1
|
Zhang Y, Gu BJ, Hwang NK, Ryu GH. Optimization of High-Moisture Meat Analog Production with the Addition of Isolated Mung Bean Protein Using Response Surface Methodology. Foods 2025; 14:1323. [PMID: 40282726 PMCID: PMC12026365 DOI: 10.3390/foods14081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Meat analogs focus on sustainable development, mimicking the physical properties and nutritional components of meat. The main objective of this study was to determine the optimal extrusion process parameters for producing high-moisture meat analogs (HMMAs) by adding 30% isolated mung bean protein (IMBP) using the response surface methodology (RSM). This study evaluated the effects of independent variables (moisture content-50%, 55%, and 60%; screw speed-150, 200, and 250 rpm; and barrel temperature-140, 150, and 160 °C) on the physicochemical and textural properties of the meat analogs during high-moisture extrusion. The results indicated that moisture content had a greater impact compared to barrel temperature and screw speed. Furthermore, the fiber structure increased with rising barrel temperature, while increasing moisture content led to a reduction in fiber structure. The water absorption capacity and nitrogen solubility index were positively correlated with moisture content, whereas the oil absorption capacity, integrity index, chewiness, and cutting strength showed the opposite trend. The study predicted the optimal extrusion process parameters for IMBP-based HMMAs to be a moisture content of 54.21%, screw speed of 185.68 rpm, and barrel temperature of 159.36 °C. Considering practical conditions, the optimal process variables for producing IMBP-based HMMAs in this experiment were adjusted to a moisture content of 54%, screw speed of 186 rpm, and barrel temperature of 159 °C.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food and Quality Engineering, Nanning University, Nanning 530200, China;
| | - Bon-Jae Gu
- Food and Feed Extrusion Research Center, Department of Food Science and Technology, Kongju National University, Yesan 32439, Republic of Korea; (B.-J.G.)
| | - Nam-ki Hwang
- Food and Feed Extrusion Research Center, Department of Food Science and Technology, Kongju National University, Yesan 32439, Republic of Korea; (B.-J.G.)
| | - Gi-Hyung Ryu
- Food and Feed Extrusion Research Center, Department of Food Science and Technology, Kongju National University, Yesan 32439, Republic of Korea; (B.-J.G.)
| |
Collapse
|
2
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
3
|
Moon SH, Cho SJ. Binding mechanism and structural characteristics of alloyed protein complex for enhanced solubility of hemp seed protein isolate. Food Chem 2025; 464:141416. [PMID: 39406148 DOI: 10.1016/j.foodchem.2024.141416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/11/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Despite the numerous health benefits and high digestibility of hemp seed protein isolate (HPI), its low solubility at neutral pH limits its utilization in the food industry. Therefore, we subjected insoluble HPI and soluble mung bean protein isolate (MBPI) to pH co-shifting under extremely alkaline conditions to form an alloyed protein complex (A-HM). At a mass ratio of HPI:MBPI of 50:50, A-HM exhibited the highest solubility (95.30 ± 0.99 %), and also had high resistance to heat treatment. Native PAGE demonstrated the formation of alloyed protein complexes, and particle size analysis revealed that A-HM exhibited small particle sizes and dispersion in water without aggregation of HPI. Owing to their small size, numerous hydrophobic residues and aromatic ring of HPI were exposed on the surface. Hydrophobic interactions predominantly governed the binding force involved in the formation of A-HM. Our findings may enhance HPI applications in the food industry, particularly in plant-based beverages.
Collapse
Affiliation(s)
- Su-Hyeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea,.
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea,.
| |
Collapse
|
4
|
Oluwajuyitan TD, Aluko RE. Structural and functional properties of fava bean albumin, globulin and glutelin protein fractions. Food Chem X 2025; 25:102104. [PMID: 39810954 PMCID: PMC11732509 DOI: 10.1016/j.fochx.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
This study reports a comparative evaluation of the physicochemical and functional properties of fava bean albumin, globulin and glutelin proteins. The fava bean globulins had significantly (p < 0.05) higher protein content (88.49 %) than the albumin (83.47 %) and glutelin (86.71 %). Far-UV circular dichroism results indicate low contents of α-helix, but high levels of unordered and β-sheet structures in the albumin and globulin. Higher surface hydrophobicity of the globulins was directly related to formation of oil-in-water emulsions with smaller oil droplet sizes, and better foaming capacity than the albumin and glutelin. The albumin had a broad range (32-92 %) of protein solubility that covers acidic and alkaline pH while glutelin exhibited significantly higher in vitro protein digestibility (77.33 %) when compared to the 75.34 and 71.73 % for globulin and albumin, respectively. We conclude that each fava bean protein fraction may find specific uses as ingredients for the formulation of various food products.
Collapse
Affiliation(s)
| | - Rotimi Emmanuel Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Dietrich RB, Lincoln L, Momen S, Minkoff BB, Sussman MR, Girard AL. Role of protein and lipid oxidation in hardening of high-protein bars during storage. J Food Sci 2025; 90:e17657. [PMID: 39828416 PMCID: PMC11743340 DOI: 10.1111/1750-3841.17663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars. We investigated the role of protein and lipid oxidation, Maillard reactions, moisture loss, protein aggregation, and microstructural changes in the hardening of pea, whey, and rice protein bars over a storage period of 6 weeks (hardness increased 7.2×, 5.4×, and 4.4×, respectively). Changes in tryptophan fluorescence, free sulfhydryl content (e.g., loss of 57% for pea and 44% for whey), and carbonyl content demonstrated that pea and whey bars underwent protein oxidation. Lipid oxidation also occurred, demonstrated by increased peroxide and thiobarbituric acid-reactive substance values. Rice bars, however, did not undergo oxidation. Mass spectrometry indicated greater Maillard-reaction-related protein glycations formed in pea and whey bars (6.9% and 7.7%, respectively) than in rice bars (2.1%). SDS-PAGE revealed that pea and whey, but not rice, proteins aggregated during storage. Overall, this study found that moisture loss, protein and lipid oxidation, Maillard reactions, and protein aggregation correlated with bar hardening. Chemical changes may cause protein aggregation, resulting in hardening. Likely because of rice proteins' innate insolubility and disulfide linkages, rice protein bars were less susceptible to chemical changes and aggregation and hardened more slowly than whey and pea protein bars. PRACTICAL APPLICATION: This study shows that lipid and protein oxidation are correlated with protein bar hardening in both pea and whey protein bars. Additionally, this work suggests that rice protein bars may harden more slowly than pea and whey bars. These findings suggest that potential strategies to prevent bar hardening and extend shelf life include (1) adding antioxidants to prevent oxidation and (2) using rice proteins to partially or fully substitute other protein isolates.
Collapse
Affiliation(s)
- Rachel B. Dietrich
- Department of Food ScienceUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Biological and Chemical SciencesRoberts Wesleyan UniversityRochesterNew YorkUSA
| | - Lily Lincoln
- Department of Food ScienceUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Shima Momen
- Department of Food ScienceUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Benjamin B. Minkoff
- Center for Genomic Science InnovationUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Michael R. Sussman
- Center for Genomic Science InnovationUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Audrey L. Girard
- Department of Food ScienceUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Gu X, Xu G, Liang C, Mektrirat R, Wang L, Zhang K, Meng B, Tang X, Wang X, Egide H, Liu J, Chen H, Zhang M, Zhang J, Wang X, Li J. Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice. Foods 2024; 13:4004. [PMID: 39766947 PMCID: PMC11726766 DOI: 10.3390/foods13244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/15/2025] Open
Abstract
The seeds of Zanthoxylum bungeanum seeds, a high-quality vegetable protein source, encounter application limitations due to their high molecular weight and anti-nutritional factors. This study focused on optimizing the fermentation process by investigating key parameters such as inoculation amount, inoculation ratio, material-to-liquid ratio, fermentation temperature, and fermentation time. Both single-factor experiments and response surface methodology were used to determine the optimal conditions. The effects of fermentation on particle size, surface morphology (scanning electron microscopy), water holding capacity, oil holding capacity, solubility, and emulsification properties of Zanthoxylum bungeanum seed protein were analyzed. In addition, acute toxicity was investigated at doses of 1.5 g/kg, 3 g/kg, 6 g/kg, and 12 g/kg. The results showed that the optimal fermentation conditions were an inoculum concentration of 10%, a ratio of Bacillus subtilis to Lactobacillus plantarum of 1:1, a material-to-liquid ratio of 0.8:1, a temperature of 35 °C, and a fermentation period of 4 days. Under these optimized conditions, the soluble protein content reached 153.1 mg/g. After fermentation, the functional properties of Zanthoxylum bungeanum seed protein improved significantly: the water holding capacity increased by 89%, the oil holding capacity by 68%, while the emulsifying activity and stability indices improved by 6% and 17%, respectively. The macromolecular proteins in the seeds of Zanthoxylum bungeanum were effectively broken down into smaller fragments during fermentation, resulting in a more folded and porous surface structure. In acute toxicity tests, all mice treated with fermented Zanthoxum seed protein survived for more than 7 days after injection, and there were no significant differences in body weight, organ index, and hematological tests between groups, but FZBSP of 1.5 g/kg~12 g/kg caused varying degrees of steatosis and inflammatory damage in the heart and liver. In conclusion, this study confirms that follow-up pilot studies using 1.5 g/kg FZBSP have the potential for further development and utilization.
Collapse
Affiliation(s)
- Xueyan Gu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Guowei Xu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Chunhua Liang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Raktham Mektrirat
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lei Wang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Kang Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Bingbing Meng
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xi Tang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xiaoya Wang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Hanyurwumutima Egide
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Jiahui Liu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Haiyu Chen
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Mingxi Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Jingyan Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research lnstitute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Jianxi Li
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| |
Collapse
|
7
|
Hosseini AF, Iqbal A, Rizvi SSH. Supercritical fluid extrusion of pea flour and pea protein concentrate: Effects on functional and structural attributes. J Food Sci 2024; 89:8758-8769. [PMID: 39674833 DOI: 10.1111/1750-3841.17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
This research investigated the effectiveness of supercritical fluid extrusion (SCFX) to modify the functional and structural characteristics of pea protein concentrate (PPC) and pea flour (PF). The results indicate that the SCFX process favorably modified the hydration properties of PPC and PF needed for developments in the structural and textural qualities of the meat analogs and other similar products. The water-holding capacity of extruded PPC and PF improved significantly. The SCFX-extruded samples showed greater emulsifying activity and stability index compared to the unextruded samples. The reduced solubility of the extruded samples indicates changes in the native protein structure and further denaturation due to the SCFX process. Denaturation is a prerequisite for protein texturization to produce meat analogs. Enhanced exposure of sulfhydryl (SH) groups indicates the favorable modification of the protein structure after extrusion. Free SH groups participate in covalent intramolecular disulfide linkages during the solidification process, enhancing the fibrous degree and formation of anisotropic structures. Additionally, the increase in surface hydrophobicity observed in the extruded samples demonstrates the ability of the SCFX process to enhance hydrophobic interactions among protein molecules, resulting in a stronger network formation. Overall, these findings showed the potential of SCFX processing as an innovative technique to effectively modify the structural and functional properties of PPC and PF, thereby enhancing their potential utility in creating novel food products from pea proteins.
Collapse
Affiliation(s)
| | - Aamir Iqbal
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Syed S H Rizvi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
de Paiva Gouvêa L, Caldeira RF, Azevedo TDL, Antoniassi R, Galdeano MC, Felberg I, Lima JR, Mellinger CG. Nutritional properties of common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Curr Res Food Sci 2024; 9:100937. [PMID: 39697468 PMCID: PMC11652883 DOI: 10.1016/j.crfs.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
There is an enormous demand to develop new sources of proteins, mainly to supply the growing plant-based food market worldwide, with the push for more sustainable and healthier products. The objective of this study was to evaluate the composition and the nutritional properties of commercial soybean, pea, and fava bean protein ingredients and compare them with an in-house ingredient (flour and protein concentrate), obtained from the main Brazilian cultivar of common bean (Phaseolus vulgaris, Pinto bean). The protein content of the common bean concentrate (79.75%) was as high as other commercial proteins isolated from the pea and higher than the others concentrates. All the ingredients presented the minimum amounts of indispensable amino acids as required by FAO and all ingredients were rich in lysine and leucine, with the highest amounts found for pea (78.06 mg/g) and common bean (86.70 mg/g) concentrates. A diverse mineral composition was reported for all the ingredients and the common bean concentrate presented the highest iron content (342.6 mg/kg). In terms of antinutritional factors, the common bean flour and concentrate showed the highest values for trypsin inhibitor (18 and 27 TIU/mg, respectively) but the lowest ones for phytic acid (9 and 2 mg/g, respectively) compared to the other ingredients. Low amounts of oligosaccharides were found in most of the samples. All proteins from the ingredients were highly digested when evaluated in vitro, but phaseolins fraction protein from common bean samples remained partially undigested. Despite compositional differences between ingredients, all samples should be suitable as protein sources for plant-based food innovation.
Collapse
Affiliation(s)
- Lucas de Paiva Gouvêa
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
| | - Rodrigo Fernandes Caldeira
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
| | | | - Rosemar Antoniassi
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | | | - Ilana Felberg
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Janice Ribeiro Lima
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Caroline Grassi Mellinger
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica-RJ, Brazil
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| |
Collapse
|
9
|
Guan L, Zhu L, Zhang X, Han Y, Wang K, Ji N, Yao X, Zhou Y, Li B, Chen Q, Fan J, Sha D, Lu S. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules 2024; 29:5258. [PMID: 39598647 PMCID: PMC11596803 DOI: 10.3390/molecules29225258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Perilla (Perilla frutescens) seeds are emerging as a valuable resource for functional foods and medicines owing to their rich oil and protein content with diverse nutritional and health benefits. Perilla seed oil (PSO) possesses a high level of a-linolenic acid (ALA), a favorable ratio of unsaturated to saturated fatty acids, and other active ingredients such as tocopherols and phytosterols, which contribute to its antioxidant, anti-inflammatory, and cardiovascular protective effects. The balanced amino acid ratio and good functional properties of perilla seed protein make it suitable for a variety of food applications. The chemical composition, health benefits, and potential applications of PSO as well as the structural characterization, functional properties, modification methods, bioactivities, and application scenarios of perilla seed protein are comprehensively presented in this paper. Furthermore, the challenges as well as future prospects and research focus of PSO and perilla seed protein are discussed. The growing interest in plant-based diets and functional foods has made PSO and perilla seed protein promising ingredients for the development of novel foods and health products. The purpose of this paper is to highlight implications for future research and development utilizing these two untapped resources to improve human health and nutrition.
Collapse
Affiliation(s)
- Lijun Guan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ling Zhu
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Xindi Zhang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Yaxi Han
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Kunlun Wang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Nina Ji
- Institute of Soya Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinmiao Yao
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ye Zhou
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Bo Li
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Qing Chen
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Jing Fan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Dixin Sha
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| |
Collapse
|
10
|
Chin TGJ, Ruethers T, Chan BA, Lopata AL, Du J. Techno-functional properties and allergenicity of mung bean (Vigna radiata) protein isolates from Imara and KPS2 varieties. Food Chem 2024; 457:140069. [PMID: 38936132 DOI: 10.1016/j.foodchem.2024.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.
Collapse
Affiliation(s)
- Tak Gun Jeremy Chin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bing Aleo Chan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Andreas Ludwig Lopata
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN 47907, USA; Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore 15 168582, Singapore.
| |
Collapse
|
11
|
Salvador-Reyes R, Furlan LC, Martínez-Villaluenga C, Martins Dala-Paula B, Harumi Nabeshima E, da Costa Pinto C, Michielon de Souza S, Azevedo Lima Pallone J, Teresa Pedrosa Silva Clerici M. Peruvian fava beans for health and food innovation: physicochemical, morphological, nutritional, and techno-functional characterization. Food Res Int 2024; 192:114814. [PMID: 39147510 DOI: 10.1016/j.foodres.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | - Luisa Campigli Furlan
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Department of Technological Process and Biotechnology, Jose Antonio Novais, 6, 28040 Madrid, Spain
| | - Bruno Martins Dala-Paula
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil
| | - Elizabeth Harumi Nabeshima
- Instituto de Tecnologia de Alimentos/ITAL, Cereal and Chocolate Research Center, Av. Brasil, 2880, CEP 13070-178, Campinas, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas (IFAM), Presidente Figueiredo/AM, Brazil
| | - Sérgio Michielon de Souza
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil; Department of Materials Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Juliana Azevedo Lima Pallone
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | | |
Collapse
|
12
|
Yin X, Li J, Zhu L, Zhang H. Advances in the formation mechanism of set-type plant-based yogurt gel: a review. Crit Rev Food Sci Nutr 2024; 64:9412-9431. [PMID: 37203992 DOI: 10.1080/10408398.2023.2212764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-based yogurt has several advantages over traditional yogurt, such as being lactose and cholesterol-free, making it more suitable for individuals with cardiovascular and gastrointestinal diseases. The formation mechanism of the gel in plant-based yogurt needs more attention because it is associated with the gel properties of yogurt. Most plant proteins, except for soybean protein, have poor functional abilities, such as solubility and gelling properties, which limits their application in most food items. This often results in undesirable mechanical quality of plant-based products, particularly plant-based yogurt gels, including grainy texture, high syneresis, and poor consistency. In this review, we summarize the common formation mechanism of plant-based yogurt gel. The main ingredients, including protein and non-protein components, as well as their interactions involved in the gel are discussed to understand their effects on gel formation and properties. The main interventions and their effects on gel properties are highlighted, which have been shown to improve the properties of plant-based yogurt gels effectively. Each type of intervention method may exhibit desirable advantages in different processes. This review provides new opportunities and theoretical guidance for efficiently improving the gel properties of plant-based yogurt for future consumption.
Collapse
Affiliation(s)
- Xinya Yin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang K, Zhang R, Hu W, Dang Y, Huang M, Wang N, Du S, Gao X. Effect of exogenous selenium on physicochemical, structural, functional, thermal, and gel rheological properties of mung bean (Vigna radiate L.) protein. Food Res Int 2024; 191:114706. [PMID: 39059959 DOI: 10.1016/j.foodres.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), β-sheets, and β-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and β-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and β-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.
Collapse
Affiliation(s)
- Kexin Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China; Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Ruipu Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Wenxuan Hu
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Yueyi Dang
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China
| | - Mengdi Huang
- Luoyang Academy of Agricultural and Forestry Science, Luoyang 471000, Henan Province, China
| | - Na Wang
- Weinan Institute of Agricultural Sciences, Weinan 714000, Shaanxi Province, China
| | - Shuangkui Du
- Northwest A&F University, College of Food Science and Engineering, Yangling 712100, Shaanxi Province, China.
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
14
|
Wang K, Wang J, Chen L, Hou J, Lu F, Liu Y. Effect of sanxan as novel natural gel modifier on the physicochemical and structural properties of microbial transglutaminase-induced mung bean protein isolate gels. Food Chem 2024; 449:139147. [PMID: 38581784 DOI: 10.1016/j.foodchem.2024.139147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Mung bean protein isolate (MBPI) has attracted much attention as an emerging plant protein. However, its application was limited by the poor gelling characteristics. Thus, the effect of sanxan (SAN) on the gelling behavior of MBPI under microbial transglutaminase (MTG)-induced condition were explored in this study. The results demonstrated that SAN remarkably enhanced the storage modulus, water-holding capacity and mechanical strength. Furthermore, SAN changed the microstructure of MBPI gels to become more dense and ordered. The results of zeta potential indicated the electrostatic interactions existed between SAN and MBPI. The incorporation of SAN altered the secondary structure and molecular conformation of MBPI, and hydrophobic interactions and hydrogen bonding were necessary to maintain the network structure. Additionally, in vitro digestion simulation results exhibited that SAN remarkably improved the capability of MBPI gels to deliver bioactive substances. These findings provided a practical strategy to use natural SAN to improve legume protein gels.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
15
|
Shen J, Zhang M, Yang C. Microencapsulation of ginger essential oil using mung bean protein isolate-chitosan complex coacervates: Application in the preservation of crab meatballs and the prediction of shelf life. Food Chem 2024; 449:139263. [PMID: 38657553 DOI: 10.1016/j.foodchem.2024.139263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 μm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd, 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Kohnehrouz BB, Ehsasatvatan M. Redesigning amino/carboxyl ends of DARPin G3 for high thermostability and production in tobacco transplastomic plants. PLANT CELL REPORTS 2024; 43:210. [PMID: 39126530 DOI: 10.1007/s00299-024-03307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.
Collapse
Affiliation(s)
- Bahram Baghban Kohnehrouz
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| | - Maryam Ehsasatvatan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| |
Collapse
|
17
|
Caldeira RF, de Paiva Gouvêa L, de Lima Azevedo T, Conte C, de Sá DDGCF, Galdeano MC, Felberg I, Lima JR, Mellinger CG. Processing parameters, techno-functional properties and potential food application of lentil protein concentrate as an ingredient for the plant-based market. Food Res Int 2024; 189:114569. [PMID: 38876597 DOI: 10.1016/j.foodres.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Lentil (Lens culinaris) is a protein-rich legume consumed worldwide and it also has the potential to become an alternative source of protein ingredient for human nutrition. The aim of this study was to determine the best processing parameters for the whole grain protein wet extraction, as well as to analyze the techno-functional properties, and physical characteristics of the protein concentrate and its flour. It was also evaluated the application of the concentrate into a fish-like croquette. The processing route was carried out by alkaline extraction and acid precipitation of the proteins where the pH, stirring time and solute:solvent ratio were evaluated. The final dried protein concentrate presented 85% protein on dry basis and a mass yield of 14%. The results were reproducible when tested on a first scaling up test. For the techno-functional properties, solubility, water and oil retention capacities, emulsification and foaming capacities and stability, and gelling capacity were tested. As for the food application into fish-like croquettes, the lentil protein showed similar scores for sensory acceptance, flavor and texture when compared to a commercial clean-taste concentrate. The results observed in this study were compatible to other alternative pulse-protein ingredients on the market, positioning lentil protein as a promising alternative protein source to produce ingredients for the plant-based market.
Collapse
Affiliation(s)
- Rodrigo Fernandes Caldeira
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil
| | - Lucas de Paiva Gouvêa
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil
| | | | - Carmine Conte
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | | | | | - Ilana Felberg
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | - Janice Ribeiro Lima
- Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil
| | - Caroline Grassi Mellinger
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro (RJ), Brazil; Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro (RJ) 23020-470, Brazil.
| |
Collapse
|
18
|
Hwang NK, Gu BJ, Zhang Y, Ryu GH. Possibility of Isolated Mung Bean Protein as a Main Raw Material in the Production of an Extruded High-Moisture Meat Analog. Foods 2024; 13:2167. [PMID: 39063251 PMCID: PMC11276394 DOI: 10.3390/foods13142167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
As consumer demand for meat analogs continues to grow, various plant proteins are being explored for their production. This study uses isolated mung bean protein (IMBP) to replace isolated soy protein (ISP), investigating the effects of IMBP content (0%, 10%, 20%, 30%, 40%, and 50%) on the physicochemical and textural properties of high-moisture meat analogs (HMMAs) and exploring the potential of IMBP in the development and production of meat analogs. The results show that IMBP can bind water and cause protein denaturation, thus requiring more time and higher temperatures to be formed compared to HMMAs without IMBP. Additionally, increasing the IMBP content improves the gelling ability, thereby increasing the input of specific mechanical energy. As the IMBP content increases, the fibrous structure of the HMMA also increases. When the IMBP content reaches 40-50%, the most meat-like fibrous structure is observed. The water-holding capacity, water absorption capacity, springiness, and cohesiveness are negatively correlated with the IMBP content, while the oil absorption capacity is positively correlated with it. The integrity index and nitrogen solubility index show opposite trends with the increase in the IMBP content. When the IMBP content is 50%, the springiness and chewiness are the lowest, and the cutting strength is also the lowest, but the sample has a rich fibrous content, indicating that the HMMA with 50% IMBP content is soft and juicy. In conclusion, IMBP has the potential to be a substitute for ISP in the production of HMMAs.
Collapse
Affiliation(s)
| | | | | | - Gi-Hyung Ryu
- Department of Food Science and Technology, Food and Feed Extrusion Research Center, Kongju National University, Yesan 32439, Republic of Korea (B.-J.G.)
| |
Collapse
|
19
|
Huang Z, Li Y, Fan M, Qian H, Wang L. Recent advances in mung bean protein: From structure, function to application. Int J Biol Macromol 2024; 273:133210. [PMID: 38897499 DOI: 10.1016/j.ijbiomac.2024.133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
With the surge in protein demand, the application of plant proteins has ushered in a new wave of research. Mung bean is a potential source of protein due to its high protein content (20-30 %). The nutrition, structure, function, and application of mung bean protein have always been a focus of attention. In this paper, these highlighted points have been reviewed to explore the potential application value of mung bean protein. Mung bean protein contains a higher content of essential amino acids than soybean protein, which can meet the amino acid values recommended by FAO/WHO for adults. Mung bean protein also can promote human health due to its bioactivity, such as the antioxidant, and anti-cancer activity. Meanwhile, mung bean protein also has well solubility, foaming, emulsification and gelation properties. Therefore, mung bean protein can be used as an antioxidant edible film additive, emulsion-based food, active substance carrier, and meat analogue in the food industry. It is understood there are still relatively few commercial applications of mung bean protein. This paper highlights the potential application of mung bean proteins, and aims to provide a reference for future commercial applications of mung bean proteins.
Collapse
Affiliation(s)
- Zhilian Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Tarahi M, Abdolalizadeh L, Hedayati S. Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications. Food Chem 2024; 444:138626. [PMID: 38309079 DOI: 10.1016/j.foodchem.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/19/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The intake of plant-based proteins is rapidly growing around the world due to their nutritional and functional properties, as well as growing demand for vegetarian and vegan diets. Mung bean seeds have been traditionally consumed in Asian countries due to their unique botanical and health-promoting characteristics. In recent years, mung bean protein isolate (MBPI) has attracted much attention due to its ideal techno-functional features, such as water and oil absorption capacity, solubility, emulsifying, foaming, and thermal properties. Therefore, it can be utilized in a native or modified form in different food sectors, such as biodegradable/edible films, colloidal systems, and plant-based alternative products. This study provides a comprehensive review on the extraction methods, amino acid profile, structure, physicochemical properties, modifications, and food applications of MBPI.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Leyla Abdolalizadeh
- Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Zhu L, Liu M, Wang Y, Zhu Z, Zhao X. Euglena gracilis Protein: Effects of Different Acidic and Alkaline Environments on Structural Characteristics and Functional Properties. Foods 2024; 13:2050. [PMID: 38998555 PMCID: PMC11240951 DOI: 10.3390/foods13132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Due to the growing demand for human-edible protein sources, microalgae are recognized as an economically viable alternative source of proteins. The investigation into the structural characteristics and functional properties of microalgin is highly significant for its potential application in the food industry as an alternative source of protein. In this research, we extracted protein from Euglena gracilis by using alkaline extraction and acid precipitation and investigated its structural characteristics and functional properties in different acidic and alkaline environments. The molecular weight distribution of Euglena gracilis protein (EGP), as revealed by the size exclusion chromatography results, ranges from 152 to 5.7 kDa. EGP was found to be rich in hydrophobic amino acids and essential amino acids. Fourier infrared analysis revealed that EGP exhibited higher α-helix structure content and lower β-sheet structure content in alkaline environments compared with acidic ones. EGP exhibited higher foaming properties, emulsifying activity index, solubility, free sulfhydryl, and total sulfhydryl in pH environments far from its isoelectric point, and lower fluorescence intensity (2325 A.U.), lower surface hydrophobicity, larger average particle size (25.13 µm), higher emulsifying stability index, and water-holding capacity in pH environments near its isoelectric point. In addition, X-ray diffraction (XRD) patterns indicated that different acidic and alkaline environments lead to reductions in the crystal size and crystallinity of EGP. EGP exhibited high denaturation temperature (Td; 99.32 °C) and high enthalpy (ΔH; 146.33 J/g) at pH 11.0, as shown by the differential scanning calorimetry (DSC) results. The findings from our studies on EGP in different acidic and alkaline environments provide a data basis for its potential commercial utilization as a food ingredient in products such as emulsions, gels, and foams.
Collapse
Affiliation(s)
- Laijing Zhu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Meng Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanli Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhunyao Zhu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangzhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
22
|
Mejía-Terán A, Blanco-Lizarazo CM, Leiva Mateus JE, Sotelo-Díaz I, Mejía Terán D, Geffroy E. Pretreatments and Particle Size on the Glycemic Index and Rheological and Functional Food Properties of Bean Flours. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6336837. [PMID: 38803398 PMCID: PMC11129911 DOI: 10.1155/2024/6336837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
The beans' protein and slow-digesting carbohydrate content make it an appealing choice for healthy food development. However, its properties are influenced by the flour extraction processes. This study is aimed at evaluating the effect of particle size and three pretreatments-drying (D), soaking + cooking + dehydrating 3 h (SCD3), and soaking + cooking + dehydrating 24 h (SCD24)-on the estimated glycemic index (eGI) compared with raw bean flour (R). The methodology covered water absorption (WAI), water solubility (WSI), amylose content, starch digestibility, eGI, phenolic quantification, and rheology. The results showed that WAI correlated negatively with WSI and amylose, varying among pretreatments and sizes. WAI increased as D < SCD24 < SCD3 < R. Glucose release (HI) differed between fine (125 μm) and coarse fractions (242 μm), with SCD24 and R showing the lowest eGI (22.8-24.2). SCD3 had the highest flavonoid concentration, while R and D had more quercetin-3-glucoside. SCD24 displayed higher elastic/viscous moduli than R. Bean flours from all treatments had low GI and contained bioactive polyphenols (catechin, epicatechin, ferulic acid, quercetin). The optimal treatment was SCD24, particularly in the coarse fraction, showing potential for functional food development and novel applications such as precision nutrition.
Collapse
Affiliation(s)
- Adriana Mejía-Terán
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, San Jose, Costa Rica
- Grupo Interinstitucional de Investigación en Ciencias Agropecuarias, Forestales y Agroindustriales del Trópico, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | | | - Jairo Eduardo Leiva Mateus
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CDMX 4510, Mexico
| | - Indira Sotelo-Díaz
- Grupo de Alimentación, Gestión de Procesos y Servicio, Universidad de La Sabana, Chía, Colombia
| | - Darío Mejía Terán
- Grupo de Estudios Ambientales Aplicados, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | - Enrique Geffroy
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CDMX 4510, Mexico
| |
Collapse
|
23
|
Kapoor R, Karabulut G, Mundada V, Feng H. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: A comparative study with spray and freeze-drying methods. Food Chem 2024; 439:138137. [PMID: 38061300 DOI: 10.1016/j.foodchem.2023.138137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
The challenge of preserving the quality of thermal-sensitive polymeric materials specifically proteins during a thermal drying process has been a subject of ongoing concern. To address this issue, we investigated the use of ultrasound contact drying (USD) under non-thermal conditions to produce functionalized pea protein powders. The study extensively examined functional and physicochemical properties of pea protein isolate (PPI) in powder forms obtained through three drying methods: USD (30 °C), spray drying (SD), and freeze drying (FD). Additionally, physical attributes such as powder flowability and color, along with morphological properties, were thoroughly studied. The results indicated that the innovative USD method produced powders of comparable quality to FD and significantly outperformed SD. Notably, the USD-PPI exhibited higher solubility across all pH levels compared to both FD-PPI and SD-PPI. Moreover, the USD-PPI samples demonstrated improved emulsifying and foaming properties, a higher percentage of random coil form (56.2 %), increased gel strength, and the highest bulk and tapped densities. Furthermore, the USD-PPI displayed a unique surface morphology with visible porosity and lumpiness. Overall, this study confirms the effectiveness of non-thermal ultrasound contact drying technology in producing superior functionalized plant protein powders, showing its potential in the fields of chemistry and sustainable materials processing.
Collapse
Affiliation(s)
- Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54187 Sakarya, Turkey
| | - Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
24
|
Feng Q, Niu Z, Zhang S, Wang L, Qun S, Yan Z, Hou D, Zhou S. Mung bean protein as an emerging source of plant protein: a review on production methods, functional properties, modifications and its potential applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2561-2573. [PMID: 37935642 DOI: 10.1002/jsfa.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Plant protein is rapidly becoming more of a prime interest to consumers for its nutritional and functional properties, as well as the potential to replace animal protein. In the frame of alternative protein new sources, mung bean is becoming another legume crop that could provide high quality plant protein after soybean and pea. In particular, the 8S globulins in mung bean protein have high structural similarity and homology with soybean β-conglycinin (7S globulin), with 68% sequence identity. Currently, mung bean protein has gained popularity in food industry because of its high nutritional value and peculiar functional properties. In that regard, various modification technologies have been applied to further broaden its application. Here, we provide a review of the composition, nutritional value, production methods, functional properties and modification technologies of mung bean protein. Furthermore, its potential applications in the new plant-based products, meat products, noodles, edible packaging films and bioactive compound carriers are highlighted to facilitate its utilization as an alternative plant protein, thus meeting consumer demands for high quality plant protein resources. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhitao Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Siqi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shen Qun
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
25
|
Meghwal M, Lekhwar C, Kumar Y, Kumar V, Suhag R, Prabhakar PK. Modulation of Physical and Thermal Properties in Wild Banana ( Musa balbisiana Colla) Seed Powder by Moisture Variations. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8846365. [PMID: 38433768 PMCID: PMC10904682 DOI: 10.1155/2024/8846365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Engineering and flow properties of banana seed powder as a function of moisture content are important for processing, handling, packaging, and transport processes. The bulk density, tapped density, and porosity increased from 377.37 to 427.36 kg m-3, 622.08 to 746.33 kg m-3, and 38.99-43.74%, respectively, within the increasing moisture content range. The Hausner ratio (Hr) and Carr's compressibility index (CI) significantly (p < 0.05) increased with an increase in moisture content (6.16-19.56% db) of banana seed powder, whereas HR fell in the range of 1.4-2.0, indicating cohesive characteristics of banana seed powder. The angle of repose, angle of spatula, and angle of fall exhibited a linear increase, ranging from 40.6° to 49°, 33.4° to 39.4°, and 35.6° to 42.6°, respectively, with increasing moisture content. The static coefficient of friction was found to be highest for aluminium and glass surfaces and least for stainless steel. The water activity and swelling power of banana seed powder showed a significant increase, while the solubility and oil absorption capacity exhibited a significant decrease within the range of increasing moisture content. The thermal characteristics of wild banana seed powder, such as thermal conductivity (0.16 to 0.20 Wm-1 K-1) and volumetric specific heat (0.58 to 0.99 MJm-3 K-1), demonstrated an increasing trend as the moisture content increased. However, the thermal diffusivity showed a decrease from 0.31 to 0.19 (×10-6 m2s-1) with the increase in moisture content.
Collapse
Affiliation(s)
- Murlidhar Meghwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurships and Management, Sonipat 131028, Haryana, India
| | - Chitra Lekhwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurships and Management, Sonipat 131028, Haryana, India
| | - Yogesh Kumar
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Vivek Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurships and Management, Sonipat 131028, Haryana, India
| | - Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Pramod K. Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurships and Management, Sonipat 131028, Haryana, India
| |
Collapse
|
26
|
Jeong MS, Cho SJ. Effect of pH-shifting on the water holding capacity and gelation properties of mung bean protein isolate. Food Res Int 2024; 177:113912. [PMID: 38225149 DOI: 10.1016/j.foodres.2023.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
In this study, alkaline pH-shifting modified the globular structure of mung bean protein isolate (MBPI) to form flexible and stretched structures. In contrast, acidic pH-shifting increased the rigidity of MBPI. The increased flexibility (at the level of the secondary structure) and newly exposed intermolecular amino acid groups induced by alkaline pH-shifting improved the water holding capacity and gelation properties of proteins. Specifically, MBPI treated at pH 12 (MP12) showed the most flexible structure and highest water holding capacity and gel formation properties (least gelation concentration). The water-holding capacity of native MBPI increased from 1.56 g/g to 4.81 g/g, and its least gelation concentration decreased from 22 % to 15 % by pH-shifting at pH 12. Furthermore, MP12 formed stronger and more elastic heat-induced gels than native MBPI. We identified significant differences in the structural properties and water holding capacity, and gelation properties of acidic and alkaline pH-shifted MBPI and investigated the gelation properties of MP12 including rheological and morphological analyses. Our findings can facilitate the use of mung beans as a protein source in a wide range of food applications, including plant-based and processed meats.
Collapse
Affiliation(s)
- Min-Soo Jeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea.
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
27
|
Dong X, Woo MW, Quek SY. The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chem 2024; 433:137310. [PMID: 37683487 DOI: 10.1016/j.foodchem.2023.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Hempseed protein has gained increasing attention for its sustainability and nourishment. This study aimed to investigate the effects of spray drying and freeze drying on the physicochemical properties, functionality, and digestibility of hempseed protein isolate (HPI). Compared to undried-HPI, both drying techniques altered physicochemical and structural properties. Particularly, protein denaturation temperature increased in freeze-dried HPI (FD-HPI) and spray-dried HPI (SD-HPI) samples (∼90 °C) than in undried-HPI (82.5 °C). Lysine content decreased from 38.26 mg/g in undried-HPI to 35.03 and 33.18 mg/g in FD-HPI and SD-HPI, respectively. Results revealed the loss of 26 and 17 kDa bands after drying. Notably, FD-HPI exhibited higher emulsifying stability and oil-holding capacity than SD-HPI. While both FD-HPI and SD-HPI had higher digestibility than undried-HPI, a 50% reduction in the liberation of free α-amino groups after digestion was found. This study provided information regarding changes in HPI after drying, offering insights for HPI production and application in the food industry.
Collapse
Affiliation(s)
- Xuan Dong
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
28
|
Abdullah BA, Basyigit B, Karaaslan M. Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying. Foods 2023; 12:4219. [PMID: 38231597 DOI: 10.3390/foods12234219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
The current study focused on creating natural hydrogels consisting of mixtures of avocado seed proteins dried with different techniques and locust bean gum. Proteins were extracted from avocado seed by alkali and isoelectric precipitation methods. Avocado seed proteins were dried by five different drying methods, namely ambient drying, oven drying, vacuum drying, freeze drying, and spray drying. FT-IR spectra were used to analyze the chemical structure of proteins dried using various techniques. Additionally, hydrogel models were constructed in the presence of avocado seed proteins and locust bean gum to clarify the effect of drying techniques on their hydrogelling ability. The impact of drying techniques on the functional behavior of hydrogels was notable. The maximum water holding capacity values were detected in the hydrogel system containing spray-dried proteins (93.79%), followed by freeze-dried (86.83%), vacuum-dried (76.17%), oven-dried (72.29%), and ambient-dried (64.8%) counterparts. The swelling ratio was 34.10, 33.51, 23.05, 18.93, and 14.39% for gels in the presence of freeze-dried, spray-dried, vacuum-dried, oven-dried, and ambient-dried proteins, respectively. Additionally, the desirable values for the amount of protein leaking from the systems prepared using spray-dried (7.99%) and freeze-dried (12.14%) proteins were obtained compared to others (ambient-dried: 24.03%; oven-dried: 17.69%; vacuum-dried: 19.10%). Superior results in terms of textural properties were achieved in hydrogel models containing spray-dried and freeze-dried proteins. In general, hydrogel models exhibited elastic behavior rather than viscous properties; however, the magnitudes of elasticity varied. Furthermore, the success of gels containing hydrogel models containing spray-dried protein and locust bean gum in the bioactive compound delivery system was obvious compared with protein ones alone.
Collapse
Affiliation(s)
- Bakhtiyar Azad Abdullah
- Department of Biology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R., Iraq
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| | - Bulent Basyigit
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| | - Mehmet Karaaslan
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| |
Collapse
|
29
|
Basak P, Ali MS, Isra L, Rahman MH, Haq M. Effects of thermal and salt water soaking pre-treatment on the physicochemical and nutritional properties of sundried tilapia fish ( Oreocromis niloticus) products. Heliyon 2023; 9:e21749. [PMID: 37954258 PMCID: PMC10638023 DOI: 10.1016/j.heliyon.2023.e21749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
The effects of saltwater soaking (10-30 %, w/v) and thermal (60°C-90 °C) pre-treatment on the physicochemical and nutritional quality of sundried tilapia fish (Oreocromis niloticus) products were assessed. The wet reduction was 14.47 % in the sample treated with a 30 % salt solution at 90 °C, whereas the wet reduction of 21.23 % was observed in the sample without treatment (control). Protein, lipid, and ash content were increased significantly (P < 0.05) with higher pre-treatment salt concentration and temperature, while the moisture content showed the opposite trend. The content of essential and non-essential amino acids in the treated samples ranged from 7149.97 mg/100 g to 8063.42 mg/100 g and 10530.66 mg/100 g to 11365.59 mg/100 g, respectively, whereas the values were 7018.55 mg/100 g and 10400.84 mg/100 g, respectively in the control. The fatty acids composition, particularly ω-3 polyunsaturated fatty acids, was higher in pretreated samples (6.14-7.08 %) compared to the control. Mineral content was found to improve with saltwater and thermal pre-treatment, and the levels of heavy metals, including Ni and Cu, were significantly lower in the sundried tilapia fish. The sample pretreated with 10 % salt solution and 75 °C showed the highest rehydration capacity of 66.63 %. These findings suggest that saltwater and thermal pre-treatment can effectively enhance the physicochemical and nutritional properties of sundried tilapia fish products.
Collapse
Affiliation(s)
- Puja Basak
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Sadek Ali
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Lilatul Isra
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Habibur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
30
|
Masijn Q, Libberecht S, Meyfroot A, Goemaere O, Hanskens J, Fraeye I. Structure and physical stability of plant-based food gel systems: Impact of protein (mung bean, pea, potato, soybean) and fat (coconut, sunflower). Heliyon 2023; 9:e18894. [PMID: 37662792 PMCID: PMC10474361 DOI: 10.1016/j.heliyon.2023.e18894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Despite their popularity, plant-based food gel systems (GS) sometimes have suboptimal texture compared to animal-based products. Therefore, 4 commercial plant proteins (from mung bean, pea, potato and soybean) and 2 commercial plant fats (sunflower oil and coconut fat) in 2 contents (7.5 wt% and 17.5 wt%) were evaluated towards their contribution to structure and physical stability a lean (LGS, no fat) and an emulsified GS (EGS). Generally, protein source had a larger effect on structure and physical stability than fat source and content. Unheated, GS with soybean protein showed most structure and highest physical stability. Heated till 94 °C, the structure of GS increased drastically, but EGS showed less structure than LGS, attributed to low solid fat contents (SFC), hence low rigidity, of the incorporated oil droplets at 94 °C. Cooled till 5 °C all GS showed an additional increase in structure, for GS with mung bean and pea protein accompanied with an increase in physical stability. Overall, EGS with sunflower oil showed less structure and lower stability than EGS with coconut fat, likely due to their different SFC. At 5 °C, Peak force of GS with potato protein was highest. Across protein sources, EGS displayed a higher Peak force with coconut fat than with sunflower oil, again likely due to different SFC, hence, rigidity of the oil droplets. Physical stability of GS did not vary significantly between protein sources, fat sources nor fat contents, after a freeze-thaw cycle, nor during prolonged cold storage.
Collapse
Affiliation(s)
- Quinten Masijn
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Sophie Libberecht
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Annabel Meyfroot
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Olivier Goemaere
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Jana Hanskens
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Ilse Fraeye
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| |
Collapse
|
31
|
Wintersohle C, Kracke I, Ignatzy LM, Etzbach L, Schweiggert-Weisz U. Physicochemical and chemical properties of mung bean protein isolate affected by the isolation procedure. Curr Res Food Sci 2023; 7:100582. [PMID: 37701634 PMCID: PMC10494313 DOI: 10.1016/j.crfs.2023.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
The effects of different mung bean protein isolation methods on the chemical composition, the physicochemical properties, and selected antinutritional factors of mung bean protein isolates were investigated. Six protein isolates were prepared by isoelectric precipitation at different extraction pH levels (pH 8 and 9), by micellization, and by hybrid isolation at varying salt concentrations (0.25 M, 0.50 M, 0.75 M). The extraction conditions affected the amount of antinutritive compounds of the isolates. Compared to mung bean flour, micellization reduced phytic acid content by approximately 48% and trypsin inhibitor activity by around 88%. The remaining phytic acid concentration of the isolates influenced their re-solubility, particularly under acidic conditions. The protein isolates exhibited significant differences in surface hydrophobicity and thermal characteristics, indicating structural modifications caused by the extraction methods. Micellization and extraction at pH 8 were identified as mildest isolation methods, as evidenced by the highest enthalpy values. SDS-PAGE analysis demonstrated an enrichment of globulins and comparable protein profiles among the isolates, suggesting that the observed differences arise from conformational changes rather than variations in protein composition. The product yield in protein extraction from mung beans ranged from 8% to 19%, emphasizing the importance of enhancing overall extraction efficiency or exploring the utilization of by-products obtained during the protein isolation process.
Collapse
Affiliation(s)
- Christina Wintersohle
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, D-53115, Bonn, Germany
| | - Inola Kracke
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, D-53115, Bonn, Germany
| | - Laura Melanie Ignatzy
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, D-85354, Freising, Germany
| | - Lara Etzbach
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, D-53115, Bonn, Germany
| | - Ute Schweiggert-Weisz
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, D-53115, Bonn, Germany
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, D-85354, Freising, Germany
| |
Collapse
|
32
|
Yaman DM, Koçak Yanık D, Elik Demir A, Uzun Karka H, Güçlü G, Selli S, Kelebek H, Göğüş F. Effect of Encapsulation Techniques on Aroma Retention of Pistacia terebinthus L. Fruit Oil: Spray Drying, Spray Freeze Drying, and Freeze Drying. Foods 2023; 12:3244. [PMID: 37685177 PMCID: PMC10486558 DOI: 10.3390/foods12173244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The primary aim of this investigation was to assess the impact of varying the ratio of gum arabic to maltodextrin and employing diverse encapsulation techniques on the properties of the powdered substance and the capacity to retain the aromatic attributes of terebinth fruit oil. Distinct ratios of gum arabic to maltodextrin (75:25, 50:50, and 25:75) were employed to fabricate oil-in-water emulsions. The utmost stability of the emulsion was realized at a gum arabic to maltodextrin ratio of 75:25, characterized by a minimal creaming index and an even and small-scale dispersion. The encapsulation techniques employed included spray drying (SD), spray freeze-drying (SFD), and freeze-drying (FD). These methodologies were compared based on encapsulation efficiency, desiccation yield, powder attributes, and the capacity to retain aroma. The encapsulation efficiencies were notably higher (>90%) in SD, particularly with the application of an ultrasonic nozzle and a two-fluidized nozzle (2FN), in contrast to those obtained through SFD and FD. Notably, SD employing an ultrasonic nozzle exhibited superior preservation of volatiles (73.19%) compared to FD (24.45%), SD-2FN (62.34%), and SFD (14.23%). Among the various components, α-pinene and linalool stood out with near-perfect retention rates, close to 100%.
Collapse
Affiliation(s)
- Delal Meryem Yaman
- Engineering Faculty, Food Engineering Department, Gaziantep University, 27310 Gaziantep, Turkey; (D.M.Y.); (D.K.Y.); (A.E.D.)
| | - Derya Koçak Yanık
- Engineering Faculty, Food Engineering Department, Gaziantep University, 27310 Gaziantep, Turkey; (D.M.Y.); (D.K.Y.); (A.E.D.)
- Department of Food Engineering, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Aysel Elik Demir
- Engineering Faculty, Food Engineering Department, Gaziantep University, 27310 Gaziantep, Turkey; (D.M.Y.); (D.K.Y.); (A.E.D.)
- Department of Food Technology, Vocational School of Technical Sciences Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33000, Turkey
| | - Hicran Uzun Karka
- Department of Food Processing, Vocational School of Technical Sciences of Gaziantep University, 27310 Gaziantep, Turkey;
| | - Gamze Güçlü
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana 01380, Turkey; (G.G.); (S.S.)
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana 01380, Turkey; (G.G.); (S.S.)
| | - Haşim Kelebek
- Faculty of Engineering, Department of Food Engineering, Adana Alparslan Türkeş Science and Technology, Adana 01250, Turkey;
| | - Fahrettin Göğüş
- Engineering Faculty, Food Engineering Department, Gaziantep University, 27310 Gaziantep, Turkey; (D.M.Y.); (D.K.Y.); (A.E.D.)
| |
Collapse
|
33
|
Baek S, Mae AS, Nam I. Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM). Foods 2023; 12:3062. [PMID: 37628064 PMCID: PMC10452971 DOI: 10.3390/foods12163062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Recent research has been conducted on various types of pre-processing methods for insects, including freeze-drying, microwave drying, hot air heat drying, and non-heat drying. This study aimed to identify the factors that have the greatest impact on heat drying conditions and establish the optimal heat drying conditions for drone pupae (Apis melifera L.) using response surface methodology (RSM) to minimize quality changes. Drone pupae were treated under various conditions, including blanching time (53-187 s) (X1), drying temperatures (41.6-58.4 °C) (X2), and drying time (266-434 min) (X3). The effect of these treatments on response variables, including the color parameter (WI, YI, BI, △E, and BD), AV, and TB of the dried drone pupae, was evaluated using a central composite design. The whole design consisted of 20 experimental points carried out in random order, which included eight factorial points, six center points, and six axial points. The optimal drying conditions for drone pupae were determined to be a blanching time of 58 s, a drying temperature of 56.7 °C, and a drying time of 298 min. The response variables were most affected by drying temperature and drying time and to a lesser extent by blanching time. The processed drone pupae using the optimized drying conditions resulted in the color parameters (WI, BI, YI, ΔE, and BD) being found to be 66.67, 21.33, 26.27, 31.27 and 0.13, respectively. And TB (log CFU/g) and AV (mg/g) values were found to be 3.12 and 4.33, respectively. The estimated and actual values for dried drone pupae showed no significant difference (p < 0.05). Comparing the physicochemical and microbiological properties of freeze-dried and optimal heat-dried drone pupae, the L and b value as well as PV were significantly lower in the heat-dried samples, while no significant difference was observed in the a value and AV (p < 0.05). Our study suggests that the model we developed can be applied to the large-scale production of drying conditions for use in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- SeungHee Baek
- Research Center for Environmentally Friendly and Quality Livestock Production Technology, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Republic of Korea;
| | - Agapito Sheryl Mae
- School of Animal Life Convergence Science, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Republic of Korea;
| | - InSik Nam
- School of Animal Life Convergence Science, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
34
|
Li S, Feng X, Hao X, Zhu Y, Zou L, Chen X, Yao Y. A comprehensive review of mung bean proteins: Extraction, characterization, biological potential, techno-functional properties, modifications, and applications. Compr Rev Food Sci Food Saf 2023; 22:3292-3327. [PMID: 37282814 DOI: 10.1111/1541-4337.13183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
The popularity of plant-based proteins has increased, and mung bean protein (MBP) has gained immense attention due to its high yield, nutritional value, and health benefits. MBP is rich in lysine and has a highly digestible indispensable amino acid score. Dry and wet extractions are used to extract MBP flours and concentrates/isolates, respectively. To enhance the quality of commercial MBP flours, further research is needed to refine the purity of MBPs using dry extraction methods. Furthermore, MBP possesses various biological potential and techno-functional properties, but its use in food systems is limited by some poor functionalities, such as solubility. Physical, biological, and chemical technologies have been used to improve the techno-functional properties of MBP, which has expanded its applications in traditional foods and novel fields, such as microencapsulation, three-dimensional printing, meat analogs, and protein-based films. However, study on each modification technique remains inadequate. Future research should prioritize exploring the impact of these modifications on the biological potential of MBP and its internal mechanisms of action. This review aims to provide ideas and references for future research and the development of MBP processing technology.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuewei Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, P. R. China
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, P. R. China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
35
|
Snel SJE, Amroussi Y, van der Goot AJ, Beyrer M. Rework Potential of Soy and Pea Protein Isolates in High-Moisture Extrusion. Foods 2023; 12:2543. [PMID: 37444281 DOI: 10.3390/foods12132543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
High-moisture extrusion (HME) is an effective process to make fibrous products that can be used as meat analogues. In this study, the effect of extrusion of already extruded products (i.e., re-extrusion) was tested with the aim to explore the potential of rework in HME. The rework of material is important because it is a route to reduce waste, which is always produced, for example during the start or at the end of a production run. Pea and soy protein isolates (PPI and SPI) were first extruded, then freeze-dried and ground, and extruded again. The visual and textural properties of the fibrous products were evaluated. Also, the rheological properties, solubility, and water-holding capacity (WHC) of the ingredients and the products after the first and second extrusion were quantified. The obtained freeze-dried powders after the first HME cycle had a reduction in solubility of 15% for PPI and 74% for SPI. Furthermore, WHC was reduced by 65% and 17% for PPI and SPI, respectively. After the second HME cycle, the reduction in solubility and WHC was augmented to 22% and 90% for PPI, and 79% and 63% for SPI. No effect on stock and loss moduli after heating and cooling were found, even after two HME cycles. SPI fibrous products did not differ in cutting strength, anisotropy index, or visual appearance after re-extrusion. Only, a decrease in hardness was detected, from 62.0 N to 51.1 N. For PPI, re-extrusion did reduce the cutting force and hardness but not the anisotropy index. It was concluded that even though HME induces a loss of solubility and WHC, this did not affect the fibrous texture formation of the protein. This means that the texture formed during HME does not depend on the process history and that rework is thus possible for fibrous products.
Collapse
Affiliation(s)
- Silvia J E Snel
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland, 1950 Sion, Switzerland
- Food Process Engineering, Agrotechnology and Food Sciences Group, Wageningen University & Research, 6708 PD Wageningen, The Netherlands
| | - Yasmine Amroussi
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland, 1950 Sion, Switzerland
| | - Atze Jan van der Goot
- Food Process Engineering, Agrotechnology and Food Sciences Group, Wageningen University & Research, 6708 PD Wageningen, The Netherlands
| | - Michael Beyrer
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland, 1950 Sion, Switzerland
| |
Collapse
|
36
|
Rahim FNA, Ibadullah WZW, Saari N, Brishti FH, Mustapha NA, Ahmad N, Arulrajah B. The effect of alkaline extraction and drying techniques on the physicochemical, structural properties and functionality of rice bran protein concentrates. Int J Biol Macromol 2023:124908. [PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
Collapse
Affiliation(s)
- Farah Nadiah Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Fatema Hossain Brishti
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Noorlaila Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Moon SH, Cho SJ. Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate. Foods 2023; 12:foods12101998. [PMID: 37238816 DOI: 10.3390/foods12101998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this study was to investigate the improvement in techno-functional properties of mung bean protein isolate (MBPI) treated with microbial transglutaminase (MTG), including water- and oil-holding capacity, gelling properties, and emulsifying capacity. MBPI dispersions were incubated with MTG (5 U/g of protein substrate) at 45 °C with constant stirring for 4 h (MTM4) or 8 h (MTM8). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that MTG treatment for different durations increased the amount of high-molecular-weight proteins in MBPI, and most of the cross-linking by MTG was terminated at 8 h. Improved water-holding capacity, gelling properties, emulsifying capacity, and stability were observed after MTG treatment, and decreased protein solubility and surface hydrophobicity were observed. Furthermore, the texture of the heat-induced gels made from MTG-treated MBPI was evaluated using a texture analyzer. MTG treatment increased the hardness, gumminess, chewiness, and adhesiveness of the heat-induced gels. Field-emission scanning electron microscopy demonstrated the enhanced hardness of the gels. This research reveals that MTG-catalyzed cross-linking may adjust the techno-functional properties of MBPI, allowing it to be used as a soy protein alternative in food products, such as plant-based and processed meats.
Collapse
Affiliation(s)
- Su-Hyeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
- ALT LAB Co., Ltd., Chuncheon 24341, Republic of Korea
| |
Collapse
|
38
|
Ma C, Feng Y, Zhou S, Zhang J, Guo B, Xiong Y, Wu S, Li Y, Li Y, Li C. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107739. [PMID: 37196373 DOI: 10.1016/j.plaphy.2023.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Black mung bean is rich in anthocyanin, however, the accumulation and the molecular mechanism of anthocyanin synthesis in black mung bean are unclear. In this study, anthocyanin metabolomics and transcriptomics on the seed coats of two different colors of mung bean were performed to clarify the composition of anthocyanins, and identify transcription factors involved in regulating anthocyanin biosynthesis. In the mature stage, 23 kinds of anthocyanin compounds were identified. All anthocyanin components contents were significantly higher in seed coat of black mung bean compare with green mung bean. Transcriptome analysis suggested that most of the structural genes for anthocyanin biosynthesis and some potential regulatory genes were significantly differentially expressed. WGCNA suggested VrMYB90 was an important regulatory gene in anthocyanin biosynthesis. Arabidopsis thaliana overexpressing VrMYB90 showed significant accumulation of anthocyanins. PAL, 4CL, DFR, F3'5'H, LDOX, F3'H and UFGT were up-regulated in 35S:VrMYB90 Arabidopsis thaliana. These findings provide valuable information for understanding the synthesis mechanism of anthocyanins in black mung bean seed coats.
Collapse
Affiliation(s)
- Chao Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yalan Feng
- College of Life Science, Wuchang University of Technology, Wuhan, 430223, China
| | - Shuang Zhou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Binbin Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ying Xiong
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shanwei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ying Li
- Journal Editorial Department, Henan Agricultural University, Zhengzhou, 450000, China
| | - Youjun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Chunxia Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
39
|
Gong Q, Liu C, Tian Y, Zheng Y, Wei L, Cheng T, Wang Z, Guo Z, Zhou L. Effect of cavitation jet technology on instant solubility characteristics of soymilk flour: Based on the change of protein conformation in soymilk. ULTRASONICS SONOCHEMISTRY 2023; 96:106421. [PMID: 37137245 PMCID: PMC10176257 DOI: 10.1016/j.ultsonch.2023.106421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The protein conformation of soymilk is the key to affecting the instant solubility of soymilk flour. This study aimed to evaluate the effect of cavitation jet treatment time (0, 2, 4, 6, and 8 min) on the instant solubility of soymilk flour based on the conformational changes of protein in soymilk. The results showed that the cavitation jet treatment for 0-4 min significantly unfolded the protein structure of soymilk and increased the content of soluble protein, which reduced the particle size and increased the electrostaticrepulsion and the viscosity of soymilk. This was beneficial for soymilk droplets fully atomized and repolymerized in the spray drying tower, forming soymilk flour particles with large size, smooth surface, and uniform distribution. When the cavitation jet treatment time was 4 min, the wettability (from 127.3 ± 2.5 s to 84.7 ± 2.1 s), dispersibility (from 70.0 ± 2.0 s to 55.7 ± 2.1 s), and solubility (from 56.54% to 78.10%) of soymilk flour were significantly improved. However, when the time of the cavitation jet treatment was extended to 8 min, the protein of soymilk aggregated and the stability of soymilk decreased, which reduced the particle size and hurt the surfacecharacteristics of soymilk flour after spraydrying. It resulted in a decrease in the instant solubility of soymilk flour. Therefore, the cavitationjet treatment with proper time increases the instant solubility of soymilk flour by improving the protein conformation of soymilk.
Collapse
Affiliation(s)
- Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250300, China
| | - Yuxuan Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Libin Wei
- Suzhou Taicang Science And Technology Bureau Productivity Promotion Center, Suzhou, Jiangsu 215411, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi, Heilongjiang 154007, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Haidian, Beijing 100048, China.
| |
Collapse
|
40
|
Drozłowska E, Starowicz M, Śmietana N, Krupa-Kozak U, Łopusiewicz Ł. Spray-Drying Impact the Physicochemical Properties and Formation of Maillard Reaction Products Contributing to Antioxidant Activity of Camelina Press Cake Extract. Antioxidants (Basel) 2023; 12:919. [PMID: 37107293 PMCID: PMC10135720 DOI: 10.3390/antiox12040919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spray-drying is one of the most popular techniques in the food industry for converting liquid material from a fluid state into a form of dried particles to produce encapsulated or instant products. Instant products are considered as convenient foods; moreover, the goal of encapsulation is to close the bioactive compounds in a shell, preventing them from being affected by environmental factors. The purpose of this study was to examine the influence of spray-drying conditions, in particular three inlet temperatures, on the physicochemical and antioxidant properties of powders obtained from Camelina Press Cake Extract (CPE). The CPE was spray-dried at 140 °C, 160 °C and 180 °C. The solubility, Carr and Hausner Indexes, tapped densities and water activity of the powders were analyzed. The structural changes were also detected using FTIR spectroscopy. Additionally, the characteristics of the initial and reconstituted samples and their rheological properties were evaluated. The antioxidant potential, total polyphenols and flavonoids content, free amino acids, and the Maillard reaction products contents in the spray-dried powders were also evaluated. The results indicate a cascade of changes between the initial and reconstituted samples, and important changes in the bioactive potential of samples. The inlet temperature significantly influenced the solubility, flowability and particle sizes of the powders, as well as Maillard products formation. The results of the rheological measurements illustrate the changes after the reconstitution of extracts. This study indicates the optimal parameters of CPE spray-drying, those that yield favorable physicochemical and functional values, which may open up a promising path for CPE valorization, indicating its potential and the possibilities of its use.
Collapse
Affiliation(s)
- Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| | - Małgorzata Starowicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland
| | - Natalia Śmietana
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| | - Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Klemensa Janickiego 35 Street, 71-270 Szczecin, Poland
| |
Collapse
|
41
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
42
|
Dent T, Campanella O, Maleky F. Enzymatic hydrolysis of soy and chickpea protein with Alcalase and Flavourzyme and formation of hydrogen bond mediated insoluble aggregates. Curr Res Food Sci 2023; 6:100487. [PMID: 37065430 PMCID: PMC10102227 DOI: 10.1016/j.crfs.2023.100487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Food applications involving plant proteins require modification of their functionality to mimic the unique properties of animal proteins. Enzymatic hydrolysis is commonly used to alter the functionality of plant proteins, particularly to improve their solubility near the isoelectric point. Current methodological approaches mostly indicate improved solubility upon hydrolysis. However, published methods include the removal of insoluble material before analysis, and calculations are based on only the solubilized material as a percentage of the filtered protein. This approach artificially increases solubility estimation and gives an incorrect assessment of the efficacy of hydrolysis. By using the total amount of protein, this study aims to determine the effect of two microbial proteases, Flavourzyme and Alcalase, on the solubility and structural and thermal properties of soy and chickpea proteins. Protein isolates were first extracted from soy and chickpea flour and hydrolyzed from 0 to 3 h. Then, their degree of hydrolysis and solubility at a range of pHs were determined using the o-phthaldialdehyde (OPA) and Lowry methods, respectively. Proteins' electrophoretic mobility, protein-protein interactions, thermal properties, and protein secondary structures were also determined. Solubility decreased over time though the solubility of the hydrolysate improved near the isoelectric point. Soy Flavourzyme hydrolysates remained the most soluble and chickpea Flavourzyme hydrolysates showed the least solubility. Thermal data suggested that Alcalase reduced the protein denaturation temperature, leading to a loss of solubility upon thermal enzyme inactivation. The loss of solubility of hydrolysates was strongly associated with hydrogen bonding, which may result from the formation of polar peptide termini. These results challenge commonly accepted beliefs that hydrolysis inevitably improves solubility of plant proteins. Instead, it is shown that hydrolysis causes structural changes that result in aggregation, thus potentially limiting the application of enzymatic hydrolysis without the addition of further processing methods.
Collapse
Affiliation(s)
- Terrence Dent
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | - Osvaldo Campanella
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | - Farnaz Maleky
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| |
Collapse
|
43
|
Han X, Li B, Puolanne E, Heinonen M. Hybrid Sausages Using Pork and Cricket Flour: Texture and Oxidative Storage Stability. Foods 2023; 12:1262. [PMID: 36981188 PMCID: PMC10048543 DOI: 10.3390/foods12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to study the functionalities of cricket flour (CF) and the effects of the addition of CF on the texture and oxidative stability of hybrid sausages made from lean pork and CF. Functional properties of CF, including protein solubility, water-holding capacity, and gelling capacity, were examined at different pHs, NaCl concentrations, and CF contents in laboratory tests. The protein solubility of CF was significantly affected by pH, being at its lowest at pH 5 (within the range 2-10), and the highest protein solubility toward NaCl concentrations was found at 1.0 M (at pH 6.8). A gel was formed when the CF content was ≥10%. A control sausage was made from lean pork, pork fat, salt, phosphate, and ice water. Three different hybrid sausages were formulated by adding CF at 1%, 2.5%, and 5.0% levels on top of the base (control) recipe. In comparison to control sausage, the textural properties of the CF sausages in terms of hardness, springiness, cohesiveness, chewiness, resilience, and fracturability decreased significantly, which corresponded to the rheological results of the raw sausage batter when heated at a higher temperature range (~45-80 °C). The addition of CF to the base recipe accelerated both lipid and protein oxidation during 14 days of storage, as indicated by the changes in TBARS and carbonyls and the loss of free thiols and tryptophan fluorescence intensity. These results suggest that the addition of CF, even at low levels (≤5%), had negative effects on the texture and oxidative stability of the hybrid sausages.
Collapse
Affiliation(s)
- Xiaocui Han
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
45
|
Sun D, Wu M, Zhang T, Wei D, Zhou C, Shang N. Conformational changes and physicochemical attributes of texturized pea protein isolate-konjac gum: With a new perspective of residence time during extrusion. Food Res Int 2023; 165:112500. [PMID: 36869508 DOI: 10.1016/j.foodres.2023.112500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The present study aimed to investigate the effects of different extrusion temperatures (110, 130 and 150 °C) and konjac gum addition (0.1 %, 0.2 %, and 0.3 %) on the flow behavior, physicochemical properties and microstructure of extruded pea protein isolate (PPI). The results showed that the textured protein could be improved by enhancing the extrusion temperature and adding konjac gum during extrusion. The water/oil holding capacity of PPI decreased and the SH content increased after extrusion. With temperature and konjac gum content increased, the β-sheet of extruded proteins transformed to other secondary structural components, and Trp residue transformed to a more polar environment, illustrating the changes in protein conformation. All extruded samples presented as yellow hue with little green and higher lightness, while excessive extrusion process reduced the brightness and promoted more formation of browning pigments. Extruded protein showed more associated layered with some air pores, and its hardness and chewiness increased with the increase of temperature and konjac gum concentration. Cluster analysis showed that the addition of konjac gum could effectively improve the quality characteristics of pea protein under low temperature extrusion, and the effect was similar to that of high temperature extrusion product. With the increase of konjac gum concentration, the flow pattern of protein extrusion gradually converted from plug flow to mixing flow, and the disorder degree of polysaccharide protein mixing system was enhanced. Moreover, Yeh-jaw model showed better fitting effect in F(θ) curves compared to Wolf-white.
Collapse
Affiliation(s)
- Dongyu Sun
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China.
| | - Tong Zhang
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China
| | - Dongxue Wei
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China
| | - Chengyi Zhou
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, P. O. Box 50, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China
| |
Collapse
|
46
|
Wang Y, Lyu B, Fu H, Li J, Ji L, Gong H, Zhang R, Liu J, Yu H. The development process of plant-based meat alternatives: raw material formulations and processing strategies. Food Res Int 2023; 167:112689. [PMID: 37087261 DOI: 10.1016/j.foodres.2023.112689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
With the rapid growth of the world's population, the demand for meat is gradually increasing. The emergence and development of plant-based meat alternatives (PBMs) offer a good alternative to solve the environmental problems and disease problems caused by the over-consumption of meat products. Soybean is now the primary material for the production of PBMs due to its excellent gelation properties, potential from fibrous structure, balanced nutritional value, and relatively low price. Extrusion is the most widely used process for producing PBMs, and it has a remarkable effect on simulating the fibrous structure of real meat products. However, interactions related to phase transitions in protein molecules or fibrous structures during extrusion remain a challenge. Currently, PBMs do not meet people's demand for realistic meat in terms of texture, taste, and flavor. Therefore, the objectives of this review are to explore how to improve fiber structure formation in terms of raw material formulation and processing technology. Factors to improve the taste and texture of PBMs are summarized in terms of optimizing process parameters, changing the composition of raw materials, and enriching taste and flavor. It will provide a theoretical basis for the future development of PBMs.
Collapse
|
47
|
Shrestha S, van 't Hag L, Haritos VS, Dhital S. Lentil and Mungbean protein isolates: Processing, functional properties, and potential food applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Legume Protein Extracts: The Relevance of Physical Processing in the Context of Structural, Techno-Functional and Nutritional Aspects of Food Development. Processes (Basel) 2022. [DOI: 10.3390/pr10122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Legumes are sustainable protein-rich crops with numerous industrial food applications, which give them the potential of a functional food ingredient. Legume proteins have appreciable techno-functional properties (e.g., emulsification, foaming, water absorption), which could be affected along with its digestibility during processing. Extraction and isolation of legumes’ protein content makes their use more efficient; however, exposure to the conditions of further use (such as temperature and pressure) results in, and significantly increases, changes in the structural, and therefore functional and nutritional, properties. The present review focuses on the quality of legume protein concentrates and their changes under the influence of different physical processing treatments and highlights the effect of processing techniques on the structural, functional, and some of the nutritional, properties of legume proteins.
Collapse
|
49
|
Qoms MS, Arulrajah B, Shamsudin R, Ibadullah WZW, Saari N. Valorization of green biomass Azolla pinnata fern: multi-parameter evaluation of processing conditions on protein extractability and their influence on the physicochemical, structural, techno-functional properties and protein quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6974-6983. [PMID: 35686494 DOI: 10.1002/jsfa.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study determined the effect of processing conditions on protein extractability from Azolla pinnata fern, and their influence on the physicochemical, structural, techno-functional properties and protein quality. RESULTS The protein extraction from A. pinnata fern was optimized through response surface methodology obtaining a maximum yield of 18.93% with a recovery rate of 73.66%. The A. pinnata fern protein concentrate (AFPC) had five protein bands with a molecular weight ranging from 17 to 56 kDa. AFPC contained high β-sheet structure (36.61%), favouring its good thermal properties with three endothermic peaks at 54.28, 86.52 and 166.25 °C. The AFPC scored ≥ 1 for all essential amino acids, except for lysine and histidine. The AFPC exhibited exceptionally high techno-functional properties, particularly for water holding (5.46 g g-1 ) and fat absorption capacity (10.08 g g-1 ), and gelling properties (5% gelation concentration). The AFPC had high in vitro digestibility of 73%, signifying its high availability for human consumption. CONCLUSION The underexploited A. pinnata fern is a potential source of edible protein, thus a promising nutraceutical or ingredient of functional and health-promoting foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammed S Qoms
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
50
|
Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|