1
|
Jiang D, Xie T, Chen Y, Zhang X, Chen J, Qi X, Zhang P, Wang Y. An ESIPT-Based Fluorochromogenic Tweezer for Reversible and Portable Detection of Al 3+ Ions. Chemistry 2025:e202404404. [PMID: 40095418 DOI: 10.1002/chem.202404404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
ESIPT-based fluorochromes are promising materials for the detection of various chemical and biological species, particularly metal cations. Herein, we have meticulously designed a prototypical ESIPT-based α-naphtholphthalein-derived "turn-on" fluorogenic tweezer, NPDM, for the selective detection and visualization of Al3⁺ in biological and environmental samples. NPDM was found to specifically interact with Al3⁺, exhibiting dual emissions, high sensitivity (50 s), large Stokes shifts (140 and 176 nm), and a low detection limit of 16.3 nM. Notably, the sensing mechanism of NPDM for Al3⁺ involves metal ion-coordination-induced fluorescence enhancement (CHEF), ESIPT "turn-on" effect as well as restricted intramolecular rotation (RIR). This mechanism is supported by Job's plot, high-resolution mass spectrometry (HRMS), proton nuclear magnetic resonance (¹H NMR) titrations, and density functional (DFT) calculations. Interestingly, the NPDM-Al3+ ensemble can function as a secondary chromo-fluorogenic tweezer for monitoring fluoride ions (F-) with a low detection limit of 34.8 nM. Thus, an advanced molecular memory device was constructed based on the fluorescence "off-on-off" strategy and its excellent sensing properties. Moreover, a portable, smartphone-assisted intelligent platform has been developed to facilitate in-field, cost-effective, and accurate detection of Al3⁺ in real environmental water samples. Significantly, NPDM was successfully employed to image intracellular Al3⁺ and F⁻ ions in HeLa cells without interference from oxidative stress. This represents the first reported smart molecular tweezer capable of detecting Al3⁺ ions generated during electroporation within living cells. Furthermore, the strategy developed here is valuable for the creation of novel, practically beneficial luminescent molecules and offers an advanced luminescent detection platform for point-of-care sensing of health-related ionic species.
Collapse
Affiliation(s)
- Daoyong Jiang
- Department of Chemistry and Pharmacy, Guilin Normal University, Guilin, 541199, China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jihong Chen
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Muthusamy S, Rajalakshmi K, Ahn DH, Kannan P, Zhu D, Nam YS, Choi KY, Luo Z, Song JW, Xu Y. Spontaneous detection of F - and viscosity using a multifunctional tetraphenylethene-lepidine probe: Exploring environmental applications. Food Chem 2025; 466:142147. [PMID: 39612833 DOI: 10.1016/j.foodchem.2024.142147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Excessive fluoride ions (F-) in drinking water and food is harmful for human health and the environment. Therefore, a fluorescent probe tetraphenylethylene-quinoline (P-1) is developed with multiple sensing properties for the sequential detection of tert-butyldiphenylsilyl chloride (TBDS), F-, and viscosity. Sensor P-1 first recognized TBDS and then observed an intramolecular charge transfer process, which produced an intermediate sensor P-2 in addition to fluorescence quenching at 576 nm. Following this, P-2 revealed a concentration-related quantitative analysis by tracking F- and reproducing sensor P-1 reversibly with the fluorescence amplification at 496 nm when the SiN bond of P-2 was broken. A comparable sensing mechanism was noted in monitoring F- and viscosity through a synthetically developed P-2 sensor. The characterizations (nuclear magnetic resonance-NMR, high resolution-mass-HR-MS, and high-performance liquid chromatography-HPLC) and density functional theory (DFT) confirmed the sensing mechanism of sensors P-1 and P-2. The proposed method was used to measure the viscosity of living cells and to measure F- in food, water, and living cell samples. According to research results, quantitative emission characteristics versus F- can offer insights into designing effective molecular probes with beneficial applications in healthcare and the environment.
Collapse
Affiliation(s)
- Selvaraj Muthusamy
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kanagaraj Rajalakshmi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-Si, Gyeongsangbuk-Do 38453, Republic of Korea
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang -314001, China.
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yun-Sik Nam
- Advanced Analysis Center, Korea Institute of Science & Technology, Hwarang-ro 14-Gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - Ki Young Choi
- Gangneung-Wonju National University, Department of Marine Bio-Food Technology, 7, Jukhenon-Gil Gangneung, Gangwon-Do 25457, Republic of Korea
| | - Zhibin Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-Si, Gyeongsangbuk-Do 38453, Republic of Korea.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Manoj Kumar S, Munusamy S, Enbanathan S, Ranganadin S, Kulathu Iyer S. Ratiometric discrimination of Th 4+ ions by a fluorogenic quinoline appended phenanthridine sensor and its applications. RSC Adv 2025; 15:4546-4552. [PMID: 39931419 PMCID: PMC11808482 DOI: 10.1039/d4ra08840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
A new phenanthridine appended quinoline-based chemoreceptor 5-(5-(quinolin-8-yl)thiophen-2-yl)-tetrahydrodibenzo[a,i]phenanthridine (PHQBA) was successfully synthesized and characterized by 1H, 13C, and HRMS spectral analyses. The promising chelation-induced process in PHQBA was accelerated by Th4+ ions, which impart robust ratiometric green fluorescence at 515 nm. The host-guest complex formed in a 1 : 1 binding stoichiometry between Th4+ ions and PHQBA was demonstrated by Jobs plot experiments. The Benesi-Hildebrand (BH) plot was employed to compute the binding constant for the complexation of PHQBA + Th4+, which was determined to be 3.77 × 105 M-1. To comprehend the detection mechanism of PHQBA, DFT, and TDDFT, eased computational studies were conducted and well supported by the experimental results. Moreover, the limit of detection (LOD) of PHQBA was determined as 223 nM, which defines the remarkable optical sensitivity of the sensor PHQBA. Further, portable paper strip detection and real-time determination of Th4+ ions in real water samples ensure the practical applications of PHQBA.
Collapse
Affiliation(s)
- Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | | | - Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Sivaranjani Ranganadin
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|
4
|
Zhang L, Shao K, Zhong Y, Guo L, Ge J, Lu Z, Wang D. Molybdenum disulfide quantum dots for rapid fluorescence detection of glutathione and ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125189. [PMID: 39332178 DOI: 10.1016/j.saa.2024.125189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
A method for the specific detection of glutathione (GSH) and ascorbic acid (AA) using 3-aminophenylboronic acid functionalized molybdenum disulfide quantum dots (APBA-MoS2 QDs) was reported. The APBA-MoS2 QDs synthesized using the hydrothermal method showed the strongest fluorescence intensity at an emission wavelength of 375 nm with the optimum excitation wavelength of 320 nm. The detection method was constructed by the combination of the dynamic and static quenching and the inner filter effect (IFE) of APBA-MoS2 QDs by permanganate (MnO4-) and the rapid redox reaction (1 min) of MnO4- by GSH or AA. The concentrations of GSH and AA showed good linear ranges of 10-500 μM and 10-100 μM, respectively, with limits of detection (LOD) of 0.476 μM and 0.185 μM, respectively. The spiked recovery tests in human serum and fresh fruit samples showed that APBA-MoS2 QDs had significant potential in the construction of fluorescent biological detection methods.
Collapse
Affiliation(s)
- Linlong Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China
| | - Kayi Shao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China
| | - Yaping Zhong
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Lijuan Guo
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China
| | - Junping Ge
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
5
|
Yang Z, Kang X, Li J, Li L, Ye X, Liu X, Chen K, Deng Y, Peng C, Ren B, Cao Z, Fang Y. A novel LD-targeting cysteine-activated fluorescent probe for diagnosis of APAP-induced liver injury and its application in food analysis. Food Chem 2024; 456:140064. [PMID: 38878548 DOI: 10.1016/j.foodchem.2024.140064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Cysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM). Furthermore, the NIT-Cys probe has been successfully used not only to quantify the amounts of Cys in selected food samples, but also to enable the visualization of endogenous Cys in acetaminophen (APAP)-induced drug-induced liver injury cells, zebrafish larvae and mice models. Consequently, the work presented here provides an efficient tool for monitoring Cys.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoping Ye
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Liu
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Kun Chen
- Department of Urology, Traditional Chinese Medicine Hospital of Pidu District, Chengdu 611730, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
6
|
Wang S, Wu W, Lv J, Qi Q, Huang W. Fast detection of sodium dithionite in sugar using a xanthylium-based fluorescent probe. Food Chem 2024; 452:139547. [PMID: 38728893 DOI: 10.1016/j.foodchem.2024.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Dithionite remained in the foodstuff may pose a great threat to the health of consumers. Three xanthylium-based probes were synthesized and their responses to dithionite were explored. Probe SH-1 could respond to dithionite selectively in PBS buffer (15% DMSO, 10 mM, pH = 7.4). Upon the addition of dithionite, the fluorescent emission of SH-1 at 684 nm dropped quickly (within 10 s) and the fluorescence decline was proportional to the concentration of dithionite (0-7.0 μM). The limit of detection was determined to be 0.139 μM. Then, the sensing mechanism was tentatively presented and the structure of resulted adduct (SH-1-SO3-) which was the reaction product of SH-1 and dithionite via a Micheal addition reaction followed by an oxidation reaction was verified. Moreover, white granulated sugar was subjected to the standard spike experiments and the results demonstrated a great potential of SH-1 for the quantitative monitoring of dithionite in foodstuffs.
Collapse
Affiliation(s)
- Sifan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weijie Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaqi Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Yue C, Zeng L, Zhang D, Li K, Jiang L, Xie P. A practical chromogenic and fluorogenic dual-mode sensing platform for rapid quantification of sulfite in food. Food Chem 2024; 440:138183. [PMID: 38104454 DOI: 10.1016/j.foodchem.2023.138183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Sulfur dioxide (SO2) and its derivatives (HSO3- and SO32-) are widely used in food-processing. Whereas excessive consumption of sulfur dioxide and its derivatives (>0.70 mg·kg-1day-1) severely endangers human health. In this work, we rationally constructed a practical dual-mode probe (dicyanomethylene)-1-methyl-1,4-dihydroquinolin-2-yl)vinyl)-1-methylquinolinium (QMN), which underwent a specific 1, 4-Michael addition with sulfite to afford a noticeable color change from pale yellow to red along with a high-contrast fluorescence turn-on response at 598 nm. QMN has the advantages of rapid response, high signal-to-noise ratio, excellent selectivity, good water-solubility, large Stokes shift and low detection limit (LOD = 31.9 nM). QMN has been successfully used to on-site visually determine sulfite in a diversity of foods with satisfactory recoveries (91.33-111.33 %) and high accuracy (93.74-98.71 %). Furthermore, a portable smartphone-based fluorescence sensing platform was fabricated for on-site determination of sulfite in food with good performance.
Collapse
Affiliation(s)
- Chenyang Yue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Di Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Kai Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lirong Jiang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Feng J, Gong Y, Yang S, Qiu G, Tian H, Sun B. Determination of carboxylesterase by fluorescence probe to guide detection of carbamate pesticide. LUMINESCENCE 2024; 39:e4625. [PMID: 37947027 DOI: 10.1002/bio.4625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.
Collapse
Affiliation(s)
- Jingyi Feng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yue Gong
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Guo Qiu
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
9
|
Zhou W, Pan Y, Liu Y, Liang Q, Zhou D, Wu A, Shu W, Yu W. A novel turn-on fluorescent probe for detection of pH in extremely acidic environment and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123203. [PMID: 37523848 DOI: 10.1016/j.saa.2023.123203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.
Collapse
Affiliation(s)
- Wu Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuanjiang Pan
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuxuan Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Dongkui Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| | - Wenming Shu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Weichu Yu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| |
Collapse
|
10
|
Zhou M, Song C, Qin T, Xun Z, Liu B. Fast and sensitive detection of nitroxynil using a chalcone-based supramolecular fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122974. [PMID: 37327726 DOI: 10.1016/j.saa.2023.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Nitroxynil as a veterinary drug has been widely used for treatment of parasitic worms in food-producing sheep and cattle. However, the residual nitroxynil in edible animal products can lead to severe adverse effects on human health. Thus, development of an effective analytical tool for nitroxynil is of great significance. In the present study, we designed and synthesized a novel albumin-based fluorescent sensor, which was capable of detecting nitroxynil with the fast response (<10 s), high sensitivity (limit of detection ∼8.7 ppb), high selectivity, and excellent anti-interference property. The sensing mechanism was clarified by using the molecular docking technique and mass spectra. Moreover, this sensor showed the detection accuracy comparable to standard HPLC method, and meanwhile exhibited much shorter response time and higher sensitivity. All the results demonstrated that this novel fluorescent senor could serve as a practical analytical tool for determination of nitroxynil in real food samples.
Collapse
Affiliation(s)
- Mei Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, 1-2 Zhujiang Rd, Guangzhou 511447, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Gong S, Zhang J, Zheng X, Li G, Xing C, Li P, Yuan J. Recent design strategies and applications of organic fluorescent probes for food freshness detection. Food Res Int 2023; 174:113641. [PMID: 37986540 DOI: 10.1016/j.foodres.2023.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Food spoilage poses a significant risk to human health, making the assessment of food freshness essential for ensuring food safety and quality. In recent years, there has been rapid progress in the development of fast detection technologies for food freshness. Among them, organic fluorescent probes have garnered significant attention in the field of food safety and sensing due to their easy functionalization, high sensitivity, and user-friendly nature. To comprehensively examine the latest advancements in organic fluorescent probes for food freshness detection, this review summarized their applications within the past five years. Initially, the fundamental detection principles of organic fluorescent probes are outlined. Subsequently, the recent research progress in utilizing organic fluorescent probes to detect various chemical indicators of freshness are discussed. Finally, the challenges and future directions for organic fluorescent probes in food freshness detection are elaborated upon. While, organic fluorescent probes have demonstrated their effectiveness in evaluating food freshness and possess great potential for practical applications, further research is still needed to enable their widespread commercial utilization. With continued advancements in synthesis and functionalization techniques, organic fluorescent probes will contribute to enhancing the efficiency of food safety detection.
Collapse
Affiliation(s)
- Shiyu Gong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingyi Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xin Zheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
12
|
Xu L, Zhong M, Tian Z, Zeng H, Huang Y. Caffeic acid, a natural extract, as an activatable molecular probe for viscosity detection in a liquid system. RSC Adv 2023; 13:35209-35215. [PMID: 38053681 PMCID: PMC10694789 DOI: 10.1039/d3ra05423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Liquids, functioning as nutrients and energy systems, regulate various functions during storage programs. Microenvironmental viscosity is one of the most important physical parameters associated with the extent of deterioration, and it is crucial to monitor the mutation of viscosity at a molecular level. Herein, we utilized caffeic acid (CaC), a natural product extracted from thistles, as a molecular probe for viscosity sensing. CaC contains phenol hydroxyl (electron-donor) and carboxyl (electron-acceptor) groups, with both moieties connected by conjugated single and double bonds, forming a typical twisted intramolecular charge transfer system. The fluorescent probe CaC, obtained from a natural product without any chemical processing, exhibits high sensitivity (x = 0.43) toward viscosity, with an obvious visualized turn-on signal. Moreover, it displays good photostability, selectivity, and wide universality in commercial liquids. Utilizing CaC, we have successfully visualized viscosity enhancement during the spoilage process, with a positive correlation between the degree of liquid spoilage and microenvironmental viscosity. Thus, this study will provide a convenient and efficient molecular probe for food safety inspection across the boundaries of traditional biological applications.
Collapse
Affiliation(s)
- Lingfeng Xu
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology Guangzhou 510640 China
- School of Chemistry and Chemical Engineering, Nanchang University Nanchang Jiangxi 330036 China
| | - Min Zhong
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Ziyin Tian
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Ji'an Jiangxi 343009 China
| | - Huilei Zeng
- Ji'an Central People's Hospital Ji'an Jiangxi 343099 China
| | - Yanrong Huang
- School of Modern Agriculture and Forestry Engineering, Ji'an Vocational and Technique College Ji'an Jiangxi 343009 China
| |
Collapse
|
13
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
14
|
Zhang D, Wang M, Li M, Liu L, Duan R, Xue N, Chen H, Shang L, Wang T, Wu X, Zhang J. A versatile AIE probe with two cross-talk-free emissions for dual detection of SO 2 and viscosity and its application in food and biological imaging. Food Chem 2023; 437:137838. [PMID: 39491253 DOI: 10.1016/j.foodchem.2023.137838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Sulfur dioxide (SO2) and viscosity play important physiological roles in organisms, and real-time detection of their content changes is critical for organisms and human health. Herein, we developed a fluorescence probe NPNB with aggregation-induced emission (AIE) performance and mitochondrial localization effect for simultaneous detection of viscosity and SO2. NPNB can realize the efficient and specific detection of SO2 and viscosity at different emission wavelengths with a cross-talk-free effect, respectively. NPNB showed good sensing performance against SO2, including fast response (<7 min), and low detection limit (8.4 nM). Bioimaging experiments indicated that NPNB has good mitochondrial targeting and can achieve cellular imaging of both exogenous and endogenous SO2 and viscosity. Importantly, NPNB enables real-time imaging of changes in SO2 and viscosity during mitochondrial dysfunction. Moreover, the resulting probe has been applied to detect SO2 in food and water samples with a satisfactory recovery (84.46-105.57 %), further demonstrating its compatibility and practicality.
Collapse
Affiliation(s)
- Di Zhang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Min Wang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Man Li
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lin Liu
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Ran Duan
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Nana Xue
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - He Chen
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lijun Shang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tieliang Wang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xujin Wu
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Junfeng Zhang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
15
|
Zhang K, Mao T, Hu W, Li S, Zhou X, Yang M, Yang L, Qin Y, Wu L. Integrated portable food safety testing pipette based on a color-switchable fluorescence probe for rapid visual discrimination of mild food deterioration. Chem Commun (Camb) 2023; 59:11815-11818. [PMID: 37705499 DOI: 10.1039/d3cc03014h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A sensitive, portable, easy-to-operate, directly-readable food freshness monitoring device has been developed for rapid visual identification of mild food spoilage.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Tianzhi Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Wenqi Hu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Majun Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| |
Collapse
|
16
|
Yang X, Wang J, Zhang Z, Zhang B, Du X, Zhang J, Wang J. BODIPY-based fluorescent probe for cysteine detection and its applications in food analysis, test strips and biological imaging. Food Chem 2023; 416:135730. [PMID: 36889014 DOI: 10.1016/j.foodchem.2023.135730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cysteine, as one of semi-essential amino acids, which is absorbed from protein-rich foods and acts considerable role in various physiological processes. Here, we designed and synthesized a BODIPY-based turn-on fluorescent probe BDP-S for detecting Cys. The probe displayed short reaction time (10 min), distinct color response (from blue to pink), large signal noise ratio (3150-fold), high selectivity and sensitivity (LOD = 11.2 nM) toward Cys. Moreover, BDP-S could not only be used for quantitative determination of Cys in food samples, but also be conveniently deposited on the test strips for qualitative detection of Cys. Notably, BDP-S was successfully used for imaging Cys in living cells and in vivo. Consequently, this work provided a hopefully powerful tool for detecting Cys in food samples and complex biological systems.
Collapse
Affiliation(s)
- Xiaokun Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Zunlong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China
| | - Xiaolin Du
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
17
|
Xu Z, Song C, Chen Z, Zeng C, Lv T, Wang L, Liu B. A portable paper-based testing device for fast and on-site determination of nitroxynil in food. Anal Chim Acta 2023; 1260:341201. [PMID: 37121652 DOI: 10.1016/j.aca.2023.341201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
Nitroxynil (NTX) is a common anthelmintic veterinary drug for the management of fascioliasis in food-producing sheep and cattle. Since excessive NTX residue in food can lead to several adverse side effects, such as allergic skin reaction and respiratory irritation, it is of great importance to develop an efficient analytical method for NTX determination. Herein, we report a simple fluorescent detection method based on a novel supramolecular probe capable of detecting NTX with a fast response (5 s), high sensitivity (107 nM), high selectivity, and acceptable anti-interference property. Moreover, the portable paper-based test strips were facilely prepared and successfully realized on-site determination of NTX in real edible animal products simply with the aid of a smartphone. To the best of our knowledge, this is the very first report on the portable detection of NTX. This study also provides a promising strategy for the fast and portable detection of analyte based on the host-guest system, which will lead to improved fluorescent probe design for food analysis.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zihao Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Conghui Zeng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
18
|
Huang Y, Chen W, Dong M, Li N, Chen L, Ling L, Xu Q, Lin M, Xing Z. A novel fluorescence probe for the recognition of Cd 2+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122979. [PMID: 37295381 DOI: 10.1016/j.saa.2023.122979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
A facile fluorescence probe BQBH was synthesized and investigated on its spectrum property. The result showed that the BQBH had high sensitivity and selectivity for Cd2+ with lowest detection determined as 0.14 μM by fluorescence response. The 1: 1 binding ratio between BQBH and Cd2+ was determined by Job's plot, and the binding details were further confirmed by 1H NMR titration, FT-IR spectrum and HRMS analysis. The applications including on test paper, smart phone and cell image were all also investigated.
Collapse
Affiliation(s)
- Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Weizhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Nana Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Lianghui Chen
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Min Lin
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
19
|
Zhang D, Wang S, Yang F, Li Z, Huang W. Visual inspection of acidic pH and bisulfite in white wine using a colorimetric and fluorescent probe. Food Chem 2023; 408:135200. [PMID: 36528990 DOI: 10.1016/j.foodchem.2022.135200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The acidic pH and total amount of SO2 are both important quality control indexes of wine, but conventional detection techniques depend heavily on specialized instrument and professional staff, thus are not available to general customers. In this paper, a hemicyanine-based colorimetric and fluorescent probe Hcy-Py was designed and synthesized. It responded to bisulfite selectively with a LOD of 0.68 μM and responded to proton with a pKa of 3.78. Upon the treatment of solutions with different pH values and concentrations of bisulfite, the probe-loaded paper strips displayed distinct color changes under both natural light and UV lamp. When a real white wine sample was subjected to the paper strip experiment, pH as well as bisulfite concentration could be determined by naked-eye quickly and conveniently, thus a visual detection of acidic pH and bisulfite in white wine without involving any sophisticated instrument or professional skill was successfully demonstrated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sifan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fangxi Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Zeng C, Song C, Xu Z, Qin T, Lv T, Wang L, Chen X, Liu B, Peng X. The first fluorescent sensor for the detection of closantel in meat. Talanta 2023; 258:124413. [PMID: 36871517 DOI: 10.1016/j.talanta.2023.124413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Closantel is widely used in the management of parasitic infestation in livestock, but is contraindicated in humans due to its high toxic to human retina. Thus, development of a fast and selective method for the detection of closantel residues in animal products is highly needed yet still challenging. In the present study, we report a supramolecular fluorescent sensor for closantel detection through a two-step screening process. The fluorescent sensor can detect closantel with a fast response (<10 s), high sensitivity, and high selectivity. The limit of detection is 0.29 ppm, which is much lower than the maximum residue level set by government. Moreover, the applicability of this sensor has been demonstrated in commercial drugs tablets, injection fluids, and real edible animal products (muscle, kidney, and liver). This work provides the first fluorescence analytical tool for accurate and selective determination of closantel, and may inspire more sensor design for food analysis.
Collapse
Affiliation(s)
- Conghui Zeng
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Chao Song
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyong Xu
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Tianyi Qin
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Wang J, Ma T, Wei M, Lan T, Bao S, Zhao Q, Fang Y, Sun X. Copper in grape and wine industry: Source, presence, impacts on production and human health, and removal methods. Compr Rev Food Sci Food Saf 2023; 22:1794-1816. [PMID: 36856534 DOI: 10.1111/1541-4337.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Heavy metals are of particular concern in grape and wine processing, especially copper. The sources of copper are diverse, including vineyard soil, copper-containing pesticides on the fruit surface, copper wine-making equipment, and exogenous addition in winemaking. Copper has potential risks to human nerves, metabolism, and others. It can inhibit yeast growth, delay fermentation, and also mediate oxidation reactions, which has a huge impact on the nutritional quality and sensory quality of fresh wine and aged wine. It is therefore crucial to detect, quantify, and remove copper from grapes and wine. However, the copper situations in the wine industries of various countries are complicated and diverse, and the existing forms of copper are quite different, which makes the research challenging. This review summarizes and analyzes the existence and influence of copper in the wine industry by analyzing the sources of, the current situation regarding, and the detection and removal methods for copper in wine. With the study, a better understanding of copper's impact on wine production will be gained, facilitating further control of copper in wine and helping the wine industry grow.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Qin Y, Meng Q, Yao J, Chen M, Dong Y, Chen D, He S, Bai C, Zhang L, Wei B, Miao H, Qu C, Qiao R. The Novel Fluorescent Probe Toward Yttrium(III) and its Bioimaging. J Fluoresc 2023; 33:731-737. [PMID: 36512144 DOI: 10.1007/s10895-022-03106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
In this paper, the novel fluorescence probe XP based on Schiff-base was designed, synthesized and characterized, which could detect Y3+selectively and sensitively. The recognition mechanism of XP toward Y3+ was studied by Job's plot and HRMS. It was investigated that stoichiometric ratio of the probe XP conjugated with Y3+ was 1:2. And the detection limit was calculated as 0.30 μM. In addition, Y3+ was recognized by the test paper made from XP. And the probe XP could detect Y3+ selectively in Caenorhabditis elegans and the main organs of mice. Thus, XP was considered to have some potential for application in bioimaging.
Collapse
Affiliation(s)
- Yuxin Qin
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Qian Meng
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Junxiong Yao
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Mengyu Chen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Yajie Dong
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Dashuo Chen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Shuping He
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Cuibing Bai
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China.
| | - Lin Zhang
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Biao Wei
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Hui Miao
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China
| | - Changqing Qu
- Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China.
| | - Rui Qiao
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, People's Republic of China.
| |
Collapse
|
23
|
A new aggregation-induced emission-based fluorescent probe for effective detection of Hg2+ and its multiple applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
24
|
Luo R, Yang D, Xu C, Zhang D, Li N, Fan Y, Zhang X. A multifunctional “off–on” fluorescence probe for Al3+, Zn2+ and La3+ detection and cellular imaging applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Wu K, Yang W, Yan Z, Wang H, Zheng Z, Jiang A, Wang X, Tang Z. Accurate quantification, naked eyes detection and bioimaging of nitrite using a colorimetric and near-infrared fluorescent probe in food samples and Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121692. [PMID: 35921752 DOI: 10.1016/j.saa.2022.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Nitrite (NO2-) is an inorganic contaminant that exists widely in the environment including water and food products, excessive amounts of NO2- would threaten humans and aquatic life. Developing a rapid and convenient sensing method for NO2- remains a great challenge. Herein, a colorimetric and near-infrared fluorescent probe (TBM) was synthesized and applied for sensitively and selectively detecting NO2- in water, food samples and Escherichia coli (E. coli). With the addition of NO2-, the probe TBM solution has a distinct visual color changed from red to colorless and fluorescence intensity at 620 nm quickly decreased. The probe TBM could detect NO2- quantitatively with a detection limit of 85 nM based on a 3σ/slope. Under optimum conditions, TBM has been successfully used to detect NO2- in real-world environmental and dietary samples, with positive results. Besides, paper strips loaded with TBM have been used to visually determine NO2- levels. Most importantly, TBM has also been proven to be able to discriminate from different concentrations of NO2- in E. coli by fluorescence imaging. In summary, the probe TBM was successfully developed for the accurate quantification, naked eyes detection and bioimaging of NO2- in water, food samples and E. coli, which provides a useful tool to better guarantee the quality and safety of daily life and food industry.
Collapse
Affiliation(s)
- Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Wenjie Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Haichao Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhijuan Zheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Anqi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
26
|
Gao R, Liu X, Feng J, Han L, Xu J, Kan C. Synthesis and application of a novel polyurethane nanoemulsion bearing coumarin derivative as a "turn-on" fluorescence sensor toward Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121612. [PMID: 35839695 DOI: 10.1016/j.saa.2022.121612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A novel polyurethane (PU-co-HCCA) nanoemulsion bearing coumarin derivative (HCCA) was synthesized as a "turn-on" fluorescent probe and used to modify filter paper, and its sensing properties were investigated. Results showed that PU-co-HCCA nanoemulsion exhibited high selectivity and excellent sensitivity toward Hg2+ over other metal ions, and possessed excellent fluorescence quantum yields of 0.976, ppb-levels detection limits of 1.61 ppb and large Stokes shifts of 101 nm. Meanwhile, as an application example of as-prepared PU-co-HCCA nanoemulsion, a Hg2+ test paper was prepared by modifying filter paper with PU-co-HCCA nanoemulsion, and results indicated that the test paper is portable and convenient and has a wide working pH range. We believe that the PU-co-HCCA nanoemulsion and the modified filter paper can provide a new design principle for the application of fluorescence sensors for metal ions including Hg2+.
Collapse
Affiliation(s)
- Rongsheng Gao
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Xueyan Liu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Jianyan Feng
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Lu Han
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Chengyou Kan
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Studies on a novel method for the determination of nitrosamines in food by HPLC-UV-FLD coupling with terbium-doped carbon dots. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Development of a Rapid and Sensitive Fluorescence Sensing Method for the Detection of Acetaldehyde in Alcoholic Beverages. Foods 2022; 11:foods11213450. [DOI: 10.3390/foods11213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Acetaldehyde is regarded as an important flavor compound in alcoholic beverages. With the advantages of rapidity, low cost and high sensitivity, fluorescent probe could be used as a new tool for the detection of acetaldehyde. Here, an effective fluorescence sensing method based on fluorescent probe N1 (FPN1) was established in this study. The function of FPN1 relies on the nucleophile substitution reaction and photoinduced electron transfer (PET), resulting in a fluorescence increase. Remarkably, the pretreatment background removal method (BRM) was successfully applied for removal of the interference of pyruvate and acetal. The linearity range (LR), limit of detection (LOD) and recovery of the fluorescence sensing method with BRM were 0.0053–200 mg/L, 0.0016 mg/L and 94.02–108.12%, respectively, which showed a broader detection range and better performance on sensitivity compared with the traditional quantitation using gas chromatography (GC). Furthermore, successful application of the method in real samples indicated the advantages of low-cost and rapidity for small-scale detection while assuring the accuracy, which provides a new strategy for the detection of acetaldehyde concentration in alcoholic beverages.
Collapse
|
29
|
Liao L, Guo D, Luo X, Meng L, Wu F. Facile fabrication of iron porphyrin-based porous organic polymer with excellent oxidase-like activity for colorimetric detection of sulfide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Duan N, Deng B, Yang S, Tian H, Sun B. A Fluorescent Probe with a Double Reaction Site for Hydrazine Detection in Water Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Bing Deng
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
31
|
Duan N, Feng J, Deng B, Yang S, Tian H, Sun B. A colourimetric fluorescent probe for the sensitive detection of total iron in wine. Food Chem 2022; 383:132594. [PMID: 35255366 DOI: 10.1016/j.foodchem.2022.132594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/04/2022]
Abstract
As the iron content of wine affects the wine quality, a highly selective and simple detection method is needed to detect the iron content in wine. A colourimetric fluorescent probe (BTBAP probe) for the detection of total iron in wine was developed. The quantitative range of Fe2+/3+ content detected with the probe was 0 to 200 μM with a limit of detection (LOD) of 1.16 μM. After 10 min of Fe2+/3+ addition, the luminescence intensity of the BTBAP probe solution gradually decreased with increasing Fe2+/3+ concentration. Moreover, the B and G values of the luminescence photos were linearly related to the concentration of Fe2+/3+ (0-200 μM). BTBAP probe was successfully applied for rapid determination of the Fe2+/3+ concentration of wine. This work demonstrates that BTBAP probe is an excellent tool for rapid determination of the total iron content of wine using only a smartphone and no other professional equipment.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jingyi Feng
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Bing Deng
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
32
|
Duan N, Yang S. Research Progress on Multifunctional Fluorescent Probes for Biological Imaging, Food and Environmental Detection. Crit Rev Anal Chem 2022; 54:775-817. [PMID: 35849642 DOI: 10.1080/10408347.2022.2098670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There has been rapid progress in the development of fast, sensitive, cheap and low-cytotoxicity micro-molecule fluorescent probes for application in various fields, including disease diagnosis, food safety and environmental safety. As an analytical tool, dual-function fluorescent probes with dual-emission responses have attracted considerable attention due to their cost-effectiveness and efficiency over single-function sensors. This review primarily describes research progress on multifunctional probes in terms of the reaction type and coordination type, as well as the general design principles of probes. The analytes include reactive oxygen species (ROS), reactive sulfur species (RSS), harmful cations and anions, etc. Multifunctional probes for food, medical and environmental applications are listed for future research. To improve the development of rapid detection methods, trends and strategies in the development of multifunctional fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
33
|
Guo WT, Dou L, Yan YJ, Li RY, Dong WK. A naphthol-functionalized bis(salamo)-like chromogenic and fluorogenic probe for monitoring hydrogen sulfide and application in water samples. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wen-Ting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| |
Collapse
|
34
|
Duan N, Guo F, Deng B, Yang S, Tian H, Sun B. Application of a luminous intensity variation fluorescent probe for the detection of ferric ions. LUMINESCENCE 2022; 37:803-809. [PMID: 35274440 DOI: 10.1002/bio.4224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Abstract
A luminous intensity variation fluorescent probe (Probe 1) for the detection of ferric ion was developed. The quantitative range of Fe3+ content detected was 0 to 600 μM with the LOD at 0.76 μM. Further, after 20 minutes of Fe3+ addition, the intensity of luminescence of Probe 1 solution gradually decreased with increased Fe3+ concentration. In addition, the B and G values of these images showed a linear relationship with Fe3+ concentration (0-500 μM). Probe 1 was successfully used for the rapid determination of Fe3+ concentration in real samples. This study demonstrates that Probe 1 is an excellent tool for the rapid determination of Fe3+ content in real samples using a smart phone without professional equipment.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Feng Guo
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Bing Deng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
35
|
Yang X, Lu X, Wang J, Zhang Z, Du X, Zhang J, Wang J. Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Hydrogen Sulfide in Food Spoilage, Living Cells, and Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3047-3055. [PMID: 35194991 DOI: 10.1021/acs.jafc.2c00087] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S) is a significant component of various physiological processes, and it can also cause a negative effect on foodstuffs. In this work, we designed and synthesized an NIR fluorescent turn-on responding probe (DDM-H2S) with a large Stokes shift (190 nm) for the detection of H2S. DDM-H2S exhibited high selectivity and sensitivity, obvious color changes, and a fast response time for tracing H2S. When DDM-H2S reacted with H2S, the PET process was eliminated, and the recovered ICT process and NIR fluorescence were observed. Moreover, DDM-H2S could image endogenous and exogenous H2S in living HeLa cells and zebrafish. What is more, the probe DDM-H2S could be deposited easily to test paper strips, which were able to detect the H2S gas produced during food spoilage (such as eggs, raw meat, and fishes) by the color of test paper strips changing from pink to purple. Therefore, this work provides a promising approach for monitoring H2S in complicated biological systems and practical food samples.
Collapse
Affiliation(s)
- Xiaokun Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Zunlong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Xiaolin Du
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
36
|
Sheng X, Kong L, Wang J, Ding L, Liu Z, Wang S. A phthalimide-based ESIPT fluorescent probe for sensitive detection of Cu2+ in complete aqueous solution. ANAL SCI 2022; 38:689-694. [DOI: 10.1007/s44211-022-00084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
|
37
|
Jiang D, Zhang X, Chen Y, Zhang P, Gong P, Cai L, Wang Y. An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg 2+ by the hydrolysis mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01051h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An ɑ-naphtholphthalein-derived colorimetric fluorescent chemoprobe was elaborately designed for the portable and visual monitoring of Hg2+ in environmental and biological samples.
Collapse
Affiliation(s)
- Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
38
|
Bilgic A. Novel BODIPY-based fluorescent Lycopodium clavatum sporopollenin microcapsules for detection and removal of Cu(II) ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Development of a New Assay for Measuring H2S Production during Alcoholic Fermentation: Application to the Evaluation of the Main Factors Impacting H2S Production by Three Saccharomycescerevisiae Wine Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is the main volatile sulfur compound produced by Saccharomycescerevisiae during alcoholic fermentation and its overproduction leads to poor wine sensory profiles. Several factors modulate H2S production and winemakers and researchers require an easy quantitative tool to quantify their impact. In this work, we developed a new sensitive method for the evaluation of total H2S production during alcoholic fermentation using a metal trap and a fluorescent probe. With this method, we evaluated the combined impact of three major factors influencing sulfide production by wine yeast during alcoholic fermentation: assimilable nitrogen, sulfur dioxide and strain, using a full factorial experimental design. All three factors significantly impacted H2S production, with variations according to strains. This method enables large experimental designs for the better understanding of sulfide production by yeasts during fermentation.
Collapse
|
40
|
Li Y, Deng B, Yang S, Tian H, Sun B. A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Li Y, Deng B, Yang S, Tian H, Liu Y, Sun B. A Fluorescent Probe for The Visible Colorimetric Detection of Tyrosinase. ChemistrySelect 2021. [DOI: 10.1002/slct.202102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanan Li
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Bing Deng
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Yongguo Liu
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
42
|
Jothi D, Munusamy S, KulathuIyer S. A Highly Selective and Sensitive Colorimetric Chemosensor for the Detection of Hydrogen Sulfide: Real-time Applications in Multiple Platforms. Photochem Photobiol 2021; 98:141-149. [PMID: 34389998 DOI: 10.1111/php.13506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Calorimetric chemosensors are found to be advantageous sensing systems due to their simplicity and favorable responsive properties. Although some colorimetric probes have been reported to detect hydrogen sulfide (H2 S), the creation of rapid, highly selective, and sensitive probes for the detection of H2 S remains a challenging target. In this work, we established dinitrosulphonamide decorated phenanthridine, 2,4-dinitro-N-(4-(7,8,13,14-tetrahydrodibenzo[a, i]phenanthridin-5-yl)phenyl)benzenesulfonamide (PHSH), for the calorimetric detection of H2 S. H2 S triggered thiolysis of PHSH resulted in a marked absorption enhancement alongside a visual color change from colorless to dark yellow. The result indicated that the chemosensor showed high sensitivity and selectivity with a fast response of less than 10 s with a detection limit as low as 6.5 nM. The chemosensor reaction mechanism with H2 S was studied by UV-vis, 1 H NMR, mass and HPLC analysis. In addition, the chemosensor has been used for the determination of H2 S in many real-time samples.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sathishkumar Munusamy
- Institute of chemical biology and nanomedicine, State key laboratory of chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R.China
| | | |
Collapse
|