1
|
Lai JC, Chang GRL, Tu MY, Cidem A, Chen IC, Chen CM. Potential of Kefir-Derived Peptides, Probiotics, and Exopolysaccharides for Osteoporosis Management. Curr Osteoporos Rep 2025; 23:18. [PMID: 40192921 PMCID: PMC11976759 DOI: 10.1007/s11914-025-00910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Osteoporosis is a prevalent skeletal disorder in postmenopausal women and older adults. Kefir has gained attention for its potent antioxidative, anti-inflammatory, and immunomodulatory properties. This review consolidates findings on kefir-derived peptides' interventions in osteoporosis models and evaluates the therapeutic potential of kefir components in preventing osteoporosis, thereby enhancing its application in clinical nutrition strategies for osteoporosis management. RECENT FINDINGS Kefir-derived peptides exhibit osteoprotective potential in various animal models of osteoporosis, in which several antioxidative and ACE-inhibitory peptides have been shown to promote osteoblast differentiation and mineralization. In addition, emerging evidence supports the role of kefir-derived probiotics and exopolysaccharides (kefiran) in mitigating bone loss. Kefir holds significant promise in the management of osteoporosis due to its unique composition of bioactive components promoting bone health. While research is still in its early stages, evidence suggests kefir's potential as a natural approach to osteoporosis prevention and management.
Collapse
Affiliation(s)
- Jen-Chieh Lai
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Abdulkadir Cidem
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - I-Chien Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
2
|
Li M, Shi D, Cheng Y, Dang Q, Liu W, Wang Z, Yuan Y, Yue T. Green and rapid quantitative detection of selenium in selenium-enriched kefir grain based on Fourier transform infrared spectroscopy. Food Chem 2025; 465:142056. [PMID: 39549514 DOI: 10.1016/j.foodchem.2024.142056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Rapid monitoring of total and organic selenium content in kefir grain was essential for microbial screening and selenium-enriched food development. Firstly, spectral information of selenium-enriched kefir grain was obtained using an attenuated total reflection Fourier transform infrared spectrometer. Secondly, the performance of the quantitative prediction models established by the four-variable screening method with three machine learning algorithms, respectively, was compared. For the prediction of total selenium, the competitive adaptive reweighted sampling - least squares support vector machine model performed the best, with prediction set relative coefficient (RP) and relative prediction deviation (RPD) values of 0.97 and 4.36, respectively. For the prediction of organic selenium, the IRF-LSSVM model had a RP and RPD value of 0.95 and 6.44, respectively. The proposed method achieves scientific, rapid (within 1 min) and green detection of total selenium (237.72-2330.82 μg/g) and organic selenium (102.20-1483.59 μg/g) content in selenium-enriched Kefir grain.
Collapse
Affiliation(s)
- Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Dan Shi
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qilei Dang
- Qinchuangyuan Fu Tea Culture Innovation Center, Xi'an 713700, China
| | - Wenhui Liu
- College of Fine Arts, Guangxi Normal University, Guiling 541001, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
4
|
Fernández‐Trapote E, Oliveira M, Cobo‐Díaz JF, Alvarez‐Ordóñez A. The resistome of the food chain: A One Health perspective. Microb Biotechnol 2024; 17:e14530. [PMID: 39017204 PMCID: PMC11253703 DOI: 10.1111/1751-7915.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a significant global health problem which challenges Sustainable Development Goal 3 of the United Nations, with growing concerns about the possibility of AMR transmission through the food chain. The indiscriminate use of antimicrobials for the treatment of food production animals and for agricultural crop improvement, in addition to the direct discharge of livestock farm residues to sewage and the use of animal manure in agriculture, are among the factors that can facilitate the selection and transmission of AMR throughout the food chain. The study of food microbiomes has been boosted by the advent of next-generation sequencing techniques, which have enabled gaining in-depth understanding of the diversity of antimicrobial resistance genes present in food and associated environments (the so-called resistome). The aim of this review is to provide an accurate and comprehensive overview of the knowledge currently available on the resistome of the most frequently consumed foods worldwide, from a One Health perspective. To this end, the different metagenomic studies which have been conducted to characterize the resistome of foods are compiled and critically discussed.
Collapse
Affiliation(s)
| | - Marcia Oliveira
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - José F. Cobo‐Díaz
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - Avelino Alvarez‐Ordóñez
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
- Institute of Food Science and TechnologyUniversidad de LeónLeónSpain
| |
Collapse
|
5
|
La Torre C, Caputo P, Cione E, Fazio A. Comparing Nutritional Values and Bioactivity of Kefir from Different Types of Animal Milk. Molecules 2024; 29:2710. [PMID: 38893583 PMCID: PMC11173642 DOI: 10.3390/molecules29112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The growing interest in fermented dairy products is due to their health-promoting properties. The use of milk kefir grains as a starter culture made it possible to obtain a product with a better nutritional and biological profile depending on the type of milk. Cow, buffalo, camel, donkey, goat, and sheep milk kefirs were prepared, and the changes in sugar, protein, and phenol content, fatty acid composition, including conjugated linoleic acids (CLAs), as well as antioxidant activity, determined by ABTS and FRAP assays, were evaluated and compared. The protein content of cow, buffalo, donkey, and sheep milk increased after 24 h of fermentation. The fatty acid profile showed a better concentration of saturated and unsaturated lipids in all fermented milks, except buffalo milk. The highest content of beneficial fatty acids, such as oleic, linoleic, and C18:2 conjugated linoleic acid, was found in the cow and sheep samples. All samples showed a better antioxidant capacity, goat milk having the highest value, with no correlation to the total phenolic content, which was highest in the buffalo sample (260.40 ± 5.50 μg GAE/mL). These findings suggested that microorganisms living symbiotically in kefir grains utilize nutrients from different types of milk with varying efficiency.
Collapse
Affiliation(s)
- Chiara La Torre
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Alberto Savinio, 87036 Arcavacata di Rende, Cosenza, Italy; (C.L.T.); (E.C.)
| | - Paolino Caputo
- Department of Chemistry, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Alberto Savinio, 87036 Arcavacata di Rende, Cosenza, Italy; (C.L.T.); (E.C.)
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Alberto Savinio, 87036 Arcavacata di Rende, Cosenza, Italy; (C.L.T.); (E.C.)
| |
Collapse
|
6
|
Guo X, He Y, Cheng Y, Liang J, Xu P, He W, Che J, Men J, Yuan Y, Yue T. The composition of Tibetan kefir grain TKG-Y and the antibacterial potential and milk fermentation ability of S. warneri KYS-164 screened from TKG-Y. Food Funct 2024; 15:5026-5040. [PMID: 38650522 DOI: 10.1039/d4fo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.
Collapse
Affiliation(s)
- Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yining He
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- College of Analytical Chemistry and Food Science, Universidade de Vigo, Vigo, 36310, Spain
| | - Pandi Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Wenwen He
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiayin Che
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiexing Men
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
7
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Zeng X, Li J, Wang X, Liu L, Shen S, Li N, Wang Z, Yuan Y, Yue T. Regulation of Gut Microbiota and Microbial Metabolome of Kefir Supernatant against Fusobacterium nucleatum and DSS-Coinduced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3536-3548. [PMID: 38346349 DOI: 10.1021/acs.jafc.3c08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The aim of this study was to investigate the intervention effect of kefir supernatant (KS) on the initiation and progression of an ulcerative colitis (UC) murine model. We established an UC murine model by orally administrating with 109 CFUs of Fusobacterium nucleatum for 3 weeks and 3% dextran sulfate sodium (DSS) treatment in the third week. KS was used to intervene in this colitis model. Our results showed that KS supplementation ameliorated the symptoms, restrained the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-17F), promoted the release of anti-inflammatory cytokines (IL-4 and IL-10), and ameliorated oxidative stress. Furthermore, the increased number of goblet cells and upregulated expression of MUC2, occludin and claudin-1 indicated that the colon barrier was protected by KS. Additionally, KS supplementation mitigated gut microbiota dysbiosis in the UC murine model, leading to an increase in the abundance of Blautia and Akkermansia and a decrease in the level of Bacteroides. The altered gut microbiota also affected colon metabolism, with differential metabolites mainly associated with the biosynthesis of the l-arginine pathway. This study revealed that KS supplementation restored the community structure of gut microbiota, altered the biosynthesis of l-arginine, and thereby modulated the process of colonic inflammation.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Xin Wang
- College of Health Management, Shangluo University, Shangluo 726000, China
| | - Ling Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Shiqi Shen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Nanyang Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| |
Collapse
|
9
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
10
|
Li S, Wang S, Wang L, Liu X, Wang X, Cai R, Yuan Y, Yue T, Wang Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res Int 2023; 174:113652. [PMID: 37981364 DOI: 10.1016/j.foodres.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Kombucha is a natural fermented beverage (mixed system). This study aimed to unravel the signatures of kombucha in China to achieve tailor-made microbial consortium. Here, biochemical parameters, microbiome, metabolite production and volatile profile were comprehensively compared and characterized across four regions (AH, HN, SD, SX), both commonalities and distinctions were highlighted. The findings revealed that yeast species yeast Starmerella, Zygosaccharomyces, Dekkera, Pichia and bacterium Komagataeibacter, Gluconobacter were the most common microbes. Additionally, the composition, distribution and stability of microbial composition in liquid phase were superior to those in biofilm. The species diversity, differences, marker and association were analyzed across four areas. Metabolite profiles revealed a total of 163 bioactive compounds (23 flavonoids, 13 phenols), and 68 differential metabolites were screened and identified. Moreover, the metabolic pathways of phenylpropanoids biosynthesis were closely linked with the highest number of metabolites, followed by flavonoid biosynthesis. Sixty-five volatile compounds (23 esters) were identified. Finally, the correlation analysis among the microbial composition and volatile and functional metabolites showed that Komagataeibacter, Gluconolactone, Zygosacchaaromycess, Starmerella and Dekkera seemed closely related to bioactive compounds, especially Komagataeibacter displayed positive correlations with 1-hexadecanol, 5-keto-D-gluconate, L-malic acid, 6-aminohexanoate, Starmerella contributed greatly to gluconolactone, thymidine, anabasine, 2-isopropylmalic acid. Additionally, Candida was related to β-damascenone and α-terpineol, and Arachnomyces and Butyricicoccus showed the consistency of associations with specific esters and alcohols. These findings provided crucial information for creating a stable synthetic microbial community structure, shedding light on fostering stable kombucha and related functional beverages.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Luo J, Liu S, Lu H, Wang Y, Chen Q, Shi Y. Improvement of kefir fermentation on rheological and microstructural properties of soy protein isolate gels. Food Res Int 2023; 174:113489. [PMID: 37986495 DOI: 10.1016/j.foodres.2023.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023]
Abstract
Soy protein isolate (SPI) has become a promising plant-based material as an animal protein products alternative. However, its application was limited due to the weak gelling properties. To investigate the effect of kefir fermentation on SPI gels properties, SPI-polysaccharide gels was produced by unfermented and kefir-fermented SPI using different concentration of KGM, chitosan, and calcium chloride in this study. Characterization of fermented SPI gels showed that fermentation by kefir grains can be applied to improve the textural strength, mechanical structure, and thermal characteristics of SPI gels. Compared to unfermented SPI gels, the water-holding capacity was remarkably enhanced to 63.11% and 65.71% in fermented SPI-chitosan gels. Moreover, the hardness of fermented SPI-KGM gels were significantly increased to 13.43 g and 27.11 g. And the cohesiveness and resilience of fermented-KGM gels were also improved than unfermented samples. Results of rheological characterization and thermogravimetric analysis revealed the strengthened mechanical features and higher thermal stability of fermented SPI gels. Additionally, the main role of hydrophobic interactions and secondary structure variations of SPI gels were demonstrated by intermolecular force measurements, Fourier-transform infrared spectroscopy, and X-ray diffraction. Moreover, the network structure was observed more compact and homogeneous performed by microstructural images in fermented SPI gels. Therefore, this research provided a novel approach combining multi-species fermentation with protein gelation to prepare SPI gel materials with improved nutrition and structural properties.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Valletta M, Campolattano N, De Chiara I, Marasco R, Singh VP, Muscariello L, Pedone PV, Chambery A, Russo R. A robust nanoLC high-resolution mass spectrometry methodology for the comprehensive profiling of lactic acid bacteria in milk kefir. Food Res Int 2023; 173:113298. [PMID: 37803610 DOI: 10.1016/j.foodres.2023.113298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicoletta Campolattano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ida De Chiara
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosangela Marasco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Vikram Pratap Singh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Lidia Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
13
|
Puzeryte V, Martusevice P, Sousa S, Balciunaitiene A, Viskelis J, Gomes AM, Viskelis P, Cesoniene L, Urbonaviciene D. Optimization of Enzyme-Assisted Extraction of Bioactive Compounds from Sea Buckthorn ( Hippophae rhamnoides L.) Leaves: Evaluation of Mixed-Culture Fermentation. Microorganisms 2023; 11:2180. [PMID: 37764024 PMCID: PMC10536544 DOI: 10.3390/microorganisms11092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.
Collapse
Affiliation(s)
- Viktorija Puzeryte
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| |
Collapse
|
14
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
16
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
17
|
Cui Y, Ning M, Chen H, Zeng X, Yue Y, Yuan Y, Yue T. Microbial diversity associated with Tibetan kefir grains and its protective effects against ethanol-induced oxidative stress in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Liu S, Lu SY, Qureshi N, Enshasy HAE, Skory CD. Antibacterial Property and Metagenomic Analysis of Milk Kefir. Probiotics Antimicrob Proteins 2022; 14:1170-1183. [PMID: 35995909 DOI: 10.1007/s12602-022-09976-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/25/2022]
Abstract
Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Siqing Liu
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA.
| | - Shao-Yeh Lu
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| | - Nasib Qureshi
- Bioenergy Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burge Al Arab, Alexandria, 21934, Egypt
| | - Chris D Skory
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| |
Collapse
|
19
|
Zeng X, Li X, Yue Y, Wang X, Chen H, Gu Y, Jia H, He Y, Yuan Y, Yue T. Ameliorative Effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and Dextran Sulfate Sodium-Induced Colitis Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14179-14192. [PMID: 36260319 DOI: 10.1021/acs.jafc.2c05338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the ability of the Saccharomyces cerevisiae strain with probiotic properties isolated from Tibetan kefir grains to ameliorate Fusobacterium nucleatum (Fn) infection and dextran sulfate sodium (DSS) treatment-induced murine model of colitis. The tolerance to simulated gastrointestinal conditions, hydrophobicity test, autoaggregation assay, and the antioxidant effect of strains was used to screen one strain with colonization and probiotic potential. The murine model of colitis was established by giving 109 cfu Fn 3 weeks by intragastric administration and 3% DSS in water 1 week before sacrifice. The results indicated that S. cerevisiae JKSP39 (SC) possessed optimal probiotic characteristics in vitro. Supplementation with SC increased the body weight and the expression of anti-inflammatory cytokines (IL-4 and IL-10), while decreasing the disease activity index score and expression of proinflammatory cytokines (TNF-α, IL-6, and IL-17F) in mice undergoing experimental colitis as compared with the colitis model group. Additionally, tight junction proteins and the number of goblet cells per crypt were significantly increased in the SC group, which indicated that the gut barrier was well repaired. The mechanism of SC ameliorating Fn-DSS-induced colitis could be related to the decreased levels of reactive oxygen species (myeloperoxidase, total superoxide dismutase, catalase, H2O2, and malondialdehyde) in the colon, the inhibition of endoplasmic reticulum stress, and the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an710065, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yining He
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| |
Collapse
|
20
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
21
|
Chen W, Wang J, Du L, Chen J, Zheng Q, Li P, Du B, Fang X, Liao Z. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit Rev Food Sci Nutr 2022; 64:1371-1384. [PMID: 36039934 DOI: 10.1080/10408398.2022.2115975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kefir consists of a large number of probiotics, which can regulate or shape the balance of intestinal microbiota, and enhance the host's immune response. Kefir microbiota can shape the mucosal immunity of the body through SCFAs, EPS, polypeptides, lactic acid, and other metabolites and microbial antigens themselves, and this shaping may have time windows and specific pathways. Kefir can regulate antibody SIgA and IL-10 levels to maintain intestinal homeostasis, and its secreted SIgA can shape the stable microbiota system by wrapping and binding different classes of microorganisms. The incidence of intestinal inflammation is closely linked to the development and maturation of intestinal mucosal immunity. Based on summarizing the existing research results on Kefir, its metabolites, and immune system development, this paper proposes to use Kefir, traditional fermented food with natural immune-enhancing components and stable functional microbiota, as an intervention method. Early intervention in the immune system may seize the critical window period of mucosal immunity and stimulate the development and maturation of intestinal mucosal immunity in time.
Collapse
Affiliation(s)
- Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Streimikyte P, Kailiuviene J, Mazoniene E, Puzeryte V, Urbonaviciene D, Balciunaitiene A, Liapman TD, Laureckas Z, Viskelis P, Viskelis J. The Biochemical Alteration of Enzymatically Hydrolysed and Spontaneously Fermented Oat Flour and Its Impact on Pathogenic Bacteria. Foods 2022; 11:2055. [PMID: 35885298 PMCID: PMC9316710 DOI: 10.3390/foods11142055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avena sativa (A. sativa) oats have recently made a comeback as suitable alternative raw materials for dairy substitutes due to their functional properties. Amylolytic and cellulolytic enzyme-assisted modifications of oats produce new products that are more appealing to consumers. However, the biochemical and functional alteration of products and extracts requires careful selection of raw materials, enzyme cocktails, and technological aspects. This study compares the biochemical composition of different A. sativa enzyme-assisted water extracts and evaluates their microbial growth using spontaneous fermentation and the antimicrobial properties of the ferment extracts. Fibre content, total phenolic content, and antioxidant activity were evaluated using traditional methodologies. The degradation of A. sativa flour was captured using scanning electron microscopy (SEM); moreover, sugar and oligosaccharide alteration were identified using HPLC and HPLC-SEC after INFOGEST in vitro digestion (IVD). Additionally, taste differentiation was performed using an electronic tongue with principal component analysis. The oat liquid extracts were continuously fermented using two ancient fermentation starters, birch sap and Tibetan kefir grains. Both starters contain lactic acid bacteria (LAB), which has major potential for use in bio-preservation. In fermented extracts, antimicrobial properties against Gram-positive Staphylococcus aureus and group A streptococci as well as Gram-negative opportunistic bacteria such as Escherichia coli and Pseudomonas aeruginosa were also determined. SEM images confirmed the successful incorporation of enzymes into the oat flour. The results indicate that using enzyme-assisted extraction significantly increased TPC and antioxidant activity in both the extract and residues. Additionally, carbohydrates with a molecular mass (MM) of over 70,000 kDa were reduced to 7000 kDa and lower after the incorporation of amylolytic and cellulolytic enzymes. The MM impacted the variation in microbial fermentation, which demonstrated favourable antimicrobial properties. The results demonstrated promising applications for developing functional products and components using bioprocessing as an innovative tool.
Collapse
Affiliation(s)
- Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Edita Mazoniene
- Roquette Amilina, 35101 Panevėžys, Lithuania; (J.K.); (E.M.)
| | - Viktorija Puzeryte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Zygimantas Laureckas
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| |
Collapse
|
24
|
Lima Parente Fernandes M, Cristina de Souza A, Sérgio Pedroso Costa Júnior P, Ayra Alcântara Veríssimo L, Satler Pylro V, Ribeiro Dias D, Freitas Schwan R. Sugary kefir grains as the inoculum for developing a low sodium isotonic beverage. Food Res Int 2022; 157:111257. [DOI: 10.1016/j.foodres.2022.111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
|
25
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
26
|
Chen Z, Ye T, Wang S, He S, Xiao B, Su Q, Huang X. Quality characteristics and microbial community dynamics of soy whey fermented by Tibetan kefir grains. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhina Chen
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
- Anhui Key Laboratory of Low Temperature Co‐fired Materials huainan Normal University Dongshan West Road, Huainan, Anhui Province 232038 China
- School of Chemistry and Materials Science University of Science and Technology of China, No.96, Jinzhai Road Baohe District, Hefei, Anhui Province 230026 China
| | - Tao Ye
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
| | - Shunchang Wang
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
- Anhui Key Laboratory of Low Temperature Co‐fired Materials huainan Normal University Dongshan West Road, Huainan, Anhui Province 232038 China
| | - Shuwen He
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
| | - Boya Xiao
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
| | - Qiangwanyue Su
- School of Biological Engineering Huainan Normal University, Dongshan West Road, Huainan, Anhui Province 232038 China
| | - Xiaochen Huang
- School of Food & Pharmaceutical Engineering Zhaoqing University, Zhaoqing Road Duanzhou District, Zhaoqing 526061 China
| |
Collapse
|
27
|
Zeng X, Jia H, Shi Y, Chen K, Wang Z, Gao Z, Yuan Y, Yue T. Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis. Food Funct 2022; 13:6947-6961. [PMID: 35575226 DOI: 10.1039/d1fo02939h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the alleviative effects of Lactobacillus kefiranofaciens JKSP109 (LK) and Saccharomyces cerevisiae JKSP39 (SC) isolated from Tibetan kefir grain on colon inflammation and colorectal carcinogenesis. Azoxymethane (AOM) and dextran sulfate sodium (DSS) were used to establish a mouse model of colorectal cancer (CRC). The treatment group mice were administered with LK, SC, or the combination of LK and SC for five days per week from the day of receiving AOM. The composition of the gut microbiota was assessed using internal transcribed spacer 2 and 16S rRNA gene high-throughput sequencing. Furthermore, the biomarkers associated with gut barrier integrity, inflammation, regulators of cell proliferation, and apoptosis were evaluated. The results showed that the administration of LK, SC, and their combination increased the body weights and decreased the disease activity index (DAI) score and tumor multiplicity. As compared to the CRC model group, the three treatment groups positively regulated the gut microbiota. Meanwhile, the three treatments also enhanced the gut barrier, decreased the expression of proinflammatory cytokines and oncocyte proliferation indicators, and increased the expression of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive tumor epithelial cells and content of short chain fatty acids in fecal samples. All these results indicated that the LK and SC alleviated the inflammation and colorectal carcinogenesis in AOM/DSS-induced CRC mouse models, and the majority of tested indexes in the combination group were superior to single strain groups.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
28
|
Ibacache-Quiroga C, González-Pizarro K, Charifeh M, Canales C, Díaz-Viciedo R, Schmachtenberg O, Dinamarca MA. Metagenomic and Functional Characterization of Two Chilean Kefir Beverages Reveals a Dairy Beverage Containing Active Enzymes, Short-Chain Fatty Acids, Microbial β-Amyloids, and Bio-Film Inhibitors. Foods 2022; 11:foods11070900. [PMID: 35406987 PMCID: PMC8997647 DOI: 10.3390/foods11070900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Kefir beverage is a probiotic food associated with health benefits, containing probiotic microorganisms and biomolecules produced during fermentation. The microbial composition of these beverages varies among countries, geographical regions, and the substrates, therefore, the characterization of kefir beverages is of great relevance in understanding their potential health-promoting and biotechnological applications. Therefore, this study presents the metagenomic and functional characterization of two Chilean kefir beverages, K02 and K03, through shotgun and amplicon-based metagenomic, microbiological, chemical, and biochemical studies. Results show that both beverages’ microbiota were mainly formed by Bacteria (>98%), while Eukarya represented less than 2%. Regarding Bacteria, the most abundant genera were Acetobacter (93.43% in K02 and 80.99% in K03) and Lactobacillus (5.72% in K02 and 16.75% in K03), while Kazachstania was the most abundant genus from Eukarya (42.55% and 36.08% in K02 and K03). Metagenomic analyses revealed metabolic pathways for lactose and casein assimilation, biosynthesis of health-promoting biomolecules, and clusters for antibiotic resistance, quorum sensing communication, and biofilm formation. Enzymatic activities, microbial β-amyloids, and short-chain fatty acids (acetic acid and propionic acid) were also detected in these beverages. Likewise, both kefir beverages inhibited biofilm formation of the opportunistic pathogen Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Correspondence: (C.I.-Q.); (M.A.D.); Tel.: +56-322-508-440 (C.I.-Q.); +56-322-508-442 (M.A.D.)
| | - Karoll González-Pizarro
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
| | - Mariam Charifeh
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
| | - Christian Canales
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción 4080871, Chile;
| | - Rodrigo Díaz-Viciedo
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro Interdisciplinario de Neurociencias (CINV), Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - M. Alejandro Dinamarca
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso 2360102, Chile; (K.G.-P.); (M.C.); (R.D.-V.)
- Correspondence: (C.I.-Q.); (M.A.D.); Tel.: +56-322-508-440 (C.I.-Q.); +56-322-508-442 (M.A.D.)
| |
Collapse
|