1
|
Wu J, Zhang Y, Zhang F, Mi S, Yu W, Sang Y, Wang X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem 2025; 463:141442. [PMID: 39342685 DOI: 10.1016/j.foodchem.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
This study incorporated purple sweet potato anthocyanin (PSPA) and silver-nanoparticles (AgNPs) into the chitosan/polyvinyl alcohol film matrix (PVA/CS) to successfully prepare a composite film, which effectively inhibited bacterial growth and indicated product freshness. The addition of AgNPs and PSPA led to a dense structure of the film, which effectively enhanced its physical properties, barrier properties and functional properties. The incorporation of PSPA made the composite film highly pH-sensitive, which exhibited distinct color changes in varying pH solutions. The PVA/CS-AgNPs-PSPA10 composite film with PSPA and AgNPs resulted the shelf life of strawberries to 13 days at 4 °C, which effectively reduced strawberry breathing during storage. Additionally, such composite film changed color from purple to yellow-purple, indicating the deterioration of strawberries. It also showed an antibacterial indication through its excellent antibacterial property and freshness indication performance, which demonstrated its significance in developing antibacterial indicator composite packaging materials for fruits and vegetables preservation.
Collapse
Affiliation(s)
- Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
3
|
Joshi NC, Negi PB, Gururani P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci Biotechnol 2024; 33:1307-1322. [PMID: 38585561 PMCID: PMC10991644 DOI: 10.1007/s10068-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
Consuming hygienic and secure food has become challenging for everyone. The preservation of excess food without negatively affecting its nutritional values, shelf life, freshness, or effectiveness would undoubtedly strengthen the food industry. Nanotechnology is a new and intriguing technology that is currently being implemented in the food industry. Metal-based nanomaterials have considerable potential for use in packaging and food processing. These materials have many advanced physical and chemical characteristics. Since these materials are increasingly being used in food applications, there are certain negative health consequences related to their toxicity when swallowed through food. In this article, we have addressed the introduction and applications of metal/metal oxide nanoparticles (MNPs), food processing and food packaging, applications of MNPs-based materials in food processing and food packaging, health hazards, and future perspectives.
Collapse
Affiliation(s)
| | - Pushpa Bhakuni Negi
- Department of Chemistry, Graphic Era Hill University, Bhimtal Campus, Nainital, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
4
|
Shah N, Shah M, Khan F, Rehan T, Shams S, Khitab F, Khan A, Ullah MW, Yousaf J, Awwad FA, Ismail EAA. Fabrication and Characterization of Montmorillonite Clay/Agar-Based Magnetic Composite and Its Biological and Electrical Conductivity Evaluation. ACS OMEGA 2024; 9:15904-15914. [PMID: 38617699 PMCID: PMC11007821 DOI: 10.1021/acsomega.3c08708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 μg/mL, and electrical properties just like conductors.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan KP-23200, Pakistan
| | - Muffarih Shah
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan KP-23200, Pakistan
| | - Farishta Khan
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan KP-23200, Pakistan
| | - Touseef Rehan
- Department
of Biochemistry, Women University Mardan, Mardan KP-23200, Pakistan
| | - Sulaiman Shams
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan KP-23200, Pakistan
| | - Fatima Khitab
- Department
of Chemistry, Shaheed Benazir Bhutto Women
University, Peshawar KP-25000, Pakistan
| | - Abbas Khan
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan KP-23200, Pakistan
| | - Muhammad Wajid Ullah
- Biofuels
Institute, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jasim Yousaf
- Department
of Physics, Abdul Wali Khan University Mardan, Mardan KP-23200, Pakistan
| | - Fuad A. Awwad
- Department
of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia
| | - Emad A. A. Ismail
- Department
of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia
| |
Collapse
|
5
|
Kumari S, Kumari A, Sharma R. Safe and sustainable food packaging: Argemone albiflora mediated green synthesized silver-carrageenan nanocomposite films. Int J Biol Macromol 2024; 264:130626. [PMID: 38453123 DOI: 10.1016/j.ijbiomac.2024.130626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Silver-Carrageenan (Ag/Carr) nanocomposite film for food packing application by the green method using Argemone albiflora leaf extract has been developed in this study. Different plant parts of Argemone albiflora (blue stem prickly poppy) are used all over the world for the treatment of microbial infections, jaundice, skin diseases etc. GC-MS analysis was used to examine the phytochemical found in the Argemone albiflora leaf extract which reduces the metal ions to nanoscale. The biopolymer employed in the synthesis of nanocomposite film was carrageenan, a natural carbohydrate (polysaccharide) extracted from edible red seaweeds. We developed a food packing that is biodegradable, eco-friendly, economical and free from harmful chemicals. These films possess better UV barrier and mechanical and antimicrobial properties with 1 mM AgNO3 solution. The presence of silver nanoparticles in the carrageenan matrix was evident from FESEM. The mechanical properties were analysed by a Universal testing machine (UTM) and different properties like water vapour permeability (WVP), moisture content (MC) and total soluble matter (TSM) important for food packing applications were also analysed. The antimicrobial properties of the synthesized film samples were studied against E. coli and S. aureus pathogenic bacteria. These films were employed for the storage of cottage cheese (dairy product) and strawberries (fruit). This packing increased the shelf life of the packed food effectively. Ag/Carr films are biodegradable within four weeks.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India.
| |
Collapse
|
6
|
Thakur RK, Biswas PK, Singh M. Biovalorization of Fruit Wastes for Development of Biodegradable Antimicrobial Chitosan-Based Coatings for Fruits (Tomatoes and Grapes). Appl Biochem Biotechnol 2024; 196:1175-1193. [PMID: 37378721 DOI: 10.1007/s12010-023-04601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Organic wastes are generated from high consumption of fruits. In this paper, fruit residual wastes collected from fruit-juice centres were transformed into fine powder, and thereafter, proximate analysis along with SEM, EDX and XRD was done to get into the surface morphology, minerals and ash content of fine powder. Aqueous extract (AE) prepared from this powder was studied using gas chromatography-mass spectroscopy (GC-MS). The phytochemicals identified are N-hexadecanoic acid; 1,3-dioxane,2,4-dimethyl-, diglycerol, 4-ethyl-2-hydroxycyclopent-2-en-1-one, eicosanoic acid, etc. AE showed high antioxidant and a low MIC value (2 mg/ml) against Pseudomonas aeruginosa MZ269380. AE having acceptance as nontoxic to biological system, formulation of chitosan (2%)-based coating was done with 1% AQ. Surface coatings of tomatoes and grapes showed significant inhibition of microbial growth even after 10 days of storage at ambient temperature (25 ± 2 °C). Colour, texture, firmness and aceptability of coated fruits showed no degradation compared to negative control. Additionally, the extracts showed insignificance haemolysis of goat RBC and damage of Calf Thymus DNA which exhibited its biocompatible nature. Biovalorization of fruit wastes yields useful phytochemicals and can be utilized in various sectors thereby finding a sustainable solution for disposal of fruit wastes.
Collapse
Affiliation(s)
- Ranjay Kumar Thakur
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Prasanta Kumar Biswas
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India.
| |
Collapse
|
7
|
Qaeed MA. Examining the varied concentrations of Mentha spicata and Ocimum basilicum affect the synthesis of AgNPs that restrict the development of bacteria. Saudi J Biol Sci 2024; 31:103899. [PMID: 38125734 PMCID: PMC10733098 DOI: 10.1016/j.sjbs.2023.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
This work examined the effects of varied concentrations of Ocimum basilicum and Mentha spicata aqueous extracts in order to determine the concentration that has the strongest antibacterial impact through the green synthesis technique of silver nanoparticles (AgNPs). In order to synthesize AgNPs using the reduction method, different quantities of reducing and stabilizing agents: (a) 0.75 mM Ocimum basilicum and 0.25 mM Mentha spicata; (b) 0.5 Mentha spicata and 0.5 mM Ocimum basilicum; and (c) 0.25 mM Ocimum basilicum and 0.75 mM Mentha spicata were utilized. X-ray Diffraction (XRD), and UV-vis spectra were used to analyze AgNPs' crystal structure and shape. The antibacterial potency of E. coli ATCC 35218 was investigated utilizing AgNPs employing the well diffusion, MBC, MIC, and the time-kill curve. Ocimum basilicum water solution's dark yellow hue denotes the completion of the AgNPs' synthesis. As the aqueous Ocimum basilicum solution concentration increases between 0.25 and 0.75 mM, the AgNPs' UV spectra show a gradually increasing absorption. This, in turn, caused the nanoparticle size to alter from 73.57 to 89.05 nm and the wavelength to change from 468 to 474 nm. The experiments also revealed that the nanoparticles had a significantly antibacterial activity against E. coli, of the sample prepared with 1 mM Ocimum basilicum. Based on the synthesis of AgNPs, it has been shown that an aqueous extract of Ocimum basilicum outperforms Mentha spicata as a powerful reducing agent and stabilizing agent for the production AgNPs in various sizes. This is true regardless of the solvent content.
Collapse
Affiliation(s)
- Motahher A. Qaeed
- Department of Physical Science, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Wardhono EY, Kanani N, Pinem MP, Sukamto D, Meliana Y, Saleh K, Guénin E. Fluid Mechanics of Droplet Spreading of Chitosan/PVA-Based Spray Coating Solution on Banana Peels with Different Wettability. Polymers (Basel) 2023; 15:4277. [PMID: 37959957 PMCID: PMC10648227 DOI: 10.3390/polym15214277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The spreading behavior of a coating solution is an important factor in determining the effectiveness of spraying applications. It determines how evenly the droplets spread on the substrate surface and how quickly they form a uniform film. Fluid mechanics principles govern it, including surface tension, viscosity, and the interaction between the liquid and the solid surface. In our previous work, chitosan (CS) film properties were successfully modified by blending with polyvinyl alcohol (PVA). It was shown that the mechanical strength of the composite film was significantly improved compared to the virgin CS. Here we propose to study the spreading behavior of CS/PVA solution on fresh bananas. The events upon droplet impact were captured using a high-speed camera, allowing the identification of outcomes as a function of velocity at different surface wettabilities (wetting and non-wetting) on the banana peels. The mathematical model to predict the maximum spreading factor, βmax, was governed by scaling law analysis using fitting experimental data to identify patterns, trends, and relationships between βmax and the independent variables, Weber (We) numbers, and Reynolds (Re) numbers. The results indicate that liquid viscosity and surface properties affect the droplet's impact and spreading behavior. The Ohnesorge (Oh) numbers significantly influenced the spreading dynamics, while the banana's surface wettability minimally influenced spreading. The prediction model reasonably agrees with all the data in the literature since the R2 = 0.958 is a powerful goodness-of-fit indicator for predicting the spreading factor. It scaled with βmax=a+0.04We.Re1/3, where the "a" constants depend on Oh numbers.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia;
| | - Nufus Kanani
- Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia;
| | - Mekro Permana Pinem
- Mechanical Engineering, University of Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia; (M.P.P.); (D.S.)
| | - Dwinanto Sukamto
- Mechanical Engineering, University of Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia; (M.P.P.); (D.S.)
| | - Yenny Meliana
- Research Center for Chemistry, National Research and Innovation Agency, BRIN, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia;
| | - Khashayar Saleh
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319, 60 203 Compiègne CEDEX, France; (K.S.); (E.G.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319, 60 203 Compiègne CEDEX, France; (K.S.); (E.G.)
| |
Collapse
|
9
|
Perveen S, Anwar MJ, Ismail T, Hameed A, Naqvi SS, Mahomoodally MF, Saeed F, Imran A, Hussain M, Imran M, Ur Rehman H, Khursheed T, Tufail T, Mehmood T, Ali SW, Al Jbawi E. Utilization of biomaterials to develop the biodegradable food packaging. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1122-1139. [DOI: 10.1080/10942912.2023.2200606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Tariq Ismail
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Syeda Sameen Naqvi
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Habib Ur Rehman
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Islamabad, Pakistan
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
10
|
Li Y, Sang Y, Yu W, Zhang F, Wang X. Antibacterial actions of Ag nanoparticles synthesized from Cimicifuga dahurica (Turcz.) Maxim. and their application in constructing a hydrogel spray for healing skin wounds. Food Chem 2023; 418:135981. [PMID: 36996658 DOI: 10.1016/j.foodchem.2023.135981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Cimicifuga dahurica (Turcz.) Maxim. is an edible natural food and a type of traditional herbal medicine with antipyretic and analgesic properties. In this study, we found that Cimicifuga dahurica (Turcz.) Maxim. extract (CME) has good skin wound healing qualities due to its antibacterial effects on both wound inflammation-related Gram positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram negative (Escherichia coli and Klebsiella pneumoniae) strains. Using CME as a reducing agent, CME-based Ag nanoparticles (CME-AgNPs) with an average particle size of 7 nm were synthesized. The minimum bactericidal concentration (MBC) of CME-AgNPs against the investigated bacterial species varied from 0.08 to 1.25 mg/mL, indicating much higher antibacterial activity than the pure CME. Additionally, a novel network-like thermosensitive hydrogel spray (CME-AgNPs-F127/F68) was developed and shown a skin wound healing rate of 98.40% in 14 days, demonstrating the spray's potential as a novel wound dressing that accelerates wound healing.
Collapse
|
11
|
Kumar A, Yadav S, Pramanik J, Sivamaruthi BS, Jayeoye TJ, Prajapati BG, Chaiyasut C. Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications. Polymers (Basel) 2023; 15:3150. [PMID: 37571044 PMCID: PMC10421092 DOI: 10.3390/polym15153150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Chitin, which may be the second-most common polymer after cellulose, is the raw material of chitosan. Chitosan has been infused with various plant extracts and subsidiary polymers to improve its biological and physiological properties. Chitosan's physicochemical properties are enhanced by blending, making them potential candidates that can be utilized in multifunctional areas, including food processing, nutraceuticals, food quality monitoring, food packaging, and storage. Chitosan-based biomaterials are biocompatible, biodegradable, low toxic, mucoadhesive, and regulate chemical release. Therefore, they are used in the biomedical field. The present manuscript highlights the application of chitosan-based composites in the food and biomedical industries.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sangeeta Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong 793019, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Qaeed MA, Hendi A, Thahe AA, Al-Maaqar SM, Osman AM, Ismail A, Mindil A, Eid AA, Aqlan F, Al-Nahari EG, Obaid AS, Warsi MK, Saif AA, AL-Farga A. Effect of Different Ratios of Mentha spicata Aqueous Solution Based on a Biosolvent on the Synthesis of AgNPs for Inhibiting Bacteria. JOURNAL OF NANOMATERIALS 2023; 2023:1-10. [DOI: 10.1155/2023/3599501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Our work was devoted to studying the effect of different concentrations of Mentha spicata aqueous extract on the green synthesis of silver nanoparticles (AgNPs) in order to obtain the most effective of these concentrations for bacteria inhibitory activity. Different concentrations of the aqueous M. spicata extract (0.25, 0.50, 0.75, and 1.00 mM) were used as biological solvent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV–vis spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The inhibition effect of AgNPs on Escherichia coli was studied to determine the minimum inhibitory concentration (MIC). The dark yellow color of the M. spicata extract aqueous solution indicates the successful synthesis of the AgNPs. UV spectra of the NPs show a gradual increase in absorption with increasing concentration of aqueous M. spicata extract solution from 0.25 to 1.00 mM, accompanied by a shift in the wavelength from 455 to 479 nm along with a change in the nanoparticle size from 31 to 9 nm. The tests also showed a high activity of the particles against bacteria (E. coli) ranging between 15.6 and 62.5 µg/ml. From the AgNPs, it was confirmed that aqueous M. spicata extract is an effective biosolvent for the synthesis of different sizes of AgNPs according to the solvent concentration. The AgNPs also proved effectual for the killing of bacteria.
Collapse
Affiliation(s)
- Motahher A. Qaeed
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed Hendi
- Department of Physics, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Asad A. Thahe
- Department of Medical Physics, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Saleh M. Al-Maaqar
- Faculty of Education, Department of Biology, Al-Baydha University, Al-Baydha, Yemen
| | - Abdalghaffar M. Osman
- Department of Chemistry, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A. Ismail
- Department of Physics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - A. Mindil
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alharthi A. Eid
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - E. G. Al-Nahari
- Department of Physics, Center of Excellence in Development of Non-Profit Organizations, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ahmed. S. Obaid
- Department of Physics, College of Science, University of Anbar, Ramadi, Iraq
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ala’eddin A. Saif
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Liu X, Liao W, Xia W. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Zhao J, Liu T, Xia K, Liu X, Zhang X. Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Wardhono EY, Pinem MP, Susilo S, Siom BJ, Sudrajad A, Pramono A, Meliana Y, Guénin E. Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach. Polymers (Basel) 2022; 14:polym14235216. [PMID: 36501610 PMCID: PMC9740446 DOI: 10.3390/polym14235216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The premise of this work is the modification of the properties of chitosan-based film for possible use in food packaging applications. The biofilm was prepared via thermal and mechanical treatment through blending polymers with chitosan using Polyvinyl Alcohol (PVA) and loading different types of chemical agents, i.e., citric acid (CA), succinic acid (SA), and tetraethoxysilane (TEOS). The modification was carried out under high-speed homogenization at elevated temperature to induce physical cross-linkage of chitosan polymer chains without a catalyst. The findings showed that PVA improved the chitosan films' Tensile strength (TS) and elongation at break (Eb). The presence of chemicals caused an increase in the film strength for all samples prepared, in which a 5% w/w of chemical in the optimum composition CS/PVA (75/25) provided the maximum strength, namely, 33.9 MPa, 44.0 MPa, and 41.9 MPa, for CA-5, SA-5, and TEOS-5, respectively. The chemical agents also increased the water contact angles for all tested films, indicating that they promoted hydrophobicity. The chemical structure analysis showed that, by incorporating three types of chemical agents into the CS/PVA blend films, no additional spectral bands were found, indicating that no covalent bonds were formed. The thermal properties showed enhancement in melting peak and degradation temperature of the blend films, compared to those without chemical agents at the optimum composition. The X-ray diffraction patterns exhibited that PVA led to an increasing crystallization tendency in the blend films. The morphological observation proved that no irregularities were detected in CS/PVA blend films, representing high compatibility with both polymers.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Correspondence: ; Tel.: +62-254-395-502
| | - Mekro Permana Pinem
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Sidik Susilo
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Bintang Junita Siom
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agung Sudrajad
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agus Pramono
- Faculty of Metallurgical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Yenny Meliana
- Research Center for Chemistry, National Research and Innovation Agency, BRIN, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| |
Collapse
|
16
|
Anthocyanins of Açaí Applied as a Colorimetric Indicator of Milk Spoilage: A Study Using Agar-Agar and Cellulose Acetate as Solid Support to Be Applied in Packaging. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Food that is still fit for consumption is wasted in the domestic environment every day, so food packaging technologies are being developed that will monitor the quality of the products in real time. Highly perishable milk is currently one of the products that suffers most from this waste, due to its short shelf life. Active use-by date (AUBD) indicators have been shown to discriminate between fresh and spoiled milk. Colorimetric indicators undergo characteristic changes in their chemical structure, causing abrupt color changes. Among the polymeric materials studied that may function as solid support are cellulose acetate (CA) and agar-agar (AA). The AA colorimetric indicator proved to be more suitable as a solid support due to its ability to maintain the color change properties of the anthocyanin and its high colorimetric performance. The technique was shown to be capable of indicating, in real time, changes in milk quality.
Collapse
|
17
|
Santos JRD, Raimundo RA, Silva TR, Silva VD, Macedo DA, Loureiro FJA, Torres MAM, Tonelli D, Gomes UU. Nanoparticles of Mixed-Valence Oxides Mn XCO 3-XO 4 (0 ≤ X ≤ 1) Obtained with Agar-Agar from Red Algae (Rhodophyta) for Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3170. [PMID: 36144958 PMCID: PMC9506112 DOI: 10.3390/nano12183170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The development of efficient electrocatalysts for the oxygen evolution reaction (OER) is of paramount importance in sustainable water-splitting technology for hydrogen production. In this context, this work reports mixed-valence oxide samples of the MnXCo3-XO4 type (0 ≤ X ≤ 1) synthesized for the first time by the proteic sol-gel method using Agar-Agar as a polymerizing agent. The powders were calcined at 1173 K, characterized by FESEM, XRD, RAMAN, UV-Vis, FT-IR, VSM, and XPS analyses, and were investigated as electrocatalysts for the oxygen evolution reaction (OER). Through XRD analysis, it was observed that the pure cubic phase was obtained for all samples. The presence of Co3+, Co2+, Mn2+, Mn3+, and Mn4+ was confirmed by X-ray spectroscopy (XPS). Regarding the magnetic measurements, a paramagnetic behavior at 300 K was observed for all samples. As far as OER is concerned, it was investigated in an alkaline medium, where the best overpotential of 299 mV vs. RHE was observed for the sample (MnCo2O4), which is a lower value than those of noble metal electrocatalysts in the literature, together with a Tafel slope of 52 mV dec-1, and excellent electrochemical stability for 15 h. Therefore, the green synthesis method presented in this work showed great potential for obtaining electrocatalysts used in the oxygen evolution reaction for water splitting.
Collapse
Affiliation(s)
| | | | - Thayse R. Silva
- Materials Science and Engineering Postgraduate Program, UFPB, João Pessoa 58051-900, Brazil
| | - Vinícius D. Silva
- Materials Science and Engineering Postgraduate Program, UFPB, João Pessoa 58051-900, Brazil
| | - Daniel A. Macedo
- Materials Science and Engineering Postgraduate Program, UFPB, João Pessoa 58051-900, Brazil
| | - Francisco J. A. Loureiro
- Centre for Mechanical Technology and Automation, Mechanical Engineering Department, UA, 3810-193 Aveiro, Portugal
| | - Marco A. M. Torres
- Materials Science and Engineering Postgraduate Program, UFRN, Natal 59078-970, Brazil
| | - Domenica Tonelli
- Department of Industrial Chemistry “Toso Montanari”, Industrial Chemistry, UNIBO, V.le Risorgimento 4, 40136 Bologna, Italy
| | - Uílame U. Gomes
- Materials Science and Engineering Postgraduate Program, UFRN, Natal 59078-970, Brazil
| |
Collapse
|
18
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
19
|
Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
Collapse
|
20
|
Qian ZJ, Zhang J, Xu WR, Zhang YC. Development of active packaging films based on liquefied shrimp shell chitin and polyvinyl alcohol containing β-cyclodextrin/cinnamaldehyde inclusion. Int J Biol Macromol 2022; 214:67-76. [PMID: 35700847 DOI: 10.1016/j.ijbiomac.2022.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 01/03/2023]
Abstract
To maintain the freshness of fruits and to meet environmental and consumer needs, a biobased packaging film with long-lasting antimicrobial activity was developed in this article. Liquefied ball-milled shrimp shell chitin/polyvinyl alcohol (LBSC/PVA) blend films containing varying concentrations (0, 1, 2, 3, 4, 5 wt%) of the β-cyclodextrin/cinnamaldehyde (β-CD/CA) inclusion were prepared and characterized. The association between β-CD and CA and the sustained release behavior of CA were explored. The physicochemical property, antimicrobial activity and food preservation performance of the films were investigated. Results showed that CA was successfully encapsulated into the cavity of CD by host-guest interactions, which greatly improved the sustained release of CA. The 3 wt% β-CD/CA/LBSC/PVA blend film showed optimized mechanical properties with a tensile strength of 41.5 MPa and an elongation at break of 810 %. In addition, the incorporation of β-CD/CA inclusion significantly enhanced the antimicrobial activity and food preservation performance of the blend films. Moreover, the 3 wt% β-CD/CA/LBSC/PVA blend film exhibited evidently longer lasting antimicrobial activity and cherry tomato preservation performance than the 3 wt% CA/LBSC/PVA blend film, further demonstrating the critical role of β-CD in delaying CA release. These novel β-CD/CA/LBSC/PVA blend films may have a potential use in active food packaging.
Collapse
Affiliation(s)
- Zheng-Jie Qian
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, China
| | - Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
21
|
Structural and Physicomechanical Properties of an Active Film Based on Potato Starch, Silver Nanoparticles, and Rose Apple (Syzygium samarangense) Extract. INT J POLYM SCI 2022. [DOI: 10.1155/2022/7816333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the current research work, active films were made from potato starch (PS) and AgNP solution comprising of silver nanoparticles (AgNPs) and rose apple extract (RE) via the casting method at various concentrations. AgNP solution in the PS matrix significantly altered the physical properties such as opacity, water vapor permeability mechanical property, solubility, and swelling index of the films. The influence of AgNP solution on the properties of the films was deeply examined. The results found that the 15% AgNP solution films exhibited better physicochemical properties. The presence of AgNP solution in the PS matrix significantly improved the properties of active films which is evident from the results of FTIR and SEM. Results show that AgNPs and PS were uniformly mixed and formed continuous and homogenous films without bubbles and cracks. In addition, the AgNP solution in the films significantly improved the antibacterial activity against S. aureus than P. aeruginosa in the films.
Collapse
|
22
|
Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Ahmed M, Verma AK, Patel R. Physiochemical, antioxidant, and food simulant release properties of collagen‐carboxymethyl cellulose films enriched with
Berberis lyceum
root extract for biodegradable active food packaging. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mofieed Ahmed
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi‐110025 India
- Department of Biosciences Jamia Millia Islamia, New Delhi‐110025 India
| | - Amit Kumar Verma
- Department of Biosciences Jamia Millia Islamia, New Delhi‐110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi‐110025 India
| |
Collapse
|
24
|
Sharma G, Khosla A, Kumar A, Kaushal N, Sharma S, Naushad M, Vo DVN, Iqbal J, Stadler FJ. A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. CHEMOSPHERE 2022; 289:133100. [PMID: 34843837 DOI: 10.1016/j.chemosphere.2021.133100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Rapid industrial development is associated with high discharge of toxic pollutants into the environment. The industries discharge their wastewater containing organic pollutants directly into the water system without treating them that has posed many serious threats to environmental protection. The use of bioadsorbents for the removal of such toxic pollutants from the waste water due to its simple synthesis, easy operation, effectiveness, and economic viability have emerged a new dimension in the wastewater treatment approaches. Various adsorbents have been prepared to examine their adsorption capacity against different adsorbates, but, to attain sustainability, biocompatibility, and biodegradation, bio-adsorbents have been found to won the battle. Seaweed derived polysaccharide; Carrageenan (CR) has been proven to be an excellent adsorbent for the wastewater treatment. It has been successfully modified with various components to form CR based-magnetic composites, hydrogels, nanoparticle modified CR composites and many others to enrich and diversify its properties. In this review, we have explained the adsorption behaviour of various carrageenan based adsorbents for the removal of different dyes. The influence of various parameters such as the effect of initial concentration, adsorbent dosage, contact time, pH, temperature, and ion concentration on dye adsorption is well explained. This paper also summarizes the structure, morphology, swelling ability, and thermal stability of carrageenan. The data also expounds on the adsorption capacity, kinetic model, isotherm model, and nature of the adsorption process. Different types of solvents are used for the regeneration and reusability of carrageenan adsorbents and their regeneration studies and desorption efficiency is well-explained. The adsorption mechanism of dyes onto carrageenan based adsorbents has been well described in this review. This review provides a deep insight about the use of carrageenan based adsorbents for the wastewater treatment.
Collapse
Affiliation(s)
- Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| | - Atul Khosla
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Nikhil Kaushal
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Shweta Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - M Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
25
|
Jamróz E, Cabaj A, Juszczak L, Tkaczewska J, Zimowska M, Cholewa-Wójcik A, Krzyściak P, Kopel P. Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts. MATERIALS 2021; 14:ma14226925. [PMID: 34832324 PMCID: PMC8625606 DOI: 10.3390/ma14226925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/04/2023]
Abstract
A novel, eco-friendly, and biocompatible method was applied to form silver nanoparticles (AgNPs) in great water dock (Lapathi radix) (KB) and pu-erh (Camellia sinensis) (PE) extracts. The surface plasma resonance peak of green synthesized AgNPs at 451.8 nm for AgNPs+KB and 440.8 nm for AgNPs+PE was observed via spectral analysis of UV absorbance. In this study, double-layered biopolymer films (FUR/CHIT+HGEL) with AgNPs incorporated in KB solution (AgNPs+KB) and AgNPs in PE solution (AgNPs+PE), were successfully prepared using the casting method. The SEM, XRD, zeta potential and size analyses confirmed the presence of AgNP in the films. The addition of AgNPs in plant extracts improved antimicrobial and antioxidant activity and thermal stability, whereas WVTR experienced a decrease. The nanocomposite films’ orange-brown colour may aid in the protection of food products against UV rays. The composite films demonstrated antibacterial activity against food-borne pathogens and may offer potential in food packaging applications.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland;
| | - Agnieszka Cabaj
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland; (A.C.); (L.J.)
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland; (A.C.); (L.J.)
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland;
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland;
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, ul. Rakowicka 27, 30-510 Kraków, Poland;
| | - Paweł Krzyściak
- Department of Infections Control and Mycology, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585-634-352
| |
Collapse
|
26
|
Rukmanikrishnan B, Ramalingam S, Lee J. Quaternary ammonium silane-reinforced agar/polyacrylamide composites for packaging applications. Int J Biol Macromol 2021; 182:1301-1309. [PMID: 33989690 DOI: 10.1016/j.ijbiomac.2021.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/09/2021] [Indexed: 11/18/2022]
Abstract
Agar/polyacrylamide/quaternary ammonium silane-based (A/P/QAS-based) composite films were developed for food and biomedical packaging applications. The structural, optical, and surface morphological properties of the A/P and A/P/QAS composites were characterized by various characterization techniques in terms of thermogravimetric analysis, differential scanning calorimetry analyses, mechanical and rheological properties. Results showed that the 5% gravimetric loss (57.8-139.1 °C), glass transition temperature (179-189.9 °C) and tensile strength (35.2-47.8 MPa) of the prepared composites increased with increasing polyacrylamide content. The contact angle and water barrier properties of the composites were considerably improved by the addition of QAS. To compare WVP values of the A/P/QAS composite with neat AP composite films it reduced nearly 46% (2.45 to 1.32 × 10-9 g/m2 Pas). The A/P/QAS composites showed excellent antimicrobial properties against five different organisms. The Staphylococcus aureus exhibited highest 25 mm for gel and 18.1 mm for film of A/P/QAS composites. All the composites exhibited shear-thinning behavior, and their viscosity increased with increasing polyacrylamide content. The storage moduli of the prepared hydrogel composites were in the range of 5000-10,600 Pa at 1 rad/s and increased continuously over the entire frequency range. The dynamic rheological properties of A/P and A/P/QAS composites indicated that the prepared composites had good mechanical strength. Biopolymer based A/P and A/P/QAS composite films are suitable for green composite packaging applications.
Collapse
Affiliation(s)
| | | | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, South Korea.
| |
Collapse
|
27
|
Ali S, Chen X, Ajmal Shah M, Ali M, Zareef M, Arslan M, Ahmad S, Jiao T, Li H, Chen Q. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: A review. Food Chem 2021; 359:129912. [PMID: 33934027 DOI: 10.1016/j.foodchem.2021.129912] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 04/18/2021] [Indexed: 01/29/2023]
Abstract
The emerging fruit wastes valorization tactic is a strategy for minimizing the dependence on toxic solvents and chemicals commonly used in the preparation of nanoparticles (NPs). Furthermore, the NPs have exhibited promising antimicrobial applications against foodborne pathogens. Hence, a timely review of this topic is in demand to provide a clear insight into the subject. In this article, the synthesis of silver and gold NPs from fruit wastes and their antimicrobial application against foodborne pathogens are reviewed. The extraction method, mechanism of NPs formation and influences of various experimental parameters on the shape and size of the NPs are described. In the second part of the article, antimicrobial activities against foodborne pathogens regarding the nature, optimum composition, surface structure, synergism and morphology of the NPs are reviewed. Furthermore, challenges and future trends related to the synthesis and antimicrobial application of fruit wastes-mediated NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa-18800, Pakistan
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
28
|
Abstract
In an effort to produce non-toxic and economically viable “green” protocols for waste water treatment, researchers are actively involved to develop versatile and effective silver nanoparticles (SNPs) as nano-catalyst from bio-based techniques. Since, p-nitrophenol (PNP) is one of the anthropogenic contaminants, considerable attention has been focused in catalytic degradability of PNP in wastewater treatment by curtailing serious effect on aquatic fauna. Ingestion of contaminants by aquatic organisms will not only affect the aquatic species but is also a potential threat to human health, especially if the toxic contaminants are involved in food chain. In this short report, we provided a comprehensive insight on few remarkable nanocatalysts especially based on SNPs and its biopolymer composites synthesized via ecofriendly “green” route. The beneficiality and catalytic performance of these silver nanocatalysts are concisely documented on standard model degradation reduction of PNP to p-aminophenol (PAP) in the presence of aqueous sodium borohydride. The catalytic degradation of PNP to PAP using SNPs follows pseudo first order kinetics involving six-electrons with lower activation energy. Furthermore, we provided a list of highly effective, recoverable, and economically viable SNPs, which demonstrated its potential as nanocatalysts by focusing its technical impact in the area of water remediation.
Collapse
|
29
|
Nur Amila Najwa I, Mat Yusoff M, Nur Hanani Z. Potential of Silver-Kaolin in Gelatin Composite Films as Active Food Packaging Materials. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
31
|
Ojha N, Das N. Fabrication and characterization of biodegradable PHBV/SiO 2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol 2020; 14:785-795. [PMID: 33399109 DOI: 10.1049/iet-nbt.2020.0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by GC-MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo-mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
32
|
Mostafavi FS, Zaeim D. Agar-based edible films for food packaging applications - A review. Int J Biol Macromol 2020; 159:1165-1176. [PMID: 32442572 DOI: 10.1016/j.ijbiomac.2020.05.123] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Agar is a biopolymer extracted from certain red algae. The continuous and transparent film made from agar gum is becoming a common and renewable alternative for plastic-based food packaging materials. However, plain agar film suffers from brittleness, high moisture permeability, and poor thermal stability. Considerable researches have been devoted to improving the properties of agar films to extend their applications. These include reinforcements by nanomaterials, blending with other biopolymers, and incorporating plasticizers, hydrophobic components, or antimicrobial agents into their structure. This article comprehensively reviews the functional properties and defects of edible films made from agar gum. Also, it describes various strategies and components used to make an agar film with desirable properties. Moreover, the applications of agar-based edible films with improved functionality for food packaging are discussed.
Collapse
Affiliation(s)
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
33
|
Extracted Compounds from Neem Leaves as Antimicrobial Agent on the Physico-Chemical Properties of Seaweed-Based Biopolymer Films. Polymers (Basel) 2020; 12:polym12051119. [PMID: 32422913 PMCID: PMC7284887 DOI: 10.3390/polym12051119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Neem leaves extract was incorporated into the matrix of seaweed biopolymer, and the seaweed-neem biocomposite films were irradiated with various doses of gamma irradiation (0.5, 1.5, 2.5, 3.5, and 4.5 kGy). The physical, barrier, antimicrobial, and mechanical properties of the films were studied. The incorporation of 5% w/w neem leaves extract into a seaweed-based film, and gamma irradiation dose of 2.5 kGy was most effective for improved properties of the film. The results showed that the interfacial interaction of the seaweed-neem improved with physical changes in colour and opacity. The water solubility, moisture content, and water vapour permeability and biodegradability rate of the film reduced. The contact angle values increased, which was interpreted as improved hydrophobicity. The tensile strength and modulus of the films increased, while the elongation of the composite films decreased compared to the control film. The film’s antimicrobial activities against bacteria were improved. Thus, neem leaves extract in combination with the application of gamma irradiation enhanced the performance properties of the film that has potential as packaging material.
Collapse
|
34
|
Devi M, Devi S, Sharma V, Rana N, Bhatia RK, Bhatt AK. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J Tradit Complement Med 2020; 10:158-165. [PMID: 32257879 PMCID: PMC7109472 DOI: 10.1016/j.jtcme.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/15/2022] Open
Abstract
Plant-based synthesis of nanoparticles has generated worldwide interest because of cost-effectiveness, eco-friendly nature and plethora of applications. In the present investigation, antimicrobial potential of silver nanoparticles (AgNPs) of methanolic extract of Aegle marmelos fruit has been investigated. Agar well diffusion method was used for determining antimicrobial activity of solvent extracts (viz., petroleum ether, chloroform, acetone, methanol and aqueous), and AgNPs. Among these, methanolic extract of A. marmelos showed highest inhibitory activity against B. cereus (16.17 ± 0.50 mm) followed by P. aeruginosa (13.33 ± 0.62 mm) and E. coli. Phytochemical analysis of methanolic extract of A. marmelos revealed the presence of tannins, saponins, steroids, alkaloids, flavonoids, and glycosides. AgNPs synthesized using A. marmelos methanolic extract, characterized by UV-Visible spectroscopy, atomic force microscopy, dynamic light scattering, and X-ray diffraction showed a peak at 436 nm and size ranged between 159 and 181 nm. Evaluation of the antimicrobial potential of green synthesized AgNPs recorded the highest inhibitory activity against B. cereus (19.25 ± 0.19 mm) followed by P. aeruginosa (16.50 ± 0.30 mm) and S. dysentriae. The minimum inhibitory concentration (MIC) of synthesized AgNPs was found to be in the range of 0.009875-0.0395 mg/100 μl which was quite lower than the MIC of crude extract i.e. 0.0781-0.3125 mg/100 μl. The results obtained indicated that the different crude extracts of A. marmelos plant as well as AgNPs have a strong and effective antimicrobial potential that provide a marvelous source for the development of new drug molecules of herbal origin which may be used for the welfare of humanity.
Collapse
Affiliation(s)
| | | | | | | | | | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| |
Collapse
|
35
|
Kumar S, Mukherjee A, Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
37
|
A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. COATINGS 2019. [DOI: 10.3390/coatings9120787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phytosynthesis of metallic nanoparticles represents an exciting new area of research, with promising perspectives, gaining in the last decades an increasing importance. Nanotechnology represents an important tool and an efficient option for obtaining particles with controlled morphology and shapes, phytosynthesized nanoparticles (NPs) being a good alternative to remove hazardous reagents. Due to the practical applications of the phytosynthesized nanoparticles, which are mainly associated with their antimicrobial potential, the abundance of scientific literature in this domain is given by researches in the phytosynthesis of metallic nanoparticles (3654 articles) and the evaluation of their antimicrobial properties (2338 papers). The application of phytosynthesized nanoparticles as antimicrobial coatings represented the subject of only 446 works, which lead us to the subject of this review paper. Application of antimicrobial coatings containing phytosynthesized nanoparticles for the development of antimicrobial textiles, other biomedical applications, protection of food (including fruits and vegetables), as well as for other types of applications based on their antimicrobial potential are covered by the present review.
Collapse
|
38
|
Azeredo HMC, Otoni CG, Corrêa DS, Assis OBG, Moura MR, Mattoso LHC. Nanostructured Antimicrobials in Food Packaging—Recent Advances. Biotechnol J 2019; 14:e1900068. [DOI: 10.1002/biot.201900068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Henriette M. C. Azeredo
- Embrapa Agroindústria Tropical Fortaleza Ceará Brazil
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Caio G. Otoni
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
- Institute of ChemistryUniversity of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Daniel S. Corrêa
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Odílio B. G. Assis
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Márcia R. Moura
- Department of Physics and ChemistryFaculty of EngineeringSão Paulo State University Júlio de Mesquita Filho (UNESP) Ilha Solteira São Paulo Brazil
| | - Luiz Henrique C. Mattoso
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| |
Collapse
|
39
|
Puscaselu R, Gutt G, Amariei S. Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks. Molecules 2019; 24:E3136. [PMID: 31466392 PMCID: PMC6749578 DOI: 10.3390/molecules24173136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
In today's society, packaging is essential. Without this, the materials would be messy and ineffective. Despite the importance and key role of packaging, they are considered to be useless, as consumers see it as a waste of resources and an environmental threat. Biopolymer-based edible packaging is one of the most promising solutions to these problems. Thus, inulin, biopolymers such as agar and sodium alginate, and glycerol were used to develop a single use edible material for food packaging. These biofilms were obtained and tested for three months. For inulin-based films, the results highlight improvements not only in physical properties (homogeneity, well-defined margins, light sweet taste, good optical properties, high solubility capacity or, as in the case of some samples, complete solubilization), but also superior mechanical properties (samples with high inulin content into composition had high tensile strength and extremely high elongation values). Even after three months of developing, the values of mechanical properties indicate a strong material. The optimization establishes the composition necessary to obtain a strong and completely water-soluble material. This type of packaging represents a successful alternative for the future of food packaging: they are completely edible, biodegradable, compostable, obtained from renewable resources, and produce zero waste, at low cost.
Collapse
Affiliation(s)
- Roxana Puscaselu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania.
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 72229 Suceava, Romania
| |
Collapse
|
40
|
Davidović S, Lazić V, Miljković M, Gordić M, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković JM. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. Carbohydr Polym 2019; 224:115187. [PMID: 31472840 DOI: 10.1016/j.carbpol.2019.115187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023]
Abstract
The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10-20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm).
Collapse
Affiliation(s)
- Slađana Davidović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Vesna Lazić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| | - Miona Miljković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Milan Gordić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Milica Sekulić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | | | - Ishara S Ratnayake
- South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, SD, 57701, USA
| | - S Phillip Ahrenkiel
- South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, SD, 57701, USA
| | - Jovan M Nedeljković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
41
|
Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122409] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide, millions of tons of crustaceans are produced every year and consumed as protein-rich seafood. However, the shells of the crustaceans and other non-edible parts constituting about half of the body mass are usually discarded as waste. These discarded crustacean shells are a prominent source of polysaccharide (chitin) and protein. Chitosan is a de-acetylated form of chitin obtained from the crustacean waste that has attracted attention for applications in food, biomedical, and paint industries due to its characteristic properties, like solubility in weak acids, film-forming ability, pH-sensitivity, biodegradability, and biocompatibility. We present an overview of the application of chitosan in composite coatings for applications in food, paint, and water treatment. In the context of food industries, the main focus is on fabrication and application of chitosan-based composite films and coatings for prolonging the post-harvest life of fruits and vegetables, whereas anti-corrosion and self-healing properties are the main properties considered for antifouling applications in paints in this review.
Collapse
|
42
|
Lin W, Ni Y, Pang J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr Polym 2019; 222:114986. [PMID: 31320090 DOI: 10.1016/j.carbpol.2019.114986] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Here, inspired by the hydrophilic/hydrophobic theory, a novel konjac glucomannan/poly (methyl methacrylate)/chlorogenic acid (KGM/PMMA/CGA) food packaging film was successfully fabricated via microfluidic spinning technology (MST). The results of fourier transform infrared spectroscopy and x-ray diffraction confirmed the formation of hydrogen bonds in the films, which lead to the enhanced mechanical properties. Thermogravimetric analysis and differential scanning calorimetry showed excellent thermal stability of the films. Water vapor permeability (1.47 × 10-5 ± 0.11 g/(m⋅h⋅kPa)) and water contact angle (89.2°) measurement proved that the films were hydrophobic. The good swelling degree (85.18 ± 15.65%) indicated film's potentials in releasing CGA. More importantly, KGM played a key role in the antibacterial activities against Staphylococcus aureus (8.5 ± 3.5 mm) and Escherichia coli (6.5 ± 2.1 mm) by utilizing its hydrophilicity. Thus, our present work may provide a new idea for constructing active food packaging films with significant performances based on hydrophilic/hydrophobic strategy.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Ni
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|