1
|
Zhang L, Guo KJ, Huang YK, Zeng DP, Chen Y, Qiao D, Shaukat M, Qian JY. Preparation and characterization of liposoluble tea polyphenol based functional emulsion films and the regulation of its releasing property. Food Chem 2025; 476:143413. [PMID: 39977994 DOI: 10.1016/j.foodchem.2025.143413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Functional films based on hydroxypropyl methylcellulose (HPMC)/ sodium citrate (SC) porous film and liposoluble tea polyphenol (LTP)/water Pickering emulsions stabilized by different contents of starch nanoparticles (NPs) were prepared. Addition of Pickering emulsion endowed the film surface pores, decreased oxygen permeability, water vapor permeability (WVP), hydrophilicity and good anti-oxidant effect. With increasing NPs, more smaller emulsion droplets appeared in the emulsion and filled into the porous structures of the film, the light transmittance and contact angle of the film increased. Functional film with 2 % NPs showed the lowest WVP and Tg, and highest stable LTP release ratio (4-12 week). That more surficial holes appeared and more emulsion droplets protrusions accumulated near the cross-sectional pores during the releasing process might facilitate the higher release of film-2 % NPs. The functional films have great potential to be used as light-shielding coatings, antioxidant capsule shells and sustained fresh-keeping "cards" for different oil systems.
Collapse
Affiliation(s)
- Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Ke-Jun Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Yin-Kai Huang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Dong-Ping Zeng
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Mahwish Shaukat
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Wei X, Lei R, Hu Z, Bai W, Zeng X, Liu X, Xie H, Chen J. Fabrication and characterization of emulsion stabilized by tannic acid/soluble potato starch complexes. Int J Biol Macromol 2025; 298:139904. [PMID: 39837440 DOI: 10.1016/j.ijbiomac.2025.139904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
In this study, the influence of tannic acid (TA)/soluble potato starch (PS) mass ratio and PS concentration on TA/PS complexes and emulsions stabilized by TA/PS complexes were studied. The size, hydrophobicity and emulsifying properties of TA/PS complexes were all controlled by TA/PS mass ratio and PS concentration. In detail, the hydrophobicity of PS (θow = 48°) improved after complexing with TA to form TA/PS complexes (θow max = 64°). The emulsions size decreased and then increased with increasing TA/PS ratio. Additionally, the emulsifying properties of TA/PS complexes improved by increasing PS concentration. Analysis of the interfacial tension after adsorption equilibrium (0.25 mass ratio, TA/PS complexes (13.03 mN/m), TA (14.21 mN/m) and PS (20.25mN/m)), TA and PS had a synergistic effect of stabilizing the oil-water surface. Among them, TA mainly played a role in emulsifying property, and PS mainly played a role of stabilization. All emulsions exhibited obvious creaming. However, at high PS concentration or TA/PS ratio, the creaming was prevented by formed smaller emulsion size, interface complexes networks or high viscosity (Increased from 0.004 to 0.060 Pa.s). It showed that TA/PS complexes can act as emulsifiers to improve the physical and oxidative stability of emulsions, making them suitable for delivering oxidation-sensitive fat-soluble bioactive compounds.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Rui Lei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China.
| | - Jieyu Chen
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
3
|
Li S, Wang Z, Pan Y, Sun C, Li E, Gilbert RG. Effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles. Int J Biol Macromol 2025; 308:142717. [PMID: 40174839 DOI: 10.1016/j.ijbiomac.2025.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Starch nanoparticles have increasing applications as emulsion stabilizers in functional foods and drug delivery. The effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles obtained from anti-solvent precipitation are explored here. From size-exclusion chromatography results, ten different starch nanoparticles with distinct molecular structures possessed a molecular size ranging from 63 nm to 111 nm. Rice-starch nanoparticles showed near-neutral wettability (contact angle 90.25°) with 100 % emulsifying stability index (ESI). Correlation analysis indicated that the maximum size of the amylopectin component was positively associated with ESI, while the amount of amylopectin long chains and the lengths of amylose short chains negatively correlated with ESI. Mechanistic reasons for these observations are put forward. These findings can help design new emulsifiers using starch nanoparticles, and development of "clean-label" (i.e. having relatively few ingredients, "natural" ingredients, and few synthetic additives) food emulsions.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zihan Wang
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Yujun Pan
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Chaohui Sun
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Zhu J, Ye T, Tang M, Gao Y, Zhang J, Qian S, Wei Y. Eco-Friendly high Drug-Loading microemulsions with Incorporation of Deep eutectic Solvents: Advancing precision with the dual Ouzo effect. Int J Pharm 2025; 672:125265. [PMID: 39914509 DOI: 10.1016/j.ijpharm.2025.125265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Deep eutectic solvents (DES) enhance drug solubility but require delivery systems, while the Ouzo effect enables surfactant-free microemulsion formation despite limitations in oil phase ratio. By integrating DES as the oil phase, this study develops a dual Ouzo effect microemulsion system that induces both microemulsions and nanoprecipitations simultaneously. Through detailed analysis of composition diagrams, precise adjustment of the mass ratio of VA64 to propylene glycol enables strict control over particle size from 200 nm to 550 nm. This approach enhanced curcumin's solubility to 17.11 mg/mL, a 1700-fold increase compared to its water solubility, with excellent stability showing only 22.4 % degradation after 4 h of light exposure (versus 90-95 % in conventional carriers). The system increased the cumulative release amount of curcumin and presented a rapid initial release followed by a sustained release. Compared with traditional Ouzo effect systems, introducing DES significantly increased the oil phase ratio from 0.05 % to 30 % through enhanced molecular interactions and supersaturation. DES composition adjustment enabled microemulsion stabilization without complex processing, achieving optimal stability with a three-phase contact angle of 89.2° (±0.3°), approaching the theoretical ideal value of 90° for interface stability.
Collapse
Affiliation(s)
- Junxiao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China; School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, PR China
| | - Tianjian Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Mi Tang
- Jiangsu Litaier Pharma Co., Ltd., Nanjing, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
5
|
Du M, Chen Y, Chen L, Din ZU, Chen X, Wang Y, Wang G, Zhu L, Ding W. Synthesis of a novel starch-based emulsion gel with remarkable low-temperature stability via esterification, ozone-oxidation and ion induction. Carbohydr Polym 2025; 352:123165. [PMID: 39843070 DOI: 10.1016/j.carbpol.2024.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
A novel starch-based emulsion gel was designed via octenyl succinic anhydride (OSA) esterification, ozone oxidation, and ion (Ca2+) induction. The gel properties and low-temperature stability of emulsion gel with different oxidation time (0, 5, 10, 15, 25 min; OW-0, 5, 10, 15, 25) were systematically investigated. FTIR revealed that the oxidation of CC and -OH groups in OW-0 by ozone oxidation led to their cleavage into carbonyl groups, and than transformed to carboxyl groups. Moreover, oxidation treatment changed the amorphous and crystal region of starch, resulting in the increasing extensibility, leaching of short chains, and charged groups. The presence of extended starch chains, leaching of short starch chains, and Ca2+ facilitated the formation of the promoting interaction between starch molecular chains, thereby developing a highly cross-linked network structure. Remarkably, a more compact gel network structure was formed through the interaction between water molecules and modified starch in the emulsion gel for OW-15. Furthermore, the gel network structure endowed the emulsion with thick, dense layers on the condensed surface, enhancing its stability at low temperatures. This research provides a novel strategy for designing the starch-based emulsion gel, holding promising applications in the food industry and other scientific fields.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yixiao Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Zia-Ud Din
- Department of Microbiology and Biotechnology, Atta urn Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lijie Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
6
|
Zhang L, Han X, Guo KJ, Ren YP, Chen Y, Yang J, Qian JY. Pickering emulsion gels with curdlan as both the emulsifier and the gelling agent: Emulsifying mechanism, gelling performance and gel properties. Food Chem 2025; 465:141971. [PMID: 39541692 DOI: 10.1016/j.foodchem.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
For the first time, curdlan (CL) was reported to have emulsifying property. Based on its emulsifying property and gelling property, the CL-based simple-structured emulsion gels were prepared. Among different CLs, CL-4 showed relatively good emulsifying property and its based emulsion showed the best stability, which might be mainly due to its highest hydrophobic property. The initial CL-4 gel formation temperature of the emulsion increased with oil volume fraction, which might be due to the oil droplets' interfering effect. Many non-spherical oil droplets appeared in the emulsion gel, which was mainly due to the squeezing effect of CL-4 gelation. The hardness, chewiness, springiness and cohesiveness of CL-4 based emulsion gels increased with CL-4 content. The texture parameters of emulsion gels with oil ratio ranging from 20 % to 40 % did not change significantly, which might benefit for increasing functional components' transportation efficiency of the emulsion gel without weakening its gel property significantly.
Collapse
Affiliation(s)
- Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Xue Han
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ke-Jun Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Yi-Ping Ren
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jie Yang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
7
|
Xu Y, Gu Y, Sun L, Zhuang Y, Li D, Ding Y, Fan X. Stability and in vitro digestion behavior of astaxanthin-loaded Pickering emulsions stabilized by OSA-modified starch: Influence of oil phase content. Int J Biol Macromol 2025; 288:138770. [PMID: 39675613 DOI: 10.1016/j.ijbiomac.2024.138770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers. The effects of the oil phase content on the emulsion properties, stability, and in vitro digestion behavior of the emulsions were investigated. All emulsions exhibited adequate encapsulation efficiency (>80 %) for astaxanthin. Moreover, the particle size and viscosity of the emulsions increased with an increasing oil phase content. The emulsion with a 10 % oil phase content (E-10 %) showed high retention of astaxanthin (>40 %) under the temperature, pH, and ionic strength conditions tested and long-term stability (42 days). On the other hand, the release of free fatty acids and bioaccessibility of astaxanthin were negatively correlated with the oil phase content. And the bioaccessibility of astaxanthin was increased to 11.66 % (for E-10 %). Under a constant emulsifier concentration, E-10 % and E-20 % exhibited a thicker interfacial layer at the oil/water interface. Based on this, a smaller particle size may favor oil droplet dispersion and inhibit droplet floatation and aggregation, improving emulsion stability. Therefore, this study provides useful information on the effect of the oil phase content in esterified starch-stabilized Pickering emulsion delivery systems.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, 150028, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Wang Y, Chen Y, Feng L, Wang F, Liu T, Gu F, Wang F, Huang Q, Zheng J. Mechanistic study of synergetic stabilization of Pickering emulsions by corn glutelin and starch complexes. Food Chem 2025; 463:141558. [PMID: 39393115 DOI: 10.1016/j.foodchem.2024.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The hydrophobicity of glutelin, zein, and carotenoids has limited the development of corn-based functional food products. This paper aims to construct emulsions stabilized by multiple corn-derived components using a simple and organic solvent-free method. The emulsions comprised oil droplets dispersed in the water, where glutelin and starch were stabilizers. Optimal stability, smaller droplet sizes, and moderate viscosity were achieved with a glutelin/starch ratio of 1:4. The results of the dynamic rheological measurements of bulk emulsions as well as interfacial properties and microstructure revealed that the stability mechanism of glutelin-starch complex was the interplay of the increased continuous phase viscosity and stronger interfacial viscoelastic films. Thus, these combined factors effectively inhibited the creaming and coalescence of oil droplets. Interfacial films also protected the carotenoids. The results of this study elucidate the stabilization mechanism among different corn-derived components and therefore guide the design of corn-based personalized nutritional systems.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
| | - Yuying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100101, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Li S, Feng D, Xiao X, Li E, Wang J, Li C. Oil-in-water emulsion activity and stability of short-term retrograded starches depend on starch molecular size, amylose content, and amylopectin chain length. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:520-529. [PMID: 39235095 DOI: 10.1002/jsfa.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Natural emulsifiers are increasingly preferred by the food industry to meet consumers' demand for 'clean-label' emulsion products. In the present study, 10 short-term retrograded starches with unique molecular structures were explored to examine the relationships between starch structures and their ability to form stable oil-in-water emulsions. RESULTS Waxy maize starch showed the largest value of contact angle and conductivity of emulsion, whereas potato and lentil starch showed the lowest value of contact angle and conductivity of emulsion, respectively. Emulsion prepared by rice starch showed the lowest, whereas that of sweet potato starch showed the highest value of viscosity. Consequentially, the emulsion stabilized with waxy maize and tapioca starch showed the smallest and less polydisperse droplets, resulting in a much higher emulsifying index. On the other hand, emulsion prepared with potato starch showed the highest stability compared to other starches. Correlation analysis suggested that starches with larger molecular size, a lower amylose content and shorter amylopectin short chains had a higher emulsification ability, whereas the amount of starch molecular interactions formed during short-term retrogradation revealed no obvious linking to emulsion performances. CONCLUSION These findings provided food industry with exciting opportunities to develop 'clean-label' emulsions with desirable properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Lin Y, Li X, Xu Y, Ding J, Wu H, Zhao F, Huang H. Preparation and properties of β-carotene-loaded sanxan emulsion gel microcapsules. Int J Biol Macromol 2025; 286:138439. [PMID: 39645109 DOI: 10.1016/j.ijbiomac.2024.138439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Sanxan has important application value in the field of bioactive substance delivery. However, the current sanxan emulsion gel method has certain limitations in delivering heat-sensitive lipophilic bioactive substances. In this study, the acid-gelling properties of sanxan were utilized to prepare sanxan emulsion gel microcapsules (SEGMs) by extrusion dripping method. The sanxan Pickering emulsion had a particle size of 298.4 nm and an absolute ζ-potential of 48.6 mV, exhibiting better stability. As the concentration of sanxan increased from 0.5 % to 0.9 %, the hardness of SEGMs prepared with gluconolactone as the fixing solution increased by 104.1 %. SEM results showed that oil droplets in the emulsion gels were uniformly distributed in the network of sanxan gels, resulting in smooth and dense wavy structures. Moreover, the porosity of SEGMs could be adjusted by the concentration of sanxan and the oil phase fraction jointly. The in vitro digestion simulation test indicated that SEGMs had a protective effect on β-carotene in simulated gastric fluid, with a release rate of 0.56 %. In simulated intestinal fluid, SEGMs slowly released β-carotene with a release rate of 66.20 %. The results of this study provide theoretical support for the use of sanxan-based emulsion gels or oleogels as lipophilic nutrient delivery systems.
Collapse
Affiliation(s)
- Yiting Lin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392, China; Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Li
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392, China; Tianjin Agricultural University, Tianjin 300392, China.
| | - Yanling Xu
- Tianjin Agricultural University, Tianjin 300392, China
| | - Jiayi Ding
- Tianjin Agricultural University, Tianjin 300392, China
| | - Haiqing Wu
- Tianjin Agricultural University, Tianjin 300392, China
| | - Fei Zhao
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392, China; Tianjin Agricultural University, Tianjin 300392, China.
| | - Haidong Huang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392, China; Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
11
|
Liu C, Ma R, Shen W, Tian Y. Unraveling the impact of starch granule-associated proteins on the emulsifying ability of quinoa starch granules at multiple scales. Food Chem 2025; 462:140974. [PMID: 39197239 DOI: 10.1016/j.foodchem.2024.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Fang F, Tian Z, Cai Y, Huang L, Van der Meeren P, Wang J. The structural, antioxidant and emulsifying properties of cellulose nanofiber-dihydromyricetin mixtures: Effects of composite ratio. Food Chem 2024; 454:139803. [PMID: 38810448 DOI: 10.1016/j.foodchem.2024.139803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
In this work, effects of cellulose nanofiber/dihydromyricetin (CNF/DMY) ratio on the structural, antioxidant and emulsifying properties of the CNF/DMY mixtures were investigated. CNF integrated with DMY via hydrogen bonding and the antioxidant capacity of mixtures increased with decreasing CNF/DMY ratio (k). The oxidative stability of emulsions enhanced as the DMY content increased. Emulsions formed at Φ = 0.5 displayed larger size (about 25 μm), better viscoelasticity and centrifugal stability than those at Φ = 0.3 (about 23 μm). The emulsions at k = 17:3 and Φ = 0.5 exhibited the most excellent viscoelasticity. In conclusion, the DMY content in mixtures and the oil phase fraction exhibited distinct synergistic effects on the formation and characteristics of emulsions, and the emulsions could demonstrate superior oxidative and storage stability. These findings could provide a novel strategy to extend the shelf life of cellulose-based emulsions and related products.
Collapse
Affiliation(s)
- Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zijing Tian
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| | - Lihua Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent University, 9000 Gent, Belgium
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
13
|
Fang F, Tian Z, Huang L, Cai Y, Van der Meeren P, Wang J. A novel Pickering emulsion gels stabilized by cellulose nanofiber/dihydromyricetin composite particles: Microstructure, rheological behavior and oxidative stability. Int J Biol Macromol 2024; 278:135281. [PMID: 39256126 DOI: 10.1016/j.ijbiomac.2024.135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Particle concentrations (w) and oil content (Φ) are crucial factors influencing the gel stability of Pickering emulsions. To understand the stabilization mechanism comprehensively, we prepared emulsion gels stabilized by CNF/DMY composite particles at various w (0.5-1.5 wt%) and Φ (0.2-0.6, v/v). The microstructure revealed the adsorption of these particles at the oil-water interface, with excess particles forming a three-dimensional network structure in the continuous phase. Rheological studies showed that the network structure of Pickering emulsions was significantly influenced by w and Φ, resulting in improved emulsion gel strength that hindered the movement of oil droplets and oxygen in the continuous phase, thereby enhancing emulsion stability. Three scenarios for the critical strain (γco) were observed: at Φ = 0.2, γco decreased with increasing w, while at Φ = 0.4, γco increased with increasing w. At Φ = 0.6, γco remained relatively constant regardless of w. In conclusion, adjusting particle concentration and oil content enabled the control of microstructure, rheological properties, and antioxidant capacity of emulsion gels. These findings could be a valuable resource for formulating and ensuring the quality of emulsion gel-based products in the food industry.
Collapse
Affiliation(s)
- Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zijing Tian
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Lihua Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent University, B-9000 Gent, Belgium
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
14
|
Li S, Sun C, Sun Y, Li E, Li P, Wang J. Acid Hydrolysis of Quinoa Starch to Stabilize High Internal Phase Emulsion Gels. Gels 2024; 10:559. [PMID: 39330161 PMCID: PMC11430963 DOI: 10.3390/gels10090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Starch nanocrystals (SNCs) to stabilize high internal phase emulsions (HIPEs) always suffer low production efficiency from acid hydrolysis. Due to its small granule size, Quinoa starch (QS) was selected to produce SNCs as a function of acid hydrolysis time (0-4 days), and their structural changes and potential application as HIPEs' stabilizers were further explored. With increasing the acid hydrolysis time from 1 day to 4 days, the yield of QS nanocrystals decreased from 30.4% to 10.8%, with the corresponding degree of hydrolysis increasing from 51.2% to 87.8%. The occurrence of QS nanocrystals was evidenced from the Tyndall effect and scanning electron microscopy with particle size distribution. The relative crystallinity of QS subjected to different hydrolysis times (0-4 days) increased from 22.27% to 26.18%. When the acid hydrolysis time of QS was 3 and 4 days, their HIPEs showed self-standing after inversion, known as high internal phase emulsion gels (HIPE gels), closely related to their densely packed interfacial architecture around oil droplets, seen on an optical microscope, and relatively high apparent viscosity. This study could provide a theoretical guidance for the efficient production and novel emulsification of SNCs from QS to HIPE gels.
Collapse
Affiliation(s)
- Songnan Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chaohui Sun
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Ye Sun
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
15
|
Yang Z, Chen Q, Wei L. Active and smart biomass film with curcumin Pickering emulsion stabilized by chitosan-adsorbed laurate esterified starch for meat freshness monitoring. Int J Biol Macromol 2024; 275:133331. [PMID: 38945706 DOI: 10.1016/j.ijbiomac.2024.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
The multifunctional active smart biomass film was prepared by incorporating chitosan-adsorbed laurate esterified starch curcumin Pickering emulsion into the starch film matrix, with nano-cellulose serving as reinforcing agents. The mechanical and functional properties of the film were studied, and the film was used to monitor the freshness of pork. The results demonstrated a relatively uniform distribution of curcumin and Pickering emulsion droplets within the film matrix. Furthermore, the thermal stability was minimally impacted by the introduction of curcumin Pickering emulsion, while the tensile strength and tensile strain of the film were increased, and both its hydrophobicity and antioxidant properties were improved. The free radical scavenging rate reached 56.01 %, with sustained high antioxidant capacity even after 8 days. Additionally, the presence of curcumin provided the film with pH indicating ability and delayed pork spoilage. Therefore, this work provides an attractive strategy for constructing green, active, and smart biomass packaging films for meat packaging applications.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qifeng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Shenzhen Xinyichang Technology Co., Ltd, Shenzhen 518000, China.
| | - Liting Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Tian Y, Wang S, Li T, Lv J, Zhang X, Oh DH, Fu X. Effect of transglutaminase on ovalbumin emulsion gels as carriers of encapsulated probiotic bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3468-3476. [PMID: 38133640 DOI: 10.1002/jsfa.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The use of emulsion gels to protect and deliver probiotics has become an important topic in the food industry. This study used transglutaminase (TGase) to regulate ovalbumin (OVA) to prepare a novel emulsion gel. The effects of OVA concentration and the addition of TGase on the microstructure, rheological properties, water-holding capacity, and stability of the emulsion gels were investigated. RESULTS With the addition of TGase and the increasing OVA, the particle size of the emulsion gels decreased significantly (P < 0.05). The gels with TGase exhibited greater water holding, hardness, and chewiness to some extent by forming a more uniform and stable system. After simulated digestion, the survival rate of Bifidobacterium lactis embedded in OVA emulsion gels improved significantly in comparison with the oil-water mixture as a result of the protective effect of the emulsion gel encapsulation. CONCLUSION By increasing the OVA content and adding TGase, the rheological characteristics, stability, and encapsulation capability of the OVA emulsion gel could be enhanced, providing a theoretical basis for the use of emulsion gels to construct probiotic delivery systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shurui Wang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianyun Li
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiran Lv
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianli Zhang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Mahfouzi M, Zhang H, Haoran L, McClements DJ, Hadidi M. Starch-based particles as stabilizers for Pickering emulsions: modification, characteristics, stabilization, and applications. Crit Rev Food Sci Nutr 2024; 65:1841-1856. [PMID: 38436130 DOI: 10.1080/10408398.2024.2312285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The potential utilization of starch as a particle-based emulsifier in the preparation of Pickering emulsions is gaining interest within the food industry. Starch is an affordable and abundant functional ingredient, which makes it an excellent candidate for the stabilization of Pickering emulsions. This review article focuses on the formation, stabilization, and properties of Pickering emulsions formulated using starch-based particles and their derivatives. First, methods of isolating and modifying starch-based particles are highlighted. The key parameters governing the properties of starch-stabilized Pickering emulsions are then discussed, including the concentration, size, morphology, charge, and wettability of the starch-based particles, as well as the type and size of the oil droplets. The physicochemical mechanisms underlying the ability of starch-based particles to form and stabilize Pickering emulsions are also discussed. Starch-based Pickering emulsions tend to be more resistant to coalescence than conventional emulsions, which is useful for some food applications. Potential applications of starch-stabilized Pickering emulsions are reviewed, as well as recent studies on their gastrointestinal fate. The information provided may stimulate the utilization of starch-based Pickering emulsions in food and other industries.
Collapse
Affiliation(s)
- Maryam Mahfouzi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, China
| | - Li Haoran
- College of Integration Science, Yanbian University, Yanji, Jilin, China
| | | | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Li J, Wang Q, Meng F, Sun J, Liu H, Gao Y. Analysis of instability of starch-based Pickering emulsion under acidic condition of pH < 4 and improvement of emulsion stability. Int J Biol Macromol 2024; 261:129886. [PMID: 38325252 DOI: 10.1016/j.ijbiomac.2024.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Starch-based Pickering emulsions exhibit high interfacial stability in a certain range of mild pH environments. On the contrary, many studies have reported that when the pH value is <4, it often leads to different degrees of emulsion instability. In this paper, the microscopic state of starch granules in the emulsion and its effect on the stability of the emulsion were observed and analyzed by atomic force microscope (AFM) in tapping mode. At the same time, Pickering emulsions in acidic environment were prepared by using the gel properties of methyl cellulose (MC) in synergy with esterified high amylose maize starch (M-HAMS) granules. The results show that in the emulsion with pH 3, the excessive H + ion inhibits the swelling of M-HAMS granules and prevents it from forming a stable gel structure, which is the main cause of emulsion instability. The polarity of MC with water contact angle (WCA) of 81.8° is similar to that of M-HAMS granules with WCA of 80.1°, and a uniform and ordered micro-nanostructure is formed in the aqueous phase. The prepared acidic (pH 3-4) emulsion has good stability during the observation period of 30 days.
Collapse
Affiliation(s)
- Juanjuan Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Qian Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Fanmin Meng
- R&D center, Valiant Co. Ltd., Yantai 264000, PR China
| | - Jie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
19
|
Xu W, Jia Y, Li J, Sun H, Cai L, Wu G, Kang M, Zang J, Luo D. Pickering emulsion with high freeze-thaw stability stabilized by xanthan gum/lysozyme nanoparticles and konjac glucomannan. Int J Biol Macromol 2024; 261:129740. [PMID: 38281516 DOI: 10.1016/j.ijbiomac.2024.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
In this study, freeze-thaw cycle experiments were conducted on food-grade Pickering emulsions co-stabilized with konjac glucomannan (KGM) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs). The rheological properties, particle size, flocculation degree (FD), coalescence degree (CD), centrifugal stability, Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and microstructure of Pickering emulsion stabilized by KGM before and after freeze-thaw were characterized. It was found that as the concentration of KGM increased, the flocculation degree (FD) and coalescence degree (CD) of the emulsion decreased after the freeze-thaw cycle compared to the control sample, and the microscopic images showed that the droplets became smaller and less affected by the freeze-thaw cycles. The rheological and water-holding properties also confirmed that the KGM-added emulsions still had a strong gel network structure and prevented the separation of the continuous and dispersed phases of the droplets after freezing and thawing. Freeze-thaw treatments had a negative effect on the stable emulsion of XG/Ly NPs, while the addition of KGM improved the freeze-thaw stability of the emulsion, which provided a theoretical basis for the development of emulsion products with high freeze-thaw stability.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Yin Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jingyi Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Liwen Cai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Guanchen Wu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Mengyao Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiaxiang Zang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
20
|
Zhang Y, Li S, Kong L, Tan L. Developing biopolymer-stabilized emulsions for improved stability and bioaccessibility of lutein. Int J Biol Macromol 2024; 259:129202. [PMID: 38184046 DOI: 10.1016/j.ijbiomac.2024.129202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Lutein is essential for infant visual and cognitive development but has low stability and solubility. This study aimed to enhance the stability and bioaccessibility of lutein using oil-in-water emulsions stabilized with biopolymers. Commercially available octenylsuccinylated (OS) starches, including capsule TA® (CTA), HI-CAP®100 (HC), and Purity Gum® 2000 (PG), along with gum Arabic (GA) variants Ticaloid acacia Max® (TAM), TICAmulsion® 3020 (TM), and pre-hydrate gum Arabic (PHGA), were chosen as emulsifiers. By screening the effect of biopolymer concentration and oil volume fraction (Φ), emulsions stabilized with CTA, HC, or TM at 20% and 30% (w/v) concentration and 70% Φ exhibited a gel-like structure and were selected for further assessments. After a week at 25 °C, emulsions stabilized by CTA and HC showed no significant change in droplet size, while TM emulsion exhibited a 1.58-fold increase. At 45 °C, all emulsions exhibited increase in droplet size. Lutein retention is higher in CTA emulsions at both storage temperatures than free lutein. In vitro bioaccessibility of all lutein emulsions was higher than that of free lutein. These findings highlight the superior stability and bioaccessibility of the lutein emulsion stabilized by OS starch, positioning it as a promising carrier to broaden lutein applications in infant foods.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
21
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
22
|
Chen Y, Han X, Chen DL, Ren YP, Yang SY, Huang YX, Yang J, Zhang L. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties. Foods 2024; 13:431. [PMID: 38338566 PMCID: PMC10855821 DOI: 10.3390/foods13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This research supplied a "cleaner-production" way to produce "clean-label" quinoa starch-based Pickering emulsifier with excellent emulsifying properties. The effects of dry ball-milling time and speed on the multi-scale structures and emulsifying properties of quinoa starch were studied. With increasing ball-milling time and speed, particle size first decreased and then increased, the crystallinity, lamellar structure and short-range ordered structure gradually decreased, and contact angle gradually increased. The increased contact angle might be related to the increased oil absorption properties and the decreased water content. The emulsification properties of ball-milled quinoa starch (BMQS)-based Pickering emulsions increased with the increase in ball-milling time and speed, and the emulsions of BMQS-4 h, 6 h, 8 h, and 600 r reached the full emulsification state. After 120 days' storage, the oil droplets of BMQS-2 h (BMQS-400 r) deformed, the oil droplets increased, and the emulsification index decreased. The emulsification index and the oil droplets of BMQS-4 h, 6 h, 8 h and 600 r-based emulsions did not show obvious changes after storage, indicating the good emulsifying stability of these BMQS-based emulsions, which might be because that the relatively larger amount of starch particles that dispersed in the voids among the oil droplets could act as stronger network skeletons for the emulsion gel. This Pickering emulsifier was easily and highly efficiently produced and low-cost, having great potential to be used in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, China; (Y.C.); (X.H.); (D.-L.C.); (Y.-P.R.); (S.-Y.Y.); (Y.-X.H.); (J.Y.)
| |
Collapse
|
23
|
Huo D, Xiao X, Zhang X, Hao X, Hao Z, Li E. Exploration of unique starch physicochemical properties of novel buckwheat lines created by crossing Golden buckwheat and Tatary buckwheat. Food Chem X 2023; 20:100949. [PMID: 38144746 PMCID: PMC10739759 DOI: 10.1016/j.fochx.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023] Open
Abstract
Buckwheat is considered as a healthy cereal food, and it is essential to cultivate new buckwheat lines with good starch physicochemical properties for both consumers and food producers. Six novel buckwheat (Duoku, Dk) were generated by crossing of Golden buckwheat and Tatary buckwheat, and their kernel appearance properties and starch physicochemical properties were analyzed together with one domestic line (Cimiqiao) and one wild line (Yeku). The results showed that Dk samples had better appearance properties than two control samples. The Dk samples showed lower amylose content, similar amylopectin molecular structure and chain length distributions, and larger starch granules compared with Cimiqiao. The digestion results showed that two Dk samples: Dk6 & Dk9 had high resistant starch content; while the other two Dk samples: Dk37 & Dk38 had a steady glucose releasing rate. The Dk samples also showed high gelatinization temperature, indicating they were good raw materials for producing glass noodle. This study proved that Dk buckwheat had unique starch physicochemical properties, and could be used as new food materials in the future.
Collapse
Affiliation(s)
- Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xuefeng Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhanyang Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Hu X, Jiang Q, Du L, Meng Z. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review. Carbohydr Polym 2023; 322:121328. [PMID: 37839840 DOI: 10.1016/j.carbpol.2023.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
Polysaccharide-based oleogels and emulsion gels have become novel strategies to replace solid fats due to safe and plentiful raw material, healthier fatty acid composition, controllable viscoelasticity, and more varied nutrition/flavor embedding. Recently, various oleogelation techniques and novel emulsion gels have been reported further to enrich the potential of polysaccharides in oil structuring, in which a crucial step is to promote the formation of polysaccharide networks determining gel properties through different media. Meanwhile, polysaccharide-based oleogels and emulsion gels have good oil holding, nutrient/flavor embedding, and 3D food printability, and their applications as fat substitutes have been explored in foods. This paper comprehensively reviews the types, preparation methods, and mechanisms of various polysaccharide-based oleogels and emulsion gels; meanwhile, the food applications and new trends of polysaccharide-based gels are discussed. Moreover, some viewpoints about potential developments and application challenges of polysaccharide-based gels are mentioned. In the future, polysaccharide-based gels may be flexible materials for customized nutritional foods and molecular gastronomy. However, it is still a challenge to select the appropriate oleogels or emulsion gels to meet the requirements of the products. Once this issue is addressed, oleogels and emulsion gels are anticipated to be used widely.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qinbo Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Liyang Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Kuzhithariel Remanan M, Zhu F. Encapsulation of ferulic acid in high internal phase Pickering emulsions stabilized using nonenyl succinic anhydride (NSA) and octenyl succinic anhydride (OSA) modified quinoa and maize starch nanoparticles. Food Chem 2023; 429:136748. [PMID: 37467669 DOI: 10.1016/j.foodchem.2023.136748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized using modified starch nanoparticles (SNPs) were studied as a delivery system for ferulic acid (FA). The quinoa (Q, 153 nm) and maize (M, 221 nm) SNPs were prepared by sono-precipitation and modified with nonenyl succinic anhydride (NSA) and octenyl succinic acid (OSA). The FA-encapsulated HIPPEs obtained showed neither coalescence nor Ostwald ripening, as reflected by emulsion index and droplet size measurements. Confocal laser scanning microscopy revealed FA entrapped droplets surrounded by the SNPs layer. The rheological measurements confirmed strong network formation and long-term stability. In vitro studies (pH 7.4, 96 h) showed sustained release of FA from the gel network. After 15 days, the encapsulation efficiencies for HIPPEs stabilized with both NSA and OSA modified QSNPs and MSNPs were close to 99%. The results showed that FA could be feasibly encapsulated in HIPPEs stabilized using modified SNPs.
Collapse
Affiliation(s)
- Mejo Kuzhithariel Remanan
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Wang J, Zhao C, Li P, Wang L, Li S. Structural Characteristics and Multiple Bioactivities of Volvariella volvacea Polysaccharide Extracts: The Role of Extractive Solvents. Foods 2023; 12:4357. [PMID: 38231875 DOI: 10.3390/foods12234357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The chemical structures and functional properties of plant-based polysaccharides are critically influenced by extractive solvents, but their roles are not clear. In this study, the structural characteristics and multiple bioactivities of Volvariella volvacea polysaccharides (VVPs) subjected to water (VVP-W), alkalis (sodium hydroxide, VVP-A), and acids (citric acid, VVP-C) as extractive solvents are investigated systematically. Of the above three polysaccharides, VVP-W exhibited the highest molecular weights, apparent viscosity, and viscoelastic properties. Functional analyses revealed that VVP-C had an excellent water-holding capacity, foaming properties, and emulsifying capacity, while VVP-A exhibited a promising oil-holding capacity. Moreover, VVP-C displayed strong inhibitory effects on α-amylase and α-glucosidase, which could be attributed to its content of total phenolics, proteins, and molecular weights. These findings have important implications for selecting the appropriate extraction techniques to obtain functional polysaccharides with targeted bioactive properties as food additives.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ping Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Magallanes-Cruz PA, Duque-Buitrago LF, Del Rocío Martínez-Ruiz N. Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Res Int 2023; 169:112875. [PMID: 37254325 DOI: 10.1016/j.foodres.2023.112875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Seeds represent a potential source of starch, containing at least 60-70% of total starch, however many of them are treated as waste and are usually discarded. The review aim was to analyze the characteristics, functional properties, and potential applications of native and modified starches from underutilized seeds such as Sorghum bicolor L. Moench (WSS), Chenopodium quinoa, Wild. (QSS), Mangifera indica L. (MSS), Persea americana Mill. (ASS), Pouteria campechiana (Kunth) Baehni (PCSS), and Brosimum alicastrum Sw. (RSS). A systematic review of scientific literature was carried out from 2014 to date. Starch from seeds had yields above 30%. ASS had the higher amylose content and ASS and RSS showed the highest values in water absorption capacity and swelling power, contrary to MSS and PCSS while higher thermal resistance, paste stability, and a lower tendency to retrograde were observed in MSS and RSS. Functional properties such as water solubility, swelling power, thermal stability, low retrogradation tendency, and emulsion stability were increased in RSS, WSS, QSS, and MSS with chemical modifications (Oxidation, Oxidation-Crosslinking, OSA, DDSA, and NSA) and physical methods (HMT and dry-heat). Digestibility in vitro showed that WSS and QSS presented high SDS fraction, while ASS, MSS, PCSS, and HMT-QSS presented the highest RS content. Native or modified underutilized seed starches represent an alternative and sustainable source of non-conventional starch with potential applications in the food industry and for the development of healthy foods or for special nutritional requirements.
Collapse
Affiliation(s)
- Perla A Magallanes-Cruz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| | - Luisa F Duque-Buitrago
- Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, C. P. 07738 Ciudad de México, Mexico.
| | - Nina Del Rocío Martínez-Ruiz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
28
|
Zhi L, Liu Z, Wu C, Ma X, Hu H, Liu H, Adhikari B, Wang Q, Shi A. Advances in preparation and application of food-grade emulsion gels. Food Chem 2023; 424:136399. [PMID: 37245468 DOI: 10.1016/j.foodchem.2023.136399] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Emulsion gel is a semi-solid or solid material with a three-dimensional net structure produced from emulsion through physical, enzymatic, chemical methods or their combination. Emulsion gels are widely used in food, pharmaceutical and cosmetic industries as carriers of bioactive substances and fat substitutes due to their unique properties. The modification of raw materials, and the application of different processing methods and associated process parameters profoundly affect the ease or difficult of gel formation, microstructure, hardness of the resulting emulsion gels. This paper reviews the important research undertaken in the last decade focusing on classification of emulsion gels, their preparation methods, the influence of processing method and associated process parameters on structure-function of emulsion gels. It also highlights current status of emulsion gels in food, pharmaceutical and medical industries and provides future outlook on research directions requiring to provide theoretical support for innovative applications of emulsion gels, particularly in food industry.
Collapse
Affiliation(s)
- Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
29
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
30
|
Xu L, Bai Z, Feng J, He L, Ren J, Chai S, Chen X. Effects of the degree of substitution of octenyl succinic anhydride on the physicochemical characteristics of adlay starch. Int J Biol Macromol 2023; 241:124535. [PMID: 37105246 DOI: 10.1016/j.ijbiomac.2023.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Impact of octenyl succinic anhydride (OSA) esterification on the structural, thermal, pasting, and emulsifying characteristics of adlay starch was investigated. The degree of substitution (DS) increased significantly from 0.008 to 0.025 with increasing OSA quantity, and the bands intensity at 1724 cm-1 and 1572 cm-1 in Fourier transform infrared spectroscopy increased with increasing DS. OSA modified starch showed unaltered orthorhombic diffraction pattern and morphological structure in native adlay starch, but gelatinization temperatures and enthalpy decreased significantly. Higher DS values lowered iodine binding capacity (from 1.37 to 0.77) and a shift in the maximum absorbance wavelength toward the shortwave direction was observed (from 530 nm to 510 nm). Significant increases were observed in peak, through, breakdown and final viscosities upon OSA esterification, while the pasting temperature decreased. Furthermore, contact angles increased significantly from 27.4° to 73.4° with increasing DS, and OSA-starch exhibited superior emulsion stability. Therefore, esterification with OSA effectively modified adlay starch to meet industrial demands and enhance its functional properties.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Jiaqing Feng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Ling He
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaoming Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
31
|
Improvement of emulsifying properties of potato starch via complexation with nanoliposomes for stabilizing Pickering emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
33
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
34
|
Kou T, Faisal M, Song J, Blennow A. Stabilization of emulsions by high-amylose-based 3D nanosystem. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Champrasert O, Sagis LM, Suwannaporn P. Emulsion-based oleogelation using octenyl succinic anhydride modified granular cold-water swelling starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Chi C, He Y, Xiao X, Chen B, Zhou Y, Tan X, Ji Z, Zhang Y, Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int J Biol Macromol 2023; 225:557-564. [PMID: 36395943 DOI: 10.1016/j.ijbiomac.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Novel resources of very small granular starch are of great interests to food scientists. We previously found Chlorella sp. MBFJNU-17 contained small granular starch but whether the MBFJNU-17 was a novel resource of very small granular starch remained unresolved. This study isolated and characterized the starch from MBFJNU-17 in comparison with quinoa starch (a typical very small granular starch), and discussed whether the MBFJNU-17 could be a resource of very small granular starch. Results showed that chlorella starch displayed a smaller size (1024 nm) than quinoa starch did (1107 nm), suggesting MBFJNU-17 was a good resource of very small granular starch. Additionally, chlorella starch had less amylose, higher proportion of long amylopectin branches, more ordered structures, thinner amorphous lamellae, better paste thermostability, and slower enzymatic digestion than quinoa starch did. These findings indicated that Chlorella sp. MBFJNU-17 was a novel resource of very small granular starch with desirable thermostability and nutritional attributes.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xuehua Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhili Ji
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiping Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pingying Liu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
37
|
Li Z, Weng W, Ren Z, Zhang Y, Li S, Shi L. Electrospun octenylsuccinylated starch-pullulan nanofiber mats: Adsorption for the odor of oyster peptides and structural characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Li X, Wang Q, Hao J, Xu D. Stability, Structure, Rheological Properties, and Tribology of Flaxseed Gum Filled with Rice Bran Oil Bodies. Foods 2022; 11:foods11193110. [PMID: 36230186 PMCID: PMC9561989 DOI: 10.3390/foods11193110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, rice bran oil bodies (RBOBs) were filled with varying concentrations of flaxseed gum (FG) to construct an RBOB-FG emulsion-filled gel system. The particle size distribution, zeta potential, physical stability, and microstructure were measured and observed. The molecular interaction of RBOBs and FG was studied by Fourier transform infrared spectroscopy (FTIR). In addition, the rheological and the tribology properties of the RBOB-FG emulsion-filled gels were evaluated. We found that the dispersibility and stability of the RBOB droplets was improved by FG hydrogel, and the electrostatic repulsion of the system was enhanced. FTIR analysis indicated that the hydrogen bonds and intermolecular forces were the major driving forces in the formation of RBOB-FG emulsion-filled gel. An emulsion-filled gel-like structure was formed, which further improved the rheological properties, with increased firmness, storage modulus values, and viscoelasticity, forming thermally stable networks. In the tribological test, with increased FG concentration, the friction coefficient (μ) decreased. The elasticity of RBOB-FG emulsion-filled gels and the ball-bearing effect led to a minimum boundary friction coefficient (μ). These results might contribute to the development of oil-body-based functional ingredients for applications in plant-based foods as fat replacements and delivery systems.
Collapse
Affiliation(s)
- Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-106-898-5645; Fax: +86-106-898-5645
| |
Collapse
|
39
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
40
|
Feng Y, Zhang B, Fu X, Huang Q. Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydr Polym 2022; 292:119715. [PMID: 35725189 DOI: 10.1016/j.carbpol.2022.119715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022]
Abstract
Hydrophobic-modified starch complexes have the potential to form Pickering emulsions and improve the oxidative stability of flaxseed oil. Here, V-type starch-lauric acid complexes (SLACs) were fabricated via solid encapsulation within 0.5-12 h and applied in flaxseed oil Pickering emulsions. Complexing index, X-ray diffraction and differential scanning calorimetry analyses confirmed that the degree of complexation increased with the reaction time. Pickering emulsion gels stabilised by SLACs generated with reaction times of 6 h and 12 h exhibited good storage stability and high yield stress, G' values and apparent viscosity. Confocal laser scanning microscopy and cryo-scanning electron microscopy revealed a gelation mechanism involving increased interface roughness and enhanced droplet-droplet interaction. In comparison to pure flaxseed oil, higher thermo-oxidative resistance was observed at 130 °C, with a markedly longer oxidation induction for emulsions and emulsion gels stabilised by SLACs. Our findings could assist in the design of hydrophobic-modified starch and provide a new paradigm for delaying oil oxidation.
Collapse
Affiliation(s)
- Yinong Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
41
|
Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. Int J Biol Macromol 2022; 222:121-131. [PMID: 36113597 DOI: 10.1016/j.ijbiomac.2022.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
The effect of weakly charged insoluble karaya gum (KG) on zein colloidal nanoparticles (ZKGPs) for stabilizing Pickering emulsions was investigated. Due to weak surface charge, KG could cover the surface of zein particles by hydrogen bonds and weak electrostatic interactions. With the increase in coverage, the zeta potential of ZKGPs changed from positive to negative values close to zero and the average particle size tended to become larger. The closest neutral wettability (89.85°) was achieved when the zein/KG mass ratio was 1:1. The samples prepared with high oil volume fraction (φ = 0.5-0.75) and high particle concentration (1.0-1.3 %, w/v) formed emulsion gels easily and showed higher storage stability. CLSM images also confirmed that ZKGPs could be distributed in the continuous phase to enhance the emulsion network structure. Consequently, weakly charged ZKGPs reduced the emulsification energy barrier and increased the coverage and steric hindrance of particles at the oil/water interface. These findings provide new ideas for the development of stable Pickering emulsions for application in food textural modification as well as encapsulation and delivery of bioactive substances.
Collapse
|
42
|
Junejo SA, Wang J, Liu Y, Jia R, Zhou Y, Li S. Multi-Scale Structures and Functional Properties of Quinoa Starch Extracted by Alkali, Wet-Milling, and Enzymatic Methods. Foods 2022; 11:foods11172625. [PMID: 36076810 PMCID: PMC9455589 DOI: 10.3390/foods11172625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to investigate the effects of starch extraction methods (alkali, wet-milling, and enzymatic) on the multi-scale structures and functional properties of quinoa starch. When the enzymatic method was compared with alkali and wet-milling, it showed higher protein content (2.39%), larger size of aggregated granules (44.1 μm), higher relative crystallinity (29.6%), scattering intensity (17.8 α.u.), absorbance ratio of 1047/1022 (0.9), single and double helical content (8.2% and 23.1%), FWHM ratio (2.1), and average molecular weight and radius of gyration (1.58 × 107 g/mol and 106.8 nm), respectively. Similarly, quinoa starch by enzymatic extraction had a higher onset (82.1 °C), peak (83.8 °C), and conclusion (86.3 °C) temperatures, as well as an enthalpy change (6.7 J/g). It further showed maximum hardness (238.8 N), gumminess (105.6 N), chewiness (80.2 N), SDS content (7.5% of raw and 4.8% of cooked), and RS content (15.5% of raw and 13.9% of cooked), whereas it contained minimum RDS content (77.1% of raw and 81.9% of cooked). The results suggest that extraction of starch by the enzymatic method could be a viable approach to retain the native structure of starch and may eventually improve the glycemic response.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province, School of Tea and Food Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (S.L.)
| | - Songnan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Z.); (S.L.)
| |
Collapse
|
43
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
44
|
Li G, Lee YY, Lu X, Chen J, Liu N, Qiu C, Wang Y. Simultaneous loading of (-)-epigallocatechin gallate and ferulic acid in chitosan-based nanoparticles as effective antioxidant and potential skin-whitening agents. Int J Biol Macromol 2022; 219:333-345. [PMID: 35934077 DOI: 10.1016/j.ijbiomac.2022.07.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
Chitosan (CS) based nanoparticles simultaneously loaded with (-)-epigallocatechin gallate (EGCG) and ferulic acid (FA) were fabricated via ionic gelation method modified by sodium tripolyphosphate and genipin (G-CS-EGCG-FA NPs). The particle size, morphology, entrapment efficiency, rheological properties, antioxidant and tyrosinase inhibitory activity of NPs were investigated. The G-CS-EGCG-FA NPs exhibited irregular ellipsoidal shape with average diameter of 412.3 nm and high DPPH and ABTS·+ scavenging ability. The entrapment efficiency of EGCG and FA in NPs was 46.0 ± 1.3 % and 46.8 ± 1.6 %, respectively. CS-based NPs show no toxic effects on NIH 3 T3 cells and B16-F10 melanoma cells with concentration <200 μg/mL and 25 μg/mL, respectively and the cell viability ranged from 100 % to 118 %. Meanwhile, the oxidative repaired capacity of G-CS-EGCG-FA NPs (200 μg/mL) in H2O2-induced cells was over 100 %, higher than that of the same dose of free EGCG or FA. Moreover, the tyrosinase inhibition activity of G-CS-EGCG-FA NPs (25 μg/mL) (84.6 %) was more potent than that of free EGCG (55.3 %), free FA (47.1 %) and kojic acid, indicating the good skin repairing and whitening ability of G-CS-EGCG-FA NPs. Given these results, this research provides new insights for designing novel particles loaded with dual bioactive agents that possess synergistic benefits.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advance and Application Chemical synthesis, Jinan University, Guangzhou 510632, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chaoying Qiu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
45
|
Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Zhang L, Chen DL, Wang XF, Xu L, Qian JY, He XD. Enzymatically modified quinoa starch based pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Lingiardi N, Galante M, de Sanctis M, Spelzini D. Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation? Food Chem 2022; 394:133485. [PMID: 35753255 DOI: 10.1016/j.foodchem.2022.133485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Emulsion gels are structured emulsion systems that behave as soft solid-like materials. Emulsion gels are commonly used in food-product design both as fat replacers and as delivery carriers of bioactive compounds. Different plant-derived proteins like soy, chia, and oat have been used in emulsion gel formulation to substitute fat in meat products and to deliver some vegetable dyes or extracts. Quinoa protein isolates have been scarcely applied in emulsion gel formulation although they seem to be a promising alternative as emulsion stabilizers. Quinoa protein isolates have a high protein content with a well-balanced amino acid profile and show good emulsifying and gelling capabilities. Unlike quinoa starch, quinoa protein isolates do not require any chemical modification before being used. The present article reviews the state of the art in food emulsion gels stabilized with vegetable proteins and highlights the potential uses of quinoa proteins in emulsion gel formulation.
Collapse
Affiliation(s)
- Nadia Lingiardi
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina.
| | - Micaela Galante
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Católica Argentina, Facultad de Química e Ingeniería del Rosario, Pellegrini 3314, Rosario, Argentina
| | - Mariana de Sanctis
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina
| | - Darío Spelzini
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
48
|
Jia Y, Kong L, Zhang B, Fu X, Huang Q. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. Int J Biol Macromol 2022; 207:791-800. [PMID: 35346682 DOI: 10.1016/j.ijbiomac.2022.03.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
High internal phase emulsions (HIPEs) stabilized by debranched starch-capric acid (DBS-CA) complex nanoparticles were fabricated and their performance was evaluated. DBS-CA was prepared through enzymatic debranching and solid encapsulation methods, and displayed V-type crystalline structure. Contact angle measurements show enhanced hydrophobicity of DBS-CA compared to native starch. The DBS-CA nanoparticles have an average size of 463.77 nm and tended to be aggregating as analyzed by scanning electron microscope and dynamic light scattering particle size analysis. When used as a particulate emulsifier, DBS-CA could stabilize HIPEs with oil volume fraction as high as 80%. The HIPEs showed pH-dependent properties; good storage stability and mechanical strength were achieved within pH range from 3 to 11, especially under alkaline conditions. It was proposed that smaller particle size and higher surface charging were responsible for the more tightly connected gel structure and thus their performance. This study demonstrates a novel approach to fabricate food-grade Pickering HIPEs, which may have many promising potential applications in the food industry.
Collapse
Affiliation(s)
- Yuhan Jia
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
49
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
50
|
Liu Y, Zhang C, Cui B, Zhou Q, Wang Y, Chen X, Fu H, Wang Y. Effect of emulsifier composition on oil-in-water nano-emulsions: Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|