1
|
Zhang D, Zhong R, Liao Z, Wang X, Xiang P, Zhang A, Su N, Cao Y, Lan Y. Fabrication of interfacial crystallized oleogel emulsion for quercetin delivery with enhanced environmental stability and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2226-2235. [PMID: 39497576 DOI: 10.1002/jsfa.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Quercetin is a flavonoid compound with numerous bioactivities. However, the low solubility, easy degradation and low bioaccessibility limit its application. In this study, a novel interfacial crystallized oleogel emulsion was fabricated, where beeswax was used as the oleogelator, for quercetin encapsulation with enhanced stability and bioaccessibility. RESULTS The process of interfacial crystallization was investigated using interfacial rheology and polarized microscopy, with a positive correlation between crystal density and beeswax content in the oil phase. Emulsion stability was directly linked to beeswax concentration in the oil phase, with 100 mg g-1 showing enhanced stability under storage, UVB light exposure and ionic conditions. Beeswax addition significantly increased the quercetin loading capacity of the emulsion; particularly, at a 200 mg g-1 beeswax concentration, the loading capacity was improved by 285.55%, and the environmental stability was enhanced against UV light and Ca2+. Ultimately, in vitro simulated digestion experiment indicated improved bioaccessibility of quercetin. CONCLUSIONS This strategy significantly enriched the formulation of oleogel emulsion and its potential applications in delivering bioactive ingredients with high environmental vulnerability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dian Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, People's Republic of China
| | - Ziying Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
- Guangdong Marubi Biotechnology Co. Ltd, Guangzhou, People's Republic of China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Pengcheng Xiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ao Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Nan Su
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Wang E, Qi Z, Cao Y, Li R, Wu J, Tang R, Gao Y, Du R, Liu M. Gels as Promising Delivery Systems: Physicochemical Property Characterization and Recent Applications. Pharmaceutics 2025; 17:249. [PMID: 40006616 PMCID: PMC11858892 DOI: 10.3390/pharmaceutics17020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase transition studies, among others. While numerous research articles report characterization results, few reviews comprehensively summarize the appropriate numerical ranges for these properties. This lack of standardization complicates harmonized evaluation methods and hinders direct comparisons between different gels. To address this gap, it is essential to systematically investigate characterization methods and analyze data from the extensive body of literature on gels. In this review, we provide a comprehensive summary of general characterization methods and present a detailed analysis of gel characterization data to support future research and promote standardized evaluation protocols.
Collapse
Affiliation(s)
- Enzhao Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaoying Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuzhou Cao
- School of Science, National University of Singapore, Singapore 119077, Singapore;
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
| | - Jing Wu
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Rongshuang Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Hu H, Wang Y, Zhao DG, Lu X. Oral Delivery of 5-Demethylnobiletin by Media-Milled Black Rice Particle-Stabilized Pickering Emulsion Alleviates Colitis in Mice: Synergistic Effects of Carrier and Loaded Bioactive. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1257-1272. [PMID: 39763118 DOI: 10.1021/acs.jafc.4c08558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared. BR-5-DMN exhibited superior effects, enhancing 5-DMN absorption and metabolic conversion. It also improved intestinal barrier function and microbiome homeostasis, restoring short-chain fatty acid synthesis, especially acetic acid, through releasing dietary fiber, bioactives from black rice, and 5-DMN in the colon. Black rice particles in BR-5-DMN promoted the growth of Bifidobacterium while inhibiting Ruminococcus, and both black rice particles and 5-DMN synergistically increased Akkermansia abundance. This study highlights the potential of milled grain particle-stabilized emulsions as effective vehicles for bioactives to treat colitis by regulating gastrointestinal release and synergistic interactions.
Collapse
Affiliation(s)
- Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| |
Collapse
|
4
|
Lee JH, Lee KY, Lee HG. Effects of clove bud oil on the physicochemical properties and oxidative stability of canola oil organogels structured by different beeswax contents. Food Sci Biotechnol 2024; 33:3019-3028. [PMID: 39220319 PMCID: PMC11364742 DOI: 10.1007/s10068-024-01560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 09/04/2024] Open
Abstract
The aim of this study was to investigate the utilization of clove bud oil as fat-soluble antioxidants for retarding lipid oxidation in organogels by structuring canola oil with beeswax at 5, 7.5, and 10% concentration under accelerated oxidation condition. Oil binding capacity and viscoelastic properties were increased with beeswax content, but were not nearly affected by the addition of clove bud oil. Organogel loaded with clove bud oil were found to be more effective in retarding lipid oxidation in high beeswax content systems, particularly evident in 10% beeswax samples. The addition of clove bud oil resulted in low levels of hyeoperxide and MDA, and protected against texture and color deterioration during the storage period. Additionally, the Pearson correlation between lipid oxidation indices and parameters of texture and color has been found to exhibit a limited association, with the exception of the a* and b* values, which show a strong correlation.
Collapse
Affiliation(s)
- Jay Heon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Kwang Yeon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| |
Collapse
|
5
|
Wang Y, Zhu S, Zhang T, Gao M, Zhan X. New Horizons in Probiotics: Unraveling the Potential of Edible Microbial Polysaccharides through In Vitro Digestion Models. Foods 2024; 13:713. [PMID: 38472826 DOI: 10.3390/foods13050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro digestion models, as innovative assessment tools, possess advantages such as speed, high throughput, low cost, and high repeatability. They have been widely applied to the investigation of food digestion behavior and its potential impact on health. In recent years, research on edible polysaccharides in the field of intestinal health has been increasing. However, there is still a lack of systematic reviews on the application of microbial-derived edible polysaccharides in in vitro intestinal models. This review thoroughly discusses the limitations and challenges of static and dynamic in vitro digestion experiments, while providing an in-depth introduction to several typical in vitro digestion models. In light of this, we focus on the degradability of microbial polysaccharides and oligosaccharides, with a particular emphasis on edible microbial polysaccharides typically utilized in the food industry, such as xanthan gum and gellan gum, and their potential impacts on intestinal health. Through this review, a more comprehensive understanding of the latest developments in microbial polysaccharides, regarding probiotic delivery, immobilization, and probiotic potential, is expected, thus providing an expanded and deepened perspective for their application in functional foods.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Mushtaq Z, Aslam M, Imran M, Abdelgawad MA, Saeed F, Khursheed T, Umar M, Abdulmonem WA, Ghorab AHA, Alsagaby SA, Tufail T, Raza MA, Hussain M, Al JBawi E. Polymethoxyflavones: an updated review on pharmacological properties and underlying molecular mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed H. Al Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory sciences, College of Applied Medical Sciences, Majmaah University, AI Majmaah, Saudi Arabia
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Feng K, Duan Y, Zhang H, Xiao J, Ho CT, Huang Q, Cao Y. Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food Funct 2023; 14:6212-6225. [PMID: 37345830 DOI: 10.1039/d3fo00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yashan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Zhang X, Zhao L, Xiao J, Wang Y, Li Y, Zhu C, Zhang H, Zhang Y, Zhu X, Dong Y. 5-Demethylnobiletin mediates cell cycle arrest and apoptosis via the ERK1/2/AKT/STAT3 signaling pathways in glioblastoma cells. Front Oncol 2023; 13:1143664. [PMID: 37139163 PMCID: PMC10149914 DOI: 10.3389/fonc.2023.1143664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
5-Demethylnobiletin is the active ingredient in citrus polymethoxyflavones that could inhibit the proliferation of several tumor cells. However, the anti-tumor effect of 5-Demethylnobiletin on glioblastoma and the underlying molecular mechanisms are remains unknown. In our study, 5-Demethylnobiletin markedly inhibited the viability, migration and invasion of glioblastoma U87-MG, A172 and U251 cells. Further research revealed that 5-Demethylnobiletin induces cell cycle arrest at the G0/G1 phase in glioblastoma cells by downregulating Cyclin D1 and CDK6 expression levels. Furthermore, 5-Demethylnobiletin significantly induced glioblastoma cells apoptosis by upregulating the protein levels of Bax and downregulating the protein level of Bcl-2, subsequently increasing the expression of cleaved caspase-3 and cleaved caspase-9. Mechanically, 5-Demethylnobiletin trigged G0/G1 phase arrest and apoptosis by inhibiting the ERK1/2, AKT and STAT3 signaling pathway. Furthermore, 5-Demethylnobiletin inhibition of U87-MG cell growth was reproducible in vivo model. Therefore, 5-Demethylnobiletin is a promising bioactive agent that might be used as glioblastoma treatment drug.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinlong Xiao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yunmeng Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chaoqun Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Cao Z, Chen Y, Bai S, Zheng Z, Liu Y, Gui S, Shan S, Wu J, He N. In situ formation of injectable organogels for punctal occlusion and sustained release of therapeutics: design, preparation, in vitro and in vivo evaluation. Int J Pharm 2023; 638:122933. [PMID: 37030642 DOI: 10.1016/j.ijpharm.2023.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The treatment of dry eye mainly includes instillation of cyclosporine A (CsA) nanoemulsion or the use of punctal plugs. Therefore, in this study, a novel injectable in situ organogel plug was developed using CsA as a model drug, stearic acid, injectable soybean oil, and N-methyl-2-pyrrolidinone (NMP) (1.25:10:0.6, w/v/v) as gel materials, to provide a dual mechanism for dry eye treatment. The formulated CsA injectable in situ organogel (CsA-OG) was evaluated in terms of stability, in vitro release, rheology, ocular irritation, punctal occlusion tests, and ocular distribution assessment. In vivo ocular distribution investigations showed that CsA-OG achieved considerably higher Cmax (1.94, 1.92 and 1.97-fold respectively) and AUC0-72h in the cornea, conjunctiva, and sclera (2.49, 2.27 and 2.15-fold respectively) than ciclosporin eye drops (p < 0.05). In vitro model evaluation demonstrated significant decrease in flow flux to 52.78% at 2 min after CsA-OG injection. According to evaluation of the in vivo model, the organogel plug can completely block the lacrimal passages and greatly decrease the lacrimal drainage rate (p < 0.05). The above results suggest that these intracanalicular CsA-OG plugs can offer more extensive clinical applications than existing lacrimal drainage plugs and may act as a drug delivery system.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yangnan Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaoyun Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China
| | - Shuang Shan
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiabao Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| |
Collapse
|
10
|
Oleogel-structured emulsions: A review of formation, physicochemical properties and applications. Food Chem 2023; 404:134553. [DOI: 10.1016/j.foodchem.2022.134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
11
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
12
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
13
|
Pérez‐Salas JL, Medina‐Torres L, Rocha‐Guzmán NE, Calderas F, González‐Laredo RF, Bernad‐Bernad MJ, Moreno‐Jiménez MR, Gallegos‐Infante JA. A Water in Oil Gelled Emulsion as a Topical Release Vehicle for Curcumin. STARCH-STARKE 2022. [DOI: 10.1002/star.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Luis Pérez‐Salas
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - Luis Medina‐Torres
- Facultad de Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | - Nuria Elizabeth Rocha‐Guzmán
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - F. Calderas
- Facultad de Estudios Superiores‐Zaragoza Batalla 5 de mayo s/n Colonia Ejército de Oriente Iztapalapa Universidad Nacional Autónoma de México Ciudad de México 09230 México
| | - Rubén Francisco González‐Laredo
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | | | - Martha Rocío Moreno‐Jiménez
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
14
|
Zheng T, Yin Z, Huang Q. Assessment of Digestion, Absorption, and Metabolism of Nanoencapsulated Phytochemicals Using In Vitro and In Vivo Models: A Perspective Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4548-4555. [PMID: 35385653 DOI: 10.1021/acs.jafc.1c07919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoencapsulation delivery systems have been used to enhance the absorption and bioefficacy of phytochemicals. With modified physical and chemical properties, nanoencapsulated phytochemicals differ from their free forms in digestion, absorption, and metabolism. These pharmacokinetic processes can be assessed using a combination of various in vitro/in vivo models and analytical strategies, but each approach has its limitations. The correlation between current models and physiological conditions and their feasibility for nanoencapsulation systems require further validation. More detailed studies are still needed to clarify how nanoencapsulation affects the phytochemical and host interaction. Future investigations must take extra caution in model selection and result interpretation.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Zhiya Yin
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Lex TR, Rodriguez JD, Zhang L, Jiang W, Gao Z. Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. AAPS J 2022; 24:40. [PMID: 35277760 DOI: 10.1208/s12248-022-00690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
In vitro dissolution testing is widely used to mimic and predict in vivo performance of oral drug products in the gastrointestinal (GI) tract. This literature review assesses the current in vitro dissolution methodologies being employed to simulate and predict in vivo drug dissolution under fasted and fed conditions, with emphasis on immediate release (IR) solid oral dosage forms. Notable human GI physiological conditions under fasted and fed states have been reviewed and summarized. Literature results showed that dissolution media, mechanical forces, and transit times are key dissolution test parameters for simulating specific postprandial conditions. A number of biorelevant systems, including the fed stomach model (FSM), GastroDuo device, dynamic gastric model (DGM), simulated gastrointestinal tract models (TIM), and the human gastric simulator (HGS), have been developed to mimic the postprandial state of the stomach. While these models have assisted in expanding physiological relevance of in vitro dissolution tests, in general, these models lack the ability to fully replicate physiological conditions/processes. Furthermore, the translatability of in vitro data to an in vivo system remains challenging. Additionally, physiologically based pharmacokinetic (PBPK) modeling has been employed to evaluate the effect of food on drug bioavailability and bioequivalence. Here, we assess the current status of in vitro dissolution methodologies and absorption PBPK modeling approaches to identify knowledge gaps and facilitate further development of in vitro dissolution methods that factor in fasted and fed states. Prediction of in vivo drug performance under fasted and fed conditions via in vitro dissolution testing and modeling may potentially help efforts in harmonizing global regulatory recommendations regarding in vivo fasted and fed bioequivalence studies for solid oral IR products.
Collapse
Affiliation(s)
- Timothy R Lex
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Zongming Gao
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA.
| |
Collapse
|