0. The results revealed that the antioxidant efficacy in the four cooked groups changed dramatically compared to JHBP-0. After cooking, the DPPH radical scavenging activity, hydroxyl radical scavenging activity and superoxide anion radical scavenging activity decreased, except for the Fe2+ chelation and ABTS+ scavenging capacity which increased significantly. However, the cooked groups still showed a strong antioxidant capacity. In particular, the superoxide anion radical scavenging ability and the Fe2+ chelation action were significantly stronger compared to glutathione (GSH) and butylated hydroxytoluene (BHT) (p < 0.05). JHBP-1.5 also displayed stronger antioxidant capacity than the other three cooked groups, and its secondary structure and mass distribution changed significantly after cooking, specifically with an increased proportion of helix and <1 kDa peptides. Moreover, the constitution of free amino acids (FAAs) and the types of peptides released in the broth increased significantly with a longer cooking time. In total, 1306 (JHBP-0), 1352 (JHBP-1), 1431 (JHBP-1.5), 1500 (JHBP-2), and 1556 (JHBP-2.5) peptide sequences were detected using LC-MC/MC. The proportion of <1 kDa peptides also gradually increased as the cooking time extended, which is consistent with the molecular weight distribution measurements.
Collapse
Affiliation(s)
| | | | | | - Lujuan Xing
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| | - Wangang Zhang
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| |
Collapse
|
36
|
Tyagi A, Chelliah R, Banan-Mwine Daliri E, Sultan G, Madar IH, Kim NH, Shabbir U, Oh DH. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2023; 404:134747. [DOI: https:/doi.10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
37
|
He J, Wang Z, Wei L, Ye Y, Din ZU, Zhou J, Cong X, Cheng S, Cai J. Electrospray-Assisted Fabrication of Dextran-Whey Protein Isolation Microcapsules for the Encapsulation of Selenium-Enriched Peptide. Foods 2023; 12:foods12051008. [PMID: 36900527 PMCID: PMC10000993 DOI: 10.3390/foods12051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Selenium-enriched peptide (SP, selenopeptide) is an excellent organic selenium supplement that has attracted increasing attention due to its superior physiological effects. In this study, dextran-whey protein isolation-SP (DX-WPI-SP) microcapsules were fabricated via high-voltage electrospraying technology. The results of preparation process optimization showed that the optimized preparation process parameters were 6% DX (w/v), feeding rate Q = 1 mL/h, voltage U = 15 kV, and receiving distance H = 15 cm. When the content of WPI (w/v) was 4-8%, the average diameter of the as-prepared microcapsules was no more than 45 μm, and the loading rate for SP ranged from ~46% to ~37%. The DX-WPI-SP microcapsules displayed excellent antioxidant capacity. The thermal stability of the microencapsulated SP was improved, which was attributed to the protective effects of the wall materials for SP. The release performance was investigated to disclose the sustained-release capacity of the carrier under different pH values and an in-vitro-simulated digestion environment. The digested microcapsule solution showed negligible influence on the cellular cytotoxicity of Caco-2 cells. Overall, our work provides a facile strategy of electrospraying microcapsules for the functional encapsulation of SP and witnesses a broad prospect that the DX-WPI-SP microcapsules can exhibit great potential in the food processing field.
Collapse
Affiliation(s)
- Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenyu Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zia-ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
38
|
Protective Effect of Peptides from Pinctada Martensii Meat on the H 2O 2-Induced Oxidative Injured HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12020535. [PMID: 36830093 PMCID: PMC9952140 DOI: 10.3390/antiox12020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Pinctada martensii is a major marine pearl cultured species in southern China, and its meat is rich in protein, which is an excellent material for the preparation of bioactive peptides. In this study, the peptides from Pinctada martensii meat were prepared by simulated gastrointestinal hydrolysis, and after multistep purification, the structures of the peptides were identified, followed by the solid-phase synthesis of the potential antioxidant peptides. Finally, the antioxidant activities of the peptides were verified using HepG2 cells, whose oxidative stress was induced by hydrogen peroxide (H2O2). It was shown that the antioxidant peptide (S4) obtained from Pinctada martensii meat could significantly increase the cell viability of HepG2 cells. S4 could also scavenge reactive oxygen species (ROS) and reduce the lactate dehydrogenase (LDH) level. In addition, it could enhance the production of glutathione (GSH) and catalase (CAT) in HepG2 cells, as well as the expression of key genes in the Nrf2 signaling pathway. Three novel antioxidant peptides, arginine-leucine (RL), arginine-glycine-leucine (RGL), and proline-arginine (PR), were also identified. In conclusion, peptides from Pinctada martensii meat and three synthetic peptides (RGL, RL, PR) showed antioxidant activity and could have the potential to be used as antioxidant candidates in functional foods.
Collapse
|
39
|
Illueca F, Moreno A, Calpe J, Nazareth TDM, Dopazo V, Meca G, Quiles JM, Luz C. Bread Biopreservation through the Addition of Lactic Acid Bacteria in Sourdough. Foods 2023; 12:foods12040864. [PMID: 36832942 PMCID: PMC9956393 DOI: 10.3390/foods12040864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Nowadays, the consumer seeks to replace synthetic preservatives with biopreservation methods, such as sourdough in bread. Lactic acid bacteria (LAB) are used as starter cultures in many food products. In this work, commercial yeast bread and sourdough breads were prepared as controls, as well as sourdough breads with L. plantarum 5L1 lyophilized. The impact of L. plantarum 5L1 on the properties of bread was studied. Antifungal compounds and the impact on the protein fraction by the different treatments in doughs and breads were also analyzed. In addition, the biopreservation capacity of the treatments in breads contaminated with fungi was studied and the mycotoxin content was analyzed. The results showed significant differences with respect to the controls in the properties of the bread and a higher total phenolic and lactic acid content in breads with higher amounts of L. plantarum 5L1. In addition, there was a higher content of alcohol and esters. Furthermore, adding this starter culture produced hydrolysis of the 50 kDa band proteins. Finally, the higher concentration of L. plantarum 5L1 delayed fungal growth and reduced the content of AFB1 and AFB2 compared to the control.
Collapse
Affiliation(s)
- Francisco Illueca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Ana Moreno
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Jorge Calpe
- AgrotechUV Incubator, Scientific Park of University of Valence, St. Catedrático Agustín Escardino 9, 46980 Paterna, Spain
| | - Tiago de Melo Nazareth
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-963-544-959
| | - Victor Dopazo
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Juan Manuel Quiles
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Carlos Luz
- Department of Food Science and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
40
|
Huang P, Miao J, Liao W, Huang C, Chen B, Li Y, Wang X, Yu Y, Liang X, Zhao H, Cao Y. Rapid screening of novel tyrosinase inhibitory peptides from a pearl shell meat hydrolysate by molecular docking and the anti-melanin mechanism. Food Funct 2023; 14:1446-1458. [PMID: 36648079 DOI: 10.1039/d2fo03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pearls are an edible and medicinal resource with whitening activity and nutritional value in China. In the previous study, we found that the pearl shell meat hydrolysate showed dual activities of antioxidation and tyrosinase inhibition, which were similar to the activities of pearls. In this research, a pearl shell meat hydrolysate was isolated, identified and screened by molecular docking, and three peptides FLF, SPSSS and WLL with high tyrosinase inhibitory activities were obtained. The results indicated that FLF, SPSSS and WLL could effectively inhibit tyrosinase activities and the inhibition rates (1.0 mg mL-1) were 54.32%, 65.26% and 57.50%, respectively. The results of a zebrafish whitening experiment showed that the tyrosinase activities of zebrafish treated with FLF, SPSSS and WLL decreased by 75.41%, 62.87% and 64.99% (p < 0.05), respectively, and the melanin content decreased by 37.34%, 38.52% and 40.39% (p < 0.05), respectively. In a B16F10 cell whitening experiment, compared with a control group, FLF, SPSSS and WLL also showed a significant whitening effect, the tyrosinase activities decreased by 84.08%, 79.08% and 77.45% (p < 0.05), respectively, and the melanin content decreased by 42.23%, 34.37% and 34.02% (p < 0.05), respectively. Moreover, the active peptides could act on three signal pathways including Wnt/β-catenin, MAPK and MC1R/α-MSH and significantly downregulated the expressions of the signaling factors WNT4, MITF, β-catenin, ERK, JNK, TRP1 and TRP2 (p < 0.05). The results demonstrated that the whitening active peptides were edible natural antioxidants, tyrosinase inhibitors and skin anti-melanin agents, which could be added to functional foods as food ingredients.
Collapse
Affiliation(s)
- Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Wanwen Liao
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Congshu Huang
- B.I.R.D. (Guangzhou) Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Bingbing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingkun Li
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xianghua Wang
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Yan Yu
- Beihai Black Pearl Marine Biotechnology Co. Ltd, Beihai 536000, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Haishan Zhao
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Novel Antioxidant Peptides from Pearl Shell Meat Hydrolysate and Their Antioxidant Activity Mechanism. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020864. [PMID: 36677922 PMCID: PMC9862034 DOI: 10.3390/molecules28020864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Free radicals are associated with aging and many diseases. Antioxidant peptides with good antioxidant activity and absorbability are one of the hotspots in antioxidant researches. In our study, pearl shell (Pinctada martensii) meat hydrolysate was purified, and after identification by proteomics, six novel antioxidant peptides SPSSS, SGTAV, TGVAS, GGSIT, NSVAA, and GGSLT were screened by bioinformatics analysis. The antioxidant peptides exhibited good cellular antioxidant activity (CAA) and the CAA of SGTAV (EC50: 0.009 mg/mL) and SPSSS (EC50: 0.027 mg/mL) were better than that of positive control GSH (EC50: 0.030 mg/mL). In the AAPH-induced oxidative damage models, the antioxidant peptides significantly increased the viability of HepG2 cells, and the cell viability of SGTAV, SPSSS, and NAVAA were significantly restored from 79.41% to 107.43% and from 101.09% and 100.09%, respectively. In terms of antioxidant mechanism by molecular docking, SGTAV, SPSSS, and NAVAA could tightly bind to free radicals (DPPH and ABTS), antioxidant enzymes (CAT and SOD), and antioxidant channel protein (Keap1), suggesting that the antioxidant peptides had multiple antioxidant activities and had structure-activity linkages. This study suggests that the antioxidant peptides above are expected to become new natural materials for functional food industries, which contribute to the high-value applications of pearl shell meat.
Collapse
|
42
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
43
|
Ren M, Yin T, You J, Liu R, Huang Q, Xiong S. Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish ( Channa Argus). Foods 2022; 11:3294. [PMCID: PMC9601314 DOI: 10.3390/foods11203294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, fish soup has become an important product for commercial processing of fish due to its health effects. In this study, nutritional composition and antioxidant ability of soups prepared from farmed and wild snakehead fish were analyzed (hereafter FS and WS soup, respectively). For the FS soup, the proximate composition of protein, fat, ash, free amino acids, and soluble peptides were 2.55%, 0.89%, 0.92%, 0.47%, and 0.62%, respectively. The total amino acid was 390.11 mg/ g, and the proportion of essential amino acid was 27.59%. The total fatty acid was 13.64 g/100 g, of which monounsaturated fatty acid was 5.78 g/100 g, n-6 polyunsaturated fatty acid 3.50 g/100 g, and n-3 polyunsaturated fatty acid 0.41 g/100 g, respectively. The contents of Zn and Ca were 9.04 mg/ kg and 1.13 mg/ g, respectively. The DPPH radical-scavenging ability, Fe2+ chelating ability, and hydroxyl radical-scavenging ability was 57.89%, 21.21%, and 25.61%, respectively. Overall, there was no obvious difference in the nutritional composition and antioxidant activity between the FS and WS soups. The protein content (1.90%) of the WS soup was relatively lower, but the total fatty acid (16.22 g/100 g), MUFA (7.17 g/100 g), and Zn (12.57 mg/ kg) contents were significantly higher.
Collapse
Affiliation(s)
- Mengting Ren
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-8375
| | - Juan You
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| |
Collapse
|
44
|
Oxidative Stress Amelioration of Novel Peptides Extracted from Enzymatic Hydrolysates of Chinese Pecan Cake. Int J Mol Sci 2022; 23:ijms232012086. [PMID: 36292968 PMCID: PMC9603611 DOI: 10.3390/ijms232012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya cathayensis) is an important economic crop, and its hydrolyzed peptides have been evidenced to reduce the effect of oxidative stress due to their antioxidant capacity. Hence, the protocols of ultrafiltration and gel filtration chromatography were established to obtain bioactive peptides from by-products of C. cathayensis (pecan cake). As measured by DPPH/ABTS radical scavenging, the peptides with less molecular weight (MW) possess higher antioxidant capacity. PCPH-III (MW < 3 kDa) presented higher radical scavenging capacity than PCPH-II (3 kDa < MW < 10 kDa) and PCPH-I (MW > 10 kDa) measured by DPPH (IC50: 111.0 μg/ mL) and measured by ABTs (IC50: 402.9 μg/mL). The secondary structure and amino acid composition varied by their MW, in which PCPH-II contained more α-helices (26.71%) and β-sheets (36.96%), PCPH-III contained higher ratios of β-turns (36.87%), while the composition of different secondary of PCPH-I was even 25 ± 5.76%. The variation trend of α-helix and random experienced slightly varied from PCPH-I to PCPH-II, while significantly decreased from PCPH-II to PCPH-III. The increasing antioxidant capacity is followed by the content of proline, and PCPH-III had the highest composition (8.03%). With regard to the six peptides identified by LC-MS/MS, two of them (VYGYADK and VLFSNY) showed stronger antioxidant capacity than others. In silico molecular docking demonstrated their combining abilities with a transcription factor Kelch-like ECH-associated protein 1 (Keap1) and speculated that they inhibit oxidative stress through activating the Keap1-Nrf2-ARE pathway. Meanwhile, increased activity of SOD and CAT—antioxidant markers—were found in H2O2-induced cells. The residue of tyrosine was demonstrated to contribute the most antioxidant capacity of VYGYADK and its position affected less. This study provided a novel peptide screening and by-product utilization process that can be applied in natural product developments.
Collapse
|
45
|
Polaka S, Katare P, Pawar B, Vasdev N, Gupta T, Rajpoot K, Sengupta P, Tekade RK. Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process. ACS OMEGA 2022; 7:30657-30672. [PMID: 36092613 PMCID: PMC9453976 DOI: 10.1021/acsomega.2c02675] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase. Understanding the ROS-mediated molecular and biomolecular mechanisms and their effect on cellular homeostasis and inflammation thus substantially improves the possibility of exogenously augmenting and manipulating wound healing with the emerging antioxidant therapeutics. This review comprehensively delves into the relationship between ROS and critical phases of wound healing and the processes underpinning antioxidant therapies. The manuscript also discusses cutting-edge antioxidant therapeutics that act via ROS scavenging to enhance chronic wound healing.
Collapse
|
46
|
Hu X, Liu J, Li J, Song Y, Chen S, Zhou S, Yang X. Preparation, purification, and identification of novel antioxidant peptides derived from Gracilariopsis lemaneiformis protein hydrolysates. Front Nutr 2022; 9:971419. [PMID: 35938124 PMCID: PMC9355161 DOI: 10.3389/fnut.2022.971419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Gracilariopsis lemaneiformis (G. lemaneiformis) protein was hydrolyzed with alkaline protease to obtain antioxidant peptides. The enzymatic hydrolysis conditions were optimized through single-factor and orthogonal experiments. The results showed that the optimal process parameters were using 2% of alkaline protease, and substrate concentration of 1 g/100 mL and hydrolyzed 2 h at pH 8.0. Gel filtration chromatography and RP-HPLC were adopted for isolating and purifying the antioxidant peptides from the G. lemaneiformis protein hydrolysate (GLPH). Three novel antioxidant peptides were identified as LSPGEL (614.68 Da), VYFDR (698.76 Da), and PGPTY (533.57 Da) by nano-HPLC-MS/MS. The results of ABTS free radical scavenging rate demonstrated PGPTY exhibited the best antioxidant activity (IC50 = 0.24 mg/mL). Moreover, LSPGEL, VYFDR, and PGPTY were docked with Keap1, respectively. The molecular docking results suggested PGPTY had smaller docking energy and inhibition constants than the other two peptides. Finally, the cell viability assay evidenced the protective effect exerted by the antioxidant peptide on H2O2-induced oxidative damage. Above findings showed the potential of using antioxidant peptides from GLPH as antioxidants.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jing Liu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jun Li,
| | - Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
47
|
Ma C, Liu D, Hao H, Wu X. Identification of the DPP-IV Inhibitory Peptides from Donkey Blood and Regulatory Effect on the Gut Microbiota of Type 2 Diabetic Mice. Foods 2022; 11:foods11142148. [PMID: 35885395 PMCID: PMC9316604 DOI: 10.3390/foods11142148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
After being treated with protease K, peptides extracted from donkey blood were separated, identified, and characterized. The results showed that Sephadex G-25 medium purified with MW < 3 kDa had the highest dipeptidyl peptidase IV (DPP-IV) inhibition capacity. Three-hundred-and-thirty-four peptides were identified with UPLC−MS/MS. Peptide Ranker and molecular docking analysis were used to screen active peptides, and 16 peptides were finalized out of the 334. The results showed that the lowest binding energy between P7(YPWTQ) and DPP-IV was −9.1, and the second-lowest binding energy between P1(VDPENFRLL) and DPP-IV was −8.7. The active peptides(MW < 3 kDa) could cause a reduction in the fasting blood glucose levels of type 2 diabetic mice, improve glucose tolerance, and facilitate healing of the damaged structure of diabetic murine liver and pancreas. Meanwhile, the peptides were found to ameliorate the diabetic murine intestinal micro-ecological environment to a certain extent.
Collapse
|
48
|
Jia XY, Zhu MF, Zhang L, Ma TX, Li YH, Sheng WS, Tu ZC. Extraction optimization and screening of antioxidant peptides from grass carp meat and synergistic-antagonistic effect. Food Sci Nutr 2022; 10:1481-1493. [PMID: 35592301 PMCID: PMC9094479 DOI: 10.1002/fsn3.2765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Grass carp (Ctenopharyngodon idellus) is one of the three most cultivated freshwater fish around the world, but it is mainly consumed afresh, so only a small part of them are processed into salted fish or snack food. This research was performed to prepare and screen antioxidant peptides from grass carp muscle to promote its high‐value utilization. The parameters of double‐enzyme two‐step hydrolysis were optimized, the peptides with the highest ABTS.+ scavenging ability were enriched and identified by Sephadex G‐25 and LC‐Q‐Orbitrap‐MS/MS. The synergistic–antagonistic effect among identified peptides was also investigated. The optimized conditions were hydrolyzed with protamex (10,000 U/g) at pH 8.0, 50°C for 3 h, followed by hydrolysis with alcalase (6,000 U/g) at pH 9.0, 50 °C for 2 h, and the protein–liquid ratio was 4%. The hydrolysates were further fractionated to obtain five fractions, in which fraction 3 (F3) exhibited the strongest ABTS.+ and O2·‐ scavenging ability with the IC50 values of 0.11 and 0.47 mg/ml, respectively. Twelve novel antioxidant peptides were identified, in which VAGW possessed the highest activity (139.77 μmol GSH/g). Significantly synergistic effects were observed on the two and three peptides’ combination among VAGW, APPAMW, LFGY, FYYGK, and LLLYK, while the C‐terminal tryptophan (Trp) played an important role in the synergism. This study found that grass carp muscle hydrolysates can be potential natural antioxidants in functional products. The synergistic effects among peptides may provide a perspective for the combined application of peptides.
Collapse
Affiliation(s)
- Xiao-Yan Jia
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China
| | - Min-Fang Zhu
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China.,Jiangxi Deshang Pharmaceutical Research Institute Co., Ltd. Yichun China
| | - Tian-Xin Ma
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China
| | - Yi-Hua Li
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China
| | - Wen-Sheng Sheng
- Jiangxi Deshang Pharmaceutical Research Institute Co., Ltd. Yichun China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi College of Life Science Jiangxi Normal University Nanchang China.,State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| |
Collapse
|
49
|
Li J, Lu J, Asakiya C, Huang K, Zhou X, Liu Q, He X. Extraction and Identification of Three New Urechis unicinctus Visceral Peptides and Their Antioxidant Activity. Mar Drugs 2022; 20:293. [PMID: 35621944 PMCID: PMC9145011 DOI: 10.3390/md20050293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
The viscera of Urechis unicinctus with polypeptides, fatty acids, and amino acids are usually discarded during processing to food. In order to improve the utilization value of the viscera of Urechis unicinctus and avoid resource waste, antioxidant polypeptides were isolated from the viscera of Urechis unicinctus. First, a protein hydrolysate of Urechis unicinctus (UUPH) was prepared by ultrasonic-assisted enzymatic hydrolysis, and the degree of hydrolysis was as high as 79.32%. Subsequently, three new antioxidant peptides (P1, P2, and P3) were purified from UUPH using ultrafiltration and chromatography, and their amino acid sequences were identified as VTSALVGPR, IGLGDEGLRR, TKIRNEISDLNER, respectively. Then, the antioxidant activity of the polypeptide was predicted by the structure-activity relationship and finally verified by experiments on eukaryotic cells. The P1 peptide exhibited the strongest antioxidant activity among these three antioxidant peptides. Furthermore, P1, P2, and P3 have no toxic effect on RAW264.7 cells at the concentration of 0.01~2 mg/mL and can protect RAW264.7 cells from H2O2-induced oxidative damage in a concentration-dependent manner. These results suggested that these three new antioxidant peptides were isolated from the viscera of Urechis unicinctus, especially the P1 peptide, which might serve as potential antioxidants applied in health-derived food or beverages. This study further developed a new use of the by-product of Urechis unicinctus, which improved the comprehensive utilization of marine biological resources.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Jiajun Lu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiuzhi Zhou
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Qingliang Liu
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
50
|
Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|