1
|
Shi S, Zhang J, Zhang J, Ma S, Hu Y, Zhu H, Wang H, Jiang M, Wang Y. Structural characterization of raw and wine-steamed Polygonatum cyrtonema Hua oligosaccharides and their bioactivity on immune regulation via modifying the gut microbiota. Int Immunopharmacol 2025; 153:114468. [PMID: 40154181 DOI: 10.1016/j.intimp.2025.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Polygonatum cyrtonema Hua (PC) is a traditional Chinese medicine with a long history of use as pharmaceuticals or functional foods. Wine steaming is the main processing method of PC, which changes the structure of polysaccharides and oligosaccharides in PC and enhances biological activities. This study investigated the structural characterization of raw and wine-steamed PC oligosaccharides and the differences in the immunomodulatory effects using cyclophosphamide (CTX)-induced immunosuppression rat model. The oligosaccharides content and molecular weight of PC after wine steaming decreased, the proportion of oligosaccharides in total sugars and the reducing sugars content increased, and the monosaccharides composition of oligosaccharides changed. The raw Polygonatum cyrtonema Hua oligosaccharides (PCCO) and the wine-steamed Polygonatum cyrtonema Hua oligosaccharides (PCWO) exerted regulatory effects on organ index, immunoglobulin G (IgG), complement 3 (C3) spleen and colon tissue morphology, hematopoietic function of immunosuppressive rats treated by cyclophosphamide (CTX). Both PCCO and PCWO significantly regulated and improved the diversity and abundance of gut microbiota in immunosuppressed rats and increased the content of short-chain fatty acids (SCFAs) in the feces of rats, and the regulating effect of PCWO was better than PCCO. Differential microbiota analysis showed that PCWO could promote the proliferation of Bifidobacterium, Bacteroides, Oscillibacter, Roseburia, and Alistipes. In summary, the difference in the structural characteristics of PC oligosaccharides might be the reason for immune enhancement. This study could provide a theoretical basis for clarifying the scientific connotation of wine steaming to enhance the efficacy of PC, and promote the application of wine-steamed PC as an immunomodulator in pharmaceuticals or functional foods.
Collapse
Affiliation(s)
- Shuanghui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Jingqiu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Junli Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Siyuan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Yufeng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Haiting Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Huinan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Mingrui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China.
| |
Collapse
|
2
|
Pereira MF, Soares IDC, Cabral MM, de Freitas PA, Sousa GMA, Magalhães SC, Carioca AAF, de Oliveira MRC, Magalhães FEA, de Oliveira AC, Farias-Pereira R, de Oliveira KA. Impacts of Yacon Syrup ( Smallanthus sonchifolius) on Human Health: A Systematic Review of Scientific Evidence from the Last Decade. Nutrients 2025; 17:888. [PMID: 40077758 PMCID: PMC11902191 DOI: 10.3390/nu17050888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Yacon syrup (Smallanthus sonchifolius) has gained attention due to its high concentration of fructooligosaccharides (FOSs) and associated health benefits. This systematic review aimed to evaluate the effects of yacon syrup on metabolic parameters and intestinal health in humans over the last decade. METHODS Following PRISMA guidelines, we conducted a systematic search in databases, including Medline (PubMed), Science Direct, Embase, Scopus, and SciELO, up to October 2024. Inclusion criteria focused on clinical trials examining the impact of yacon syrup on glycemic control, lipid profile, insulin sensitivity, appetite regulation, and gut microbiota in healthy, overweight, or obese individuals. Seven studies met the inclusion criteria, encompassing 161 participants from diverse populations. RESULTS Yacon syrup supplementation demonstrated significant reductions in fasting insulin, HOMA-IR, and LDL cholesterol, alongside improvements in satiety and intestinal transit time. Acute supplementation with yacon syrup had inconsistent results for postprandial glycemia and insulin levels, probably due to prior individual gut microbiota composition. Longer interventions with yacon syrup were associated with enhanced microbiota modulation and appetite regulation, particularly in women. Mild gastrointestinal discomfort was reported, but with the continued use of yacon syrup, the symptoms decreased. Yacon syrup presents promising health benefits, including improved insulin sensitivity, weight management, and gut health. However, further research is needed to establish optimal dosing and long-term safety. CONCLUSIONS This review highlights the potential of yacon syrup as a functional supplement for metabolic and gastrointestinal health.
Collapse
Affiliation(s)
- Marcos F. Pereira
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
| | - Igor de Codes Soares
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
| | - Marília Magalhães Cabral
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| | - Paula A. de Freitas
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| | - Gabriel M. A. Sousa
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
| | - Saulo Chaves Magalhães
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
| | | | - Maria Rayane C. de Oliveira
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| | - Francisco Ernani A. Magalhães
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| | - Ariclecio C. de Oliveira
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| | - Renalison Farias-Pereira
- Department of Biological Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA;
| | - Keciany Alves de Oliveira
- Higher Institute of Biomedical Sciences, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.F.P.); (I.d.C.S.); (G.M.A.S.); (S.C.M.); (A.C.d.O.)
- Postgraduate Program in Nutrition and Health, State University of Ceara-UECE, Fortaleza 60714-903, CE, Brazil; (M.M.C.); (P.A.d.F.); (M.R.C.d.O.); (F.E.A.M.)
| |
Collapse
|
3
|
Li F, Han Q, Cai Y, Li Y, Yang Y, Li J, Wu R, Chen R, Liu R. Si-Ni-San ameliorates cholestatic liver injury by favoring P. goldsteinii colonization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118804. [PMID: 39270883 DOI: 10.1016/j.jep.2024.118804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Current treatment options for cholestatic liver diseases are limited, and addressing impaired intestinal barrier has emerged as a promising therapeutic approach. Si-Ni-San (SNS) is a Traditional Chinese Medicine (TCM) formula commonly utilized in the management of chronic liver diseases. Our previous studies have indicated that SNS effectively enhanced intestinal barrier function through the modulation of gut microbiota. AIM OF THE STUDY This study aims to verify the therapeutic effects of SNS on cholestatic liver injury, focusing on elucidating the underlying mechanism involving the gut-liver axis. MATERIALS AND METHODS The 16s RNA gene sequencing, non-targeted metabolomics were used to investigate the effects of SNS on the gut microbiota dysbiosis. Fecal microbiota transplantation (FMT) was conducted to identify potential beneficial probiotics underlying the therapeutic effects of SNS. RESULTS Our results demonstrated that SNS significantly ameliorated cholestatic liver injury induced by partial bile duct ligation (pBDL). Additionally, SNS effectively suppressed cholestasis-induced inflammation and barrier dysfunction in both the small intestine and colon. While SNS did not impact the intestinal FXR-FGF15-hepatic CYP7A1 axis, it notably improved gut microbiota dysbiosis and modulated the profile of microbial metabolites, including beneficial secondary bile acids and tryptophan derivatives. Furthermore, gut microbiota depletion experiments and FMT confirmed that the therapeutic benefits of SNS in cholestatic liver disease are dependent on gut microbiota modulation, particularly through the promotion of the growth of potential probiotic P. goldsteinii. Moreover, a synergistic improvement in cholestatic liver injury was observed with the co-administration of P. goldsteinii and SNS. CONCLUSION Our study underscores that SNS effectively alleviates cholestatic liver injury by addressing gut microbiota dysbiosis and enhancing intestinal barrier function, supporting its rational clinical utilization. Furthermore, we highlight P. goldsteinii as a promising probiotic candidate for the management of cholestatic liver diseases.
Collapse
Affiliation(s)
- Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ranyun Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Li JH, Gu FT, Yang Y, Zhao ZC, Huang LX, Zhu YY, Chen S, Wu JY. Simulated human digestion and fermentation of a high-molecular weight polysaccharide from Lentinula edodes mushroom and protective effects on intestinal barrier. Carbohydr Polym 2024; 343:122478. [PMID: 39174101 DOI: 10.1016/j.carbpol.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
Lentinula edodes (Shiitake) is an important edible mushroom and polysaccharides are its major constituents with proven health benefits. The study was to investigate the gut bacterial fermentation and subsequent effects on gut barrier function of a glucan-rich polysaccharide, LePS40 precipitated from the mushroom water extract with 40 % (v/v) ethanol. LePS40 consisted of a β-(1→3)-glucan main chain with substitution in the C-6 position with side chains mainly composed of (1 → 6)-linked β-Glcp residues, (1 → 6)-linked α-Galp residues and terminal residues of β-Glcp. LePS40 was found highly resistant to digestive enzymes and gastric acid in simulated human gastrointestinal tract, but highly fermentable during in vitro human fecal fermentation. The fecal fermentation degradation of LePS40 appeared to selectively break the glucoside linkage in view of the dramatic decrease in the glucose molar ratio (12.68 to 1.07). Compared with the prebiotic reference FOS, LePS40 led to much higher levels of butyric, and propionic acid and a lower level of acetic acid. Moreover, LePS40 enhanced the abundance of some beneficial bacterial populations, but decreased the bacteria possibly linked with fatty-liver disease and colorectal cancer. Furthermore, the fecal fermentation products of LePS40 showed a potential protective effect on intestinal barrier function against inflammatory damage in Caco-2/Raw264.7 co-culture model. These findings suggest the potential of LePS40 for improvement of gut health through modulation of gut microbiota.
Collapse
Affiliation(s)
- Jun Hui Li
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China
| | - Fang Ting Gu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ye Yang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Chen Zhao
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lin Xi Huang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yan Yu Zhu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shiguo Chen
- Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China.
| | - Jian Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Moon H, Kang K, Kim M. Potential Prebiotic Effects of Artemisia capillaris-Derived Transglycosylated Product. Foods 2024; 13:3267. [PMID: 39456329 PMCID: PMC11507088 DOI: 10.3390/foods13203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the impact of a transglycosylated product (ACOD) catalyzed by Leuconostoc mesenteroides MKSR dextransucrase using sucrose as a glucosyl donor and both maltose and Artemisia capillaris as acceptors on gut microbiota through fecal fermentation. ACOD promoted the growth of probiotics such as Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus GG, and Leuconostoc mesenteroides MKSR, while inhibiting the growth of pathogenic bacteria such as Escherichia coli, E. coli O157:H7, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Shigella flexneri, Streptococcus mutans, Pseudomonas aeruginosa, and Bacillus cereus during independent cultivation. Fecal fermentation for 24 h revealed that ACOD significantly increased the production of short-chain fatty acids (SCFAs) compared to the blank and fructoooligosaccharide (FOS) groups. Specifically, ACOD led to a 4.5-fold increase in acetic acid production compared to FOSs and a 3.3-fold increase in propionic acid production. Both the ACOD and FOS groups exhibited higher levels of butyric acid than the blank. Notably, ACOD significantly modulated the composition of the gut microbiota by increasing the relative abundances of Lactobacillus and decreasing Escherichia/Shigella and Salmonella. In contrast, FOSs remarkably promoted the growth of Salmonella. These findings suggest that ACOD is a potential candidate for prebiotics that improve the intestinal environment by being actively used by beneficial bacteria.
Collapse
Affiliation(s)
- Heewon Moon
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
6
|
Fang ZY, Stickley SA, Ambalavanan A, Zhang Y, Zacharias AM, Fehr K, Moossavi S, Petersen C, Miliku K, Mandhane PJ, Simons E, Moraes TJ, Sears MR, Surette MG, Subbarao P, Turvey SE, Azad MB, Duan Q. Networks of human milk microbiota are associated with host genomics, childhood asthma, and allergic sensitization. Cell Host Microbe 2024; 32:1838-1852.e5. [PMID: 39293435 DOI: 10.1016/j.chom.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
The human milk microbiota (HMM) is thought to influence the long-term health of offspring. However, its role in asthma and atopy and the impact of host genomics on HMM composition remain unclear. Through the CHILD Cohort Study, we followed 885 pregnant mothers and their offspring from birth to 5 years and determined that HMM was associated with maternal genomics and prevalence of childhood asthma and allergic sensitization (atopy) among human milk-fed infants. Network analysis identified modules of correlated microbes in human milk that were associated with subsequent asthma and atopy in preschool-aged children. Moreover, reduced alpha-diversity and increased Lawsonella abundance in HMM were associated with increased prevalence of childhood atopy. Genome-wide association studies (GWASs) identified maternal genetic loci (e.g., ADAMTS8, NPR1, and COTL1) associated with HMM implicated with asthma and atopy, notably Lawsonella and alpha-diversity. Thus, our study elucidates the role of host genomics on the HMM and its potential impact on childhood asthma and atopy.
Collapse
Affiliation(s)
- Zhi Yi Fang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sara A Stickley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Amirthagowri Ambalavanan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yang Zhang
- School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Amanda M Zacharias
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kelsey Fehr
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Shirin Moossavi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Charisse Petersen
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Kozeta Miliku
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Section of Allergy and Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Theo J Moraes
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Malcolm R Sears
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
7
|
Wang Y, Yao J, Zhu Y, Yin Z, Zhao X. Combination of Simo Decoction and Golden Bifid alleviates functional dyspepsia through a mechanism involving intestinal microbiota and short-chain fatty acids. Arab J Gastroenterol 2024; 25:239-249. [PMID: 38755047 DOI: 10.1016/j.ajg.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND STUDY AIMS The integration of traditional Chinese medicine and Western medicine holds promise for the treatment of gastrointestinal disorders, which are influenced by intestinal microbiota and metabolites. This study reports a possible mechanism for the combination of Simo Decoction and Golden Bifid in functional dyspepsia (FD) by regulating intestinal microbiota and short-chain fatty acids (SCFAs). PATIENTS AND METHODS A mouse model of food stagnation was constructed and treated with Simo Decoction combined with different concentrations of Golden Bifid. Meta-genomics sequencing was conducted to analyze the cecum contents of the mice. Following analyses of the composition and abundance of intestinal microbiota, gas chromatography-mass spectrometry was performed to measure SCFAs in the colonic content of mice. Finally, ELISA was utilized to determine the levels of pro-inflammatory factors in the duodenal mucosa of mice and the infiltration of eosinophils in the duodenum was observed by immunohistochemical staining. RESULTS Combination of Simo Decoction and Golden Bifid more significantly alleviated dyspepsia in mice with food stagnation compared with Simo Decoction alone. The optimal ratio of combined treatment was 0.0075 mL/g (body weight) Simo Decoction and 0.0032 mg/g (body weight) Golden Bifid. The combined treatment increased the abundance of Bifidobacterium and Bacteroides in the intestine. The levels of SCFAs in the colonic contents of mice were increased after the combined treatment, contributing to diminished pro-inflammatory factors in the duodenal mucosa and reduced eosinophil infiltration. CONCLUSION Combination of Simo Decoction and Golden Bifid increases the abundance of Bacteroides and Bifidobacterium and promotes the production of SCFAs, which is instrumental for alleviation of FD.
Collapse
Affiliation(s)
- Yang Wang
- Department of Basic Medicine, Yun Kang School of Medicine and Health, NanFang College, Guangzhou, China
| | - Jian Yao
- Department of Medical Laboratory, Yun Kang School of Medicine and Health, NanFang College, Guangzhou, China
| | - Yulin Zhu
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, China
| | - Zhenzhen Yin
- Department of Medical Laboratory, Yun Kang School of Medicine and Health, NanFang College, Guangzhou, China
| | - Xuejiao Zhao
- Department of Basic Medicine, Yun Kang School of Medicine and Health, NanFang College, Guangzhou, China.
| |
Collapse
|
8
|
Qoms MS, Arulrajah B, Wan Ibadullah WZ, Ramli NS, Chau DM, Sarbini SR, Saari N. Performance of Azolla pinnata fern protein hydrolysates as an emulsifier and nutraceutical ingredient in an O/W emulsion system and their effect on human gut microbiota and mammalian cells. Food Funct 2024; 15:6578-6596. [PMID: 38809119 DOI: 10.1039/d4fo00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This study investigated the dual potential of Azolla pinnata fern protein hydrolysates (AFPHs) as functional and nutraceutical ingredients in an oil/water emulsion system. The AFPH-stabilised emulsion (AFPH-E) displayed a small and uniform droplet distribution and was stable to aggregation and creaming over a wide range of pH (5-8), salt concentrations ≤ 100 mM, and heat treatment ≤ 70 °C. Besides, the AFPH-E possessed and maintained strong biological activities, including antihypertensive, antidiabetic, and antioxidant, under different food processing conditions (pH 5-8; NaCl: 50-150 mM, and heat treatment: 30-100 °C). Following in vitro gastrointestinal digestion, the antihypertensive and antioxidant activities were unchanged, while a notable increase of 8% was observed for DPPH. However, the antidiabetic activities were partially reduced in the range of 5-11%. Notably, AFPH-E modulated the gut microbiota and short-chain fatty acids (SCFAs), promoting the growth of beneficial bacteria, particularly Bifidobacteria and Lactobacilli, along with increased SCFA acetate, propionate, and butyrate. Also, AFPH-E up to 10 mg mL-1 did not affect the proliferation of the normal colon cells. In the current work, AFPH demonstrated dual functionality as a plant-based emulsifier with strong biological activities in an oil/water emulsion system and promoted healthy changes in the human gut microbiota.
Collapse
Affiliation(s)
- Mohammed S Qoms
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu Campus, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
10
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
11
|
Su M, Tang T, Tang W, Long Y, Wang L, Liu M. Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2DM: a research review. Front Immunol 2023; 14:1243834. [PMID: 37638043 PMCID: PMC10450032 DOI: 10.3389/fimmu.2023.1243834] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetes is a significant chronic endocrine/metabolism disorder that can result in a number of life-threatening consequences. According to research, the gut microbiota is strongly linked to the development of diabetes, making it a viable target for diabetes treatment. The intestinal microbiota affects intestinal barrier function, organism immunity, and thus glucose metabolism and lipid metabolism. According to research, a disruption in the intestinal microbiota causes a decrease in short-chain fatty acids (SCFAs), alters the metabolism of bile acids (BAs), branched-chain amino acids (BCAAs), lipopolysaccharide (LPS), and endotoxin secretion, resulting in insulin resistance, chronic inflammation, and the progression to type 2 diabetes mellitus (T2DM). Astragali Radix is a medicinal herb of the same genus as food that has been extensively researched for treating diabetes mellitus with promising results in recent years. Polysaccharides, saponins, flavonoids, and other components are important. Among them, Astragaloside has a role in protecting the cellular integrity of the pancreas and liver, can leading to alleviation of insulin resistance and reducing blood glucose and triglyceride (TC) levels; The primary impact of Astragalus polysaccharides (APS) on diabetes is a decrease in insulin resistance, encouragement of islet cell proliferation, and suppression of islet β cell death; Astragali Radix flavonoids are known to enhance immunity, anti-inflammatory, regulate glucose metabolism and control the progression of diabetes. This study summarizes recent studies on Astragali Radix and its group formulations in the treatment of type 2 diabetes mellitus by modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yu Long
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Lin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Meiling Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| |
Collapse
|
12
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Hajar-Azhari S, Daud N, Muhialdin BJ, Joghee N, Kadum H, Meor Hussin AS. Lacto-fermented garlic sauce improved the quality and extended the shelf life of lamb meat under the chilled condition. Int J Food Microbiol 2023; 395:110190. [PMID: 37030193 DOI: 10.1016/j.ijfoodmicro.2023.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/10/2023]
Abstract
This study evaluated the potential of fermented garlic as a marinated lamb sauce ingredient to improve the quality and shelf life of chilled lamb. Garlic was subjected to Lacto-fermentation for 72 h at 37 °C using Lacticaseibacillus casei. The 1H NMR metabolomics profile showed the presence of eight amino acids and five organic acids in fermented garlic, indicating the attribution to the antioxidant and antimicrobial activities. The FRAP and DPPH assays of fermented garlic revealed antioxidant activities of 0.45 ± 0.09 mmol/100 g DW and 93.85 ± 0.02 %, respectively. Meanwhile, fermented garlic inhibited the growth of Escherichia coli (95 %), Staphylococcus aureus (99 %) and Salmonella Typhimurium (98 %). When fermented garlic was added to the marinade sauce, it successfully reduced the microbial load of lamb meat by 0.5 log CFU/g after 3 days of storage. There were no significant differences in color between the control and marinated lamb after 3 days of marinating in a sauce formulated with fermented garlic. Furthermore, marinated lamb significantly improved water-holding capacity, texture, juiciness, and overall acceptance. These findings indicated a potential addition of fermented garlic in marinade lamb sauce recipes to improve the quality and safety of meat products.
Collapse
Affiliation(s)
- Siti Hajar-Azhari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nuraldayana Daud
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, USA
| | - Naadjidah Joghee
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hana Kadum
- College of Science, Biology Department (Biotechnology), Al-Muthana University, Al-Muthana, Iraq
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
14
|
Tang Z, Shao T, Gao L, Yuan P, Ren Z, Tian L, Liu W, Liu C, Xu X, Zhou X, Han J, Wang G. Structural elucidation and hypoglycemic effect of an inulin-type fructan extracted from Stevia rebaudiana roots. Food Funct 2023; 14:2518-2529. [PMID: 36820831 DOI: 10.1039/d2fo03687h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Diabetes mellitus (DM) is a common chronic medical condition characterized by hyperglycemia resulting from abnormal insulin functionality, of which type 2 DM (T2DM) is the predominant form. An inulin-type fructan, denoted as SRRP, was obtained from Stevia rebaudiana roots via hot-water extraction and alcoholic precipitation, which was subsequently purified by column chromatography. The extracted SRRP sample had a molecular weight of 5.4 × 103 Da. Structural analyses indicated that SRRP was composed of 2,1-linked-β-D-fructofuranosyl and α-D-glucopyranosyl residues in a ratio of approximately 29 : 1. In vivo assays revealed that SRRP significantly reduced fasting blood glucose levels, improved insulin resistance, decreased oxidative stress, and regulated lipid metabolism in T2DM mouse models. In addition, SRRP altered the diversity of the gut microbiota and its metabolites in T2DM mice; it increased probiotic bacteria and the concentration of short-chain fatty acids and decreased harmful bacteria. The findings demonstrate the potential of SRRP in the treatment of T2DM.
Collapse
Affiliation(s)
- Zhiyan Tang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Taili Shao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lan Gao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Pingchuan Yuan
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Zhengrui Ren
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Lei Tian
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Wei Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Chunyan Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Xiuxian Xu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Xuan Zhou
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Guodong Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
15
|
Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, Moustafa AM, Liu L. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr 2023; 9:1058910. [PMID: 36712525 PMCID: PMC9879625 DOI: 10.3389/fnut.2022.1058910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Fructooligosaccharides (FOS) are well-known carbohydrates that promote healthy gut microbiota and have been previously demonstrated to enhance levels of Bifidobacterium and Lactobacillus. Its bifidogenic properties are associated with positive health outcomes such as reduced obesity and anti-inflammatory properties, and, therefore, is in use as a prebiotic supplement to support healthy gut microbiota. However, the gut microbiota changes with age, which may lead to differential responses to treatments with prebiotics and other dietary supplements. Methods To address this concern, we implemented a 24-h in vitro culturing method to determine whether FOS treatment in three different adult age groups would have a differential effect. The age groups of interest ranged from 25 to 70 years and were split into young adults, adults, and older adults for the purposes of this analysis. Metagenomics and short-chain fatty acid analysis were performed to determine changes in the structure and function of the microbial communities. Results These analyses found that FOS created a bifidogenic response in all age groups, increased overall SCFA levels, decreased alpha diversity, and shifted the communities to be more similar in beta diversity metrics. However, the age groups differed in which taxa were most prevalent or most affected by FOS treatment. Discussion Overall, the results of this study demonstrate the positive effects of FOS on the gut microbiome, and importantly, how age may play a role in the effectiveness of this prebiotic.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States,*Correspondence: Karley K. Mahalak,
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
16
|
Selective adsorption processes for fructooligosaccharides separation by activated carbon and zeolites through machine learning. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Lin Q, Liu M, Erhunmwunsee F, Li B, Mou Y, Wang S, Zhang G, Tian J. Chinese patent medicine shouhui tongbian capsule attenuated loperamide-induced constipation through modulating the gut microbiota in rat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115575. [PMID: 35934189 DOI: 10.1016/j.jep.2022.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shouhui tongbian capsule (SHTC) is a commercial Chinese patent medicine used in the treatment of constipation. However, its mechanism of action remains unclear. AIM OF THE STUDY The present study was undertaken to assess SHTC relieved effects on the clinical symptoms of loperamide (LOP) induced constipation in Sprague Dawley (SD) rat model and to clarify the relationship between the protective effect of SHTC on constipation and the gut microbiota. MATERIALS AND METHODS Constipation male SD rats models were induced with solution of LOP (1.5 mg/kg bw), and rats were treated with an oral dose of SHTC (35, 70 mg/kg bw) three times a day after successful modeling. All rats were assessed weekly by change in body weight, gastric emptying rate, fecal moisture content and wet/dry weight. Hematoxylin and eosin (H&E) were used to observe parts of the rats small intestine. The gut microbiota in colonic contents was analyzed using 16SrRNA gene sequencing. Contents of short-chain fatty acids (SCFAs) were analyzed by gas chromatography-mass spectrometer (GCMS). RESULTS The results confirmed the therapeutic effects of SHTC on constipation. Specifically, SHTC could alleviate the decrease in body weight, gastric emptying rate and fecal moisture content caused by LOP-induced constipation. The pathological damage of small intestine was significantly improved by H&E staining. Notably, SHTC increased the relative abundances of Lactobacillus and the ratio of Firmicutes to Bacteroides (F/B). In addition, the content of acetic acid and propionic acid was significantly increased in constipated rats fed with SHTC. CONCLUSION SHTC could ameliorate the development of LOP-induced constipation in rats by remodeling the structure of gut microbial community and regulating production of intestinal metabolites.
Collapse
Affiliation(s)
- Qian Lin
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Man Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Famous Erhunmwunsee
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Sen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China.
| |
Collapse
|
18
|
Ge J, Xu WJ, Chen HF, Dong ZH, Liu W, Nian FZ, Liu J. Induction mechanism of cigarette smoke components (CSCs) on dyslipidemia and hepatic steatosis in rats. Lipids Health Dis 2022; 21:117. [DOI: 10.1186/s12944-022-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Objective
The purpose of this study was to explore the effect of cigarette smoke component (CSC) exposure on serum lipid levels in rats and the underlying molecular mechanism.
Methods
Male SPF-grade SD rats were randomly divided into a control group and a CSC exposure group, with the CSC group being exposed to CSC for 6 weeks. RT–PCR and Western blotting methods were used to detect lipid metabolism gene expression in rats, and 16S RNA gene sequencing was used to detect the gut microbiota in the rat cecum. Rat serum exosomes were prepared and identified, and the interaction of exosomal miR-291a-3p and miR-126a-5p with AMPK and CYP7A1 was detected by a dual luciferase reporter gene assay (DLRG).
Results
Serum indicators, including cholesterol levels and trimethylamine oxide (TMAO) content, were significantly affected in the CSC exposure group compared with the control group (P < 0.05), and the expression levels of adenylate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and HMG-CoA reductase (HMG-CoAR) genes were significantly increased (P < 0.05) in the liver, while the expression level of cholesterol 7α-hydroxylase (CYP7A1) was markedly decreased (P < 0.01). 16S rRNA gene sequencing of the gut microbiota in the rat cecum showed that the abundance of Firmicutes in the CSC group increased significantly at the phylum level, while the abundances of Bacteroidota and Spirochaetota were reduced significantly (P < 0.01). The relative abundance of Romboutsia, Turicibacter, and Clostridium sensu stricto increased significantly (P < 0.01), and the relative abundance of Prevotella, Muribaculaceae_norank, Lachnospiraceae NK4A136 group, Roseburia, Treponema, and Ruminococcus significantly decreased (P < 0.01) at the genus level. In addition, the exosome miR-291a-3p and miR-126a-5p levels were markedly regulated by CSC exposure (P < 0.01). The interactions of miR-291a-3p and miR-126a-5p with AMPK and CYP7A1 mRNA were also validated by the DLRG method.
Conclusions
In summary, the rat dyslipidemia induced by CSC exposure may be related to the interference of gut microbiota structure and interaction of miRNAs from serum exosomes with target mRNAs, which further regulated AMPK-ACC/CYP7A1 signaling in rats.
Collapse
|
19
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
20
|
Development and Evaluation of a Thermosensitive In Situ Gel Formulation for Intravaginal Delivery of Lactobacillus gasseri. Pharmaceutics 2022; 14:pharmaceutics14091934. [PMID: 36145685 PMCID: PMC9501376 DOI: 10.3390/pharmaceutics14091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
In situ administration of vaginal probiotics has been proposed as an effective prevention strategy against gynecological diseases caused by microecological disorders. In this study, a thermosensitive in situ gel formulation was prepared for intravaginal delivery of Lactobacillus gasseri(L. gasseri). The optimized formulation was characterized for the rheological properties, in vitro release properties, and microencapsulation efficiency. The mixtures of poloxamer 407 (26.0% w/w) and 188 (9.0% w/w) produced an increase in gelation extent at 37 °C after dilution in simulated vaginal fluid (SVF). The presence of a low concentration of hyaluronic acid (HA, 0.3% w/w) improved the mucoadhesive properties and the capability to gel at 37 °C. Additionally, the viability of L. gasseri encapsulated with alginate or via co-extrusion technique with fructooligosaccharide (FOS, 0.5% w/w) was maintained at 11 log CFU/mL for eight weeks at 4 °C. In conclusion, the evaluation of the in situ thermosensitive gel formulation was shown to be efficacious for intravaginal delivery of L. gasseri with suitable textural and rheological properties.
Collapse
|
21
|
Liu N, Wang H, Yang Z, Zhao K, Li S, He N. The role of functional oligosaccharides as prebiotics in ulcerative colitis. Food Funct 2022; 13:6875-6893. [PMID: 35703137 DOI: 10.1039/d2fo00546h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence rate of ulcerative colitis (UC) has increased significantly over the past decades and it places an increasing burden on health and social systems. The current studies on UC implicate a strong correlation between host gut microbiota immunity and the pathogenesis of UC. Meanwhile, more and more functional oligosaccharides have been reported as prebiotics to alleviate UC, since many of them can be metabolized by gut microbiota to produce short-chain fatty acids (SCFAs). The present review is focused on the structure, sources and specific applications of various functional oligosaccharides related to the prevention and treatment of UC. The available evidence for the usage of functional oligosaccharides in UC treatment are summarized, including fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), chito-oligosaccharides (COS), alginate-oligosaccharides (AOS), xylooligosaccharides (XOS), stachyose and inulin.
Collapse
Affiliation(s)
- Nian Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Kunyi Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Li X, He Y, Wang J, Liu H. Effect of fructooligosaccharides on retrogradation of instant rice. STARCH-STARKE 2022. [DOI: 10.1002/star.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuyang Li
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Yutang He
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Jian Wang
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| |
Collapse
|
23
|
Saini R, Patel AK, Saini JK, Chen CW, Varjani S, Singhania RR, Di Dong C. Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 2022; 13:2139-2172. [PMID: 35034543 PMCID: PMC8973729 DOI: 10.1080/21655979.2021.2023801] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.
Collapse
Affiliation(s)
- Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|