1
|
Zhang Y, Li Q, Duan L, Ding J, Li Y, Wang Y, Xu H, Qin B. Effects of different orchard tree pruning residues on the yield and nutrient composition of Lentinus edodes. Front Nutr 2024; 11:1477586. [PMID: 39677499 PMCID: PMC11637878 DOI: 10.3389/fnut.2024.1477586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction As the scale of Lentinus edodes cultivation expands, challenges such as substrate shortages and rising production costs in mushroom cultivation have become increasingly prominent. Fruit tree pruning residue has the potential to serve as an alternative substrate, offering a sustainable solution. This study evaluates the feasibility of incorporating various types of fruit tree pruning residues into L. edodes cultivation. Methods Different ratios of Quercus sawdust (QS), Malus pumila pruning (MPP), Vitis vinifera pruning (VVP), Actinidia deliciosa pruning (ADP), Ziziphus jujuba pruning (ZJP), and Morus alba pruning (MAP) were tested as substrates. The effects on yield, amino acid profiles, and protein content of L. edodes fruiting bodies were analyzed. The control substrate comprised 80% QS, and the experimental groups incorporated varying ratios of fruit tree residues. Results Compared with the control, yields increased by 14.86% (QS-MPP), 8.1% (QS-VVP), 18.92% (QS-ZJP), and 22.97% (QS-MAP). The MAP group had 21.21% higher ash content, while the QS-MAP group exhibited the highest crude protein content (10.84% increase). The QS-MPP group showed the highest crude fiber content (1.72 g/100 g). Crude polysaccharide and fat contents in the ZJP group increased by 110.77% and 10.15%, respectively. Mineral content varied, with QS-MPP showing the highest calcium, potassium, manganese, and magnesium levels, and VVP exhibiting the highest iron and copper levels. Amino acid analysis revealed QS-MPP had the highest levels of threonine, valine, isoleucine, serine, cysteine, glycine, and histidine, while QS-VVP had the highest leucine, aspartate, glutamate, and arginine levels. The best formulation was determined as 40% QS, 40% MPP, 17% bran, 1% sucrose, 1% CaCO3, and 1% gypsum. Discussion These results highlight the potential of fruit tree pruning residues as a sustainable substrate for L. edodes cultivation, ensuring high yields and enhanced nutritional quality. This approach can contribute to cost-effective and environmentally friendly mushroomproduction.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Life Sciences, Northwest Agriculture and Forest University, Xianyang, Shaanxi, China
- Institute of Edible Fungi Research, Ankang Academy of Agricultural Sciences, Ankang, Shaanxi, China
| | - Quanshun Li
- College of Life Sciences, Northwest Agriculture and Forest University, Xianyang, Shaanxi, China
| | - Longfei Duan
- College of Life Sciences, Northwest Agriculture and Forest University, Xianyang, Shaanxi, China
- Institute of Edible Fungi Research, Ankang Academy of Agricultural Sciences, Ankang, Shaanxi, China
| | - Jian Ding
- Changqing Forestry Bureau of Shaanxi Province, Hanzhong, Shaanxi, China
| | - Yue Li
- Institute of Edible Fungi Research, Ankang Academy of Agricultural Sciences, Ankang, Shaanxi, China
| | - Yong Wang
- Institute of Edible Fungi Research, Ankang Academy of Agricultural Sciences, Ankang, Shaanxi, China
| | - Hongyan Xu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Baofu Qin
- College of Life Sciences, Northwest Agriculture and Forest University, Xianyang, Shaanxi, China
| |
Collapse
|
2
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
3
|
Falandysz J, Fernandes AR. A critical review of the occurrence of scandium and yttrium in mushrooms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:107-141. [PMID: 38783723 DOI: 10.1016/bs.aambs.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Scandium (Sc) and Yttrium (Y) along with the other rare earth elements (REE) are being increasingly extracted to meet the escalating demand for their use in modern high technology applications. Concern has been voiced that releases from this escalating usage may pollute environments, including the habitats of wild species of mushrooms, many of which are foraged and prized as foods. This review collates the scarce information on occurrence of these elements in wild mushrooms and also reviews soil substrate levels, including forested habitats. Sc and Y occurred at lower levels in mushrooms (<1.0-1000 µg kg-1 dw for Sc and<1.8-1500 µg kg-1 dw for Y) compared to the corresponding range for the sum of the lanthanides in the same species (16-8400 µg kg-1 dw). The reported species showed considerably more variation in Y contents than Sc which show a narrow median distribution range (20-40 µg kg-1 dw). Data allowing temporal examination was very limited but showed no increasing trend between the 1970s to 2019, nor were any geographical influences apparent. The study of the essentiality, toxicity or other effects of REE including Sc and Y at levels of current dietary intake are as yet undefined. High intake scenarios using the highest median concentrations of Sc and Y, resulted in daily intakes of 1.2 and 3.3 μg respectively from 300 g portions of mushroom meals. These could be considered as low unless future toxicological insights make these intake levels relevant.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, Łódź, Poland.
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Mędyk M, Falandysz J. Occurrence, bio-concentration and distribution of rare earth elements in wild mushrooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158159. [PMID: 35988594 DOI: 10.1016/j.scitotenv.2022.158159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Using validated methodology, this study explores the bioconcentration potential and status of rare earth elements (REE) and yttrium (Y) in wild mushrooms collected from Belarus, China and Poland and in the associated forest topsoil. Baseline data for REE and Y distributions in the morphological parts of the fruiting bodies of Caloboletus calopus, Cantharellus cibarius, Craterellus cornucopioides, Imleria badia, Laccaria amethystina, Lactifluus piperatus, Leccinum scabrum and Suillus grevillei are presented. REE were in the range of 14 to 42 mg kg-1 dw in forest topsoil and from 35 to 48 mg kg-1 dw in profiled soil layers from the Sobowidz site in Poland. Forest topsoil sampled in Belarus contained 67 mg kg-1 dw. Yttrium concentrations in soil ranged from 2.9 to 10 mg kg-1 dw. The median REE concentration in wild mushrooms was around 200 μg kg-1 dw (20 μg kg-1 fresh weight). This implies negligible dietary intake even for high level consumers. The bioconcentration factors (BCF) of individual REE and Y ranged from 0.0002 to 0.0229, showing bio-exclusion. The BCF tended to be similar for groups of REE (La to Tb and Dy to Lu) depending on the mushroom species and site. REE from Dy to Lu were better bioconcentrated than those from La to Tb. The similarity of the BCFs of individual REE by species at a given site implies the same absorption pathway, although a lower concentration in the topsoil favoured bioconcentration. REE and Y concentrations varied between species as well as within the same species between sites. Their accumulation in mushrooms appears to reflect condition at the site of collection, and may also be species-specific but confirming this would require further investigation of different species, topsoils and sites.
Collapse
Affiliation(s)
- Małgorzata Mędyk
- University of Gdańsk, Laboratory of Environmental Chemistry and Ecotoxicology, Gdańsk, Poland
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego St., 90-151 Łódź, Poland.
| |
Collapse
|
5
|
Falandysz J, Nnorom IC, Mędyk M. Rare Earth Elements in Boletus edulis (King Bolete) Mushrooms from Lowland and Montane Areas in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8948. [PMID: 35897319 PMCID: PMC9331855 DOI: 10.3390/ijerph19158948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Mining/exploitation and commercial applications of the rare-earth elements (REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in the past 3 decades have raised concerns about their emissions to the environment, possible accumulation in food webs, and occupational/environmental health effects. The occurrence and distribution of REEs Y and Sc in the fruitbodies of Boletus edulis collected from geographically diverse regions in Poland were studied in 14 composite samples that were derived from 261 whole fruiting bodies. Individual REE median concentrations ranged from 0.4-95 µg kg-1 dry weight (dw). The summed REE concentrations varied widely, with a median value of 310 µg kg-1 dw and a range of 87 to 758 µg kg-1. The Sc and Y median concentrations (dw) were 35 and 42 µg kg-1, respectively. Ce, La, and Nd, with median values of 95, 51, and 32 µg kg-1, respectively, showed the highest occurrence. B. edulis collected from a forested area formerly used as a military shooting range-possibly a historically contaminated site-had an elevated summed REE content of 1796 µg kg-1. REE concentrations were generally low in Polish King Bolete. Dietary intake from a mushroom meal was negligible, posing no health risk to consumers.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| | - Innocent Chidi Nnorom
- Analytical/Environmental Unit, Department of Pure and Industrial Chemistry, Abia State University, Uturu P.M.B. 2000, Nigeria;
| | - Małgorzata Mędyk
- Laboratory of Environmental Chemistry and Ecotoxicology, University of Gdańsk, 80-309 Gdańsk, Poland;
| |
Collapse
|
6
|
Rutkowska M, Falandysz J, Saba M, Szefer P, Misztal-Szkudlińska M, Konieczka P. A method for the analysis of methylmercury and total Hg in fungal matrices. Appl Microbiol Biotechnol 2022; 106:5261-5272. [PMID: 35779096 DOI: 10.1007/s00253-022-12043-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
The aim of the study was to develop an efficient method for the determination of monomethyl-mercury (MeHg) and total mercury (THg) content in materials such as fungal sporocarps and sclerotia. Certified Reference Materials (CRMs) with the assigned values of MeHg and THg as well as the control materials (dried mushrooms) with known content of THg were evaluated for method validation. Recovery of MeHg from reference materials was at the following levels: from tuna fish at 87.0 ± 2.3% (THg at 101.9 ± 1.2%), from fish protein at 99.4 ± 1.3% (THg at 92.70 ± 0.41%), and from dogfish liver at 96.45 ± 0.73%. Recovery of THg from the fungal control material CS-M-5 was at 104.01 ± 0.60% (contribution of MeHg in THg content was at 6.2%), from CS-M-4 at 101.1 ± 2.0% (contribution at 3.2%), from CS-M-3 at 100.55 ± 0.67% (contribution at 0.6%), and from CS-M-2 at 101.5 ± 2.7% (contribution at 3.7%). The content of MeHg in randomly selected wild fungi and their morphological parts was in the range from 0.006 to 0.173 mg kg-1 dry weight (dw). In the case of THg, the concentration values were in the range from 0.0108 to 10.27 mg kg-1 dw. The MeHg content in the control materials with the assigned THg values was determined. Since the control materials play an important role in all elements of the quality assurance system of measurement results, they can be used to analyse MeHg as the first control material for fungi. KEY POINTS: • An extraction procedure for MeHg analysis in fungi was developed and optimized. • Recovery of MeHg from the certified reference non-fungal materials was > 87%. • Fungal control materials with assigned THg concentration can serve also for MeHg analysis.
Collapse
Affiliation(s)
- Małgorzata Rutkowska
- Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Lódź, Poland.
| | - Martyna Saba
- Główny Inspektorat Jakości Handlowej Artykułów Rolno-Spożywczych, Laboratorium Specjalistyczne w Gdyni, Al. Marszałka Piłsudskiego 8/12, Gdynia, 81-378, Poland
| | - Piotr Szefer
- Department of Food Sciences, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | | | - Piotr Konieczka
- Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
7
|
Wang L, Liu H, Li T, Li J, Wang Y. Verified the rapid evaluation of the edible safety of wild porcini mushrooms, using deep learning and PLS-DA. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1531-1539. [PMID: 34402067 DOI: 10.1002/jsfa.11488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND How to quickly identify poisonous mushrooms is a worldwide problem, because poisonous mushrooms and edible mushrooms have very similar appearances. Even some edible mushrooms must be processed further before they can be eaten. In addition, mushrooms from different geographical origins contain different levels of heavy metals. Eating frequent mushrooms with excessive heavy metal content can also cause food poisoning. This information is very important and needs to be informed to consumers in advance. Through the demand for the safety of porcini mushrooms in the Yunnan area we propose a hierarchical identification system based on Fourier-transform near-infrared (FT-NIR) spectroscopy to evaluate the edible safety of porcini species. RESULTS We found that deep learning is the most effective means to identify the edible safety of porcini, and the recognition accuracy was 100%, by comparing two pattern recognition tools, deep learning and partial least square discriminant analysis (PLS-DA). Although the accuracy of the PLS-DA test set is 96.10%, the poisonous porcini is not allowed to be wrongly judged. In addition, the cadmium (Cd) content of Leccinum rugosiceps in the Midu area exceeded the standard. Deep learning can trace Le. rugosiceps geographic origin with an accuracy of 100%. CONCLUSION The overall results show that deep learning methods based on FT-NIR can identify porcini that is at risk of being eaten. This has useful application prospects in food safety. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Honggao Liu
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Tao Li
- College of Resources and Environment, Yuxi Normal University, Yuxi, China
| | - Jieqing Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
8
|
Árvay J, Hauptvogl M, Demková L, Harangozo Ľ, Šnirc M, Bobuľská L, Štefániková J, Kováčik A, Jakabová S, Jančo I, Kunca V, Relić D. Mercury in scarletina bolete mushroom (Neoboletus luridiformis): Intake, spatial distribution in the fruiting body, accumulation ability and health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113235. [PMID: 35085888 DOI: 10.1016/j.ecoenv.2022.113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
In the present work, we focused on two aspects of mercury (Hg) bioconcentration in the above-ground parts of Neoboletus luridiformis. In the first part, we monitored the bioconcentration potential of individual anatomical parts of a particular fruiting body and evaluated the obtained data by the spline interpolation method. In the second part, we focused on assessing the mercury content in 378 samples of N. luridiformis and associated samples of substrates from 38 localities with different levels of Hg content in Slovakia. From the obtained data of Hg content in samples of substrate and fungi, we evaluated ecological indicators (geoaccumulation index - Igeo, contamination factor - Cf a potential ecological risk - PER), bioconcentration indicators (bioconcentration factor - BCF; cap/stipe quotient - Qc/s) and health indicators (percentage of provisional tolerable weekly intake - %PTWI a target hazard quotient - THQ). Based on the Hg distribution results, the highest Hg content was found in the tubes & pores (3.86 mg/kg DW), followed by the flesh of cap (1.82 mg/kg DW). The lowest Hg content was in the stipe (1.23 mg/kg DW). The results of the BCF values indicate that the studied species can be included in the category of mercury accumulators. The results of the ecological indices representing the state of soil pollution pointed out that two localities (Malachov and Nižná Slaná) stood apart from all monitored localities and showed a state of an extremely disturbed environment. This fact was also reflected in the values of Hg content in the fruiting bodies of the studied mushroom species. In the case of the consumption of mushrooms from these localities, it can be stated that long-term and regular consumption could have a negative non-carcinogenic effect on the health of consumers. It was confirmed by the %PTWI (Malachov: 57.8%; Nižná Slaná: 53.2%) and THQ (Malachov: 1.11 Nižná Slaná: 1.02). The locality Čačín-Jelšovec is interesting from the bioconcentration characteristics point of view, where the level of environmental pollution was the lowest (Hg content in the soil was below the background value) compared to other localities, however, the THQ value was the highest (1.29).
Collapse
Affiliation(s)
- Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Martin Hauptvogl
- Institute of Environmental Management, Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 081 16, Prešov, Slovak Republic.
| | - Ľuboš Harangozo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marek Šnirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lenka Bobuľská
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 081 16, Prešov, Slovak Republic.
| | - Jana Štefániková
- AgroBioTech - Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Silvia Jakabová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Ivona Jančo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T.G.Masaryka 24, 960 01 Zvolen, Slovak Republic.
| | - Dubravka Relić
- Department of Applied Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Falandysz J, Saba M, Rutkowska M, Konieczka P. Total mercury and methylmercury (MeHg) in braised and crude Boletus edulis carpophores during various developmental stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3107-3115. [PMID: 34386922 PMCID: PMC8732834 DOI: 10.1007/s11356-021-15884-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
We collected and processed Boletus edulis (King Bolete) carpophores grouped in four batches based on their developmental stage (button stage, young-white, large-white, and large-yellow). The study aimed, for the first time, to examine the B. edulis content and effect of braising and to estimate the intake of total mercury (THg) and methylmercury (MeHg) from a single meal based on whole (wet) weight (ww) and dry weight (dw). In braised carpophores, THg concentrations ranged from 0.2668 ± 0.0090 to 0.5434 ± 0.0071 mg kg-1 ww at different developmental stages, whereas crude products concentrations ranged from 0.1880 ± 0.0247 to 0.2929 ± 0.0030 mg kg-1 ww. The button stage crude carpophores were more highly contaminated with THg than at later stages of maturity, but MeHg levels were lower (p < 0.0001). On the other hand, braised button stage carpophores showed more MeHg than at later maturity stages. MeHg contributed at 1.9 ± 0.7% in THg in crude mushrooms and at 1.4 ± 0.3% in braised meals. The effect of braising was to increase the average THg and MeHg contents in fresh mushroom meals by 52 ± 31% and 53 ± 122% respectively, but a reduction of 40 ±14% and 40 ± 49% respectively was seen on a dw basis. The potential intakes of THg and MeHg from braised meals of B. edulis studied were small and considered safe.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Martyna Saba
- Laboratory of Environmental Chemistry and Ecotoxicology, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308, Gdańsk, Poland
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
10
|
Falandysz J, Treu R, Meloni D. Distribution and bioconcentration of some elements in the edible mushroom Leccinum scabrum from locations in Poland. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:396-414. [PMID: 33691593 DOI: 10.1080/03601234.2021.1892433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The element concentrations in the fruitbodies of Leccinum scabrum from two forested upland sites and one lowland site of different geochemical background were compared to topsoil concentrations. The aim of the study was to establish baseline concentration datasets, gain insight into the species' bioconcentration potential and to assess the impact of anthropogenic factors. The validated methods for analysis include inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold-vapor atomic absorption spectroscopy (CV-AAS). Bioinclusion (bioconcentration factor > 1) by L. scabrum was observed for the elements Ag, Cd, Cu, K, Hg, Mn, Na, Mg, P, Rb, and Zn. In contrast, the elements Al, Ba, Ca, Fe, Ni, and Sr as well as the toxic Pb were bioexcluded. Among these elements, the toxic elements Cd and Pb are noteworthy regarding the aspect of human mushroom consumption. The medians of Cd in caps of L. scabrum from the upland sites were in the range of 5.6-6.6 mg kg-1 dm, with a maximum in an individual sample of 14 mg kg-1 dm, which is in the range of concentrations reported previously for polluted soils. Lead concentrations were much lower, with medians in the range of 0.79-1.3 mg kg-1 dm in caps and 0.48-0.59 mg kg-1 dm in stipes. Mineral contents of L. scabrum appear to be the result of a complex interaction of a species' characteristic physiology with local mineral soil geochemistry and with anthropogenic pollution factors.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Environmental Chemistry and Ecotoxicology, University of Gdańsk, Gdańsk, Poland
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Roland Treu
- Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada
| | - Daniela Meloni
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, Torino, Italy
| |
Collapse
|
11
|
Saba M, Falandysz J. The effects of different cooking modes on the 137Cs, 40K, and total K content in Boletus edulis (King Bolete) mushrooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12441-12446. [PMID: 33074434 PMCID: PMC7921016 DOI: 10.1007/s11356-020-11147-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to get an insight into the effects of household processing on the leaching behaviour of 137Cs and 40K from fresh, frozen and dried Boletus edulis (King Bolete) mushrooms. Three processes were investigated-blanching, blanching and pickling, and drying followed by grinding and soaking. The activity concentrations of 137Cs and 40K in the fresh unprocessed mushrooms were 270 Bq kg-1 dry biomass (27 Bq kg-1 whole weight) and 590 Bq kg-1 db (59 Bq kg-1 ww), respectively. Blanching of fresh mushrooms decreased 137Cs activity by 55%, and 40K activity by 34%, and blanching of deep-frozen mushrooms caused a reduction of 52% and 44% (db) (equivalent to whole weight reductions of 37% and 8.5%, and 67% and 22%, respectively). Blanching and pickling of fresh mushrooms decreased 137Cs activity by 83% and 40K activity by 87%, while blanching deep-frozen mushrooms resulted in decreases of 88% and 80% (db) (whole weight decreases of 77% and 81%, and by ~ 84% and 72%, respectively). This study confirms earlier reports that blanching of fresh or frozen mushrooms alone is not as efficient at removing 137Cs as blanching followed by pickling. The study also shows that the initial rate of fruiting body disintegration and pre-preparation (comparing fresh, deep-frozen, or dried and ground) can have an impact on the leaching rate of the water soluble fraction of metallic elements.
Collapse
Affiliation(s)
- Martyna Saba
- Environmental Chemistry & Ecotoxicology, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Jerzy Falandysz
- Environmental Chemistry & Ecotoxicology, University of Gdańsk, 80-308, Gdańsk, Poland.
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
12
|
Shao B, Luo J, He M, Tian L, He W, Xu L, Zhang Z, Lin Y. Ecological risk assessment at the food web scale: A case study of a mercury contaminated oilfield. CHEMOSPHERE 2020; 260:127599. [PMID: 32758775 DOI: 10.1016/j.chemosphere.2020.127599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Mercury, particularly methylmercury, can accumulate through food webs and generate high risks for species at higher trophic levels. Inorganic mercury can be methylated into the organic species methylmercury if suitable reducing conditions exist, for example, in hotspots like oilfields. We developed a conceptual model to conduct an ecological risk assessment based on the food web structure of the Shengli oilfield area, China. The model can identify species at risk and elucidate the sources of risks according to their diet. A risk rating criteria was developed based on the food web structure to categorize the different levels of risks for different species. As expected, the results indicate increasing risks for the biota higher in the food web hierarchy. Grasshoppers were mostly at no risk throughout the study area, whereas grubs at southwest were at minimal risks due to local high Hg concentration in the soil. Mantises, which are insect predators, were also at minimal risk. Herbivorous birds with similar feeding habits than grasshoppers were at no risk, but omnivorous and carnivorous birds were at moderate risk. The conceptual model is a useful tool to improve pollution remediation and establish risk control strategies based on ecological risks of the food web rather than just Hg concentrations in the environment.
Collapse
Affiliation(s)
- Bo Shao
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Jie Luo
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China; Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China
| | - Mei He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China; Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China.
| | - Lei Tian
- Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China; School of Petroleum Engineering, Yangtze University, Wuhan, 430100, China
| | - Wenxiang He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China; Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China
| | - Li Xu
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Zeyu Zhang
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yan Lin
- Norwegian Institute for Water Research, Gaustadalléen 21, Oslo, 0349, Norway.
| |
Collapse
|
13
|
Falandysz J, Mędyk M, Saba M, Zhang J, Wang Y, Li T. Mercury in traditionally foraged species of fungi (macromycetes) from the karst area across Yunnan province in China. Appl Microbiol Biotechnol 2020; 104:9421-9432. [PMID: 32954453 PMCID: PMC7567707 DOI: 10.1007/s00253-020-10876-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
The objective of this study is to better quantify the occurrence, intake, and potential risk from Hg in fungi traditionally foraged in SW China. The concentrations and intakes of Hg were measured from 42 species including a "hard" flesh type polypore fungi and a" soft" flesh type edible species that are used in traditional herbal medicine, collected during the period 2011-2017. Three profiles of forest topsoil from the Zhenyuan site in 2015 and Changning and Dulong sites in 2016 were also investigated. The concentrations of Hg in composite samples of polypore fungi were usually below 0.1 mg kg-1 dry weight (dw) but higher levels, 0.11 ± 0.01 and 0.24 ± 0.00 mg kg-1 dw, were noted in Ganoderma applanatum and Amauroderma niger respectively, both from the Nujiang site near the town of Lanping in NW Yunnan. Hg concentrations in Boletaceae species were usually well above 1.0 mg kg-1 dw and as high as 10 mg kg-1 dw. The quality of the mushrooms in this study in view of contamination with Hg showed a complex picture. The "worst case" estimations showed probable intake of Hg from 0.006 μg kg-1 body mass (bm) ("hard" type flesh) to 0.25 μg kg-1 bm ("soft" flesh) on a daily basis for capsulated products, from 17 to 83 μg kg-1 bm ("soft" flesh) in a meal ("hard" type flesh mushrooms are not cooked while used in traditional herbal medicine after processing), and from 0.042 to 1.7 and 120 to 580 μg kg-1 bm on a weekly basis, respectively. KEY POINTS: • Polypore species were slightly contaminated with Hg. • Hg maximal content in the polypore was < 0.25 mg kg-1 dry weight. • Many species from Boletaceae family in Yunnan showed elevated Hg. • Locals who often eat Boletus may take Hg at a dose above the daily reference dose.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Environmental Chemistry and Ecotoxicology, University of Gdańsk, 80-308, Gdańsk, Poland.
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
- Yunnan Academy of Agricultural Sciences, Medicinal Plants Research Institute, Kunming, 650200, Yunnan, China.
| | - Małgorzata Mędyk
- Environmental Chemistry and Ecotoxicology, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Martyna Saba
- Environmental Chemistry and Ecotoxicology, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Ji Zhang
- Yunnan Academy of Agricultural Sciences, Medicinal Plants Research Institute, Kunming, 650200, Yunnan, China
| | - Yuanzhong Wang
- Yunnan Academy of Agricultural Sciences, Medicinal Plants Research Institute, Kunming, 650200, Yunnan, China
| | - Tao Li
- Yuxi Normal University, School of Chemical Biology and Environment, Yuxi, 653100, Yunnan, China
| |
Collapse
|
14
|
Durand A, Maillard F, Foulon J, Chalot M. Interactions between Hg and soil microbes: microbial diversity and mechanisms, with an emphasis on fungal processes. Appl Microbiol Biotechnol 2020; 104:9855-9876. [PMID: 33043392 DOI: 10.1007/s00253-020-10795-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
Mercury (Hg) is a highly toxic metal with no known biological function, and it can be highly bioavailable in terrestrial ecosystems. Although fungi are important contributors to a number of soil processes including plant nutrient uptake and decomposition, little is known about the effect of Hg on fungi. Fungi accumulate the largest amount of Hg and are the organisms capable of the highest bioaccumulation of Hg. While referring to detailed mechanisms in bacteria, this mini-review emphasizes the progress made recently on this topic and represents the first step towards a better understanding of the mechanisms underlying Hg tolerance and accumulation in fungal species and hence on the role of fungi within the Hg cycle at Hg-contaminated sites. KEY POINTS: • The fungal communities are more resilient than bacterial communities to Hg exposure. • The exposure to Hg is a threat to microbial soil functions involved in both C and nutrient cycles. • Fungal (hyper)accumulation of Hg may be important for the Hg cycle in terrestrial environments. • Understanding Hg tolerance and accumulation by fungi may lead to new remediation biotechnologies.
Collapse
Affiliation(s)
- Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211, Montbéliard, France
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine - INRAE, 2 avenue de la Forêt de Haye BP 20 163, 54505, Vandœuvre-lès-Nancy, France
| | - François Maillard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211, Montbéliard, France
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Julie Foulon
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211, Montbéliard, France
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 Allée des Ursulines, C.P. 3300, Rimouski, QC, G5L 3A1, Canada
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211, Montbéliard, France.
- Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
15
|
YUWA-AMORNPITAK T, BUTKHUP L, YEUNYAW PN. Amino acids and antioxidant activities of extracts from wild edible mushrooms from a community forest in the Nasrinual District, Maha Sarakham, Thailand. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.18519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Falandysz J, Zhang J, Saniewski M. 137Cs, 40K, and K in raw and stir-fried mushrooms from the Boletaceae family from the Midu region in Yunnan, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32509-32517. [PMID: 32506414 PMCID: PMC7417414 DOI: 10.1007/s11356-020-09393-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/21/2020] [Indexed: 04/16/2023]
Abstract
The parallel batches of the same species and geographical origin mushrooms both raw and stir-fried were investigated to get an insight into the content and intake of 137Cs, 40K, and K from mushroom meals. The Boletaceae family species (Baorangia bicolor, Boletus bainiugan, Butyriboletus roseoflavus, Retiboletus griseus, Rugiboletus extremiorientalis, and Sutorius magnificus) were collected from the Midu County (Dali Bai Autonomous Prefecture) in 2018. The activity concentrations of 137Cs in the caps of dried raw mushrooms were in the range 14 ± 1 Bq kg-1 dry biomass (db) (R. griseus) to 34 ± 2 Bq kg-1 db (R. extremiorientalis), and in stems from 16 ± 1 Bq kg-1 db (B. bicolor and B. bainiugan) to 23 ± 1 Bq kg-1 db (R. extremiorientalis). The mean activity concentration in the whole fruiting bodies in all six species was 18 ± 4 Bq kg-1 db. The activity concentrations of 137Cs were roughly the same in both dehydrated materials, stir-fried, and raw mushrooms, while the contents of 40K and stable K were around 2- to 3-fold smaller in stir-fried than raw product. The raw and stir-fried mushrooms on a whole (wet) weight basis showed activity concentrations of 137Cs in the range from 1.2 to 3.2 Bq kg-1 ww (mean 1.9 ± 0.6 Bq kg-1 ww) and 6.0 to 9.4 Bq kg-1 ww (mean 7.0 ± 1.2 Bq kg-1 ww), respectively. Evidently, when expressed on a whole (wet) weight basis, the cooked mushrooms showed on average around 3.5-fold greater activity concentration of 137Cs when compared with raw mushrooms. The 137Cs, 40K, and total K enrichment in stir-frying (in a whole (wet) weight basis for the meal), confronted with the results for dehydrated raw and fried mushrooms, show the direct correlation with loss of mass (largely moisture) during the cooking procedure but not much of 137Cs and 40K. Edible wild mushrooms from Yunnan were little contaminated with radiocaesium. As assessed, the mean radioactivity dose from natural 40K in around 9.3-fold exceeded the dose obtained for artificial 137Cs from stir-fried mushroom meals, which both were very low doses.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Environmental Chemistry and Ecotoxicology, University of Gdańsk, 63 Wita Stwosza Street, 80-308, Gdańsk, Poland.
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia.
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Michał Saniewski
- Institute of Meteorology and Water Management - Maritime Branch, National Research Institute, 42 Waszyngtona Av., 81-342, Gdynia, Poland
| |
Collapse
|
17
|
Falandysz J, Wang Y, Saniewski M, Fernandes AR. 137Caesium, 40Potassium and potassium in raw and deep-oil stir-fried mushroom meals from Yunnan in China. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Strumińska-Parulska D, Olszewski G, Moniakowska A, Zhang J, Falandysz J. Bolete mushroom Boletus bainiugan from Yunnan as a reflection of the geographical distribution of 210Po, 210Pb and uranium ( 234U, 235U, 238U) radionuclides, their intake rates and effective exposure doses. CHEMOSPHERE 2020; 253:126585. [PMID: 32278187 DOI: 10.1016/j.chemosphere.2020.126585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 05/22/2023]
Abstract
This pioneering study aimed to determine the activity concentrations of 210Po, 210Pb and uranium (234U, 235U, 238U) radionuclides in fruit bodies of wild bolete Boletus bainiugan Dentinger and to estimate its edible safety, which may give scientific evidence for the consumption of this species. The analyses were performed using alpha spectrometer after digestion, exchange resins separation and deposition. Measurement data were analysed and interpolation maps reflecting 210Po, 210Pb and uranium (234U, 235U, 238U) geographical distribution in Yunnan province (China) were presented. In addition, from the perspective of food safety, the possible related effective radiation dose to mushrooms consumers were estimated. The results indicated that 210Po, 210Pb and uranium (234U, 235U, 238U) radionuclides contents in B. bainiugan were significantly different with respect to geographical distribution, and their possible intake in a part of the region was considerably higher. A very interesting observation was done according to the values of 235U/238U activity ratio indicating the occurrence of uranium faction from the global fallout of nuclear weapon tests.
Collapse
Affiliation(s)
- Dagmara Strumińska-Parulska
- Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Grzegorz Olszewski
- Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Aleksandra Moniakowska
- Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jerzy Falandysz
- Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland; University of Cartagena, Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, 130015, Cartagena, Colombia; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
19
|
Širić I, Falandysz J. Contamination, bioconcentration and distribution of mercury in Tricholoma spp. mushrooms from southern and northern regions of Europe. CHEMOSPHERE 2020; 251:126614. [PMID: 32443241 DOI: 10.1016/j.chemosphere.2020.126614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The contamination, bio-concentration and distribution of mercury (Hg) in wild mushrooms of the genus Tricholoma such as T. equestre, T. portentosum, T. columbeta, and T. terreum were studied, and the possible dietary intake and risk for human consumers in Europe was estimated. Mushrooms, together with the associated forest topsoils were collected from 10 unpolluted and geographically distant areas, far from local or regional emission sources, in Poland (2 sites) and Croatia (8 sites). The Hg contents were in the range 0.10 ± 0.06 to 0.71 ± 0.34 mg kg-1 dry matter in caps and 0.04 ± 0.02 to 0.38 ± 0.13 mg kg-1 in stems. The corresponding topsoil concentrations varied over a relatively narrow range between sites, from 0.013 ± 0.003 to 0.028 ± 0.006 mg kg-1 dry matter. Overall, the study results showed low levels of mercury both, in edible Tricholoma mushrooms and forest topsoils from background (unpolluted) forested areas in Croatia and Poland. The morphological distribution showed considerably greater concentrations of mercury in the caps relative to the stems with ratios ranging from 1.6 ± 0.6 to 3.9 ± 1.8. T. equestre showed good ability to bioconcentrate Hg, with bioconcentration factors (BCF) values in the range 18 ± 7 to 37 ± 18. The data suggests that Tricholoma mushrooms from unpolluted areas in southern and northern regions of Europe can be considered as a low risk food from the point of view of the tolerable Hg intake.
Collapse
Affiliation(s)
- Ivan Širić
- University of Zagreb, Faculty of Agriculture, Department of Animal Science and Technology, Svetošimunska cesta 25, 10000, Zagreb, Croatia.
| | - Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry & Ecotoxicology, 80-308, Gdańsk, Poland; University of Cartagena, Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, 130015, Cartagena, Colombia
| |
Collapse
|
20
|
Szymańska K, Strumińska-Parulska D, Falandysz J. Uranium ( 234U, 238U) and thorium ( 230Th, 232Th) in mushrooms of genus Leccinum and Leccinellum and the potential effective ionizing radiation dose assessment for human. CHEMOSPHERE 2020; 250:126242. [PMID: 32088620 DOI: 10.1016/j.chemosphere.2020.126242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 05/08/2023]
Abstract
Evaluated has been bioconcentration potential by fungi and risk to human consumers from exposure to natural long-lived radioactive uranium (234U, 238U) and thorium (230Th, 232Th) sequestered in stems, caps and the whole fruiting bodies by mushrooms of the genus Leccinum and Leccinellum. Edible species in the study were collected from boreal forests in the northern regions of Poland and investigated: red-capped scaber (Leccinum aurantiacum), orange oak bolete (Leccinum aurantiacum var. quercinum), foxy bolete (Leccinum vulpinum), slate bolete (Leccinum aurantiacum var. duriusculum) and hazel bolete (Leccinellum pseudoscabrum). The study showed the species accumulated uranium (234U, 238U) and thorium (230Th, 232Th) form soil to some degree but the calculated values of the bioconcentration factor were below 1. The evaluation showed that Leccinum and Leccinellum mushrooms can contribute to annual effective radiation dose maximally at about 0.9 μSv. Hence, consumption of these mushrooms might increase the annual effective ionizing radiation dose received by a human, while the exposure is considered low from the toxicological point of view even if eaten at elevated amounts.
Collapse
Affiliation(s)
- Karolina Szymańska
- University of Gdańsk, Faculty of Chemistry, Laboratory of Toxicology and Radiation Protection, 80-308, Gdańsk, Poland
| | - Dagmara Strumińska-Parulska
- University of Gdańsk, Faculty of Chemistry, Laboratory of Toxicology and Radiation Protection, 80-308, Gdańsk, Poland.
| | - Jerzy Falandysz
- University of Gdańsk, Faculty of Chemistry, Laboratory of Environmental Chemistry and Ecotoxicology, 80-308, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia
| |
Collapse
|
21
|
Strumińska-Parulska D, Falandysz J, Wang Y. Radiotoxic 210Po and 210Pb in uncooked and cooked Boletaceae mushrooms from Yunnan (China) including intake rates and effective exposure doses. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106236. [PMID: 32217236 DOI: 10.1016/j.jenvrad.2020.106236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The article presents results of a study on the radioactivity and exposure from a highly toxic alpha-radiation emitter polonium 210Po, and beta emitter lead 210Pb in several species of Boletaceae mushrooms and stir-fried mushroom meals from China. Edible mushrooms can efficiently concentrate some elements in flesh but little is known on highly toxic alpha- and beta emitters. In this study, the absolute values of radioactivity (Bq·kg-1 dry weight) for 210Po were in the range 2.0 ± 2.0 to 308 ± 9 in fresh species and 22.1 ± 1.2 to 142 ± 4 in a ready to eat meals, and for 210Pb were 3.6 ± 0.5 to 51.8 ± 2.9 and 3.0 ± 0.14 to 9.6 ± 0.5, respectively. The studied batches of a corresponding species of mushrooms - raw and cooked - were not equivalent regarding the homogeneity of the composition. However the raw mushrooms (ingredient for any cooking), showed greater radioactivity in relation to stir-fried meals, and that can imply on a partial loss of nuclides. A daily portion of 100 g of stir-fried mushrooms could provide 210Po and 210Pb radiation in the range 0.2-2.1 μSv and 0.02-0.06 μSv, respectively. Assessed, the cumulative doses of exposure to 210Po were 1.4-14 μSv in a week period and 75-722 μSv at annual timescale, and of 210Pb amounted at 0.15-0.46 μSv and 8.3-24 μSv, respectively. The 210Po can be possibly considered as a major source of ionizing radiation activity for persons with high mushroom meals consumption in SW Asia, while the number of available data is limited.
Collapse
Affiliation(s)
- Dagmara Strumińska-Parulska
- Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Jerzy Falandysz
- Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland; University of Cartagena, Environmental and Computational Chemistry Group, 130015, Cartagena, Colombia; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
22
|
Zhang J, Barałkiewicz D, Wang Y, Falandysz J, Cai C. Arsenic and arsenic speciation in mushrooms from China: A review. CHEMOSPHERE 2020; 246:125685. [PMID: 31887488 DOI: 10.1016/j.chemosphere.2019.125685] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 05/22/2023]
Abstract
Arsenic (As) is a natural environmental contaminant to which humans are usually exposed in water, air, soil, and food. China is a typical high-As region, and also a great contributor of the world production of cultivated edible mushrooms and a region abundant in wild growing edible mushrooms. Mushrooms can accumulate different amounts of As and different As compounds, so potential health risk of As intake may exist to people who use mushrooms with elevated As contents as food or medicine. A systematic literature search was carried out for studies on As and As compounds in mushrooms from China. We compiled existing data from published sources in English or Chinese and provide an updated review of the findings on As in mushrooms associated with environments and health risks. Future perspectives for studies on As in mushrooms have also been discussed.
Collapse
Affiliation(s)
- Ji Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jerzy Falandysz
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; Environmental Chemistry & Ecotoxicology, University of Gdańsk, Gdańsk, 80-308, Poland; Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Chuantao Cai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China.
| |
Collapse
|
23
|
Falandysz J, Saba M, Zhang J, Hanć A. Occurrence, distribution and estimated intake of mercury and selenium from sclerotia of the medicinal fungus Wolfiporia cocos from China. CHEMOSPHERE 2020; 247:125928. [PMID: 32069718 DOI: 10.1016/j.chemosphere.2020.125928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The contamination and distribution of mercury and selenium in the Chinese medicinal fungus Wolfiporia cocos was investigated. The sclerotial mercury concentrations ranged from 0.0043 to 0.027 mg kg1 dry biomass (db) in the inner white part and 0.019-0.074 mg kg-1 db in the shell (outer part), while selenium concentrations ranged from < 0.00048 to 0.0040 mg kg-1 db (white) and 0.0034-0.038 mg kg-1 db (shell). Positive correlations were found for mercury, as well as for mercury and selenium but they were not consistent for both morphological parts. Mercury concentrations exceeded selenium in 16 of 17 white part pools (molar quotient 0.53 to > 10) and in 11 of 17 shell pools (quotient 0.37 to 3.2). The estimated maximal exposure to mercury contained in sclerotial products based on 45 g per capita daily intake for a 60 kg individual over one week, was 0.000020 mg kg-1 body mass (bm; white) and 0.000055 mg kg-1 bm (shell) on a daily basis, and 0.00014 mg kg-1 bm (white) and 0.00039 mg kg-1 bm (shell) on a weekly basis. Relative to mercury, the corresponding intake rates of selenium were considered very low, i.e., they averaged on a daily basis at 0.00075 μg kg-1 bm (white) and 0.0097 μg kg-1 bm (shell) with maximum intake at 0.0030 μg kg-1 bm (white) and 0.028 μg kg-1 bm (shell).
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Martyna Saba
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, Gdańsk, Poland
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Anetta Hanć
- Adam Mickiewicz University, Department of Trace Element Analysis By Spectroscopy Method, Umultowska 89b, PL, 61-614, Poznań, Poland
| |
Collapse
|
24
|
Falandysz J, Zalewska T, Fernandes AR. 137Cs and 40K in Cortinarius caperatus mushrooms (1996-2016) in Poland - Bioconcentration and estimated intake: 137Cs in Cortinarius spp. from the Northern Hemisphere from 1974 to 2016. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113208. [PMID: 31654855 DOI: 10.1016/j.envpol.2019.113208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Cortinarius caperatus grows in the northern regions of Europe, North America and Asia and is widely collected by mushroom foragers across Europe. This study shows that in the last three decades since the Chernobyl nuclear accident, C. caperatus collected across much of Northern Poland exhibited high activity concentrations of radiocaesium (137Cs) - a long-lived radionuclide. The mushroom appears to efficiently bioconcentrate 137Cs from contaminated soil substrata followed by sequestration into its morphological parts such as the cap and stipe which are used as food. The gradual leaching of 137Cs into the lower strata of surface soils in exposed areas are likely to facilitate higher bioavailability to the mycelia of this species which penetrate to relatively greater depths and may account for the continuing high activity levels noticed in Polish samples (e.g. activity within caps in some locations was still at 11,000 Bq kg-1 dw in 2008 relative to a peak of 18,000 in 2002). The associated dietary intake levels of 137Cs have often exceeded the tolerance limits set by the European Union (370 and 600 Bq kg-1 ww for children and adults respectively) during the years 1996-2010. Human dietary exposure to 137Cs is influenced by the method of food preparation and may be mitigated by blanching followed by disposal of the water, rather than direct consumption after stir-frying or stewing. It may be prudent to provide precautionary advice and monitor activity levels, as this mushroom continues to be foraged by casual as well as experienced mushroom hunters.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry & Ecotoxicology, 80-308, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Tamara Zalewska
- Institute of Meteorology and Water Management, Maritime Branch, National Research Institute, 42 Waszyngtona Av., 81-342, Gdynia, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
25
|
Falandysz J, Dryżałowska A, Zhang J, Wang Y. Mercury in raw mushrooms and in stir-fried in deep oil mushroom meals. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|