1
|
Yin Y, Nie W, Tang ZQ, Zhu SJ. Flavonoid-Rich Extracts from Chuju ( Asteraceae Chrysanthemum L.) Alleviate the Disturbance of Glycolipid Metabolism on Type 2 Diabetic Mice via Modulating the Gut Microbiota. Foods 2025; 14:765. [PMID: 40077469 PMCID: PMC11898795 DOI: 10.3390/foods14050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications represent a significant public health issue affecting hundreds of millions of people globally; thus, measures to prevent T2DM are urgently needed. Chuju has been proven to possess antihyperglycemic activity. However, the bioactive ingredients in chuju that contribute to its antihyperglycemic activity, as well as the relationship between its antihyperglycemic activity and the gut microbiota, remain unclear. To understand the potential effects that it has on T2DM, the glycolipid metabolism and gut microbiota regulation of flavonoid-rich extracts from chuju (CJE) were investigated. The results showed that the top ten flavonoid compounds in CJE are Apigenin 6, 8-digalactoside, Apigenin 6-C-glucoside 8-C-arabinoside, Luteolin-4'-O-glucoside, Isoshaftoside, Scutellarin, Quercetin 3-O-malonylglucoside, Chrysoeriol 7-O-glucoside, Quercetin-3,4'-O-di-beta-glucoside, Luteolin 6-C-glucoside 8-C-arabinoside, and Homoorientin. Furthermore, CJE mitigated hyperglycemia and glycolipid metabolism by reducing the abundance of Faecalibaculum, Coriobacteriaceae, and Romboutsia and increasing the abundance of Alistipes. In addition, the results of Western blot analysis showed that CJE could enhance glycogen synthesis and glucose transport by up-regulating the phosphorylation of IRS1-PI3K-Akt and AMPK-GLUT4. Simultaneously, CJE could decrease gluconeogenesis by down-regulating the phosphorylation of FoxO1/GSK 3β. In conclusion, the findings of this study provide new evidence supporting the hypothesis that CJE can be used as part of a therapeutic approach for treating disturbances in glycolipid metabolism via regulating the gut microbiota and mediating the IRS1-PI3K-Akt-FoxO1/GSK 3β and AMPK-GLUT4 pathways.
Collapse
Affiliation(s)
- Yu Yin
- School of Life Sciences, Anhui University, Hefei 230601, China;
- School of Biological and Food Engineering, Chuzhou University, Chuzhou 239001, China;
| | - Wen Nie
- School of Biological and Food Engineering, Chuzhou University, Chuzhou 239001, China;
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei 230601, China;
| | - Shuang-Jie Zhu
- School of Life Sciences, Anhui University, Hefei 230601, China;
- School of Biological and Food Engineering, Chuzhou University, Chuzhou 239001, China;
| |
Collapse
|
2
|
Xiao H, Song X, Wang P, Li W, Qin S, Huang C, Wu B, Jia B, Gao Q, Song Z. Termite Fungus Comb Polysaccharides Alleviate Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice by Regulating Hepatic Glucose/Lipid Metabolism and the Gut Microbiota. Int J Mol Sci 2024; 25:7430. [PMID: 39000541 PMCID: PMC11242180 DOI: 10.3390/ijms25137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weilin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Senhua Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaofu Huang
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Beimin Wu
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Bao Jia
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Qionghua Gao
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Geurts KAM, Meijer S, Roeters van Lennep JE, Wang X, Özcan B, Voortman G, Liu H, Castro Cabezas M, Berk KA, Mulder MT. The Effect of Sargassum fusiforme and Fucus vesiculosus on Continuous Glucose Levels in Overweight Patients with Type 2 Diabetes Mellitus: A Feasibility Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:1837. [PMID: 38931192 PMCID: PMC11206271 DOI: 10.3390/nu16121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Brown seaweed is promising for the treatment of type 2 diabetes mellitus (T2DM). Its bioactive constituents can positively affect plasma glucose homeostasis in healthy humans. We investigated the effect of the brown seaweeds Sargassum (S.) fusiforme and Fucus (F.) vesiculosus in their natural form on glucose regulation in patients with T2DM. METHODS We conducted a randomized, double-blind, placebo-controlled pilot trial. Thirty-six participants with T2DM received, on a daily basis, either 5 g of dried S. fusiforme, 5 g of dried F. vesiculosus, or 0.5 g of dried Porphyra (control) for 5 weeks, alongside regular treatment. The primary outcome was the between-group difference in the change in weekly average blood glucose levels (continuous glucose monitoring). The secondary outcomes were the changes in anthropometrics, plasma lipid levels, and dietary intake. The data were analyzed using a linear mixed-effects model. RESULTS The change in weekly average glucose levels was 8.2 ± 2.1 to 9.0 ± 0.7 mmol/L (p = 0.2) in the S. fusiforme group (n = 12) and 10.1 ± 3.3 to 9.2 ± 0.7 mmol/L (p = 0.9) in the F. vesiculosus group (n = 10). The between-group difference was non-significant. Similarly, no between-group differences were observed for the changes in the secondary outcomes. DISCUSSION A daily intake of 5 g of fresh, dried S. fusiforme or F. vesiculosus alongside regular treatment had no differential effect on weekly average blood glucose levels in T2DM.
Collapse
Affiliation(s)
- Karlijn A. M. Geurts
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Sjoerd Meijer
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Jeanine E. Roeters van Lennep
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Xi Wang
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Gardi Voortman
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Schiedamse Vest 180, 3011 BH Rotterdam, The Netherlands
| | - Kirsten A. Berk
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| |
Collapse
|
4
|
Samudra AG, Nugroho AE, Murwanti R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:597-617. [PMID: 38354976 DOI: 10.1016/j.pharma.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Indonesia is the largest archipelagic country in the world, with 70% of its territory covered by oceans that are rich in various types of biological resources. Indonesia's biodiversity has made it possible to develop natural medicine. Marine algae have enormous potential, but the types of marine algae used still need to be more varied. Research on the pharmacology of marine macroalgae has been conducted in Indonesia, but studies on such topic related to diabetes mellitus (DM) still need to be completed. This study provides a comprehensive dataset of pharmacological anti-diabetic potential of marine macroalgae used for managing DM and reports on preclinical trials that provide pharmacological evidence. Data on the Indonesian marine macroalgae used to lower blood glucose were obtained from online sources. The bioactive chemicals of marine macroalgae have been found efficient at blocking several diabetes enzymes in in-vivo and in-vitro studies, and such chemicals have anti-inflammatory, anti-obesity, antioxidant, and other therapeutic benefits. The Google Scholar was used to search for the pharmacological literature with the keywords marine AND macroalgae AND diabetes AND Indonesia. Pharmacological research on the anti-diabetic activity of marine macroalgae has been carried out on five major Indonesian islands, including Sumatra, Kalimantan, Java, Sulawesi, and Papua, which encompassed 12 provinces: Southwest Papua, South Sulawesi, West Kalimantan, Riau Archipelago, Banten, West Java, North Sulawesi, East Java, Yogyakarta, Maluku, Jakarta, and Bengkulu. Articles on preclinical tests (in vitro and in vivo) were also used for the phytochemical problem section. The results briefly describe which class of algae has been widely used in Indonesia as an anti-diabetic. The findings of this research can be utilized to help find DM treatment drugs based on natural resources from marine macroalgae.
Collapse
Affiliation(s)
- Agung Giri Samudra
- Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Bengkulu University, 38371 Bengkulu, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia.
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| |
Collapse
|
5
|
Wu Y, Mo J, Liang J, Pu X, Dong Y, Zhu X, Zhao H, Qiu H, Wu S, Lu T. Multiomic study of the protective mechanism of Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross against streptozotocin-induced diabetic nephropathy in Guizhou miniature pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155499. [PMID: 38492367 DOI: 10.1016/j.phymed.2024.155499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-β-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS Our results provide multidimensional theoretical support for the study and application of P. capitata.
Collapse
Affiliation(s)
- Yanjun Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Yuanqiu Dong
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Xiang Zhu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Hai Zhao
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Huaming Qiu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Shuguang Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Taofeng Lu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
6
|
Ye J, Ma J, Rozi P, Kong L, Zhou J, Luo Y, Yang H. The polysaccharides from seeds of Glycyrrhiza uralensis ameliorate metabolic disorders and restructure gut microbiota in type 2 diabetic mice. Int J Biol Macromol 2024; 264:130622. [PMID: 38447833 DOI: 10.1016/j.ijbiomac.2024.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Parhat Rozi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Lingming Kong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
7
|
Xie X, Chen C, Fu X. Modulation Effects of Sargassum pallidum Extract on Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice. Foods 2023; 12:4409. [PMID: 38137213 PMCID: PMC10742466 DOI: 10.3390/foods12244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to investigate the antidiabetic effect of the extract from Sargassum pallidum (SPPE) on type 2 diabetes mellitus (T2DM) mice. SPPE treatment alleviated hyperglycemia, insulin resistance (IR), liver and pancreatic tissue damage, hyperlipidemia and hepatic oxidative stress resulting from T2DM. SPPE reversed phosphoenolpyruvate carboxylase (PEPCK) and hexokinase (HK) activities to improve gluconeogenesis and glycogen storage in the liver. Furthermore, SPPE modulated glucose metabolism by regulating the levels of mRNA expression involving the PI3K/Akt/FOXO1/G6pase/GLUT2 pathway and could inhibit fatty acid synthesis by reducing the gene expression levels of fatty acid synthase (FAS) and acetyl-CoA carboxylase-1 (ACC-1). A 16 sRNA analysis indicated that SPPE treatment also reversed gut dysbiosis by increasing the abundance of beneficial bacteria (Bacteroides and Lactobacillus) and suppressing the proliferation of harmful bacteria (Enterococcus and Helicobacter). Untargeted metabolomics results indicated that histidine metabolism, nicotinate and nicotinamide metabolism and fatty acid biosynthesis were significantly influenced by SPPE. Thus, SPPE may be applied as an effective dietary supplement or drug in the management of T2DM.
Collapse
Affiliation(s)
- Xing Xie
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Ding X, Tian Y, Huang L, Gai Y, Lyu H, Li M, Ren B, Liu Y, Li W, Meng X, Chen J. Serum and urine metabolomics study revealed the amelioration of Gynura bicolor extract on high fat diet-fed and streptozotocin-induced type 2 diabetic mice based on UHPLC-MS/MS. J Pharm Biomed Anal 2023; 236:115725. [PMID: 37716275 DOI: 10.1016/j.jpba.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been the most prevalent disease and has become a serious public health threat worldwide. Gynura bicolor (Willd.) DC. (GB) contains a variety of nutrients and possesses numerous activities, which might benefit those with diabetes. The current study aimed to confirm the improvement of metabolic disorders and explore the potential mechanism of GB in high fat diet-fed (HFD) and streptozotocin (STZ)-induced T2DM mice. The aboveground sample of GB was extracted with alcohol, and identified by highperformance liquid chromatography (HPLC) and liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) analysis. HFD and STZ-induced T2DM mice were administrated with GB extract. Biochemical and histopathologic examinations were conducted, and metabolomics evaluation was performed in serum and urine. GB significantly reduced body weight and liver weight, reversed hyperlipidemia, hyperglycemia, insulin resistance, oxidative stress and inflammation, improved hepatic histopathological changes and lipid deposition and mitigated liver injury in T2DM mice. Serum and urine metabolomics demonstrated a variety of significantly disturbed metabolites in T2DM and these changes were reversed after GB administration, including 13S-hydroxyoctadecadienoic acid, arachidonic acid, L-Valine and so on. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the overlapping enriched pathways in the normal control group and GB group were identified, including linoleic acid metabolism, PPAR signaling pathway, protein digestion and absorption, biosynthesis of amino acids and so on. This study demonstrates that the ethanol extract of GB remarkably attenuates metabolic disorders and maintains the dynamic balance of metabolites in T2DM, providing a scientific basis for GB in the treatment of T2DM and metabolism diseases.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lushi Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mimi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Zhou X, Zhang B, Zhao X, Zhang P, Guo J, Zhuang Y, Wang S. Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17775-17787. [PMID: 37936369 DOI: 10.1021/acs.jafc.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hyperuricemia nephropathy (HN) is a metabolic disease characterized by tubular damage, tubulointerstitial fibrosis, and uric acid kidney stones and has been demonstrated to be associated with hyperuricemia. Coffee leaf tea is drunk as a functional beverage. However, its prevention effects on HN remain to be explored. This study showed that coffee leaf tea extracts (TE) contain 19 polyphenols, with a total content of 550.15 ± 27.58 mg GAE/g. TE decreased serum uric acid levels via inhibiting XOD activities and modulating the expression of urate transporters (GLUT9, OAT3, and ABCG2) in HN rats. TE prevented HN-induced liver and kidney damage and attenuated renal fibrosis. Moreover, it upregulated the abundance of SCFA-producing bacteria (Phascolarctobacterium, Alloprevotella, and Butyricicoccus) in the gut and reversed the amino acid-related metabolism disorder caused by HN. TE also decreased the circulating LPS and d-lactate levels and increased the fecal SCFA levels. This study supported the preliminary and indicative effect of coffee leaf tea in the prevention of hyperuricemia and HN.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pixian Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
11
|
Zhu Y, Cai PJ, Dai HC, Xiao YH, Jia CL, Sun AD. Black chokeberry ( Aronia melanocarpa L.) polyphenols attenuate obesity-induced colonic inflammation by regulating gut microbiota and the TLR4/NF-κB signaling pathway in high fat diet-fed rats. Food Funct 2023; 14:10014-10030. [PMID: 37840453 DOI: 10.1039/d3fo02177g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study investigated the potential benefits of black chokeberry polyphenol (BCP) supplementation on lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 cells and obesity-induced colonic inflammation in a high fat diet (HFD)-fed rat model. Our findings demonstrated that BCP treatment effectively reduced the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) in LPS-induced RAW264.7 cells and concurrently mitigated oxidative stress by modulating the levels of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) in a dose-dependent manner. Furthermore, BCP supplementation significantly ameliorated HFD-induced obesity, improved glucose tolerance, and reduced systemic inflammation in HFD-fed rats. Notably, BCP treatment suppressed the mRNA expression of pro-inflammatory cytokines and alleviated intestinal barrier dysfunction by regulating the mRNA and protein expression of key tight junction proteins (ZO-1, occludin, and claudin-1), thereby inhibiting colonic inflammation caused by the TLR4/NF-κB signaling pathway. Additionally, BCP treatment altered the composition and function of the gut microbiota, leading to an increase in the total content of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, isobutyric acid, and butyric acid. Collectively, our results highlighted the potential of BCP supplementation as a promising prebiotic strategy for treating obesity-induced colonic inflammation.
Collapse
Affiliation(s)
- Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Peng-Ju Cai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Han-Chu Dai
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yu-Hang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Cheng-Li Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ai-Dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
12
|
Wang X, Huang C, Fu X, Jeon YJ, Mao X, Wang L. Bioactivities of the Popular Edible Brown Seaweed Sargassum fusiforme: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16452-16468. [PMID: 37876153 DOI: 10.1021/acs.jafc.3c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sargassum fusiforme has a wide range of active constituents (such as polysaccharides, sterols, polyphenols, terpenes, amino acids, trace elements, etc.) and is an economically important brown algae with a long history. In recent years, S. fusiforme has been intensively studied and has attracted wide attention in the fields of agriculture, environment, medicine, and functional food. In this review, we reviewed the current research status of S. fusiforme at home and abroad over the past decade by searching Web of science, Google Scholar, and other databases, and structurally analyzed the active components of S. fusiforme, and on this basis, we focused on summarizing the cutting-edge research and scientific issues on the role of various active substances in S. fusiforme in exerting antioxidant, anti-inflammatory, antitumor, antidiabetic, immunomodulatory, antiviral antibacterial, and anticoagulant effects. The mechanisms by which different substances exert active effects were further summarized by exploring different experimental models and are shown visually. It provides a reference to promote further development and comprehensive utilization of S. fusiforme resources.
Collapse
Affiliation(s)
- Xiping Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju City, Jeju Self-Governing Province 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju City, Jeju Self-Governing Province 63333, Republic of Korea
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
13
|
Zhang Y, Wang J, Ge W, Song Y, He R, Wang Z, Zhao L. Camel milk peptides alleviate hyperglycemia by regulating gut microbiota and metabolites in type 2 diabetic mice. Food Res Int 2023; 173:113278. [PMID: 37803591 DOI: 10.1016/j.foodres.2023.113278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to investigate the hypoglycemic effect of Camel milk peptides (CMPs) on Type 2 diabetes mellitus (T2DM) mice and reveal its related mechanism from the aspect of gut microbiota and metabolites. The administering CMPs significantly alleviated the weight loss, polydipsia and polyphagia, reduced fasting blood glucose (FBG), improved insulin resistance and sensitivity, and restored the level of serum hormones, lipopolysaccharide (LPS), lipid metabolic and tissue damage. Furthermore, CMPs intervention remarkably reversed gut microbiota dysbiosis in T2DM mice by reducing the relative abundance of Proteobacteria, Allobaculum, Clostridium, Shigella and the Firmicutes/Bacteroidetes ratio, while increasing the relative abundance of Bacteroidetes and Blautia. Metabolomic analysis identified 84 different metabolites between T2DM and CMPs-treated groups, participating in three pathways of Pantothenate and CoA biosynthesis, Phenylalanine metabolism and Linoleic acid metabolism. Ureidopropionic acid, pantothenic acid, hippuric acid, hydrocinnamic acid and linoleic acid were identified as key acidic metabolites closely related to hypoglycemic effect. Correlation analysis indicated that CMPs might have a hypoglycemic effect through their impact on gut microbiota, leading to variations in short-chain fatty acids (SCFAs), acidic metabolites and metabolic pathways. These findings suggest that CMPs could be a beneficial nutritional supplement for intervention T2DM.
Collapse
Affiliation(s)
- Yongjin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Song
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Chen X, Zhao H, Meng F, Zhou L, Lu Z, Lu Y. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Fu Y, Li S, Xiao Y, Liu G, Fang J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int J Mol Sci 2023; 24:14991. [PMID: 37834439 PMCID: PMC10573635 DOI: 10.3390/ijms241914991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes (T2D) is a commonly diagnosed condition that has been extensively studied. The composition and activity of gut microbes, as well as the metabolites they produce (such as short-chain fatty acids, lipopolysaccharides, trimethylamine N-oxide, and bile acids) can significantly impact diabetes development. Treatment options, including medication, can enhance the gut microbiome and its metabolites, and even reverse intestinal epithelial dysfunction. Both animal and human studies have demonstrated the role of microbiota metabolites in influencing diabetes, as well as their complex chemical interactions with signaling molecules. This article focuses on the importance of microbiota metabolites in type 2 diabetes and provides an overview of various pharmacological and dietary components that can serve as therapeutic tools for reducing the risk of developing diabetes. A deeper understanding of the link between gut microbial metabolites and T2D will enhance our knowledge of the disease and may offer new treatment approaches. Although many animal studies have investigated the palliative and attenuating effects of gut microbial metabolites on T2D, few have established a complete cure. Therefore, conducting more systematic studies in the future is necessary.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| |
Collapse
|
16
|
Zhang S, Lv S, Li Y, Wei D, Zhou X, Niu X, Yang Z, Song W, Zhang Z, Peng D. Prebiotics modulate the microbiota-gut-brain axis and ameliorate cognitive impairment in APP/PS1 mice. Eur J Nutr 2023; 62:2991-3007. [PMID: 37460822 DOI: 10.1007/s00394-023-03208-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Prebiotics, including fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), stimulate beneficial gut bacteria and may be helpful for patients with Alzheimer's disease (AD). This study aimed to compare the effects of FOS and GOS, alone or in combination, on AD mice and to identify their underlying mechanisms. METHODS Six-month-old APP/PS1 mice and wild-type mice were orally administered FOS, GOS, FOS + GOS or water by gavage for 6 weeks and then subjected to relative assays, including behavioral tests, biochemical assays and 16S rRNA sequencing. RESULTS Through behavioral tests, we found that GOS had the best effect on reversing cognitive impairment in APP/PS1 mice, followed by FOS + GOS, while FOS had no effect. Through biochemical techniques, we found that GOS and FOS + GOS had effects on multiple targets, including diminishing Aβ burden and proinflammatory IL-1β and IL-6 levels, and changing the concentrations of neurotransmitters GABA and 5-HT in the brain. In contrast, FOS had only a slight anti-inflammatory effect. Moreover, through 16S rRNA sequencing, we found that prebiotics changed composition of gut microbiota. Notably, GOS increased relative abundance of Lactobacillus, FOS increased that of Bifidobacterium, and FOS + GOS increased that of both. Furthermore, prebiotics downregulated the expression levels of proteins of the TLR4-Myd88-NF-κB pathway in the colons and cortexes, suggesting the involvement of gut-brain mechanism in alleviating neuroinflammation. CONCLUSION Among the three prebiotics, GOS was the optimal one to alleviate cognitive impairment in APP/PS1 mice and the mechanism was attributed to its multi-target role in alleviating Aβ pathology and neuroinflammation, changing neurotransmitter concentrations, and modulating gut microbiota.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Shuang Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
- Department of Rheumatology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Yiming Li
- Department of Cardiovasology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Zhou
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqian Niu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Ziyuan Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China.
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
17
|
Feng S, Liu Y, Xu J, Fan J, Li J, Wu Z, Sun Y, Xiong W. Three Strains of Lactobacillus Derived from Piglets Alleviated Intestinal Oxidative Stress Induced by Diquat through Extracellular Vesicles. Nutrients 2023; 15:4198. [PMID: 37836484 PMCID: PMC10574712 DOI: 10.3390/nu15194198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Previous studies found that Poria cocos polysaccharides (PCPs) significantly enhanced the antioxidant activity in piglet intestines while increasing the abundance of Lactobacillus. However, the relationship between Lactobacillus and antioxidant activity has yet to be verified, and the mode of action needs further investigation. Six Lactobacillus strains isolated from the intestines of neonatal piglets fed with PCPs were studied to investigate the relationship between Lactobacillus and intestinal oxidative stress. The results showed that three of them alleviated intestinal oxidative stress and protected the intestinal barrier. Subsequently, we extracted the extracellular vesicles (EVs) of these three Lactobacillus strains to verify their intestinal protection mode of action. We found that these EVs exerted an excellent antioxidant effect and intestinal barrier protection and could directly improve intestinal microbial composition. Our findings suggested that the EVs of the three Lactobacillus strains could enhance antioxidant activity by improving the physical intestinal barrier and remodeling gut microbiota. Unlike probiotics, which should be pre-colonized, EVs can act directly on the intestines. This study provides new ideas for the subsequent development of products to protect intestinal health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Xiong
- College of Animal Sciences and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (Y.L.); (J.X.); (J.F.); (J.L.); (Z.W.); (Y.S.)
| |
Collapse
|
18
|
Zheng XX, Li DX, Li YT, Chen YL, Zhao YL, Ji S, Guo MZ, Du Y, Tang DQ. Mulberry leaf water extract alleviates type 2 diabetes in mice via modulating gut microbiota-host co-metabolism of branched-chain amino acid. Phytother Res 2023; 37:3195-3210. [PMID: 37013717 DOI: 10.1002/ptr.7822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Elevations in circling branched-chain amino acids (BCAAs) levels associated with insulin resistance and type 2 diabetes mellitus (T2DM). Morus alba L. water extracts (MLE) show hypoglycemic function, but the precise mechanism remains obscure. This study is designed to investigate the association of the antidiabetes effect of MLE with the BCAAs co-metabolism modulated by host and gut microbiota. Tissue-specific expressions of BCAA-catabolizing enzymes were detected by RT-PCR and western blot, respectively. The components of the intestinal microflora were analyzed by high-throughput 16S rRNA gene sequencing. The results showed that MLE administration improved blood glucose and insulin level, decreased inflammatory cytokines expression, and lowered serum and feces BCAAs levels. Furthermore, MLE reversed the abundance changes of the bacterial genera correlated with serum and feces BCAAs, such as Anaerovorax, Bilophila, Blautia, Colidextribacter, Dubosiella, Intestinimonas, Lachnoclostridium, Lachnospiraceae_NK4A136, Oscillibacter, and Roseburia. Functionality prediction indicated that MLE potentially inhibited bacterial BCAAs biosynthesis, and promoted the tissue-specific expression of BCAAs catabolic enzyme. More importantly, MLE had obvious impacts on BCAA catabolism in germ-free-mimic T2DM mice. Those results indicated that MLE improving T2DM-related biochemical abnormalities is associated with not only gut microbiota modification but also the tissue-specific expression of BCAAs catabolic enzyme.
Collapse
Affiliation(s)
- Xiao-Xiao Zheng
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Ting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Lin Zhao
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Dao-Quan Tang
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| |
Collapse
|
19
|
Li C, Ni S, Sun H, Zhu S, Feng Y, Yang X, Huang Q, Jiang S, Tang N. Effects of PM 2.5 and high-fat diet interaction on blood glucose metabolism in adolescent male Wistar rats: A serum metabolomics analysis based on ultra-high performance liquid chromatography/mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115200. [PMID: 37392662 DOI: 10.1016/j.ecoenv.2023.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Fine particulate matter (PM2.5) and high-fat diet (HFD) are known to contribute to blood glucose metabolic disorders. However, limited research has investigated the combined impact of PM2.5 and HFD on blood glucose metabolism. This study aimed to explore the joint effects of PM2.5 and HFD on blood glucose metabolism in rats using serum metabolomics and to identify involved metabolites and metabolic pathways. The 32 male Wistar rats were exposed to filtered air (FA) or PM2.5 (real-world inhaled, concentrated PM2.5, 8 times the ambient level, ranging from 131.42 to 773.44 μg/m3) and fed normal diet (ND) or HFD for 8 weeks. The rats were divided into four groups (n = 8/group): ND-FA, ND-PM2.5, HFD-FA and HFD-PM2.5 groups. Blood samples were collected to determine fasting glucose (FBG), plasma insulin and glucose tolerance test and HOMA Insulin Resistance (HOMA-IR) index was calculated. Finally, the serum metabolism of rats was analyzed by ultra-high performance liquid chromatography/mass spectrometry (UHPLC-MS). Then we constructed the partial least squares discriminant analysis (PLS-DA) model to screen the differential metabolites, and performed pathway analysis to screen the main metabolic pathways. Results showed that combined effect of PM2.5 and HFD caused changes in glucose tolerance, increased FBG levels and HOMA-IR in rats and there were interactions between PM2.5 and HFD in FBG and insulin. By metabonomic analysis, the serum differential metabolites pregnenolone and progesterone, which involved in steroid hormone biosynthesis, were two different metabolites in the ND groups. In the HFD groups, the serum differential metabolites were L-tyrosine and phosphorylcholine, which involved in glycerophospholipid metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. When PM2.5 and HFD coexist, they may lead to more severe and complex effects on glucose metabolism by affecting lipid metabolism and amino acid metabolism. Therefore, reducing PM2.5 exposure and controlling dietary structure are important measures for preventing and reducing glucose metabolism disorders.
Collapse
Affiliation(s)
- Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Shu Ni
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Hongyue Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Shanhui Zhu
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yanan Feng
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
20
|
Chen J, Liu Y, Wang H, Liang X, Ji S, Wang Y, Li X, Sun C. Polymethoxyflavone-Enriched Fraction from Ougan ( Citrus reticulata cv. Suavissima) Attenuated Diabetes and Modulated Gut Microbiota in Diabetic KK-A y Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6944-6955. [PMID: 37127840 DOI: 10.1021/acs.jafc.2c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a serious, chronic disease worldwide; yet it is largely preventable through physical activity and healthy diets. Ougan (Citrus reticulata cv. Suavissima) is a characteristic citrus variety rich in polymethoxyflavones. In the present study, the anti-diabetic effects of the polymethoxyflavone-enriched fraction from Ougan (OG-PMFs) were investigated. Diabetic KK-Ay mice were supplemented with different doses of OG-PMFs for 5 weeks. Our results demonstrated that OG-PMFs exhibited robust protective effects against diabetes symptoms in KK-Ay mice. The potential mechanisms may partially be attributed to the restoration of hepatic GLUT2 and catalase expression. Notably, OG-PMF administration significantly altered the gut microbiota composition in diabetic KK-Ay, indicated by the suppression of metabolic disease-associated genera Desulfovibrio, Lachnoclostridium, Enterorhabdus, and Ralstonia, implying that the gut microbiota might be another target for OG-PMFs to show effects. Taken together, our results provided a supplementation for the metabolic-protective effects of PMFs and highlighted that OG-PMFs hold great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| |
Collapse
|
21
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Longitudinal Study of the Effects of Flammulina velutipes Stipe Wastes on the Cecal Microbiota of Laying Hens. mSystems 2023; 8:e0083522. [PMID: 36511708 PMCID: PMC9948703 DOI: 10.1128/msystems.00835-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because antibiotics have been phased out of use in poultry feed, measures to improve intestinal health have been sought. Dietary fiber may be beneficial to intestinal health by modulating gut microbial composition, but the exact changes it induces remain unclear. In this study, we evaluated the effect of Flammulina velutipes stipe wastes (FVW) on the cecal microbiotas of laying chickens at ages spanning birth to 490 days. Using clonal sequencing and 16S rRNA high-throughput sequencing, we showed that FVW improved the microbial diversity when they under fluctuated. The evolvement of the microbiota enhanced the physiological development of laying hens. Supplementation of FVW enriched the relative abundance of Sutterella, Ruminiclostridium, Synergistes, Anaerostipes, and Rikenellaceae, strengthened the positive connection between Firmicutes and Bacteroidetes, and increased the concentration of short-chain fatty acids (SCFAs) in early life. FVW maintains gut microbiota homeostasis by regulating Th1, Th2, and Th17 balance and secretory IgA (S-IgA) level. In conclusion, we showed that FVW induces microbial changes that are potentially beneficial for intestinal immunity. IMPORTANCE Dietary fiber is popularly used in poultry farming to improve host health and metabolism. Microbial composition is known to be influenced by dietary fiber use, although the exact FVW-induced changes remain unclear. This study provided a first comparison of the effects of FVW and the most commonly used antibiotic growth promoter (flavomycin) on the cecal microbiotas of laying hens from birth to 490 days of age. We found that supplementation with FVW altered cecal microbial composition, thereby affecting the correlation network between members of the microbiota, and subsequently affecting the intestinal immune homeostasis.
Collapse
|
23
|
Chen R, Li L, Zhao W. Antibiotics-induced dysbiosis in gut microbiota affects bumblebee health via regulating host amino acid metabolism. Amino Acids 2023; 55:519-528. [PMID: 36749379 DOI: 10.1007/s00726-023-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The gut bacteria can provide nutrition for the host, and regulate host physiological functions and host behavior. In this study, we specifically examined the important roles of free amino acids in the gut microbiota-host interaction. Bumblebees were treated with different concentrations of antibiotics (ampicillin combined with low/high concentrations of tetracycline). Then the effect of antibiotic treatments on the host body weight, gut microbiota, and the free amino acid profiles in the hindgut, hemolymph and brain of bees was evaluated. The results showed that antibiotic treatments resulted in a significant decrease in the host body weight at 11 days of age, the total bacterial load and the abundance of Bifidobacterium bohemicum and Gilliamella apicola in the bumblebee's hindgut. Additionally, the higher the concentration of antibiotics (tetracycline), the greater their impact on the body weight and intestinal microbiota of bumblebees. Further, we found that antibiotic treatments caused changes of free amino acids in different tissues, especially in the hindgut and hemolymph, including particularly the decrease of several types of essential amino acids and branched-chain amino acids. Our results suggest that the gut microbiota may modulate the host growth via specific essential amino acids and branched-chain amino acids, which further reveals the crucial roles of free amino acids in the gut microbiota-host interplay.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
24
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Yu S, Xiang X, Tan CP, Feng Y, Zhang J, Li M, Shen G. Antidiabetic effect of sciadonic acid on type 2 diabetic mice through activating the PI3K-AKT signaling pathway and altering intestinal flora. Front Nutr 2022; 9:1053348. [PMID: 36618687 PMCID: PMC9816573 DOI: 10.3389/fnut.2022.1053348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia. The aim of this work was to investigate the effect of sciadonic acid (SA) on disorders of glucolipid metabolism and intestinal flora imbalance and to further investigate its potential molecular mechanism of anti-diabetes. The experimental data indicated that SA could alleviate hyperlipidemia, insulin resistance, oxidative stress, the inflammatory response, repair liver function damage, and promote glycogen synthesis caused by T2DM. SA could also activate the PI3K/AKT/GLUT-2 signaling pathway, promote glucose metabolism gene expression, and maintain glucose homeostasis. Furthermore, 16S rRNA analysis revealed that SA could reduce the Firmicutes/Bacteroidota (F/B) ratio; promote norank_f__Muribaculaceae, Allobaculum, Akkermansia, and Eubacterium_siraeum_group proliferation; increase the levels of major short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid; and maintain the homeostasis of the intestinal flora. In conclusion, these results suggested that SA could reshape the structural composition of intestinal microbes, activate the PI3K/AKT/GLUT2 pathway, improve insulin resistance, and decrease blood glucose levels.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shaofang Yu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia,Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Jianfang Zhang
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China,*Correspondence: Mingqian Li,
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China,Guoxin Shen,
| |
Collapse
|
25
|
Cong S, Wang L, Meng Y, Cai X, Zhang C, Gu Y, Ma X, Luo L. Saussurea involucrata
oral liquid regulates gut microbiota and serum metabolism during alleviation of collagen‐induced arthritis in rats. Phytother Res 2022; 37:1242-1259. [PMID: 36451529 DOI: 10.1002/ptr.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Saussurea involucrata oral liquid (SIOL) can clinically relieve symptoms, such as joint pain and swelling, and morning stiffness, in patients with rheumatoid arthritis (RA). However, the mechanism of action remains unclear. This study used a combination of gut microbiota and serum metabolomics analysis to investigate the effects and potential mechanisms of SIOL intervention on rats with RA induced by type II bovine collagen and Freund's complete adjuvant. Results showed that SIOL treatment consequently improved the degree of ankle joint swelling, joint histopathological changes, joint pathological score, and expression of serum-related inflammatory cytokines (interleukin (IL)-1β, IL-4, IL-6, IL-10, and tumor necrosis factor-α) in RA model rats. 16 S rRNA sequencing results showed that SIOL increased the relative richness of the Lactobacillus and Bacteroides genus and decreased the relative richness of Romboutsia, Alloprevotella, Blautia, and Helicobacter genus. Serum nontargeted metabolomic results indicated that SIOL could regulate metabolites related to metabolic pathways, such as glycine, serine, threonine, galactose, cysteine, and methionine metabolism. Spearman correlation analysis showed that the regulatory effects of SIOL on the tricarboxylic acid (TCA) cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism pathways were correlated with changes in the richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus in the gut microbiome. In conclusion, this study revealed the ameliorative effects of SIOL on RA and suggested that the therapeutic effects of SIOL on RA may be related to the regulation of the community richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus, thereby improving the TCA cycle; phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism-related pathways.
Collapse
Affiliation(s)
- Shan Cong
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Lingrui Wang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yan Meng
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xuanlin Cai
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Chenxi Zhang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yanqin Gu
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xiumin Ma
- Tumor Hospital Affiliated to Xinjiang Medical University Xinjiang China
| | - Li Luo
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| |
Collapse
|
26
|
Niu X, Zhang N, Li S, Li N, Wang R, Zhang Q, He J, Sun E, Kang X, Zhan J. Bifidobacterium animalis subsp. lactis MN-Gup protects mice against gut microbiota-related obesity and endotoxemia induced by a high fat diet. Front Nutr 2022; 9:992947. [PMID: 36407506 PMCID: PMC9667045 DOI: 10.3389/fnut.2022.992947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 08/22/2024] Open
Abstract
Obesity has become a public health concern due to its global prevalence and high risk of complications such as endotoxemia. Given the important role of gut microbiota in obesity, probiotics targeting gut microbiota have been developed and applied to alleviate obesity. However, most studies focused on the effects of probiotics on pre-existing obesity, and the preventive effects of probiotics against obesity were rarely studied. This study aimed to investigate the preventive effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and fermented milk containing MN-Gup against high fat diet (HFD)-induced obesity and endotoxemia in C57BL/6J mice. The results showed that MN-Gup, especially the high dose of MN-Gup (1 × 1010CFU/kg b.w.), could significantly protect mice against HFD-induced body weight gain, increased fat percentage, dyslipidemia, and increased lipopolysaccharides (LPS). Fermented milk containing MN-Gup had better preventive effects on fat percentage and dyslipidemia than fermented milk without MN-Gup, but its overall performance was less effective than MN-Gup. Furthermore, MN-Gup and fermented milk containing MN-Gup could alter HFD-affected gut microbiota and regulate obesity- or endotoxemia-correlated bacteria, which may contribute to the prevention of obesity and endotoxemia. This study revealed that MN-Gup could reduce obesity and endotoxemia under HFD, thereby providing a potential application of MN-Gup in preventing obesity.
Collapse
Affiliation(s)
- Xiaokang Niu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nana Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Ning Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Wu G, Zhuang D, Chew KW, Ling TC, Khoo KS, Van Quyen D, Feng S, Show PL. Current Status and Future Trends in Removal, Control, and Mitigation of Algae Food Safety Risks for Human Consumption. Molecules 2022; 27:6633. [PMID: 36235173 PMCID: PMC9572256 DOI: 10.3390/molecules27196633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
With the rapid development of the economy and productivity, an increasing number of citizens are not only concerned about the nutritional value of algae as a potential new food resource but are also, in particular, paying more attention to the safety of its consumption. Many studies and reports pointed out that analyzing and solving seaweed food safety issues requires holistic and systematic consideration. The three main factors that have been found to affect the food safety of algal are physical, chemical, and microbiological hazards. At the same time, although food safety awareness among food producers and consumers has increased, foodborne diseases caused by algal food safety incidents occur frequently. It threatens the health and lives of consumers and may cause irreversible harm if treatment is not done promptly. A series of studies have also proved the idea that microbial contamination of algae is the main cause of this problem. Therefore, the rapid and efficient detection of toxic and pathogenic microbial contamination in algal products is an urgent issue that needs to be addressed. At the same time, two other factors, such as physical and chemical hazards, cannot be ignored. Nowadays, the detection techniques are mainly focused on three major hazards in traditional methods. However, especially for food microorganisms, the use of traditional microbiological control techniques is time-consuming and has limitations in terms of accuracy. In recent years, these two evaluations of microbial foodborne pathogens monitoring in the farm-to-table chain have shown more importance, especially during the COVID-19 pandemic. Meanwhile, there are also many new developments in the monitoring of heavy metals, algal toxins, and other pollutants. In the future, algal food safety risk assessment will not only focus on convenient, rapid, low-cost and high-accuracy detection but also be connected with some novel technologies, such as the Internet of Things (artificial intelligence, machine learning), biosensor, and molecular biology, to reach the purpose of simultaneous detection.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Dong Van Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi 100803, Vietnam
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
28
|
Chen J, Peng H, Chen C, Wang Y, Sang T, Cai Z, Zhao Q, Chen S, Lin X, Eling T, Wang X. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sci 2022; 311:121142. [DOI: 10.1016/j.lfs.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
29
|
Liu M, Huang B, Wang L, Lu Q, Liu R. Peanut skin procyanidins ameliorate insulin resistance via modulation of gut microbiota and gut barrier in type 2 diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5935-5947. [PMID: 35442513 DOI: 10.1002/jsfa.11945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Peanut skin procyanidins (PSP) have been shown to possess antidiabetic activities. However, the mechanism remains poorly understood due to its low bioavailability. This study aims to investigate the preventive effect of PSP on type 2 diabetes (T2D) in mice through regulating gut microbiota and gut barrier in mice with streptozotocin (STZ)-induced T2D. During the 30 consecutive days of the study, T2D mice were administered PSP intragastrically at 75, 150 and 300 mg kg-1 body weight d-1 . RESULTS PSP treatment obviously alleviated glucolipid metabolism disorders, decreased the levels of lipopolysaccharide (LPS), interleukin (IL)-6 and myeloperoxidase(MPO), and increased that of IL-10. PSP treatment enhanced the abundance of Lachnospiraceae_NK4A136_group, Alloprevotella, Akkermansia and Faecalibaculum, and reduced that of Muribaculaceae. Some of these were associated with the production of short-chain fatty acids and anti-inflammatory effect, suggesting their important roles in T2D mice. More importantly, PSP improved the gut barrier integrality by restoring gut morphology and enhancing tight junction protein expression including ZO1, claudin1 and occludin in colon. Subsequently, PSP ameliorated insulin resistance by decreasing the LPS/Toll-like receptor 4/c-Jun N-terminal kinase inflammatory response, and enhancing insulin receptor substrate 1/ phosphatidylinositol-3-kinase/protein kinase B insulin signaling pathways in the liver. CONCLUSION Peanut skin procyanidins may alleviate the symptoms of T2D by mitigating inflammatory response, modulating gut microbiota and improving intestinal integrity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
30
|
Zhou W, Yang T, Xu W, Huang Y, Ran L, Yan Y, Mi J, Lu L, Sun Y, Zeng X, Cao Y. The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydr Polym 2022; 291:119626. [DOI: 10.1016/j.carbpol.2022.119626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
|
31
|
Fang F, Xiao C, Wan C, Li Y, Lu X, Lin Y, Gao J. Two Laminaria japonica polysaccharides with distinct structure characterization affect gut microbiota and metabolites in hyperlipidemic mice differently. Food Res Int 2022; 159:111615. [PMID: 35940764 DOI: 10.1016/j.foodres.2022.111615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Our previous study found dietary mannogluconic acid (MA) and fucogalactan sulfate (FS) from Laminaria japonica have distinct structure characterization and potential hypolipidemic effects in vitro. Herein, we compared the benefits of MA and FS on hyperlipidemia. The result showed only FS treatment decreased body weight and serum cholesterol levels. Compared with MA, FS was more effective in mitigating hepatic fat accumulation, promoting GSH-Px activity, reducing the MDA formation, and lowering the level of TNF-α in liver. Gut microbiota and metabolism analysis revealed that FS increased the relative abundance of beneficial bacteria and boosted the level of short chain fatty acids. Particularly, taurine and 3α,7α,12α-trihydroxy-24-oxo-5-β-cholestanoyl CoA were upregulated by FS, which might attribute to the increased Oscillibacter and thus affect the enterohepatic circulation of bile acids and serum TC level. Therefore, FS with more branches and sulfate ester groups could be a good lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521031, China
| | - Chu Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ying Lin
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
32
|
Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9727889. [PMID: 35979004 PMCID: PMC9377893 DOI: 10.1155/2022/9727889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The current study employed the high-fat diet (HFD) induced murine model to assess the relationship between the effect of Jian Pi Tiao Gan Yin (JPTGY) and the alterations of gut microbiota and fecal metabolism. C57BL/6 mice were used to establish an animal model of obesity via HFD induce. Serum biochemical indicators of lipid metabolism were used to evaluate the pharmacodynamics of JPTGY in obese mice. Bacterial communities and metabolites in the feces specimens from the controls, the Group HFD, and the JPTGY-exposed corpulency group were studied by 16s rDNA genetic sequence in combination with liquid chromatography-mass spectrometry (LC-MS) based untargeted fecal metabolomics techniques. Results revealed that JPTGY significantly decreased the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and elevated high-density lipoprotein cholesterol (HDL-C). Moreover, JPTGY could up-regulate the abundance and diversity of fecal microbiota, which was characterized by the higher phylum of proteobacteria. Consistently, at the genus levels, JPTGY supplementation induced enrichments in Lachnospiraceae NK4A136 group, Oscillibacter, Turicibacter, Clostridium sensu stricto 1, and Intestinimonas, which were intimately related to 14 pivotal fecal metabolins in respond to JPTGY therapy were determined. What is more, metabolomics further analyses show that the therapeutic effect of JPTGY for obesity involves linoleic acid (LA) metabolism paths, alpha-linolenic acid (ALA) metabolism paths, glycerophospholipid metabolism paths, arachidonic acid (AA) metabolism paths, and pyrimidine metabolism paths, which implied the potential mechanism of JPTGY in treating obesity. It was concluded that the linking of corpulency phenotypes with intestinal flora and fecal metabolins unveils the latent causal link of JPTGY in the treatment of hyperlipidemia and obesity.
Collapse
|
33
|
Qi B, Ren D, Li T, Niu P, Zhang X, Yang X, Xiao J. Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8274-8287. [PMID: 35767631 DOI: 10.1021/acs.jafc.2c02400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
34
|
Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the anti-obesity effects of yak (Bos grunniens) bone collagen hydrolysates. Food Res Int 2022; 156:111024. [DOI: 10.1016/j.foodres.2022.111024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
35
|
Gut microbiome and daytime function in Chinese patients with major depressive disorder. J Psychosom Res 2022; 157:110787. [PMID: 35344817 DOI: 10.1016/j.jpsychores.2022.110787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is underscored by daytime dysfunction-associated features, including mood disturbances, impaired cognition, fatigue, and daytime sleepiness. Importantly, the gut-brain axis may represent a potential mechanistic link between MDD and daytime dysfunction. Therefore, this study aimed to explore the gut microbiome composition and daytime dysfunction in Chinese patients with MDD. METHODS We enrolled 36 patients with MDD and 45 healthy controls (HCs) matched by age, sex, and body mass index (BMI). Daytime function including emotion, fatigue, and sleepiness were assessed using the Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD). 16S rRNA sequencing was employed to characterize the gut microbiota in stool samples. RESULTS The operational taxonomic units (OTUs) OTU255, OUT363 were positively correlated with HAMD and HAMA. OTU244, OTU542 and OTU221 were positively correlated with ESS, HAMD and HAMA. OTU725 and OTU80 were positively correlated with FSS, ESS, HAMD and HAMA, while OTU423 and OTU502 were negatively correlated with all above. Flavonifractor positively correlated with fatigue in patients with MDD and all individuals simultaneously. The correlation between gut microbiome and daytime function was different in MDD and HCs. CONCLUSIONS We identified several OTUs associated with the severity of fatigue, depression, daytime sleepiness and anxiety in all individuals. Our results revealed the differences in microbiome found between patients with MDD and HCs. These findings provide insights into the potential microbiota changes that occur in MDD, and will enable the development of specific therapeutic strategies for targeting the various symptoms of depression.
Collapse
|
36
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
37
|
Li Q, Liu W, Feng Y, Hou H, Zhang Z, Yu Q, Zhou Y, Luo Q, Luo Y, Ouyang H, Zhang H, Zhu W. Radix Puerariae thomsonii polysaccharide (RPP) improves inflammation and lipid peroxidation in alcohol and high-fat diet mice by regulating gut microbiota. Int J Biol Macromol 2022; 209:858-870. [PMID: 35439478 DOI: 10.1016/j.ijbiomac.2022.04.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022]
Abstract
Polysaccharides are the important active constituents of Radix Puerariae thomsonii. Numerous studies have shown that polysaccharides can regulate gut microbiota, repair intestinal barrier, and affect the microbiota-intestine-liver axis, thereby showing therapeutic effects on metabolic disorders. In this study, Radix Puerariae thomsonii polysaccharide (RPP) was extracted from Radix Puerariae thomsonii. The average Mw of RPP was determined to be 1.09 × 105 Da and the monosaccharide composition showed it consisted of glucose. The effects and underlying mechanisms of RPP on fatty liver were studied using C57/BL6J mice induced by alcohol and high-fat diet. The results showed that the oral supplementation of RPP could alleviate alcohol and high-fat diet-induced hepatic injury and steatosis. RPP also promoted intestinal barrier integrity and reduced inflammation through NF-κB signaling pathway. RPP could ameliorate the lipid peroxidation by AMPK/NADPH oxidase signaling pathway. Additionally, these improvements might be related to the enrichment of intestinal bacteria Parabacteroides (promote intestinal barrier integrity) and Prevotellaceae UCG 001 (activation of AMPK signaling pathway). These results demonstrated that RPP could improve inflammation and lipid peroxidation in the alcohol and high-fat diet mouse by restoring the intestinal barrier integrity and regulating the gut microbiota. This suggested that RPP was a potential food supplement for the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Qiong Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang 330103, PR China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Hengwei Hou
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Zhuang Zhang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Qingqing Yu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Ying Zhou
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Quan Luo
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Yingying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Hua Zhang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China.
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; Key Laboratory of Modern Preparation of Chinese Medicine of Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China.
| |
Collapse
|
38
|
Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022; 11:foods11070974. [PMID: 35407061 PMCID: PMC8997417 DOI: 10.3390/foods11070974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.
Collapse
|
39
|
Zhang M, Yang L, Zhu M, Yang B, Yang Y, Jia X, Feng L. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol 2022; 206:849-860. [PMID: 35307460 DOI: 10.1016/j.ijbiomac.2022.03.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that polysaccharides from traditional Chinese medicine positively affect diabetic kidney disease (DKD) mainly through modulating gut microbiota. Previously, we demonstrated that supplementation with the polysaccharide from Moutan Cortex (MC-Pa) alleviated DKD in rats. The study intends to investigate the dynamic modulation of MC-Pa on DKD from the gut microbiota perspective. The DKD rat model was induced by a high-fat and high-sugar diet combined with streptozotocin (STZ). The rats were then supplemented with MC-Pa (80 and 160 mg/kg BW) for 12 weeks. The results showed that MC-Pa administration relieved hyperglycemia and renal injury in DKD rats. MC-Pa also reconstructed gut microbiota, improved intestinal barrier function, reduced serum proinflammatory mediators, and elevated the short-chain fatty acid (SCFAs) contents. In addition, the dynamics of Lactobacillus and Muribaculaceae_unclassified were in a dose- and time-dependent manner. Spearman correlation analysis found that a cluster of gut microbiota phyla and genera were significantly associated with DKD-related indicators. These results demonstrated that MC-Pa positively affected DKD rats by modulating gut microbiota dynamically and had potential as a prebiotic.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Licheng Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
40
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|
41
|
Liu Y, Huang H, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Fucoidan protects pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats. Food Funct 2022; 13:2693-2709. [DOI: 10.1039/d1fo04164a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important to maintain the normal function of pancreas in the prevention and intervention of type 2 diabetes mellitus (T2DM). This study was undertaken to explore the protective effects...
Collapse
|