1
|
Li Y, Chang R, Lu L, Gao Z, Wu Y, Jiang W, Yuan D, Nishinari K. Diffusion of sodium ions based on the interactions between gum arabic and oral mucin: Effects from the molecular weight of gum arabic. Food Chem 2025; 482:144212. [PMID: 40209378 DOI: 10.1016/j.foodchem.2025.144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Diffusion behaviors of sodium ions in mucin layers plays an important role in saltiness perception. The influence of mucin-gum arabic interactions on the diffusion behaviors of sodium ions was investigated, in which the gum arabic was hydrolyzed to change its molecular weight. Results showed that the hydrolysis of gum arabic led to its structural changes, showing a lower zeta-potential. Gum arabic hydrolysates with lower molecular weight increased the diffusion of sodium ions through the mucin layer, which might be related to the conformation changes of mucin chains and the swelling expansion of mucin network. This mechanism was further confirmed by transmission electron microscopy, and a more swelling and looser structure of mucin layer was revealed, which contributed to the high diffusion rate of sodium ions. This work can improve our understanding of mucin network affects the penetration and perception of sodium ions, which may be useful for other molecular tastants.
Collapse
Affiliation(s)
- Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Ruiting Chang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Lin Lu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China.
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Katsuyoshi Nishinari
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
2
|
Ding Y, Zong Q, Zhang Q, Wang Y, Wang J, Huang W, Sun W, Zhai Y. Gum arabic based multifunctional antibacterial adhesion hydrogel dressings loaded with doxycycline hydrochloride for wound healing. Int J Biol Macromol 2025; 306:141284. [PMID: 39978520 DOI: 10.1016/j.ijbiomac.2025.141284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Infection is a crucial factor impeding wound healing, and hydrogel with three-dimensional network structure has great advantages in promoting wound healing. Herein, a zwitterionic hydrogel is developed by gum arabic, acrylic acid, and sulfobetaine methacrylate. Zwitterions exhibit exceptional hydration properties, thereby imparting hydrogels with superior bacterial adhesion resistance, robust structural stability, and adjustable modulation capabilities. Furthermore, the incorporation of Doxycycline Hydrochloride (DOX) into the formulation aims to address potential wound infections while also imparting exceptional antioxidant properties to the hydrogel (DOX@GASGel). In vitro antibacterial experiments demonstrated that 99.55 ± 0.08 % of S. aureus and 99.55 ± 0.06 % of E. coli were killed, and it exhibited high reactive oxygen species (ROS) scavenging efficacy both in vitro and in vivo. The results of experiments in ICR mice with a full-thickness infected wound model showed a wound healing rate of 97 % for wounds treated with DOX@GASGel hydrogel. This outcome was primarily attributed to hydrogel's capacity to promote collagen deposition and angiogenesis within the wounds, while concurrently reducing ROS levels. In conclusion, the preparation method of the hydrogel dressing designed in this study is straightforward, demonstrating robust wound-healing effects, and holds promising applications in the treatment of infected wounds.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qianwen Zhang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Wang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanru Huang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Irfan M, Nasir F, Naveed M, Javed S, Yousaf Z, Shafiq S, Munir H. Unlocking the potential of plant gums: Bioinformatics-driven insights into green synthesis and applications of metal-based nanoparticles. Int J Biol Macromol 2025; 308:142584. [PMID: 40154705 DOI: 10.1016/j.ijbiomac.2025.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Plant gums (PGs) are naturally occurring heteropolysaccharides that exude from different plants, typically from their stems, bark, and seeds. They are non-toxic, biodegradable, biocompatible, and cost-effective. PGs are commonly used as emulsifiers, stabilizers, and thickeners in the pharmaceutical, food, and cosmetics industries. Chemically, they are composed of complex sugars, with minor components including proteins, minerals, and flavonoids. Owing to their diverse phytochemical profiles, they have been comprehensively studied over the last couple of decades as reducing, capping, and stabilizing agents for the synthesis of metallic nanoparticles (NPs). Researchers have synthesized various eco-friendly metallic NPs from PGs for potential applications in environmental, industrial, and pharmaceutical domains. This review thoroughly covers the synthesis, characterization techniques, and diverse applications of PG-based metallic NPs. For the first time, using advanced informatics tools like PubChem, ChemSpider, and SwissADME, this study provides novel insights into the molecular interactions and stabilization of PG-based NPs. The review also analyzes the diverse composition of PGs and explores the unique reducing and capping potential of their phytochemicals in the green synthesis of metallic NPs. It also examines the potential drawbacks and proposes possible solutions related to PG-based metallic NP synthesis, along with discussing the future prospects of these nanomaterials.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan.
| | - Farwa Nasir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Sofia Javed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Zainab Yousaf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Sheeza Shafiq
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry, Govt. Women College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Zhang K, Chen M, Zhang X, Chen J, Chen X, Liu X, Li Y, Yu X. Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums. Food Res Int 2025; 201:115559. [PMID: 39849709 DOI: 10.1016/j.foodres.2024.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/10/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.41 μmol/g), followed by acacia gum (3.94 μmol/g) and karaya gum (1.24 μmol/g). Metabolomics and ionomics show that these gums were rich in a variety of small molecular metabolites, including amino acids, organic acids, flavonoids, and lipids, as well as numerous mineral elements. However, the concentrations of these compounds varied significantly across the different gum types. Specifically, peach gum contained higher levels of small-molecule organic acids (such as citric, quinic, and azelaic acids) and flavonoids. In contrast, acacia gum was characterized by a higher content of central amino acids (glutamic and aspartic acids), aromatic amino acids (tyrosine, phenylalanine and tryptophan) and alkaloids (trigonelline, spermidine and spermine). Karaya gum exhibited higher levels of lipids (including palmitic, linoleic, and tetradecanoic acids) and minerals (such as Ca, S, Mg and Fe). Notably, pesticide residues, including thiamethoxam, propiconazole, and difenoconazole, were detected in peach gum, indicating potential health risks. These findings provide valuable insights into the quality analysis of plant gums and the exploration of their functional components.
Collapse
Affiliation(s)
- Kaiwei Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Meng Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xue Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xin Liu
- Raw Material Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Xiangyang Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
5
|
Pajoum Z, Aliabadi HAM, Mohammadi A, Sadat Z, Kashtiaray A, Bani MS, Shahiri M, Mahdavi M, Eivazzadeh-Keihan R, Maleki A, Heravi MM. Hyperthermia and biological investigation of a novel magnetic nanobiocomposite based on acacia gum-silk fibroin hydrogel embedded with poly vinyl alcohol. Heliyon 2024; 10:e39073. [PMID: 39498073 PMCID: PMC11532226 DOI: 10.1016/j.heliyon.2024.e39073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The design and synthesis of biocompatible nanostructures for biomedical applications are considered vital challenges. Herein, a nanobiocomposite based on acacia hydrogel, natural silk fibroin protein, and synthetic protein fibers of polyvinyl alcohol was fabricated and magnetized with iron oxide nanoparticles (Fe3O4 MNPs). The structural properties of the hybrid nanobiocomposite were investigated by essential analyses such as Fourier Transform Infrared Spectrometer (FTIR), Field emission scanning electron microscopy (FE-SEM), and X-ray powder diffraction)XRD(analyses, Thermogravimetric and Differential thermogravimetric analysis (TGA-DTG), Vibrating-sample magnetometry (VSM), and Energy Dispersive X-Ray Analysis (EDX). The biological activities and functional properties of the prepared magnetic nanobiocomposite were studied. Results proved that this nanobiocomposite is non-toxic to the healthy HEK293T cell line. In addition, the synthesized nanobiocomposite showed an approximately 22 % reduction in cell viability of BT549 cells after 72 h. All results confirmed the anti-cancer properties of nanobiocomposite against breast cancer cell lines. Therefore, the prepared nanobiocomposite is an excellent material that can use for in-vivo application. Finally, the hyperthermia application was evaluated for this nanobiocomposite. The SAR was measured 93.08 (W/g) at 100 kHz.
Collapse
Affiliation(s)
- Zeinab Pajoum
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | | | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mohammadali Shahiri
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Majid M. Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
6
|
Davantès A, Nigen M, Sanchez C, Renard D. Adsorption of Acacia Gum on Self-Assembled Monolayer Surfaces: A Comprehensive Study Using QCM-D and MP-SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19032-19042. [PMID: 39206803 DOI: 10.1021/acs.langmuir.4c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The interfacial structuring of Acacia gum at various pH values on self-assembled monolayer (SAM) surfaces was investigated in order to evaluate the respective importance of surface versus biopolymer hydration in the adsorption process of the gum. To this end, SAMs with four different ending chemical functionalities (-CH3, -OH, -COOH, and -NH2) were used on gold surfaces, and the gum adsorption was monitored using multiparametric surface plasmon resonance (MP-SPR) and quartz crystal microbalance with dissipation. Surface modification with alkanethiol and the subsequent adsorption of Acacia gum were also characterized by contact angle measurements using both sessile drop and captive bubble methods. According to MP-SPR results, this study demonstrated that gum adsorbed on all surfaces and that adsorption is the most favorable at both acid pH and hydrophobic environments, i.e., when both the surface and the biopolymer are weakly hydrated and more prone to interfacial dehydration. These results reinforce our recent proposal of interfacial dehydration-induced structuring of biopolymers. Increasing the pH logically decreased the adsorption capacity, especially on a hydrophilic surface, enhancing the hydration rate of the layer. A hydrophilic surface is unfavorable to Acacia gum adsorption except if the surface presents a negative surface charge. In this case, interfacial charge dehydration was promoted by attractive electrostatic interactions between the surface and biopolymers. In the aggregate, the water percentage and the viscoelastic properties were closely related to the properties of the surface function: the negative charge and hydrophobicity significantly increased the hydration rate and viscoelastic properties with the pH, while the positive charge induced a rigid and more dehydrated layer.
Collapse
Affiliation(s)
| | - Michaël Nigen
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christian Sanchez
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | |
Collapse
|
7
|
Bhakare MA, Lokhande KD, Bondarde MP, Dhumal PS, Some S. Empowering the flame retardancy and adhesion for various substrates using renewable feedstock. Int J Biol Macromol 2024; 273:133042. [PMID: 38866277 DOI: 10.1016/j.ijbiomac.2024.133042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Developing biobased flame retardant adhesives using a green and simple strategy has recently gained significant attention. Therefore, in this study, we have orange peel waste (OPW) and Acacia gum (AG) phosphorylated at 140 °C to synthesize biomass-derived flame retardant adhesive. OPW is a biomass material readily available in large quantities, which. Has been utilized to produce an eco-friendly, efficient adhesive. Functionalized polysaccharides were used as a binder rather than volatile, poisonous, and unsustainable petroleum-based aldehydes. The P@OPW/AG green adhesive exhibited a higher tensile strength of 11.25 MPa when applied to cotton cloth and demonstrated versatility across various substrates such as glass, cardboard, plastic, wood, and textiles. Additionally, this bio-based robust adhesive displayed remarkable flame-retardant properties. To optimize its flame retardancy, three tests were employed: the spirit lamp flame test, the vertical flammability test (VFT), and the limiting oxygen index (LOI) test. The P@OPW/AG-coated cotton fabric achieved an impressive LOI result of 42 %, while the VFT yielded a char length of only 4 cm. Additionally, during the flame test, P@OPW/AG coated cloth endured more than 845 s of continuous flame illumination. This work offers a sustainable and fire-safe method for creating environmentally friendly high-performance composites using a recyclable bio-based flame-retardant OPW/AG glue.
Collapse
Affiliation(s)
- Madhuri A Bhakare
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Kshama D Lokhande
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Mahesh P Bondarde
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Pratik S Dhumal
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Surajit Some
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India..
| |
Collapse
|
8
|
Adam AA, Michaux F, Dos Santos Morais R, Seiler A, Muniglia L, Khanji AN, Jasniewski J. Determination of the critical aggregation concentration in water of Gum Arabic functionalized with curcumin oxidation products by micro-scale thermophoresis approach. Int J Biol Macromol 2024; 271:132510. [PMID: 38821797 DOI: 10.1016/j.ijbiomac.2024.132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Gum Arabic underwent enzymatic modification with curcumin oxidation products, prompting self-assembly in water at lower concentrations than native gum Arabic, which was fully soluble. The resulting particles displayed a narrow size distribution, suggestive of a micellization mechanism akin to Critical Micellization Concentration (CMC) in surfactants or Critical Aggregation Concentration (CAC) in polymers. Accurately determining CAC is vital for utilizing polymers in molecule encapsulation, but precise measurement is challenging, requiring multiple techniques. Initially, CAC was probed via turbidity measurements, dynamic light scattering (DLS), and isothermal calorimetric titration (ITC), yielding a range of 0.0015 to 0.01 %. Micro-scale thermophoresis (MST) was then employed for the first time to define CAC more precisely, facilitated by the intrinsic fluorescence of modified gum Arabic. Using MST, CAC was pinpointed at 0.001 % (w/v), a novel approach. Furthermore, MST revealed a low EC50 value of 0.007 % (w/t) for self-assembly, signifying uniformity among GAC sub-units and assembly stability upon dilution.
Collapse
Affiliation(s)
| | | | | | | | | | - Aya N Khanji
- Université de Lorraine, LIBio, F-54000 Nancy, France
| | | |
Collapse
|
9
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Liu S, Chen Z, Liu Y, Wu L, Wang B, Wang Z, Wu B, Zhang X, Zhang J, Chen M, Huang H, Ye J, Chu PK, Yu XF, Polavarapu L, Hoye RLZ, Gao F, Zhao H. Data-Driven Controlled Synthesis of Oriented Quasi-Spherical CsPbBr 3 Perovskite Materials. Angew Chem Int Ed Engl 2024; 63:e202319480. [PMID: 38317379 DOI: 10.1002/anie.202319480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Controlled synthesis of lead-halide perovskite crystals is challenging yet attractive because of the pivotal role played by the crystal structure and growth conditions in regulating their properties. This study introduces data-driven strategies for the controlled synthesis of oriented quasi-spherical CsPbBr3, alongside an investigation into the synthesis mechanism. High-throughput rapid characterization of absorption spectra and color under ultraviolet illumination was conducted using 23 possible ligands for the synthesis of CsPbBr3 crystals. The links between the absorption spectra slope (difference in the absorbance at 400 nm and 450 nm divided by a wavelength interval of 50 nm) and crystal size were determined through statistical analysis of more than 100 related publications. Big data analysis and machine learning were employed to investigate a total of 688 absorption spectra and 652 color values, revealing correlations between synthesis parameters and properties. Ex situ characterization confirmed successful synthesis of oriented quasi-spherical CsPbBr3 perovskites using polyvinylpyrrolidone and Acacia. Density functional theory calculations highlighted strong adsorption of Acacia on the (110) facet of CsPbBr3. Optical properties of the oriented quasi-spherical perovskites prepared with these data-driven strategies were significantly improved. This study demonstrates that data-driven controlled synthesis facilitates morphology-controlled perovskites with excellent optical properties.
Collapse
Affiliation(s)
- Shaohui Liu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zijian Chen
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
- Department of Chemical and Environmental Engineering, the University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Yingming Liu
- Centre for Photonics Information and Energy Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lingjun Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Boyuan Wang
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zixuan Wang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Bobin Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Xinyu Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Jie Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hao Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Junzhi Ye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, University of Vigo, Campus Universitario Marcosende, Vigo, 36310, Spain
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Haitao Zhao
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| |
Collapse
|
11
|
Kumari P, Kumar M, Kumar R, Kaushal D, Chauhan V, Thakur S, Shandilya P, Sharma PP. Gum acacia based hydrogels and their composite for waste water treatment: A review. Int J Biol Macromol 2024; 262:129914. [PMID: 38325681 DOI: 10.1016/j.ijbiomac.2024.129914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The non-toxic nature of natural polysaccharides and their biodegradability makes them the first choice of researchers. Various natural polysaccharides are available nowadays, like cellulose, starch, chitosan, gum acacia, guar gum etc. Among these, gum acacia is a common natural polysaccharide presently used in research and technology. It is highly biodegradable, pH stable and shows appropriate water solubility. It is used in research to synthesize hydrogels and hydrogel nanocomposites for various applications because of its antimicrobial, anti-inflammatory and excellent absorption properties. The major fields of applications include the stabilization of metal nanoparticles in the form of nanocomposites, wound dressing materials, delivery systems of various drugs and pharmaceutical agents, bioengineering, tissue engineering, purification of water, synthesis of antibacterial and antifungal composites for agricultural improvements, and many others. Due to the increasing problem of water pollution, the major focus is on research helping to reduce this problem. Gum acacia-based hydrogel and hydrogel composites were synthesized and tested for pollutant removal efficiency from wastewater by different researchers. The research on gum acacia hydrogel and their hydrogel composite applications for water purification, as well as their synthesis processes and properties, are summarized in this review article.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India.
| | - Rajender Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India
| | - Deepika Kaushal
- Department of Chemistry, Sri Sai University Palampur, HP, India
| | - Vinay Chauhan
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourab Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Pooja Shandilya
- Department of Chemical and Environmental Engineering, University of Cincinnati, OH, USA
| | | |
Collapse
|
12
|
Davantès A, Nigen M, Sanchez C, Renard D. In Situ ATR Spectroscopy Study of the Interaction of Acacia senegal Gum with Gold Nanoparticles Films at the Solid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:529-540. [PMID: 38105537 DOI: 10.1021/acs.langmuir.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The adsorption process of Acacia gum (A. senegal), a complex heteropolysaccharide, was followed by using a spectroscopic method to unravel the relative contribution of the protein moieties and the carbohydrate blocks on the adsorption process. In situ ATR-FTIR was used to investigate the kinetics and conformational changes associated with the adsorption of A. senegal gum on gold nanoparticle films (Au-NPs) at different pHs. The results of this thorough study highlighted the adsorption of A. senegal gum through its protein moieties, in particular, AGPs of low molecular weight and high protein content, close to the Au-NPs surface. Isotherm experiments, by gradually increasing the concentration, showed that the gum adsorption was heterogeneous and followed the Freundlich model for the amide part, while the polysaccharide part followed the Langmuir model. In addition, the hydration and structural organization of the gum layer depended on the gum concentration. A. senegal gum adsorbed irreversibly on Au-NPs whatever the pHs, but the adsorbed layer presented a different behavior depending on pH. A more aggregated and less hydrated structure was observed at acidic pH, while a very hydrated and continuous layer was detected at higher pH. The secondary structure analysis through amide III band revealed a change in the gum secondary structure at high pH with the increase in β-turn while random coil decreased.
Collapse
Affiliation(s)
- Athénaïs Davantès
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| | - Michaël Nigen
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Christian Sanchez
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Denis Renard
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| |
Collapse
|
13
|
Karppanen H, Halahlah A, Kilpeläinen PO, Mikkonen KS, Ho TM. Gel characteristics of low-acetyl spruce galactoglucomannans. Carbohydr Polym 2023; 321:121316. [PMID: 37739540 DOI: 10.1016/j.carbpol.2023.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
Galactoglucomannans (GGM) recovered from abundant forest industry side-streams has been widely recognized as a renewable hydrocolloid. The low molar mass and presence of O-acetyl side-groups results in low viscous dispersions and weak intermolecular interactions that make GGM unsuitable for hydrogel formation, unless forcefully chemically derivatized and/or crosslinked with other polymers. Here we present the characterization of hydrogels prepared from GGM after tailoring the degree of acetylation by alkaline treatment during its recovery. Specifically, we investigated gel characteristics of low-acetyl GGM dispersions prepared at varied solid concentrations (5, 10 and 15 %) and pH (4, 7 and 10), and then subjected to ultrasonication. The results indicated that low-acetyl GGM dispersions formed gels (G' > G″) at all other studied solid concentration and pH level combinations except 5 % and pH 4. High pH levels, leading to further removal of acetyl groups, and high solid concentration facilitated the gel formation. GGM hydrogels were weak gels with strong shear-thinning behavior and thixotropic properties, and high hardness and water holding capacity; which were enhanced with increased pH and solid concentration, and prolonged storage time. Our study showed the possibility to utilize low-acetyl GGM as mildly processed gelling or thickening agents, and renewable materials for bio-based hydrogels.
Collapse
Affiliation(s)
- Henrik Karppanen
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland
| | - Abedalghani Halahlah
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland
| | - Petri O Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Viikinkaari 9, FI-00790 HU, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014 University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014 University of Helsinki, Finland.
| |
Collapse
|
14
|
Ahmadian Z, Jelodar MZ, Rashidipour M, Dadkhah M, Adhami V, Sefareshi S, Ebrahimi HA, Ghasemian M, Adeli M. A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration. Daru 2023; 31:205-219. [PMID: 37610559 PMCID: PMC10624782 DOI: 10.1007/s40199-023-00475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023] Open
Abstract
The present study aimed at developing an injectable hydrogel based on acacia gum (AG) for wound healing acceleration. The hydrogels were synthetized through metal-ligand coordination mediated by Fe3+ and characterized in terms of gelation time, gel content, initial water content, swelling capacity, water retention ratio, and porosity. Moreover, FTIR, XRD and TGA analyses were performed for the hydrogels and allantoin (Alla) loaded ones. Furthermore, bioadhessiveness, and self-healing as well as antibacterial, toxicity and wound healing potentials of the hydrogels were evaluated. The hydrogels displayed fast gelation time, high swelling, porosity, and bioadhessiveness, as well as antioxidant, self-healing, antibacterial, blood clotting, and injectability properties. FTIR, XRD and TGA analyses confirmed hydrogel synthesis and drug loading. The Alla-loaded hydrogels accelerated wound healing by decreasing the inflammation and increasing the cell proliferation as well as collagen deposition. Hemocompatibility, cell cytotoxicity, and in vivo toxicity experiments were indicative of a high biocompatibility level for the hydrogels. Given the advantages of fast gelation, injectability and beneficial biological properties, the use of Alla-loaded hydrogels could be considered a new remedy for efficient wound healing.
Collapse
Affiliation(s)
- Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mahsa Zibanejad Jelodar
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sajjad Sefareshi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Adeli
- Institut für Chemieund Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Keykhaee M, Rahimifard M, Najafi A, Baeeri M, Abdollahi M, Mottaghitalab F, Farokhi M, Khoobi M. Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration. Carbohydr Polym 2023; 321:121179. [PMID: 37739486 DOI: 10.1016/j.carbpol.2023.121179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFβ) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.
Collapse
Affiliation(s)
- Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Napiórkowska A, Szpicer A, Wojtasik-Kalinowska I, Perez MDT, González HD, Kurek MA. Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying. Foods 2023; 12:4345. [PMID: 38231792 DOI: 10.3390/foods12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09-59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55-11.20%). The smallest particle sizes, which did not exceed 6 μm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58-50.27, HR = 1.45-2.01).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iwona Wojtasik-Kalinowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
17
|
Bhatia S, Al-Harrasi A, Shah YA, Altoubi HWK, Kotta S, Sharma P, Anwer MK, Kaithavalappil DS, Koca E, Aydemir LY. Fabrication, Characterization, and Antioxidant Potential of Sodium Alginate/Acacia Gum Hydrogel-Based Films Loaded with Cinnamon Essential Oil. Gels 2023; 9:gels9040337. [PMID: 37102949 PMCID: PMC10137728 DOI: 10.3390/gels9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Several studies have reported the advantages of incorporating essential oils in hydrogel-based films for improving their physiochemical and antioxidant attributes. Cinnamon essential oil (CEO) has great potential in industrial and medicinal applications as an antimicrobial and antioxidant agent. The present study aimed to develop sodium alginate (SA) and acacia gum (AG) hydrogel-based films loaded with CEO. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and texture analysis (TA) were performed to analyze the structural, crystalline, chemical, thermal, and mechanical behaviour of the edible films that were loaded with CEO. Moreover, the transparency, thickness, barrier, thermal, and color parameters of the prepared hydrogel-based films loaded with CEO were also assessed. The study revealed that as the concentration of oil in the films was raised, the thickness and elongation at break (EAB) increased, while transparency, tensile strength (TS), water vapor permeability (WVP), and moisture content (MC) decreased. As the concentration of CEO increased, the hydrogel-based films demonstrated a significant improvement in their antioxidant properties. Incorporating CEO into the SA-AG composite edible films presents a promising strategy for producing hydrogel-based films with the potential to serve as food packaging materials.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | | | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Esra Koca
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
18
|
Antoine-Michard A, Charbonnel C, Jaouen I, Sanchez C, Nigen M. Maturation of demineralized arabinogalactan-proteins from Acacia seyal gum in dry state: Aggregation kinetics and structural properties of aggregates. Int J Biol Macromol 2023; 233:123509. [PMID: 36739053 DOI: 10.1016/j.ijbiomac.2023.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/16/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The aggregation in dry state of mineral-loaded arabinogalactan-proteins (AGPs) from Acacia seyal gum (GA) generally occurs above 70 °C. This study focuses on the aggregation sensitivity of AGPs after their demineralization. The dry incubation in mild temperature (25 °C to 70 °C) of demineralized AGPs induced the formation of aggregates, not observed with GA. AGPs aggregated following a self-assembly mechanism for which temperature only modulated the aggregation rate. The activation energy was around 90-100 kJ·mol-1 that could correspond to chemical condensation reactions induced by the AGPs surface dehydration. The aggregation kinetics were characterized by the formation of soluble aggregates during the first times of incubation, whose molar mass increased from 1 · 106 g·mol-1 to 6.7 · 106 g·mol-1 (SEC MALS) or 12 · 106 g·mol-1 (AF4 MALS) after 1.66 days of dry heating at 40 °C. These soluble aggregates revealed they adopted a similar conformation to that of not aggregated AGPs with a νh value around 0.45. Above 1.66 days at 40 °C, the soluble aggregates grew up to form microparticles with sizes ranging from 10 to around 200 μm. This study highlighted the protective role of cations from AGPs whose demineralization increased their sensibility to dry heating and their chemical reactivity for aggregation.
Collapse
Affiliation(s)
- Amandine Antoine-Michard
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France; ALLAND & ROBERT, 75003 Paris, France
| | - Céline Charbonnel
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Christian Sanchez
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Michaël Nigen
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France.
| |
Collapse
|
19
|
Davantès A, Nigen M, Sanchez C, Renard D. Impact of Hydrophobic and Electrostatic Forces on the Adsorption of Acacia Gum on Oxide Surfaces Revealed by QCM-D. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The adsorption of Acacia gum from two plant exudates, A. senegal and A. seyal, at the solid-liquid interface on oxide surfaces was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The impact of the hydrophobic and electrostatic forces on the adsorption capacity was investigated by different surface, hydrophobicity, and charge properties, and by varying the ionic strength or the pH. The results highlight that hydrophobic forces have higher impacts than electrostatic forces on the Acacia gum adsorption on the oxide surface. The Acacia gum adsorption capacity is higher on hydrophobic surfaces compared to hydrophilic ones and presents a higher stability with negatively charged surfaces. The structural configuration and charge of Acacia gum in the first part of the adsorption process are important parameters. Acacia gum displays an extraordinary ability to adapt to surface properties through rearrangements, conformational changes, and/or dehydration processes in order to reach the steadiest state on the solid surface. Rheological analysis from QCM-D data shows that the A. senegal layers present a viscous behavior on the hydrophilic surface and a viscoelastic behavior on more hydrophobic ones. On the contrary, A. seyal layers show elastic behavior on all surfaces according to the Voigt model or a viscous behavior on the hydrophobic surface when considering the power-law model.
Collapse
Affiliation(s)
| | - Michaël Nigen
- UMR IATE, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christian Sanchez
- UMR IATE, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | |
Collapse
|
20
|
Wang S, Ma Z, Zhao P, Du G, Sun X, Wang X. The role of Arabic gum on astringency by modulating the polyphenol fraction-protein reaction in model wine. Food Chem 2023; 417:135927. [PMID: 36933429 DOI: 10.1016/j.foodchem.2023.135927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
The potential contribution of Arabic gum to wine astringency was discussed in this study. Two universally used Arabic gum (concentration of 0.2-1.2 g/L) were investigated in model wine based on the polyphenol fractions (phenolic acids, monomeric/oligomeric, and polymeric procyanidin) and protein interaction system. Both physicochemical analyses and sensory evaluation revealed that the modulation of Arabic gum on astringency was affected by the structural properties and concentration of Arabic gum and polyphenolic fractions. Arabic gum at 0.2 g/L appeared as the optimal dose to reduce astringency compared to 0.6 and 1.2 g/L. It inhibited astringency induced by polymeric procyanidin more than that of oligomeric procyanidins and phenolic acids mainly by forming soluble ternary complexes with polyphenols and proteins, and preferentially binding proteins/polyphenols to decrease polyphenol-protein reactions. Arabic gum also inhibited the self-aggregation of polyphenols, exhibiting more binding sites when its higher molecular weight and more/longer branches, leading to competition with polyphenols for bind proteins.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Zeqiang Ma
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Shaanxi 710119, China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Shaanxi 710065, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China.
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Shaanxi 710119, China.
| |
Collapse
|
21
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
22
|
Kirtil E, Oztop MH. Mechanism of adsorption for design of role-specific polymeric surfactants. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Pickering Emulsions Stabilized by Chitosan/Natural Acacia Gum Biopolymers: Effects of pH and Salt Concentrations. Polymers (Basel) 2022; 14:polym14235270. [PMID: 36501665 PMCID: PMC9738950 DOI: 10.3390/polym14235270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, chitosan (CT) and naturally occurring acacia gum (AG) blends were employed as emulsifiers to form a series of emulsions developed from diesel and water. Effects of pH level (3, 5, 10, and 12) and various NaCl salt concentrations (0.25-1%) on the stability, viscosity, and interfacial properties of CT-(1%)/AG-(4%) stabilized Pickering emulsions were evaluated. Bottle test experiment results showed that the stability indexes of the CT/AG emulsions were similar under acidic (3 and 5) and alkaline (10 and 12) pH media. On the other hand, the effects of various NaCl concentrations on the stability of CT-(1%)/AG-(4%) emulsion demonstrated analogous behavior throughout. From all the NaCl concentrations and pH levels examined, viscosities of this emulsion decreased drastically with the increasing shear rate, indicating pseudoplastic fluid with shear thinning characteristics of these emulsions. The viscosity of CT-(1%)/AG-(4%) emulsion increased at a low shear rate and decreased with an increasing shear rate. The presence of NaCl salt and pH change in CT/AG solutions induced a transformation in the interfacial tension (IFT) at the diesel/water interface. Accordingly, the IFT values of diesel/water in the absence of NaCl/CT/AG (without emulsifier and salt) remained fairly constant for a period of 500 s, and its average IFT value was 26.16 mN/m. In the absence of salt, the addition of an emulsifier (CT-(1%)/AG-(4%)) reduced the IFT to 16.69 mN/m. When the salt was added, the IFT values were further reduced to 12.04 mN/m. At low pH, the IFT was higher (17.1 mN/M) compared to the value of the IFT (10.8 mN/M) at high pH. The results obtained will help understand the preparation and performance of such emulsions under different conditions especially relevant to oil field applications.
Collapse
|
25
|
Takarada WH, Ferreira JG, Riegel-Vidotti IC, Orth ES. Functionalization of gum arabic derivatives for catalytic neutralization of organophosphates. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Use of ozonation, a green oxidation method, in the modification of corn starch-gum arabic suspensions: thermal, rheological, functional and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Mossa ATH, Mohamed RI, Mohafrash SM. Development of a ‘green’ nanoformulation of neem oil-based nanoemulsion for controlling mosquitoes in the sustainable ecosystem. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Batiha GES, Akhtar N, Alsayegh AA, Abusudah WF, Almohmadi NH, Shaheen HM, Singh TG, De Waard M. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules 2022; 27:7340. [PMID: 36364163 PMCID: PMC9658407 DOI: 10.3390/molecules27217340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Plants are a promising source of bioactive compounds that can be used to tackle many emerging diseases both infectious and non-infectious. Among different plants, Acacia is a very large genus and exhibits a diverse array of bioactive agents with remarkable pharmacological properties against different diseases. Acacia, a herb found all over the world, contains approximately more than 1200 species of the Fabaceae family. In the present review, we have collected detailed information on biochemical as well as pharmacological properties. The data were retrieved using different databases, such as Elsevier, PubMed, Science Direct, Google Scholar, and Scopus, and an extensive literature survey was carried out. Studies have shown that Acacia possesses several secondary metabolites, including amines, cyanogenic glycosides, flavonoids, alkaloids, seed oils, cyclitols, fluoroacetate, gums, non-protein amino acids, diterpenes, fatty acids, terpenes, hydrolyzable tannins, and condensed tannins. These compounds exhibit a wide range of pharmaceutical applications such as anti-inflammatory, antioxidant, antidiarrheal, antidiabetic, anticancer, antiviral, liver protective effects, and so on. Thus, the literature shows the tremendous phytochemical impact of the genus Acacia in medicine. Overall, we recommend that more research should be conducted on the medicinal value and isolation and purification of the effective therapeutic agents from Acacia species for the treatment of various ailments.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Islamabad 46000, Pakistan
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Wafaa Fouzi Abusudah
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
29
|
El Abbadi A, Erni P. Rheology and tribology of chitosan/ Acacia gum complex coacervates. SOFT MATTER 2022; 18:7804-7813. [PMID: 36193837 DOI: 10.1039/d2sm00881e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acacia gum (Gum Arabic; GA) and chitosan (CTS) form complex coacervates in acidic environments, providing a polymer-rich aqueous material with interesting bio-lubricant properties. We investigate the interplay of the tribology and rheology of these coacervates, demonstrating that they dramatically reduce the friction coefficient between lubricated soft model surfaces as compared to solutions of the individual polymers. We characterize the phase separation behavior using microscopy, electrophoretic mobility and thermogravimetric analysis. The macroscopic rheological behaviour is predominantly viscous and ranges from weakly to strongly shear thinning: viscosity levels and strength of shear thinning increase with decreasing ionic strength, but no apparent yield stress or predominant elasticity were observed even in the absence of salt. Conversely, friction coefficients measured between soft and rough surfaces increase with a rise in ionic strength and can be scaled onto a Stribeck-type master curve across varying ionic strength and pH in the mixed and hydrodynamic lubrication regimes.
Collapse
Affiliation(s)
- Amal El Abbadi
- Research Division, Materials Science Department, Firmenich SA, Rue de la Bergère 7, 1217 Meyrin/Geneva, Switzerland.
| | - Philipp Erni
- Research Division, Materials Science Department, Firmenich SA, Rue de la Bergère 7, 1217 Meyrin/Geneva, Switzerland.
| |
Collapse
|
30
|
Monteil J, Hadj-Sassi A, Dargelos É, Guzman-Barrera N, Poque E, Leal-Calderon F. Method to prepare aqueous propolis dispersions based on phase separation. Food Chem 2022; 389:133072. [PMID: 35490523 DOI: 10.1016/j.foodchem.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
Propolis has many benefits for human health. To facilitate its oral consumption, we designed propolis-in-water dispersions to be used as nutraceuticals. Propolis was first dissolved either in ethanol or in a hydroalcoholic solution. Water being a non-solvent for propolis, its addition produced propolis precipitation. We explored the ternary phase diagram of water, propolis and ethanol to identify the line separating the one phase region where propolis is fully dissolved, and the two-phase region where a concentrated propolis solution coexists with a dilute one. Droplets rich in propolis were produced during the phase separation process under mechanical stirring induced by a rotor-stator device or a microfluidizer, and they were stabilized using gum Arabic as an emulsifier. Ethanol was finally removed by distillation under reduced pressure. Propolis dispersions in the micron and submicron size range could be obtained. They contained between 1.75 and 10.5 wt% polyphenols relative to the total mass.
Collapse
Affiliation(s)
- Julien Monteil
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | | - Élise Dargelos
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | | - Emmanuelle Poque
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | |
Collapse
|
31
|
Li Y, Gao Z, Guo J, Wang J, Yang X. Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid. Food Chem 2022; 388:132970. [PMID: 35483281 DOI: 10.1016/j.foodchem.2022.132970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022]
Abstract
Flavour is a crucial sensory element that determines the consumers' preference for food and beverages. In this study, we determined the effects of complex gum arabic (GA) and tannic acid (TA) on the aroma release of flavour oil emulsions in vitro by simulating oral processing conditions. GA and TA were used to stabilize flavour oil emulsions. Visualization of in vitro retention using ex vivo porcine tongue, detection of aroma release in the model mouth, and sensory evaluation of flavour emulsions were performed to determine the effect of TA and GA. The results indicated that the retention of emulsions and the release of aroma compounds were modulated by TA and GA, which could be because of interactions that occurred between GA and TA in emulsions and mucins on the tongue. GA enhanced aroma release, whereas TA contributed to the retention or slow release of target aroma compounds.
Collapse
Affiliation(s)
- Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinmei Wang
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
32
|
Al-Shaeli M, Al-Juboori RA, Al Aani S, Ladewig BP, Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156014. [PMID: 35584751 DOI: 10.1016/j.scitotenv.2022.156014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Saif Al Aani
- The State Company of Energy Production - Middle Region, Ministry of Electricity, Iraq
| | - Bradley P Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Nidal Hilal
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Pinho LS, de Lima PM, de Sá SHG, Chen D, Campanella OH, da Costa Rodrigues CE, Favaro-Trindade CS. Encapsulation of Rich-Carotenoids Extract from Guaraná ( Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods 2022; 11:2557. [PMID: 36076743 PMCID: PMC9455470 DOI: 10.3390/foods11172557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla Magalhães de Lima
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Samuel Henrique Gomes de Sá
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | | | - Carmen Sílvia Favaro-Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
34
|
Sodium alginate/gum arabic/glycerol multicomponent edible films loaded with natamycin: Study on physicochemical, antibacterial, and sweet potatoes preservation properties. Int J Biol Macromol 2022; 213:1068-1077. [PMID: 35697167 DOI: 10.1016/j.ijbiomac.2022.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Sweet potato (Ipomonea batatas Lam) is easily damaged due to its thin skin, which is limited in shelf life and causes enormous economic losses in the food industry. A new type of safe, non-toxic, and edible antibacterial functional film was developed with sodium alginate (2.5 %), gum arabic (1 %), glycerol (2 %), and natamycin as an antimicrobial agent in this study. The physical and antibacterial properties of films, such as thickness, chromaticity, water vapor permeability, tensile strength, and elongation at break, were studied. Furthermore, the antibacterial film was applied in the preservation of sweet potatoes. The results showed that natamycin emulsion had good compatibility with sodium alginate. Besides reducing the transparency of the composite membrane, the mechanical properties, barrier properties, and thermal stability of the composite film were significantly enhanced by the addition of natamycin prepared by a pH-cycle method. When the concentration of natamycin in the membrane solution reached 40 μg/mL or more, the antibacterial film had a noticeable inhibitory effect on the growth of molds, and yeasts, significantly enhancing the bacteriostatic effect of the base film. During the sweet potatoes storage, the water content, total starch content, Vc content, and flavonoid glycoside content of sweet potato showed a downward trend. However, the treatment of antibacterial film containing natamycin could slow down the physiological and quality changes of sweet potatoes during conventional storage, and the sweet potatoes still had good processing quality after 120 days of storage.
Collapse
|
35
|
Drabo MS, Shumoy H, Savadogo A, Raes K. Inventory of human-edible products from native Acacia sensu lato in Africa, America, and Asia: Spotlight on Senegalia seeds, overlooked wild legumes in the arid tropics. Food Res Int 2022; 159:111596. [DOI: 10.1016/j.foodres.2022.111596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
|
36
|
Disentangling the chemistry of Australian plant exudates from a unique historical collection. Proc Natl Acad Sci U S A 2022; 119:e2116021119. [PMID: 35617429 DOI: 10.1073/pnas.2116021119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Significance For millennia, Aboriginal Australian peoples have used the extraordinary physicochemical properties of plant exudates from practical applications to cultural expression. We employ state-of-the-art spectroscopy to characterize the molecular compositions of well-preserved, native Australian plant exudates (Xanthorrhoea, Callitris, Eucalyptus, and Acacia) from a historic collection assembled over a century ago. This work demonstrates the benefits of X-ray Raman spectroscopy for the analysis of these complex natural systems. It provides key information for a broader understanding of their terpenoid, aromatic, phenolic, and polysaccharide composition and subsequent chemical classification. It complements Fourier-transform infrared and pyrolysis-gas chromatography-mass spectrometry by allowing bulk-sensitive analysis in a fully noninvasive manner and probes molecular features which remain silent in these commonly employed analyses.
Collapse
|
37
|
Enzymatic mediated modification of gum Arabic by curcumin oxidation products: Physicochemical and self-assembly study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Adsorption of arabinogalactan-proteins from Acacia gums (senegal and seyal) and its molecular fractions onto latex particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Recent patents on water-soluble polysaccharides for advanced drug delivery, tissue engineering and regenerative medicine. Pharm Pat Anal 2022; 11:75-88. [PMID: 35758101 DOI: 10.4155/ppa-2022-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water-soluble polysaccharides have unique properties and have found wide application in the design of advanced drug-delivery systems and the biofabrication of tissue engineered scaffolds in regenerative medicine. This patent review provides a concise incursion into the mechanisms that define the key properties of water-soluble polysaccharides that have found embodiment within active patents recently granted (2020-2021). In addition, the relationship between their solubility and structural features such as molecular weight, ionic profile, degree of branching/crosslinking, side-chain flexibility and the presence/modification of functional groups that have been discusses. An assimilation of patents in which water-soluble polysaccharides are central to the design of therapeutic interventions applied to specialized treatments in oncology, infectious diseases and neuronal disorders is provided.
Collapse
|
40
|
Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics 2022; 14:pharmaceutics14030485. [PMID: 35335859 PMCID: PMC8948950 DOI: 10.3390/pharmaceutics14030485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The success of wound treatment is conditioned by the combination of both suitable active ingredients and formulation. Grape seed extract (GSE), a waste by-product obtained by grape processing, is a natural source rich in many phenolic compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities and for this reason useful to be used in a wound care product. Bioadhesive polymeric patches have been realized by combining acacia gum (AG) and polyvinylpyrrolidone (PVP). Prototypes were prepared by considering different AG/PVP ratios and the most suitable in terms of mechanical and bioadhesion properties resulted in the 9.5/1.0 ratio. This patch was loaded with GSE combined with cyclic dextrin (CD) to obtain the molecular dispersion of the active ingredient in the dried formulation. The loaded patch resulted mechanically resistant and able to release GSE by a sustained mechanism reaching concentrations able to stimulate keratinocytes’ growth, to exert both antibacterial and antioxidant activities.
Collapse
|
41
|
Ashour MA, Fatima W, Imran M, Ghoneim MM, Alshehri S, Shakeel F. A Review on the Main Phytoconstituents, Traditional Uses, Inventions, and Patent Literature of Gum Arabic Emphasizing Acacia seyal. Molecules 2022; 27:1171. [PMID: 35208961 PMCID: PMC8874428 DOI: 10.3390/molecules27041171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Acacia seyal is an important source of gum Arabic. The availability, traditional, medicinal, pharmaceutical, nutritional, and cosmetic applications of gum acacia have pronounced its high economic value and attracted global attention. In addition to summarizing the inventions/patents applications related to gum A. seyal, the present review highlights recent updates regarding its phytoconstituents. Traditional, cosmetic, pharmaceutical, and medicinal uses with the possible mechanism of actions have been also reviewed. The patent search revealed the identification of 30 patents/patent applications of A. seyal. The first patent related to A. seyal was published in 1892, which was related to its use in the prophylaxis/treatment of kidney and bladder affections. The use of A. seyal to treat cancer and osteoporosis has also been patented. Some inventions provided compositions and formulations containing A. seyal or its ingredients for pharmaceutical and medical applications. The inventions related to agricultural applications, food industry, cosmetics, quality control of gum Arabic, and isolation of some chemical constituents (L-rhamnose and arabinose) from A. seyal have also been summarized. The identification of only 30 patents/patent applications from 1892 to 15 November 2021 indicates a steadily growing interest and encourages developing more inventions related to A. seyal. The authors recommend exploring these opportunities for the benefit of society.
Collapse
Affiliation(s)
- Mohamed A. Ashour
- Department of Phytochemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Egypt
| | - Waseem Fatima
- Department of Clinical Nutrition, Northern Border University, Arar 91431, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
42
|
|
43
|
Protein, hydrophobic nature, and glycan profile of sugar beet pectin influence emulsifying activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Giorgetti A, Hussman FMD, Zeder C, Herter-Aeberli I, Zimmermann MB. Prebiotic Galacto-oligosaccharides and Fructo-oligosaccharides, but not Acacia Gum, Increase Iron Absorption from a Single High-dose Ferrous Fumarate Supplement in Iron-depleted Women. J Nutr 2022; 152:1015-1021. [PMID: 36967158 DOI: 10.1093/jn/nxac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prebiotic galacto-oligosaccharides (GOS) increase iron absorption from fortification-level iron doses given as ferrous fumarate (FeFum) in women and children. Whether GOS or other fibers, such as prebiotic fructo-oligosaccharides (FOS) and acacia gum, increase iron absorption from higher supplemental doses of FeFum is unclear. OBJECTIVES In iron-depleted [serum ferritin (SF)< 25μg/L] women, we tested if oral co-administration of 15g of GOS, FOS or acacia gum increases iron absorption from a 100mg iron supplement given as FeFum. METHODS In a randomized, single-blind cross-over study, 30 women (median age 26.2 years, median SF 12.9μg/L) consumed a 100mg iron tablet labelled with 4mg of 57Fe or 58Fe, given with either: a) 15g GOS; b) 15g FOS; c) 15g acacia gum; or d) 6.1g lactose and 1.5g sucrose (control; matching the amounts of sucrose and lactose present in the GOS powder providing 15 g GOS), dissolved in water. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte isotopic incorporation 14 days after administration. Data were analysed using a linear mixed-effect model. We also tested, in vitro, iron solubility at different pH and dialyzability from the different supplement combinations administered in vivo. RESULTS FIA from FeFum given with GOS and FOS was significantly higher (+45% and 51%, respectively; P < 0.001 for both) compared with control; total iron absorption [median (IQR)] was 34.6 (28.4; 49.1); 36.1 (29.0; 46.2) and 23.9 (20.5; 34.0) mg, respectively. Acacia gum did not significantly affect FIA from FeFum (P = 0.688). In vitro, iron dialyzability of FeFum + GOS was 46% higher than of FeFum alone (P = 0.003). CONCLUSIONS In iron-depleted women, both GOS and FOS co-administration with FeFum increase iron absorption by ∼50% from a 100mg oral iron dose, resulting in an additional 10-12mg of absorbed iron. Thus, GOS and FOS may be promising new enhancers of supplemental iron absorption.The study was registered at clinicaltrials.gov as NCT04194255 (https://clinicaltrials.gov/ct2/show/NCT04194255).
Collapse
|
45
|
Insang S, Kijpatanasilp I, Jafari S, Assatarakul K. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. ULTRASONICS SONOCHEMISTRY 2022; 82:105806. [PMID: 34991963 PMCID: PMC8799475 DOI: 10.1016/j.ultsonch.2021.105806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/08/2023]
Abstract
This study aimed to optimize the ultrasound-assisted extraction (UAE) condition of mulberry leaf extract (MLE) using response surface methodology and to microencapsulate MLE by spray drying using different coating materials and ratios of coating material and MLE. The extraction results showed that MLE from condition of 60 °C (X1, temperature), 30 min (X2, time) and 60% v/v (X3, ethanol concentration) exhibited the highest bioactive compound and antioxidant activity (DPPH and FRAP assay). Based on this optimal condition, MLE was further encapsulated by spray drying. It was found that MLE encapsulated with resistant maltodextrin at ratio of MLE and resistant maltodextrin 1:1 (w/w) showed the highest encapsulation yield (%) and encapsulation efficiency (%). Water solubility, moisture content and water activity were non-significant (p > 0.05) among the microcapsules. The scanning electron microscope (SEM) revealed that the types of coating material affected their microstructures and microcapsules prepared by resistant maltodextrin as coating material had a spherical shape, smooth surface and less shrinkage than microcapsules prepared by maltodextrin and gum arabic which had rough surfaces. The highest antioxidant activity was obtained from microcapsule prepared by gum arabic at ratio of MLE and gam arabic 1:2 (w/w). In conclusion, optimal condition from UAE and encapsulation by spray drying suggest the critical potential for production of functional food with improved bioactive compound stability and maximized antioxidant activity.
Collapse
Affiliation(s)
- Supasit Insang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
46
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
47
|
Davantès A, Nigen M, Sanchez C, Renard D. Adsorption Behavior of Arabinogalactan-Proteins (AGPs) from Acacia senegal Gum at a Solid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10547-10559. [PMID: 34427446 DOI: 10.1021/acs.langmuir.1c01619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adsorption of five different hyperbranched arabinogalactan-protein (AGP) fractions from Acacia senegal gum was thoroughly studied at the solid-liquid interface using a quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), and atomic force microscopy (AFM). The impact of the protein/sugar ratio, molecular weight, and aggregation state on the adsorption capacity was investigated by studying AGP fractions with different structural and biochemical features. Adsorption on a solid surface would be primarily driven by the protein moiety of the AGPs through hydrophobic forces and electrostatic interactions. Increasing ionic strength allows the decrease in electrostatic repulsions and, therefore, the formation of high-coverage films with aggregates on the surface. However, the maximum adsorption capacity was not reached by fractions with a higher protein content but by a fraction that contains an average protein quantity and presents a high content of high-molecular-weight AGPs. The results of this thorough study highlighted that the AGP surface adsorption process would depend not only on the protein moiety and high-molecular-weight AGP content but also on other parameters such as the structural accessibility of proteins, the molecular weight distribution, and the AGP flexibility, allowing structural rearrangements on the surface and spreading to form a viscoelastic film.
Collapse
Affiliation(s)
- Athénaïs Davantès
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, F-44316 Nantes Cedex 3, France
| | - Michaël Nigen
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, F-34060 Montpellier Cedex, France
| | - Christian Sanchez
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, F-34060 Montpellier Cedex, France
| | - Denis Renard
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, F-44316 Nantes Cedex 3, France
| |
Collapse
|
48
|
Amirabadi S, Mohammadzadeh Milani J, Sohbatzadeh F. Effects of cold atmospheric-pressure plasma on the rheological properties of gum Arabic. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Szafrańska JO, Muszyński S, Tomasevic I, Sołowiej BG. The Influence of Dietary Fibers on Physicochemical Properties of Acid Casein Processed Cheese Sauces Obtained with Whey Proteins and Coconut Oil or Anhydrous Milk Fat. Foods 2021; 10:foods10040759. [PMID: 33918205 PMCID: PMC8067206 DOI: 10.3390/foods10040759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate different fibers (acacia, bamboo, citrus or potato) on texture, rheological properties, color, density, and water activity of processed cheese sauces (PCS) based on acid casein, WPC80 and anhydrous milk fat or organic coconut oil. The interaction between the type of oil/fat, the fiber type and the fiber content was significant regarding almost all parameters studied. The computer vision system (CVS) showed that color changes of sauces could be noticeable by consumers. The main factor influencing the change in all products’ hardness was not fat/oil, but added fibers and their concentrations. The highest increase in hardness, adhesiveness and viscosity was observed in products with potato fiber. The value of storage modulus (G′) was higher than the loss modulus (G″) and tan (δ) < 1 for all samples. Different fibers and their amounts did not influence the water activity of cheese sauces obtained with organic coconut oil (OCO) or anhydrous milk fat (AMF).
Collapse
Affiliation(s)
- Jagoda O. Szafrańska
- Department of Milk Technology and Hydrocolloids, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Bartosz G. Sołowiej
- Department of Milk Technology and Hydrocolloids, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-462-33-50
| |
Collapse
|