1
|
Guo H, Chen X, Li J, Mo G, Li Y, Tang Y, Kai Y, Zhang S. β-Sitosterol inhibits osteoclast activity and reduces ovariectomy-induced bone loss by regulating the cAMP and NF-κB signaling pathways. Cell Signal 2025; 130:111672. [PMID: 39983806 DOI: 10.1016/j.cellsig.2025.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND β-Sitosterol, a prominent phytosterol present in numerous plant species, has been extensively studied for its potential health benefits, such as lipid-lowering, anxiolytic, and anti-inflammatory properties. Recently, the benefit of β-sitosterol on bone metabolism has been noted. The objective of the current study was to examine the impact of β-sitosterol on the skeletal system. METHODS Network pharmacology and molecular docking were used to predict how β-sitosterol may be used to treat osteoporosis. Cytotoxicity tests were conducted with different concentrations of β-sitosterol. The ability of β-sitosterol to inhibit osteoclast formation and function was evaluated, along with its potential molecular mechanism. An ovariectomized mouse model was used to assess the preventive effect of β-sitosterol on bone loss. RESULTS Network pharmacology analysis suggested that β-sitosterol could be a potential therapeutic treatment for osteoporosis by regulating the cAMP signaling pathway. β-sitosterol dose-dependently inhibited osteoclast differentiation and function without obvious cytotoxicity. Specifically, 20 μM β-sitosterol could obviously repress the number and size of osteoclasts, decrease the formation of F-actin belts, and reduce the bone-resorbing activity of osteoclasts. Some key signaling mediators, including PKA, c-Jun, NFATc1, p-CREB, and NF-κB, were downregulated by β-sitosterol. β-sitosterol acted by attenuating the cAMP and NF-κB signaling pathways. In vivo experiments confirmed β-sitosterol protected ovariectomy-induced bone loss though suppressing osteoclastic bone resorption. CONCLUSION β-sitosterol could inhibit the production and function of osteoclasts in vitro and reverse ovariectomy-induced bone loss. Thus, β-sitosterol could be a potential supplement for diseases with active bone resorption such as osteoporosis.
Collapse
Affiliation(s)
- Huizhi Guo
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jinglan Li
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoye Mo
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxian Li
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongchao Tang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Kai
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuncong Zhang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Liu G, Liu J, Shao P, Kai D, Yang L, Sun P, Feng S. Novel Nanoliposomes Synergistically Modulated by Sitogluside and Dioscin: Stability, Bioavailability, and Capacity To Alleviate Hyperuricaemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2596-2612. [PMID: 39722155 DOI: 10.1021/acs.jafc.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Cholesterol (Cho) is commonly used to stabilize nanoliposomes; however, there is controversy on the relationship between Cho and health. In this study, we developed a novel multifunctional nanoliposome utilizing structurally similar sitogluside (SG) and dioscin (Dio) instead of Cho to anchor the phospholipid bilayer and synergistically modulate the membrane properties of the nanoliposome (DPPC or DOPC). The storage and gastrointestinal tract stability experiment demonstrated that the changes of physical and chemical properties, including the significantly reduced size and Dio retention rate of nanoliposomes synergistically modulated by SG and Dio compared to those of SG alone, regulated nanoliposomes. Moreover, the stabilization effect of DPPC nanoliposomes under the synergistic modulation of SG and Dio was superior to that of DOPC nanoliposomes. Similarly, in cell internalization and permeability studies, DPPC-sitogluside-dioscin (P-SG-Dio), which was synergistically modulated by SG and Dio, had the highest cellular uptake and transepithelial transport. In addition, compared with DPPC-cholesterol-dioscin (P-Cho-Dio) and free Dio, intragastric administration of P-SG-Dio for 14 days could effectively inhibit the activation of the NLRP3 inflammatory pathway in the kidney of hyperuricemic mice, exhibiting the best antihyperuricemic and anti-inflammatory effects. Fourier transform infrared and Raman spectroscopy results indicated that the glucose residues of SG and Dio synergistically modulate the membrane properties of nanoliposomes by forming hydrogen bonds between them and the polar heads of phospholipids. The absence of unsaturated bonds in DPPC led to the best effect of synergistic modulation, resulting in the superior membrane properties, stability, and bioavailability of P-SG-Dio. The finding offers valuable insight into the design and modification of nanoliposomes for the effective delivery of bioactive compounds.
Collapse
Affiliation(s)
- Gaodan Liu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Jingjian Liu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
3
|
Pardo de Donlebún B, Chabni A, Bañares C, Torres CF. A Comparative In Vitro Digestion Study of Three Lipid Delivery Systems for Arachidonic and Docosahexaenoic Acids Intended to Be Used for Preterm Infants. Molecules 2024; 29:6032. [PMID: 39770120 PMCID: PMC11679688 DOI: 10.3390/molecules29246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
It is well stablished that docosahexaenoic (DHA) and arachidonic (ARA) acids fulfill relevant biological activities, especially in newborns. However, oils containing these fatty acids are not always optimally digestible. To address this, various formulation strategies and lipid delivery systems have been developed. This study compares the following three formulations in an in vitro digestion model to assess bioaccessibility: Enfamil® DHA & ARA (Mead Johnson & Company), an emulsion of FormulaidTM, AquaCelle®, and pasteurized donated human milk, and a previously characterized enzymatic glycerolysis product (GP) of ARA oil and microalgae oil in a 2:1 (w:w) ratio. To evaluate digestibility, parameters such as the percentage of oily phase (OP), micellar phase (MP), free fatty acids, and monoacylglycerols in the digestion product (DP) were considered. Additionally, diacylglycerol content in the MP can be used as an indirect marker of the emulsification capacity of the DP, and consequently, as an indicator of bioaccessibility. The GP demonstrated the highest bioaccessibility, with a DP containing more than 80% MP (<14% OP), rich in free fatty acids (60%) and monoacylglycerols (17%). Furthermore, more than 40% of total diacylglycerols were present in MP, highlighting GPs' potential as a superior delivery system for DHA and ARA in preterm infant formulations.
Collapse
Affiliation(s)
- Blanca Pardo de Donlebún
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (B.P.d.D.); (C.B.)
| | - Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Celia Bañares
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (B.P.d.D.); (C.B.)
| | - Carlos F. Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
4
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Chen Y, Wang Y, He L, Wang L, Zhao J, Yang Z, Li Q, Shi R. Zein/fucoidan-coated phytol nanoliposome: preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7536-7549. [PMID: 38747177 DOI: 10.1002/jsfa.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yadan Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liang He
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jianchen Zhao
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Zhenya Yang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Qin Li
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Palanisamy R, Subramanian SK, Nivetha Sivakumar R, Kangeswaren M, Nagendra Prasad HS, Perumal V, Asiedu SK. Liposome-encapsulated cytochrome P450 and gibberellic acid biosynthesis in Priestia megaterium RP1. Int J Biol Macromol 2024; 273:132954. [PMID: 38852726 DOI: 10.1016/j.ijbiomac.2024.132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.
Collapse
Affiliation(s)
- Ravishankar Palanisamy
- Department of Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India; Rayakis, Energy and Environmental Consultancy, Periyar Street, Salem, Tamil Nadu 636 001, India.
| | | | - R Nivetha Sivakumar
- Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India
| | - Mario Kangeswaren
- Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - H S Nagendra Prasad
- Department of Chemistry, Sri Jayachamrajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka 570 006, India
| | | | - Samuel K Asiedu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
Yan Z, Wang X, Zhao P, He Y, Meng X, Liu B. The effect of octenyl succinic anhydride-modified chitosan coating on DHA-loaded nanoemulsions: Physichemical stability and in vitro digestibility. Food Chem 2024; 441:138289. [PMID: 38176141 DOI: 10.1016/j.foodchem.2023.138289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Octenyl succinic anhydride-modified chitosan (OSA-CS) was synthesized and applied as a coating material to enhance the stability of docosahexaenoic acid (DHA)-loaded nanoemulsion. Due to the presence of the positively charged OSA-CS coating, the nanoemulsion exhibited a high positive zeta potential and two different layers. Compared with natural CS-coated nanoemulsion, OSA-CS-coated nanoemulsion showed improved storage stability (physical and chemical stability) and stability against environmental stresses (ionic strengths, temperatures and pH). Besides, OSA-CS-coated nanoemulsion protected encapsulated DHA from simulated gastric fluid damage better than that of natural CS-coated nanoemulsion, suggesting that OSA-CS-coated nanoemulsion had the potential to deliver more DHA into the small intestine. In conclusion, based on the comparison of two coating materials, natural chitosan and OSA-CS, it was found that the encapsulated nutrient was better protected by the OSA-CS coating. Such a finding will provide insights to broaden the application of modified chitosan in food delivery systems.
Collapse
Affiliation(s)
- Zhaoju Yan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xin Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Pengcheng Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yangeng He
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xianghong Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingjie Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
8
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
9
|
Ruan H, Shen L, Hou X, Li J, Guo T, Zhu C, Feng N, Zhang Y. Phytosterol-mediated glycerosomes combined with peppermint oil enhance transdermal delivery of lappaconitine by modulating the lipid composition of the stratum corneum. Drug Deliv Transl Res 2023; 13:3014-3029. [PMID: 37454030 DOI: 10.1007/s13346-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/18/2023]
Abstract
Although the introduction of glycerosomes has enriched strategies for efficient transdermal drug delivery, the inclusion of cholesterol as a membrane stabilizer has limited their clinical application. The current study describes the development and optimization of a new type of glycerosome (S-glycerosome) that is formed in glycerol solution with β-sitosterol as the stabilizer. Moreover, the transdermal permeation properties of lappaconitine (LA)-loaded S-glycerosomes and peppermint oil (PO)-mediated S-glycerosomes (PO-S-glycerosomes) are evaluated, and the lipid alterations in the stratum corneum are analyzed via lipidomics. The LA-loaded S-glycerosomes prepared by the preferred formulation from the uniform design have a mean size of 145.3 ± 7.81 nm and an encapsulation efficiency of 73.14 ± 0.35%. Moreover, the addition of PO positively impacts transdermal flux, peaking at 0.4% (w/v) PO. Tracing of the fluorescent probe P4 further revealed that PO-S-glycerosomes penetrate deeper into the skin than S-glycerosomes and conventional liposomes. Additionally, treatment with PO-S-glycerosomes alters the isoform type, number, and composition of sphingolipids, glycerophospholipids, glycerolipids, and fatty acids in the stratum corneum, with the most notable effect observed for ceramides, the main component of sphingolipids. Furthermore, the transdermal administration of LA-loaded PO-S-glycerosomes improved the treatment efficacy of xylene-induced inflammation in mice without skin irritation. Collectively, these findings demonstrate the feasibility of β-sitosterol as a stabilizer in glycerosomes. Additionally, the inclusion of PO improves the transdermal permeation of S-glycerosomes, potentially by altering the stratum corneum lipids.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Shen
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaolin Hou
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Teng Guo
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nianping Feng
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
11
|
Gu H, Shi R, Xu C, Lv W, Hu X, Xu C, Pan Y, He X, Wu A, Li J. EGFR-Targeted Liposomes Combined with Ginsenoside Rh2 Inhibit Triple-Negative Breast Cancer Growth and Metastasis. Bioconjug Chem 2023. [PMID: 37235785 DOI: 10.1021/acs.bioconjchem.3c00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype due to its lack of targeted therapies and poor prognosis. In order to treat patients with these tumors, efforts have been made to explore feasible targets. Epidermal growth factor receptor (EGFR)-targeted therapy is currently in clinical trials and regarded to be a promising treatment strategy. In this study, an EGFR-targeting nanoliposome (LTL@Rh2@Lipo-GE11) using ginsenoside Rh2 as a wall material was developed, in which GE11 was used as the EGFR-binding peptide to deliver more ginsenoside Rh2 and luteolin into TNBC. In comparison to non-targeted liposomes (Rh2@Lipo and LTL@Rh2@Lipo), the nanoliposomes LTL@Rh2@Lipo-GE11 demonstrated a high specificity to MDA-MB-231 cells that expressed a high level of EGFR both in vitro and in vivo, contributing to the strong inhibitory effects on the growth and migration of TNBC. These results suggest that LTL@Rh2@Lipo-GE11 is a prospective candidate for targeted therapy of TNBC, with a remarkable capability to inhibit tumor development and metastasis.
Collapse
Affiliation(s)
- Haiyan Gu
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Rui Shi
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
| | - Chen Xu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Wenhao Lv
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Xueyin Hu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Canxin Xu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Xiahong He
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| |
Collapse
|
12
|
Safaeian Laein S, Katouzian I, Mozafari MR, Farnudiyan-Habibi A, Akbarbaglu Z, Shadan MR, Sarabandi K. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit Rev Food Sci Nutr 2023; 64:7728-7747. [PMID: 36950963 DOI: 10.1080/10408398.2023.2191281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists' findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nano-Encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khashayar Sarabandi
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
13
|
Yang C, Gong L, Li X, Li W, Meng X, Liu B. Carboxymethyl chitosan coated alpha-linolenic acid nanoliposomes: Preparation, stability and release in vitro and in vivo. Food Chem 2023; 404:134526. [PMID: 36265276 DOI: 10.1016/j.foodchem.2022.134526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Nanoliposome encapsulation combined with carboxymethyl chitosan (CMCS) surface decoration was employed to improve physicochemical stability and oral bioavailability of alpha-linolenic acid (ALA). Different nanoliposome systems including ALA-loaded nanoliposomes (ALA-NLs) and CMCS-coated ALA-NLs (CMCS-ALA-NLs) were characterized through dynamic light scattering, transmission electron microscope, Fourier transform infrared spectroscopy and differential scanning calorimetry. The results showed that CMCS-ALA-NLs had good encapsulation efficiency of 79% and layer formation with nanosized spherical carrier. The physicochemical stability of CMCS-ALA-NLs was better than that of ALA-NLs. CMCS-ALA-NLs were able to regulate the release of ALA in a simulated gastrointestinal environment. In vivo testing found that ALA concentration of CMCS-ALA-NLs had an area under the curve of 1.32, which was 1.28 times higher than that of ALA-NLs and 2 times higher than that of ALA-emulsion. The absorption of ALA was improved by CMCS-ALA-NLs. It suggested that CMCS-coated nanoliposomes should be an available delivery strategy for transporting ALA.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Gong
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Weiwei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Li X, Wang X, Zhang H, Gong L, Meng X, Liu B. OSA-starch stabilized EPA nanoliposomes: preparation, characterization, stability and digestion in vitro and in vivo. Food Chem 2023; 419:136040. [PMID: 37027978 DOI: 10.1016/j.foodchem.2023.136040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
OSA-starch stabilized EPA nanoliposomes (OSA-EPA-NLs) were prepared by thin film rehydration/dispersion method. The physical properties and morphology of OSA-EPA-NLs were characterized. The best formulated sample was used to measure the storage stability and oxidative properties of EPA under different environmental stresses and to determine release and absorption of OSA-EPA-NLs in vitro and in vivo. The results showed that the encapsulation efficiency of OSA-EPA-NLs was 84.61%. All samples were relatively stable under different environmental stresses, and the release rate of EPA in simulated intestine stage (89.87%) was higher than that in the simulated gastric stage (5.86%). The areas under the EPA concentration-time curve of OSA-EPA-NLs group and EPA-NLs group through in vivo study were 0.42 and 0.32, respectively, which indicated that OSA-starch could improve the stability of EPA nanoliposomes and enhance EPA bioavailability in the form of ethyl esters.
Collapse
|
15
|
Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM. Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 2023; 64:6498-6511. [PMID: 36728840 DOI: 10.1080/10408398.2023.2170318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Andishmand
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade De Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College Of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Su Q, Zhao X, Zhang X, Wang Y, Zeng Z, Cui H, Wang C. Nano Functional Food: Opportunities, Development, and Future Perspectives. Int J Mol Sci 2022; 24:ijms24010234. [PMID: 36613678 PMCID: PMC9820276 DOI: 10.3390/ijms24010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
A functional food is a kind of food with special physiological effects that can improve health status or reduce illness. However, the active ingredients in functional foods are usually very low due to the instability and easy degradation of some nutrients. Therefore, improving the utilization rate of the effective ingredients in functional food has become the key problem. Nanomaterials have been widely used and studied in many fields due to their small size effect, high specific surface area, high target activity, and other characteristics. Therefore, it is a feasible method to process and modify functional food using nanotechnology. In this review, we summarize the nanoparticle delivery system and the food nanotechnology in the field of functional food. We also summarize and prospect the application, basic principle, and latest development of nano-functional food and put forward corresponding views.
Collapse
|
17
|
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022; 11:2685. [PMID: 36076867 PMCID: PMC9455885 DOI: 10.3390/foods11172685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), mainly found in microalgae and fish oil, is crucial for the growth and development of visual, neurological, and brain. In addition, DHA has been found to improve metabolic disorders associated with obesity and has anti-inflammatory, anti-obesity, and anti-adipogenesis effects. However, DHA applications in food are often limited due to its low water solubility, instability, and poor bioavailability. Therefore, delivery systems have been developed to enhance the remainder of DHA activity and increase DHA homeostasis and bioavailability. This review focused on the different DHA delivery systems and the in vitro and in vivo digestive characteristics. The research progress on cardiovascular diseases, diabetes, visual, neurological/brain, anti-obesity, anti-inflammatory, food applications, future trends, and the development potential of DHA delivery systems were also reviewed. DHA delivery systems could overcome the instability of DHA in gastrointestinal digestion, improve the bioavailability of DHA, and better play the role of its functionality.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
18
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
19
|
Wang Y, Yu H, Chen Y, Cui M, Ji M. Synthesis and application of near-infrared dyes based on sulfur-substituted dicyanomethylene-4H-chromene and diarylethene. NEW J CHEM 2022. [DOI: 10.1039/d2nj02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel compounds (S-DCM-1O, S-DCM-2O, S-DCM-3O, and S-DCM-4O) based on sulfur-substituted dicyanomethylene-4H-chromene (S-DCM) and diarylethene were synthesized. The detailed investigations on the fluorescence spectra, absorption spectra, time-dependent density functional theory...
Collapse
|