1
|
Yazdani HO, Yang R, Haykal T, Tohme C, Kaltenmeier C, Wang R, Nakano R, Nigmet Y, Gambella A, Loughran P, Hughes CB, Geller DA, Tohme S. Exercise Preconditioning of the Donor Liver Decreases Cold Ischemia/Reperfusion Injury in a Mouse Model. Transplantation 2025; 109:161-173. [PMID: 39656524 DOI: 10.1097/tp.0000000000005176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Liver transplantation stands as the primary treatment for end-stage liver disease, with demand surging in recent decades because of expanded indications. However, hepatic ischemia/reperfusion injury can lead to liver transplant failure in both deceased donor and living donor transplantation. This study explored whether preconditioning donor livers through exercise training (ExT) could mitigate cold ischemic injury posttransplantation. METHODS Donor C57BL/6 mice underwent ExT via treadmill running or remained sedentary. After 4 wk, the donor liver underwent cold storage and subsequent orthotopic liver transplantation or ex vivo warm reperfusion. RESULTS Donor liver from mice subjected to ExT showed significantly decreased hepatic injury on reperfusion. Tissue histology revealed decreased sinusoidal congestion, vacuolization, and hepatocellular necrosis in livers from ExT mice, and immunofluorescence staining further revealed a decreased number of apoptotic cells in ExT grafts. Livers from ExT donors expressed decreased intragraft inflammatory cytokines cascade, decreased neutrophil infiltration and neutrophil extracellular traps, and increased M2 phenotype of recipient macrophages compared with grafts from sedentary mice. After cold storage, liver grafts from ExT donors showed decreased accumulation of reactive oxygen species and decreased levels of cytochrome c and high mobility group box 1 released in the liver effluent. In addition, ExT grafts showed upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and higher levels of mitochondrial content. Similar effects of decreased hepatic injury were observed in wild-type mice when pretreated with a PGC-1α stimulator ZLN005 instead of ExT. CONCLUSIONS These findings suggest that augmenting hepatocytic mitochondrial content through donor exercise or PGC-1α stimulation may offer therapeutic avenues to mitigate postreperfusion inflammation and improve transplant outcomes.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Ruiqi Yang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
- School of Medicine, Tsinghua University, Beijing, China
| | - Tony Haykal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Celine Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Ronghua Wang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ryosuke Nakano
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yermek Nigmet
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Alessandro Gambella
- Division of Liver and Transplant Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patricia Loughran
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Christopher B Hughes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David A Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
2
|
Sun L, Xu C, Zhang Z, Tang L, Liu X. Physical activity lowers all-cause and cardio-cerebrovascular mortality in adults with coronary heart disease. Int J Cardiol 2024; 410:132225. [PMID: 38821122 DOI: 10.1016/j.ijcard.2024.132225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The health outcomes and their adherence to guideline-based secondary prevention physical activity in US patients with coronary heart disease (CHD), together with the association between physical activity (PA) and mortality risk, were investigated. METHODS Data on CHD patients (aged 18 to 85 years) was acquired from the US National Health and Nutrition Examination Survey (NHANES) 1999-2018. The patients were divided into four groups according to the level and frequency of PA, namely, a) sedentary (n = 1178), b) moderate PA (moderate, n = 270), c) vigorous PA once or twice per week (vigorous ≤2×, n = 206), and d) vigorous PA three or more times per week (vigorous >2×, n = 598). Logistic analysis was used to determine the relationship between PA and all-cause or cardio-cerebrovascular mortality in CHD patients. RESULTS A total of 2252 patients with CHD were enrolled, of whom 47.69% reported adequate PA. During the investigation, there were 296 (13.14%) cardio-cerebrovascular and 724 (32.15%) all-cause deaths. The incidence of all-cause or cardio-cerebrovascular death was lowest in the vigorous ≤2× group. Patients who undertook vigorous PA ≤ 2× showed the lowest risk of all-cause (odds ratio 0.32; 95% confidence interval 0.22-0.47; P < 0.01) or cardio-cerebrovascular death (odds ratio 0.43; 95% confidence interval 0.25-0.73; P < 0.01) relative to those in the sedentary group. More frequent vigorous PA did not lead to improved benefits. CONCLUSIONS Vigorous PA once or twice per week was more effective for reducing all-cause and cardio-cerebrovascular mortality compared with patients performing no or a moderate level of PA in US adults with CHD.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Geriatrics, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, PR China
| | - Cheng Xu
- Science and Education Department, Guangxi Zhuang Autonomous Region Jiangbin Hospital, Nanning, Guangxi 530021, PR China
| | - Zhi Zhang
- Department of Cardiology, First People's Hospital of Linping District, Hangzhou, Zhejiang 311199, PR China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
3
|
Cuccurullo SJ, Fleming TK, Petrosyan H, Hanley DF, Raghavan P. Mechanisms and benefits of cardiac rehabilitation in individuals with stroke: emerging role of its impact on improving cardiovascular and neurovascular health. Front Cardiovasc Med 2024; 11:1376616. [PMID: 38756753 PMCID: PMC11096558 DOI: 10.3389/fcvm.2024.1376616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Human and animal studies have demonstrated the mechanisms and benefits of aerobic exercise for both cardiovascular and neurovascular health. Aerobic exercise induces neuroplasticity and neurophysiologic reorganization of brain networks, improves cerebral blood flow, and increases whole-body VO2peak (peak oxygen consumption). The effectiveness of a structured cardiac rehabilitation (CR) program is well established and a vital part of the continuum of care for people with cardiovascular disease. Individuals post stroke exhibit decreased cardiovascular capacity which impacts their neurologic recovery and extends disability. Stroke survivors share the same risk factors as patients with cardiac disease and can therefore benefit significantly from a comprehensive CR program in addition to neurorehabilitation to address their cardiovascular health. The inclusion of individuals with stroke into a CR program, with appropriate adaptations, can significantly improve their cardiovascular health, promote functional recovery, and reduce future cardiovascular and cerebrovascular events thereby reducing the economic burden of stroke.
Collapse
Affiliation(s)
- Sara J. Cuccurullo
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Talya K. Fleming
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Hayk Petrosyan
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Daniel F. Hanley
- Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Mohammadkhani R, Ranjbar K, Salehi I, Komaki A, Zarrinkalam E, Amiri P. Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury. PLoS One 2023; 18:e0295169. [PMID: 38051732 DOI: 10.1371/journal.pone.0295169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
The study of exercise preconditioning can develop strategies to prevent cardiovascular diseases and outline the efficient exercise model. However, the exercise type with the most protective effect against ischemia-reperfusion injury is unknown. In this study, we examined the effects of three kinds of exercise preconditioning on myocardial ischemia-reperfusion in adult rats and explored the possible underlying mechanisms. Male Wistar rats subjected to ten weeks of endurance, resistance, and concurrent training underwent ischemia (30 min) and reperfusion (120 min) induction. Then, infarction size, serum levels of the CK-MB, the redox status, and angiogenesis proteins (VEGF, ANGP-1, and ANGP-2) were measured in the cardiac tissue. Results showed that different exercise training modes have the same reduction effects on infarction size, but ischemia-reperfusion-induced CK-MB was lower in response to endurance training and concurrent training. Furthermore, cardiac VEGF levels increased in all three kinds of exercise preconditioning but ischemia-reperfusion-induced ANGP-1 elevated more in endurance training. The cardiac GPX activity was improved significantly through the resistance and concurrent exercise compared to the endurance exercise. In addition, all three exercise preconditioning models decreased MPO levels, and ischemia reperfusion-induced MDA was lower in endurance and resistance training. Overall, these results indicated that cardioprotection of exercise training against ischemia-reperfusion injury depends on the exercise modality. Cardioprotective effects of aerobic, resistance, and concurrent exercises are due to different mechanisms. The preconditioning effects of endurance training are mediated mainly by pervasive angiogenic responses and resistance training through oxidative stress amelioration. The preconditioning effects of concurrent training rely on both angiogenesis and oxidative stress amelioration.
Collapse
Affiliation(s)
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Zarrinkalam
- Faculty of Physical Education and Sport Sciences, Department of Physical Education, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Parsa Amiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Pei Z, Zhou R, Yao W, Dong S, Liu Y, Gao Z. Different exercise training intensities prevent type 2 diabetes mellitus-induced myocardial injury in male mice. iScience 2023; 26:107080. [PMID: 37416463 PMCID: PMC10320508 DOI: 10.1016/j.isci.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) usually develop myocardial injury and that exercise may have a positive effect on cardiac function. However, the effect of exercise intensity on cardiac function has not yet been fully examined. This study aimed to explore different exercise intensities on T2DM-induced myocardial injury. 18-week-old male mice were randomly divided into four groups: a control group, the T2DM, T2DM + medium-intensity continuous training (T2DM + MICT), and T2DM + high-intensity interval training (T2DM + HIIT) groups. In the experimental group, mice were given high-fat foods and streptozotocin for six weeks and then divided into two exercise training groups, in which mice were subjected to exercise five days per week for 24 consecutive weeks. Finally, metabolic characteristics, cardiac function, myocardial remodeling, myocardial fibrosis, oxidative stress, and apoptosis were analyzed. HIIT treatment improved cardiac function and improved myocardial injury. In conclusion, HIIT may be an effective means to guard against T2DM-induced myocardial injury.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Zhou
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Wei Yao
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Shuang Dong
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yingshu Liu
- Department of Endocrinology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengnan Gao
- Department of Endocrinology, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Cai S, Huang F, Wang R, Wu M, Liu M, Peng Y, Cao G, Li Y, Liu S, Lu J, Su M, Wei Y, Yiu KH, Chen C. Habitual physical activity improves outcomes among patients with myocardial infarction. Front Cardiovasc Med 2023; 10:1174466. [PMID: 37378408 PMCID: PMC10291190 DOI: 10.3389/fcvm.2023.1174466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Purpose This study evaluates the association between habitual physical activity (HPA) and the outcomes of patients with myocardial infarction (MI). Methods Patients newly diagnosed with MI were divided into two groups based on whether they engaged in HPA, defined as an aerobic activity with a duration of no less than 150 min/week, before the index admission. The primary outcomes included major adverse cardiovascular events (MACEs), cardiovascular (CV) mortality, and cardiac readmission rate 1 year following the index date of admission. A binary logistic regression model was applied to analyze whether HPA was independently associated with 1-year MACEs, 1-year CV mortality, and 1-year cardiac readmission rate. Results Among the 1,266 patients (mean age 63.4 years, 72% male), 571 (45%) engaged in HPA, and 695 (55%) did not engage in HPA before MI. Patients who participated in HPA were independently associated with a lower Killip class upon admission (OR = 0.48: 95% CI, 0.32-0.71, p < 0.001) and a lower prevalence of 1-year MACEs (OR = 0.74: 95% CI, 0.56-0.98, p = 0.038) and 1-year CV mortality (OR = 0.50: 95% CI, 0.28-0.88, p = 0.017) than those who did not participate in HPA. HPA was not associated with cardiac-related readmission (OR = 0.87: 95% CI, 0.64-1.17, p = 0.35). Conclusions HPA before MI was independently associated with a lower Killip class upon admission, 1-year MACEs, and 1-year CV mortality rate.
Collapse
Affiliation(s)
- Sidong Cai
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Fangmei Huang
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yufen Peng
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yapin Li
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiena Lu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Mengqi Su
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yinxia Wei
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Song W, Tang Q, Teng L, Zhang M, Sha S, Li B, Zhu L. Exercise for myocardial ischemia-reperfusion injury: A systematic review and meta-analysis based on preclinical studies. Microvasc Res 2023; 147:104502. [PMID: 36746363 DOI: 10.1016/j.mvr.2023.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The main pathological manifestation of coronary artery disease is myocardial injury caused by ischemia-reperfusion (IR) injury. Regular exercise reduces the risk of death during myocardial IR injury. The aim of this study was to describe the effects of various types of exercise on myocardial IR injury. Four electronic databases PubMed, Web of Science, Embase, and Cochrane Library were comprehensively searched from inception until February 2022, to identify studies relevant to the current review, using the method of combining subject and free words. Finally, 16 articles were included in the meta-analysis. Results showed that exercise training decreases the Myocardial infarct size compared to the control group (SMD = -2.6, 95 % CI [-3.53 to -1.67], P < 0.01); increasing the coronary blood flow (MD = 2.93, 95 % CI [2.41 to 3.44], P < 0.01), left ventricular developed pressure (SMD = 2.28, 95 % CI [0.12 to 4.43], P < 0.05), cardiac output (SMD = 1.22, 95 % CI [0.61 to 1.83], P < 0.01) compared to the control group. According to the descriptive analysis results also showed that exercise training increases the left ventricular ejection fraction, superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase, copper-zinc superoxide dismutase, glutathione peroxidase, and decrease the creatine kinase, creatine kinase-MB, lactate dehydrogenase, Malondialdehyde, cardiac troponins T. Exercise can improve myocardial function after myocardial IR injury; however, further research is needed in combination with specific issues such as exercise mode, intensity, duration, and model issues.
Collapse
Affiliation(s)
- Wenjing Song
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Qiang Tang
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China
| | - Lili Teng
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Mei Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Sha Sha
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Bingyao Li
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Luwen Zhu
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China; Hospital of Heilongjiang University of Chinese Medicine, Harbin 15000, China.
| |
Collapse
|
8
|
Harris MP, Zeng S, Zhu Z, Lira VA, Yu L, Hodgson-Zingman DM, Zingman LV. Myokine Musclin Is Critical for Exercise-Induced Cardiac Conditioning. Int J Mol Sci 2023; 24:6525. [PMID: 37047496 PMCID: PMC10095193 DOI: 10.3390/ijms24076525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
This study investigates the role and mechanisms by which the myokine musclin promotes exercise-induced cardiac conditioning. Exercise is one of the most powerful triggers of cardiac conditioning with proven benefits for healthy and diseased hearts. There is an emerging understanding that muscles produce and secrete myokines, which mediate local and systemic "crosstalk" to promote exercise tolerance and overall health, including cardiac conditioning. The myokine musclin, highly conserved across animal species, has been shown to be upregulated in response to physical activity. However, musclin effects on exercise-induced cardiac conditioning are not established. Following completion of a treadmill exercise protocol, wild type (WT) mice and mice with disruption of the musclin-encoding gene, Ostn, had their hearts extracted and exposed to an ex vivo ischemia-reperfusion protocol or biochemical studies. Disruption of musclin signaling abolished the ability of exercise to mitigate cardiac ischemic injury. This impaired cardioprotection was associated with reduced mitochondrial content and function linked to blunted cyclic guanosine monophosphate (cGMP) signaling. Genetic deletion of musclin reduced the nuclear abundance of protein kinase G (PKGI) and cyclic adenosine monophosphate (cAMP) response element binding (CREB), resulting in suppression of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and its downstream targets in response to physical activity. Synthetic musclin peptide pharmacokinetic parameters were defined and used to calculate the infusion rate necessary to maintain its plasma level comparable to that observed after exercise. This infusion was found to reproduce the cardioprotective benefits of exercise in sedentary WT and Ostn-KO mice. Musclin is essential for exercise-induced cardiac protection. Boosting musclin signaling might serve as a novel therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Matthew P. Harris
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Shemin Zeng
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Liping Yu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- NMR Core Facility and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Denice M. Hodgson-Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Leonid V. Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
9
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
10
|
Kaur H, Bains V, Sharma T, Badaruddoza. Relationship between leptin gene variants (–2548G>A and 19A>G) and obesity among north Indian Punjabi population. J Genet 2022. [DOI: 10.1007/s12041-022-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Shi M, Dong Z, Zhao K, He X, Sun Y, Ren J, Ge W. Novel insights into exhaustive exercise-induced myocardial injury: Focusing on mitochondrial quality control. Front Cardiovasc Med 2022; 9:1015639. [PMID: 36312267 PMCID: PMC9613966 DOI: 10.3389/fcvm.2022.1015639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Regular moderate-intensity exercise elicits benefit cardiovascular health outcomes. However, exhaustive exercise (EE) triggers arrhythmia, heart failure, and sudden cardiac death. Therefore, a better understanding of unfavorable heart sequelae of EE is important. Various mechanisms have been postulated for EE-induced cardiac injury, among which mitochondrial dysfunction is considered the cardinal machinery for pathogenesis of various diseases. Mitochondrial quality control (MQC) is critical for clearance of long-lived or damaged mitochondria, regulation of energy metabolism and cell apoptosis, maintenance of cardiac homeostasis and alleviation of EE-induced injury. In this review, we will focus on MQC mechanisms and propose mitochondrial pathophysiological targets for the management of EE-induced myocardial injury. A thorough understanding of how MQC system functions in the maintenance of mitochondrial homeostasis will provide a feasible rationale for developing potential therapeutic interventions for EE-induced injury.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhao Dong
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Zhao
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaole He
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China,Jun Ren
| | - Wei Ge
- Department of General Practice, Xijing Hospital, Fourth Military Medical University, Xi'an, China,*Correspondence: Wei Ge
| |
Collapse
|
12
|
Viloria MAD, Li Q, Lu W, Nhu NT, Liu Y, Cui ZY, Cheng YJ, Lee SD. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Front Cardiovasc Med 2022; 9:949744. [PMID: 36304547 PMCID: PMC9592995 DOI: 10.3389/fcvm.2022.949744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 12/07/2022] Open
Abstract
Objective Cardiac mitochondrial dysfunction was found in ischemic heart disease (IHD). Hence, this study determined the effects of exercise training (ET) on cardiac mitochondrial respiration and cardiac mitochondrial quality control in IHD. Methods A narrative synthesis was conducted after searching animal studies written in English in three databases (PubMed, Web of Science, and EMBASE) until December 2020. Studies that used aerobic exercise as an intervention for at least 3 weeks and had at least normal, negative (sedentary IHD), and positive (exercise-trained IHD) groups were included. The CAMARADES checklist was used to check the quality of the included studies. Results The 10 included studies (CAMARADES score: 6–7/10) used swimming or treadmill exercise for 3–8 weeks. Seven studies showed that ET ameliorated cardiac mitochondrial respiratory function as manifested by decreased reactive oxygen species (ROS) production and increased complexes I-V activity, superoxide dismutase 2 (SOD2), respiratory control ratio (RCR), NADH dehydrogenase subunits 1 and 6 (ND1/6), Cytochrome B (CytB), and adenosine triphosphate (ATP) production. Ten studies showed that ET improved cardiac mitochondrial quality control in IHD as manifested by enhanced and/or controlled mitochondrial biogenesis, dynamics, and mitophagy. Four other studies showed that ET resulted in better cardiac mitochondrial physiological characteristics. Conclusion Exercise training could improve cardiac mitochondrial functions, including respiration, biogenesis, dynamics, and mitophagy in IHD. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=226817, identifier: CRD42021226817.
Collapse
Affiliation(s)
- Mary Audrey D. Viloria
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Department of Physical Therapy, College of Health Sciences, Mariano Marcos State University, Batac, Philippines
| | - Qing Li
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wang Lu
- Department of Traditional Treatment, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Yijie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China,Institute of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Yu-Jung Cheng
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,School of Rehabilitation Medicine, Weifang Medical University, Weifang, China,Department of Physical Therapy, Asia University, Taichung, Taiwan,*Correspondence: Shin-Da Lee
| |
Collapse
|
13
|
Asgari M, Salehi I, Ranjbar K, Khosravi M, Zarrinkalam E. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed Pharmacother 2022; 153:113411. [PMID: 36076481 DOI: 10.1016/j.biopha.2022.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial disorders are the most common cause of renal failure and mortality in diabetic patients, but the molecular mechanism of this process is not yet clear. The reduction of nuclear Erythroid2-related factor-2 (Nrf-2) and positive regulators of Nrf-2 proteins, such as DJ-1 and microRNA-126 (miR-126), after hypoxia and the promotion of reactive oxygen species, might be an intervention indicator in renal failure after myocardial ischemia-reperfusion. Therefore, this study evaluates the renoprotective effect of exercise training and Crataegus persica extract (CE) on myocardial ischemia-reperfusion-induced kidney injury in diabetic rats. Fifty rats were divided into five groups: healthy sedentary control (Con), sedentary diabetic (D), interval trained diabetic (TD), diabetic plus Crataegus persica extract treatment (CD), and interval trained diabetic plus Crataegus persica extract treatment (TCD) groups. The rats in the exercise groups were subjected to moderate-intensity interval training five days per week for ten weeks. The rats in CD and TCD groups received 300 mg/kg of Crataegus persica through gavage for ten weeks. Then, the subjects underwent 30 min of myocardial ischemia and subsequently reperfusion for 24 h. At the end of the experiment, insulin sensitivity, oxidative stress, renal function, histopathology of the kidney, Nrf-2, miR-126, and DJ-1 gene expression levels were evaluated. The results show that the treatments decreased elevated levels of renal oxidative stress, glomerular filtration rate, insulin sensitivity, and pathological score in diabetic rats. Also, the expression of Nrf-2 and miR-126, unlike DJ-1, decreased in diabetic rats due to interval training. Due to the results, diabetes aggravates acute myocardial ischemia-reperfusion-induced kidney injury, while moderate-intensity interval training and Crataegus persica treatment simultaneously ameliorate myocardial ischemia-reperfusion-induced renal injury via miR-126/Nrf-2 pathway and improve insulin sensitivity and renal function in type 1 diabetic rats.
Collapse
Affiliation(s)
- Masoumeh Asgari
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Iraj Salehi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran.
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Islamic Republic of Iran.
| | - Maryam Khosravi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Islamic Republic of Iran
| |
Collapse
|
14
|
Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther 2022; 7:306. [PMID: 36050310 PMCID: PMC9437103 DOI: 10.1038/s41392-022-01153-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exercise training has been widely recognized as a healthy lifestyle as well as an effective non-drug therapeutic strategy for cardiovascular diseases (CVD). Functional and mechanistic studies that employ animal exercise models as well as observational and interventional cohort studies with human participants, have contributed considerably in delineating the essential signaling pathways by which exercise promotes cardiovascular fitness and health. First, this review summarizes the beneficial impact of exercise on multiple aspects of cardiovascular health. We then discuss in detail the signaling pathways mediating exercise's benefits for cardiovascular health. The exercise-regulated signaling cascades have been shown to confer myocardial protection and drive systemic adaptations. The signaling molecules that are necessary for exercise-induced physiological cardiac hypertrophy have the potential to attenuate myocardial injury and reverse cardiac remodeling. Exercise-regulated noncoding RNAs and their associated signaling pathways are also discussed in detail for their roles and mechanisms in exercise-induced cardioprotective effects. Moreover, we address the exercise-mediated signaling pathways and molecules that can serve as potential therapeutic targets ranging from pharmacological approaches to gene therapies in CVD. We also discuss multiple factors that influence exercise's effect and highlight the importance and need for further investigations regarding the exercise-regulated molecules as therapeutic targets and biomarkers for CVD as well as the cross talk between the heart and other tissues or organs during exercise. We conclude that a deep understanding of the signaling pathways involved in exercise's benefits for cardiovascular health will undoubtedly contribute to the identification and development of novel therapeutic targets and strategies for CVD.
Collapse
Affiliation(s)
- Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
15
|
Ranjbar K. Improved Cardiac Function Following Ischemia Reperfusion Injury Using Exercise Preconditioning and L-Arginine Supplementation via Oxidative Stress Mitigation and Angiogenesis Amelioration. Cardiovasc Toxicol 2022; 22:736-745. [DOI: 10.1007/s12012-022-09752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
|
16
|
Fatahi A, Zarrinkalam E, Azizbeigi K, Ranjbar K. Cardioprotective effects of exercise preconditioning on ischemia-reperfusion injury and ventricular ectopy in young and senescent rats. Exp Gerontol 2022; 162:111758. [PMID: 35247502 DOI: 10.1016/j.exger.2022.111758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Aging decreases ischemic tolerance, while exercise prevents myocardial ischemia reperfusion (IR) injury. The cardioprotective role of high intensity interval training (HIIT), however, is unknown. METHODS Accordingly, we investigated 8 weeks (5 days/week, 40 min/day) of HIIT treadmill exercise (60%/90% of VO2 peak) on IR injury in young (2-month) and senescent (20-month) Wistar rat myocardia (N = 10/group). Surgical IR (30 min/120 min) was performed via reversible left anterior descending artery ligation and ECG was analyzed to determine ventricular ectopy during IR period. RESULTS Infarction size and oxidative stress were measured in hearts post-mortem. Glutathione peroxidase activity and Myeloperoxidase levels were mitigated with age, but elevated post IR. HIIT potentiated antioxidant defenses in young and old hearts, and infarction size was lower in young HIIT trained. Metrics of reactive oxygen species were not lower after IR, and were not affected by HIIT in young or old rats. Ventricular ectopy score in senescent rats was insignificantly more than young rats and HIIT significantly decreased ventricular ectopy score in young and senescent rats. CONCLUSIONS Findings indicate that IR tolerance is mitigated in senescent hearts, while HIIT ameliorated infarction by increasing antioxidant enzymes activity in young and senescent hearts.
Collapse
Affiliation(s)
- Adnan Fatahi
- Department of Physical Education and Sport Science, Marivan Branch, Islamic Azad University, Marivan, Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Kamal Azizbeigi
- Exercise Physiology Department, Faculty of Physical Education and Sport Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
| |
Collapse
|
17
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
18
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Fisher-Wellman K, Lust RM. Augmented Cardiac Mitochondrial Capacity in High Capacity Aerobic Running "Disease-Resistant" Phenotype at Rest Is Lost Following Ischemia Reperfusion. Front Cardiovasc Med 2021; 8:752640. [PMID: 34805308 PMCID: PMC8595288 DOI: 10.3389/fcvm.2021.752640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Regular active exercise is considered therapeutic for cardiovascular disease, in part by increasing mitochondrial respiratory capacity, but a significant amount of exercise capacity is determined genetically. Animal models, demonstrating either high capacity aerobic running (HCR) or low capacity aerobic running (LCR) phenotypes, have been developed to study the intrinsic contribution, with HCR rats subsequently characterized as "disease resistant" and the LCRs as "disease prone." Enhanced cardioprotection in HCRs has been variable and mutifactoral, but likely includes a metabolic component. These studies were conducted to determine the influence of intrinsic aerobic phenotype on cardiac mitochondrial function before and after ischemia and reperfusion. Methods: A total of 34 HCR and LCR rats were obtained from the parent colony at the University of Toledo, housed under sedentary conditions, and fed normal chow. LCR and HCR animals were randomly assigned to either control or ischemia-reperfusion (IR). On each study day, one HCR/LCR pair was anesthetized, and hearts were rapidly excised. In IR animals, the hearts were immediately flushed with iced hyperkalemic, hyperosmotic, cardioplegia solution, and subjected to global hypothermic ischemic arrest (80 min). Following the arrest, the hearts underwent warm reperfusion (120 min) using a Langendorff perfusion system. Following reperfusion, the heart was weighed and the left ventricle (LV) was isolated. A midventricular ring was obtained to estimate infarction size [triphenyltetrazolium chloride (TTC)] and part of the remaining tissue (~150 mg) was transferred to a homogenation buffer on ice. Isolated mitochondria (MITO) samples were prepared and used to determine respiratory capacity under different metabolic conditions. In control animals, MITO were obtained and prepared similarly immediately following anesthesia and heart removal, but without IR. Results: In the control rats, both resting and maximally stimulated respiratory rates were higher (32 and 40%, respectively; p < 0.05) in HCR mitochondria compared to LCR. After IR, resting MITO respiratory rates were decreased to about 10% of control in both strains, and the augmented capacity in HCRs was absent. Maximally stimulated rates also were decreased more than 50% from control and were no longer different between phenotypes. Ca++ retention capacity and infarct size were not significantly different between HCR and LCR (49.2 ± 5.6 vs. 53.7 ± 4.9%), nor was average coronary flow during reperfusion or arrhythmogenesis. There was a significant loss of mitochondria following IR, which was coupled with decreased function in the remaining mitochondria in both strains. Conclusion: Cardiac mitochondrial capacity from HCR was significantly higher than LCR in the controls under each condition. After IR insult, the cardiac mitochondrial respiratory rates were similar between phenotypes, as was Ca++ retention capacity, infarct size, and arrhythmogenicity, despite the increased mitochondrial capacity in the HCRs before ischemia. Relatively, the loss of respiratory capacity was actually greater in HCR than LCR. These data could suggest limits in the extent to which the HCR phenotype might be "protective" against acute tissue stressors. The extent to which any of these deficits could be "rescued" by adding an active exercise component to the intrinsic phenotype is unknown.
Collapse
Affiliation(s)
- Musaad B. Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| | - Madaniah O. Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lauren G. Koch
- Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Steven Britton
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Pei Z, Yang C, Guo Y, Dong M, Wang F. Effect of different exercise training intensities on age-related cardiac damage in male mice. Aging (Albany NY) 2021; 13:21700-21711. [PMID: 34520392 PMCID: PMC8457595 DOI: 10.18632/aging.203513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Aging is the most important risk factor for cardiovascular diseases. Although exercise is known to be beneficial for the health of aging heart, the optimal exercise training intensity to prevent natural aging-induced cardiac damage has not been defined. In this study, we used 32-week-old male mice and randomly divided them into three groups, namely, untrained (UNT) mice, moderate-intensity exercise training (MET) mice, and high-intensity interval training (HIIT) mice. Mice in the two exercise training groups were subjected to exercise 5 days per week for 24 consecutive weeks. Metabolic characteristics, cardiac function and morphology, myocardial remodeling, myocardial fibrosis (collagen III, α-SMA, and TGF-β), oxidative stress (NRF2, HO-1, SOD, and NOX4), and apoptosis (BAX, Bak, Bcl-2, and Bcl-XL) were analyzed 24 weeks after the different treatments. MET improved cardiac function and reduced myocardial remodeling, myocardial fibrosis, and oxidative stress in the aging heart. MET treatment exerted an anti-apoptotic effect in the heart of the aging mice. Importantly, HIIT did not protect against cardiac damage during the natural aging process. These findings suggest that MET may be one of the main methods to prevent cardiac damage induced by natural aging.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.,School of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Dong
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
20
|
Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. J Clin Med 2021; 10:jcm10173833. [PMID: 34501285 PMCID: PMC8432130 DOI: 10.3390/jcm10173833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in men and women. Biological sex plays a major role in cardiovascular physiology and pathological cardiovascular remodeling. Traditionally, pathological remodeling of cardiovascular system refers to the molecular, cellular, and morphological changes that result from insults, such as myocardial infarction or hypertension. Regular exercise training is known to induce physiological cardiovascular remodeling and beneficial functional adaptation of the cardiovascular apparatus. However, impact of exercise-induced cardiovascular remodeling and functional adaptation varies between males and females. This review aims to compare and contrast sex-specific manifestations of exercise-induced cardiovascular remodeling and functional adaptation. Specifically, we review (1) sex disparities in cardiovascular function, (2) influence of biological sex on exercise-induced cardiovascular remodeling and functional adaptation, and (3) sex-specific impacts of various types, intensities, and durations of exercise training on cardiovascular apparatus. The review highlights both animal and human studies in order to give an all-encompassing view of the exercise-induced sex differences in cardiovascular system and addresses the gaps in knowledge in the field.
Collapse
|
21
|
Exercise Preconditioning as a Cardioprotective Phenotype. Am J Cardiol 2021; 148:8-15. [PMID: 33675772 DOI: 10.1016/j.amjcard.2021.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease (CVD) is potentiated by risk factors including physical inactivity and remains a leading cause of morbidity and mortality. Although regular physical activity does not reverse atherosclerotic coronary disease, precursory exercise improves clinical outcomes in those experiencing life-threatening CVD events. Exercise preconditioning describes the cardioprotective phenotype whereby even a few exercise bouts confer short-term multifaceted protection against acute myocardial infarction. First described decades ago in animal investigations, cardioprotective mechanisms responsible for exercise preconditioning have been identified through reductionist preclinical studies, including the upregulation of endogenous antioxidant enzymes, improved calcium handling, and enhanced bioenergetic regulation during a supply-demand mismatch. Until recently, translation of this research was only inferred from clinically-directed animal models of exercise involving ischemia-reperfusion injury, and reinforced by the gene products of exercise preconditioning that are common to mammalian species. However, recent clinical investigations confirm that exercise preconditions the human heart. This discovery means that simply the initiation of a remedial exercise regimen in those with abnormal CVD risk factor profiles will provide immediate cardioprotective benefits and improved clinical outcomes following acute cardiac events. In conclusion, the prophylactic biochemical adaptations to aerobic exercise are complemented by the long-term adaptive benefits of vascular and architectural remodeling in those who adopt a physically active lifestyle.
Collapse
|
22
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
23
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
24
|
França GDO, Frantz EDC, Magliano DC, Bargut TCL, Sepúlveda-Fragoso V, Silvares RR, Daliry A, Nascimento ARD, Borges JP. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats. Life Sci 2020; 256:117920. [PMID: 32522571 DOI: 10.1016/j.lfs.2020.117920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
AIM We investigated the effects of high-intensity interval and continuous short-term exercise on body composition and cardiac function after myocardial ischemia-reperfusion injury (IRI) in obese rats. METHODS Rats fed with a standard chow diet (SC) or high-fat diet (HFD) for 20 weeks underwent systolic blood pressure (SBP), glycemia and dual-energy X-ray absorptiometry analyses. Then, animals fed with HFD were subdivided into three groups: sedentary (HFD-SED); moderate-intensity continuous training (HFD-MICT); and high-intensity interval training (HFD-HIIT). Exercised groups underwent four isocaloric aerobic exercise sessions, in which HFD-MICT maintained the intensity continuously and HFD-HIIT alternated it. After exercise sessions, all groups underwent global IRI and myocardial infarct size (IS) was determined histologically. Fat and muscle mass were weighted, and protein levels involved in muscle metabolism were assessed in skeletal muscle. RESULTS HFD-fed versus SC-fed rats reduced lean body mass by 31% (P < 0.001), while SBP, glycemia and body fat percentage were increased by 10% (P = 0.04), 30% (P = 0.006) and 54% (P < 0.001); respectively. HFD-induced muscle atrophy was restored in exercised groups, as only HFD-SED presented lower gastrocnemius (32%; P = 0.001) and quadriceps mass (62%; P < 0.001) than SC. PGC1-α expression was 2.7-fold higher in HFD-HIIT versus HFD-SED (P = 0.04), whereas HFD-HIIT and HFD-MICT exhibited 1.7-fold increase in p-mTORSer2481 levels compared to HFD-SED (P = 0.04). Although no difference was detected among groups for IS (P = 0.30), only HFD-HIIT preserved left-ventricle developed pressure after IRI (+0.7 mmHg; P = 0.9). SIGNIFICANCE Short-term exercise, continuous or HIIT, restored HFD-induced muscle atrophy and increased mTOR expression, but only HIIT maintained myocardial contractility following IRI in obese animals.
Collapse
Affiliation(s)
- Guilherme de Oliveira França
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil; Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science and Technology - INCT (In)activity and Exercise, CNPq - Niteroi, RJ, Brazil; Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Vinicius Sepúlveda-Fragoso
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Muscella A, Stefàno E, Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease. Am J Physiol Heart Circ Physiol 2020; 319:H76-H88. [PMID: 32442027 DOI: 10.1152/ajpheart.00708.2019] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood lipoproteins are formed by various amounts of cholesterol (C), triglycerides (TGs), phospholipids, and apolipoproteins (Apos). ApoA1 is the major structural protein of high-density lipoprotein (HDL), accounting for ~70% of HDL protein, and mediates many of the antiatherogenic functions of HDL. Conversely, ApoB is the predominant low-density lipoprotein (LDL) Apo and is an indicator of circulating LDL, associated with higher coronary heart disease (CHD) risk. Thus, the ratio of ApoB to ApoA1 (ApoB/ApoA1) is used as a surrogate marker of the risk of CHD related to lipoproteins. Elevated or abnormal levels of lipids and/or lipoproteins in the blood are a significant CHD risk factor, and several studies support the idea that aerobic exercise decreases CHD risk by partially lowering serum TG and LDL-cholesterol (LDL-C) levels and increasing HDL-C levels. Exercise also exerts an effect on HDL-C maturation and composition and on reverse C transport from peripheral cells to the liver to favor its catabolism and excretion. This process prevents atherosclerosis, and several studies showed that exercise training increases heart lipid metabolism and protects against cardiovascular disease. In these and other ways, it more and more appears that regular exercise, nutrition, and strategies to modulate lipid profile should be viewed as an integrated whole. The purpose of this review is to assess the effects of endurance training on the nontraditional lipid biomarkers, including ApoB, ApoA1, and ApoB/ApoA1, in CHD risk.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| |
Collapse
|
26
|
Ramez M, Ramezani F, Nasirinezhad F, Rajabi H. High‐intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Exp Physiol 2020; 105:652-665. [DOI: 10.1113/ep087994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maral Ramez
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Hamid Rajabi
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| |
Collapse
|
27
|
Hall SE, Smuder AJ, Hayward R. Effects of Calorie Restriction and Voluntary Exercise on Doxorubicin-Induced Cardiotoxicity. Integr Cancer Ther 2019; 18:1534735419843999. [PMID: 30999765 PMCID: PMC6475835 DOI: 10.1177/1534735419843999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: Doxorubicin (DOX) is a widely used chemotherapeutic agent with known cardiotoxic properties, while calorie restriction (CR) and exercise have well-documented cardioprotective effects. No studies have investigated the effects of CR alone or the combined effects of CR and exercise on DOX cardiotoxicity. Methods: Rats were divided into 4 groups based on their food intake (ad libitum or CR) and activity (sedentary or voluntary wheel running [WR]). After completing a 16-week treatment, animals received either DOX (15 mg/kg) or saline (SAL) and cardiac function was measured 5 days after treatment. Chromatography was used to quantify left ventricular DOX accumulation. Results: Left ventricular developed pressure (LVDP), end systolic pressure (ESP), and left ventricular maximal rate of pressure development (dP/dtmax) were significantly higher in the CR + DOX group when compared with DOX. Fractional shortening, LVDP, ESP, dP/dtmax, and dP/dtmin were significantly higher in the CR + WR + DOX group compared with the DOX group. In addition, the CR + WR + DOX group showed significantly higher LVDP and ESP compared with the WR + DOX group. DOX accumulation in the heart was 5-fold lower (P < .05) in the CR + WR + DOX group compared with the DOX group. Conclusion: This is the first study to demonstrate that CR can reduce cardiac DOX accumulation, and confirms the protective role of CR against DOX-induced cardiac dysfunction. Our data also show that combining a known cardioprotective intervention, exercise training, with CR results in additive benefits in the protection against DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Reid Hayward
- 3 University of Northern Colorado, Greeley, CO, USA
| |
Collapse
|
28
|
Zhang L, Zhang Y, Wu Y, Yu J, Zhang Y, Zeng F, Shi L. Role of the Balance of Akt and MAPK Pathways in the Exercise-Regulated Phenotype Switching in Spontaneously Hypertensive Rats. Int J Mol Sci 2019; 20:ijms20225690. [PMID: 31766280 PMCID: PMC6888552 DOI: 10.3390/ijms20225690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 12/26/2022] Open
Abstract
The mechanisms regulating vascular smooth muscle cell (VSMC) phenotype switching and the critical signal modulation affecting the VSMCs remain controversial. Physical exercise acts as an effective drug in preventing elevated blood pressure and improving vascular function. This study was designed to explore the influence of aerobic exercise on the suppression of VSMC phenotype switching by balancing of the Akt, also known as PKB (protein kinase B) and mitogen-activated protein kinase (MAPK) signaling pathways. Spontaneously hypertensive rats (SHRs) and normotensive rats were subjected to exercise treatment before measuring the vascular morphological and structural performances. Exercise induced reverse expression of VSMC protein markers (α-SM-actin, calponin, and osteopontin (OPN)) in spontaneously hypertensive rats. It is noteworthy that the low expression of phosphorylated Akt significantly decreased the expression of VSMC contractile phenotype markers (α-SM-actin and calponin) and increased the expression of the VSMC synthetic phenotype marker (OPN). However, the MAPK signal pathway exerts an opposite effect. VSMCs and whole vessels were treated by inhibitors, namely the p-Akt inhibitor, p-ERK inhibitor, and p-p38 MAPK inhibitors. VSMC phenotype markers were reversed. It is important to note that a significant reverse regulatory relationship was observed between the expression levels of MAPK and the contractile markers in both normotensive and spontaneously hypertensive rats. We demonstrate that aerobic exercise regulates the VSMC phenotype switching by balancing the Akt and MAPK signaling pathways in SHRs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Jingjing Yu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yimin Zhang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Correspondence: ; Tel.: +86-10-6298-9582
| |
Collapse
|
29
|
Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Mobaraki K, Majidinia M. Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflugers Arch 2019; 472:169-178. [PMID: 31624955 DOI: 10.1007/s00424-019-02311-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Aging-induced progressive decline of molecular and metabolic factors in the myocardium is suggested to be related with heart dysfunction and cardiovascular disease. Therefore, we evaluated the effects of exercise training and L-arginine supplementation on oxidative stress, inflammation, and apoptosis in ventricle of the aging rat heart. Twenty-four 24-month-aged Wistar rats were randomly divided into four groups: the aged control, aged exercise, aged L-arginine (orally administered with 150 mg/kg for 12 weeks), and aged exercise + L-arginine groups. Six 4-month-old rats were also considered the young control. Animals with training program performed exercise on a treadmill 5 days/week for 12 weeks. After 12 weeks, protein levels of Bax, Bcl-2, pro-caspase-3/cleaved caspase-3, cytochrome C, and heat shock protein (HSP)-70 were assessed. Tissue contents of total anti-oxidant capacity, superoxide dismutase, catalase, and levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 were analyzed. Histological and fibrotic changes were also evaluated. Treadmill exercise and L-arginine supplementation significantly alleviated aging-induced apoptosis with enhancing HSP-70 expression, increasing anti-oxidant enzyme activity, and suppressing inflammatory markers in the cardiac myocytes. Potent attenuation in apoptosis, inflammation, and oxidative stress was indicated in the rats with the combination of L-arginine supplementation and exercise program in comparison with each group (p < 0.05). In addition, fibrosis percentage and collagen accumulation were significantly lower in the rats with the combination treatment of L-arginine and exercise (p < 0.05). Treadmill exercise and L-arginine supplementation provided protection against age-induced increase in the myocyte loss and formation of fibrosis in the ventricle through potent suppression of oxidative stress, inflammations, and apoptosis pathways.
Collapse
Affiliation(s)
- Saber Ghazizadeh Darband
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.,Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kazhal Mobaraki
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
30
|
|
31
|
Lonek L, Puhova A, Griecsova-Kindernay L, Patel SP, Zohdi V, Jezova D, Ravingerova T. Voluntary exercise may activate components of pro-survival risk pathway in the rat heart and potentially modify cell proliferation in the myocardium. Physiol Res 2019; 68:581-588. [PMID: 31177799 DOI: 10.33549/physiolres.934182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although physical exercise is known to reduce size of infarction, incidence of ventricular arrhythmias, and to improve heart function, molecular mechanisms of this protection are not fully elucidated. We explored the hypothesis that voluntary running, similar to adaptive interventions, such as ischemic or remote preconditioning, may activate components of pro-survival (RISK) pathway and potentially modify cell proliferation. Sprague-Dawley adult male rats freely exercised for 23 days in cages equipped with running wheels, while sedentary controls were housed in standard cages. After 23 days, left ventricular (LV) myocardial tissue samples were collected for the detection of expression and activation of RISK proteins (WB). The day before, a marker of cell proliferation 5-bromo-2'-deoxyuridine (BrdU) was given to all animals to detect its incorporation into DNA of the LV cells (ELISA). Running increased phosphorylation (activation) of Akt, as well as the levels of PKC? and phospho-ERK1/2, whereas BrdU incorporation into DNA was unchanged. In contrast, exercise promoted pro-apoptotic signaling - enhanced Bax/Bcl-2 ratio and activation of GSK-3ß kinase. Results suggest that in the rat myocardium adapted to physical load, natural cardioprotective processes associated with physiological hypertrophy are stimulated, while cell proliferation is not modified. Up-regulation of pro-apoptotic markers indicates potential induction of cell death mechanisms that might lead to maladaptation in the long-term.
Collapse
Affiliation(s)
- L Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
32
|
Brinkerhoff RC, Santa-Helena E, do Amaral PC, Cabrera DDC, Ongaratto RF, de Oliveira PM, Da Ros Montes D'Oca C, Neves Gonçalves CA, Maia Nery LE, Montes D'Oca MG. Evaluation of the antioxidant activities of fatty polyhydroquinolines synthesized by Hantzsch multicomponent reactions. RSC Adv 2019; 9:24688-24698. [PMID: 35528686 PMCID: PMC9069770 DOI: 10.1039/c9ra04758a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 01/23/2023] Open
Abstract
Polyhydroquinolines (PHQs) are the unsymmetrical Hantzsch derivatives of 1,4-dihydropyridines with several biological applications. In this work, new fatty 2- and 3-substituted PHQ derivatives from different fatty acids and fatty alcohol feedstocks were synthesized at good yields via a four-component reaction (4CR). The antioxidant activities of fatty PHQs were investigated using three different antioxidant methods. The experiments showed that the compounds derived from 2-nitrobenzaldehyde and fatty palmitic (C16:0) and oleic (C18:1) chains showed better antioxidant activity. This revealed that combining the ortho NO2 group in the aromatic ring with the insertion of fatty chains in the PHQ core contributed to the antioxidant activity. However, among all the fatty PHQs tested, the fatty 2-substituted compound derived from oleyl alcohol and 2-nitrobenzaldehyde showed the highest antioxidant activity (EC50, 2.11-4.69 μM), which was similar to those of the antioxidant standards butylated hydroxytoluene (EC50, 1.98-6.47 μM) and vitamin E (EC50, 1.19-5.88 μM). In addition, this lipophilic compound showed higher antioxidant activity than the antihypertensive drug nifedipine (EC50, 49.25-126.86 μM). These results indicate that the new fatty PHQs may find novel applications as antioxidant additives.
Collapse
Affiliation(s)
- Rafael Centuriao Brinkerhoff
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Eduarda Santa-Helena
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Paulo C do Amaral
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Diego da C Cabrera
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Renata F Ongaratto
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Patrick M de Oliveira
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Caroline Da Ros Montes D'Oca
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Carla A Neves Gonçalves
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Luiz E Maia Nery
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| | - Marcelo G Montes D'Oca
- Programa de Pós-graduação em Química Tecnológica e Ambiental, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande Av. Itália, Km 08 s/n Rio Grande RS Brazil
| |
Collapse
|
33
|
Ramez M, Rajabi H, Ramezani F, Naderi N, Darbandi-Azar A, Nasirinezhad F. The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression. BMC Cardiovasc Disord 2019; 19:118. [PMID: 31096903 PMCID: PMC6524218 DOI: 10.1186/s12872-019-1090-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (IR) injury is a leading cause of death all over the world, so developing practical approaches to promote cardioprotection against IR injury is essential. Exercise training is an effective strategy to improve cardioprotection. Hence, the purpose of this study was to investigate the effect of short-term preconditioning with two types of high-intensity interval training (HIIT) and moderate intensity continuous training (MICT) on klotho and TRPC6 mechanisms in cardioprotection. METHODS Eighty Male Wistar rats (250-300 g) were randomly divided into 7 groups, including Control, HIIT, MICT, Sham, IR, HIIT+IR, and MICT+IR. Training was performed in 5 consecutive days. HIIT protocol consisted of running on the treadmill at intervals 85-90% vo2max that separated by slow intensity periods at 50-60% vo2max. MICT program was performed at 70% VO2max at the same running distance with HIIT groups. The cardiac IR injury was induced by LAD occlusion followed by reperfusion. ELISA kit was used in order to measure the plasma levels of klotho, LDH and CK-MB, and TRPC6 expression was determined using the western blot technique. Data were analyzed using one way ANOVA and Tukey's post hoc tests. RESULTS The results of this study showed that both types of exercise training programs significantly increase plasma levels of klotho and reduce the infarct size and heart injury. In addition, the exercise training decreased the amount of TRPC6 channels expression during IR. However, the effect of HIIT on increasing the klotho and cardioprotection was greater compared to MICT. CONCLUSIONS Based on the results, even a short-term of aerobic exercise training, especially HIIT, promotes cardioprotection against IR injury and decreases infarct size via an increase in klotho and attenuate of protein expression of myocardial TRPC6 during IR.
Collapse
Affiliation(s)
- Maral Ramez
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darbandi-Azar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Smenes BT, Bækkerud FH, Slagsvold KH, Hassel E, Wohlwend M, Pinho M, Høydal M, Wisløff U, Rognmo Ø, Wahba A. Acute exercise is not cardioprotective and may induce apoptotic signalling in heart surgery: a randomized controlled trial. Interact Cardiovasc Thorac Surg 2019; 27:95-101. [PMID: 29447379 DOI: 10.1093/icvts/ivx439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES During open-heart surgery, the myocardium experiences ischaemia-reperfusion injury. A single bout of moderate, 30-min exercise induces preconditioning and protects the heart from ischaemia-reperfusion injury in rats, but this has never been investigated in humans. We aimed to investigate whether 1 bout of moderate exercise 24 h prior to surgery protects against mitochondrial and cardiac damage. METHODS Patients scheduled for elective coronary artery bypass were eligible for this pilot study. Twenty were included and randomized to the treadmill exercise group (the EX group, n = 10) 24 h preoperatively or to standard presurgical procedures (control n = 10). Right atrial (RA) and left ventricular (LV) biopsies were collected immediately before and as long as possible after aortic cross-clamping to assess the primary outcome of mitochondrial respiration by respirometry, in addition to reactive oxygen species production by fluorometry and apoptotic transcripts. Cardiac troponin T and creatine kinase myocardial brain were measured in plasma at arrival, before surgery and 6 and 24 h postoperatively. RESULTS Mitochondrial respiration was lower in the EX group after surgery in the LV (Complex I -22%, P < 0.05 and maximal -23%, P < 0.05) and the right atrium (Complex I -25%, P < 0.05). Transcript level of the apoptosis-related marker caspase 3 was increased 1.5-fold in the LV prior to surgery in the EX group when compared with the control group, P < 0.05. Cardiac troponin T was 45% higher in the EX group than in the control group 6 h postoperatively (P = 0.03), although not significant when corrected for aortic cross-clamping time. CONCLUSIONS Results indicate that exercise did not precondition the heart against surgery-related damage. Exercise may render the myocardium and mitochondria more vulnerable to perioperative damage. Clinical trials registration number NCT00218985 (https://clinicaltrials.gov/ct2/show/NCT00218985).
Collapse
Affiliation(s)
- Benedikte T Smenes
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik H Bækkerud
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katrine H Slagsvold
- Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| | - Erlend Hassel
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Martin Wohlwend
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria Pinho
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Øivind Rognmo
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander Wahba
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
35
|
Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC. Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia-Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. J Cardiovasc Pharmacol Ther 2019; 24:18-30. [PMID: 30041547 PMCID: PMC7236859 DOI: 10.1177/1074248418788575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Similar to ischemic preconditioning, high-intensity exercise has been shown to decrease infarct size following myocardial infarction. In this article, we review the literature on beneficial effects of exercise, exercise requirements for cardioprotection, common methods utilized in laboratories to study this phenomenon, and discuss possible mechanisms for exercise-mediated cardioprotection.
Collapse
Affiliation(s)
- Mohammed Andaleeb Chowdhury
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Haden K Sholl
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Megan S Sharrett
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Steven T Haller
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Christopher C Cooper
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Rajesh Gupta
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lijun C Liu
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
36
|
Hancock M, Hafstad AD, Nabeebaccus AA, Catibog N, Logan A, Smyrnias I, Hansen SS, Lanner J, Schröder K, Murphy MP, Shah AM, Zhang M. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. eLife 2018; 7:41044. [PMID: 30589411 PMCID: PMC6307857 DOI: 10.7554/elife.41044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has widespread health benefits. Fundamental to these beneficial effects is the ability of the heart to intermittently and substantially increase its performance without incurring damage, but the underlying homeostatic mechanisms are unclear. We identify the ROS-generating NADPH oxidase-4 (Nox4) as an essential regulator of exercise performance in mice. Myocardial Nox4 levels increase during acute exercise and trigger activation of the transcription factor Nrf2, with the induction of multiple endogenous antioxidants. Cardiomyocyte-specific Nox4-deficient (csNox4KO) mice display a loss of exercise-induced Nrf2 activation, cardiac oxidative stress and reduced exercise performance. Cardiomyocyte-specific Nrf2-deficient (csNrf2KO) mice exhibit similar compromised exercise capacity, with mitochondrial and cardiac dysfunction. Supplementation with an Nrf2 activator or a mitochondria-targeted antioxidant effectively restores cardiac performance and exercise capacity in csNox4KO and csNrf2KO mice respectively. The Nox4/Nrf2 axis therefore drives a hormetic response that is required for optimal cardiac mitochondrial and contractile function during physiological exercise.
Collapse
Affiliation(s)
- Matthew Hancock
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Norman Catibog
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Synne S Hansen
- Cardiovascular Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Johanna Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologien, Goethe-Universität, Frankfurt, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| |
Collapse
|
37
|
Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, Yu Q, Ghartey-Kwansah G, Sun Y, Wu Y, Zhang W, Zhou X, Xu M, Bryant J, Yan G, Isaacs W, Ma J, Xu X. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci 2018; 217:128-140. [PMID: 30517851 DOI: 10.1016/j.lfs.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is a major global cause of mortality, which has prompted numerous studies seeking to reduce the risk of heart failure and sudden cardiac death. While regular physical activity is known to improve CVD associated morbidity and mortality, the optimal duration, frequency, and intensity of exercise remains unclear. To address this uncertainty, various animal models have been used to study the cardioprotective effects of exercise and related molecular mechanism such as the mice training models significantly decrease size of myocardial infarct by affecting Kir6.1, VSMC sarc-KATP channels, and pulmonary eNOS. Although these findings cement the importance of animal models in studying exercise induced cardioprotection, the vast assortment of exercise protocols makes comparison across studies difficult. To address this issue, we review and break down the existent exercise models into categories based on exercise modality, intensity, frequency, and duration. The timing of sample collection is also compared and sorted into four distinct phases: pre-exercise (Phase I), mid-exercise (Phase II), exercise recovery (Phase III), and post-exercise (Phase IV). Finally, because the life-span of animals so are limited, small changes in animal exercise duration can corresponded to untenable amounts of human exercise. To address this limitation, we introduce the Life-Span Relative Exercise Time (RETlife span) as a method of accurately defining short-term, medium-term and long-term exercise relative to the animal's life expectancy. Systematic organization of existent protocols and this new system of defining exercise duration will allow for a more solid framework from which researchers can extrapolate animal model data to clinical application.
Collapse
Affiliation(s)
- Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhonguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yu Liang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Qiuxia Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Yanping Sun
- College of Pharmacy, Xi'an Medical University, Xi'an 710062, China
| | - Yajun Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Wei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Guifang Yan
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - William Isaacs
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China.
| |
Collapse
|
38
|
Haslinger S, Blank C, Morawetz D, Koller A, Dünnwald T, Berger S, Schlickum N, Schobersberger W. Effects of Recreational Ski Mountaineering on Cumulative Muscle Fatigue - A Longitudinal Trial. Front Physiol 2018; 9:1687. [PMID: 30542295 PMCID: PMC6277900 DOI: 10.3389/fphys.2018.01687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Sport is known to have many positive effects on mental and physical health. High-intensity exercise is considered to decrease muscle strength and induce muscle fatigue, which is associated with a higher risk of injury. In recreational alpine skiers, a decrease of eccentric peak hamstring torque, as an indication of muscle fatigue, occurs even after 1 day of skiing. The popularity of ski mountaineering is increasing enormously, but no studies are available on its effects on muscle strength. Therefore, the present study examined the consequences of ski mountaineering on muscle fatigue of the concentric/eccentric quadriceps and/or hamstrings. In addition, a possible role of myofascial foam rolling in reducing muscle fatigue was evaluated. Fifty recreational ski mountaineers (27 males, 23 females) completed five consecutive tours of ski mountaineering within 1 week. After each day of skiing, participants underwent an isokinetic muscle test assessing the concentric and eccentric muscle strength of both thighs. One group completed an additional session of myofascial foam rolling. Right and left concentric quadriceps peak torque, left hamstrings peak torque, left eccentric quadriceps peak torque, as well as right and left hamstring peak torque, were reduced after a single day of ski mountaineering (p ≤ 0.016 for all). However, no cumulative muscle fatigue was detected and we could not demonstrate any effect of myofascial foam rolling. The results show conclusively that a single day of ski mountaineering leads to a significant decrease of concentric and eccentric quadriceps and hamstring strength. Therefore, in order to improve muscle strength for the ski mountaineering season, a physical training program including concentric and eccentric methods can be recommended.
Collapse
Affiliation(s)
- Simon Haslinger
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria.,Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH, Tirol, Austria
| | - Cornelia Blank
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria
| | - David Morawetz
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria
| | - Arnold Koller
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH, Tirol, Austria
| | - Tobias Dünnwald
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria
| | - Sarah Berger
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria
| | - Nico Schlickum
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria
| | - Wolfgang Schobersberger
- 1Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Tirol, Austria.,Institute for Sports Medicine, Alpine Medicine and Health Tourism, Tirol Kliniken GmbH, Tirol, Austria
| |
Collapse
|
39
|
Reyes LM, Davenport MH. Exercise as a therapeutic intervention to optimize fetal weight. Pharmacol Res 2018; 132:160-167. [PMID: 29684673 DOI: 10.1016/j.phrs.2018.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 04/18/2018] [Indexed: 12/29/2022]
Abstract
The Developmental Origins of Health and Disease suggest the in utero environment programs offspring obesity and cardiovascular disease. Therefore, there is a need to implement safe therapeutic interventions that do not involve the intake of medications or biological products during pregnancy that can improve maternal and fetal health. Prenatal exercise is established to promote maternal and fetal health. It is generally recommended that women accumulate at least 150 min per week of moderate-intensity exercise. It has been demonstrated that prenatal exercise maintains healthy weight gain and improves maternal glucose control, maternal cardiac autonomic control, placental efficiency (increases angiogenesis, downregulates genes involved in fatty acid transport and insulin transport across the placenta, and upregulates genes involved in amino acid transport across the placenta), and oxidative stress. These adaptations following exercise improve maternal metabolism and provide adequate uteroplacental perfusion. In this review, we will focus on exercise as a therapeutic intervention to optimize fetal weight. It has been established that prenatal exercise does not increase the risk of having a small for gestational age baby. To the contrary, prenatal exercise has been associated with the prevention of excessive fat accumulation in the newborn and the maintenance of fetal muscle mass.
Collapse
Affiliation(s)
- Laura M Reyes
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport and Recreation, 1-052 Li Ka Shing Centre for Health Research Innovation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, T6G 2E1, Alberta, Canada.
| | - Margie H Davenport
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport and Recreation, 1-052 Li Ka Shing Centre for Health Research Innovation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, T6G 2E1, Alberta, Canada.
| |
Collapse
|
40
|
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3617508. [PMID: 29849885 PMCID: PMC5907404 DOI: 10.1155/2018/3617508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.
Collapse
|
41
|
Ranjbar K, Zarrinkalam E, Salehi I, Komaki A, Fayazi B. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomed Pharmacother 2018; 100:455-460. [DOI: 10.1016/j.biopha.2018.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
|
42
|
Padrão AI, Nogueira-Ferreira R, Vitorino R, Carvalho D, Correia C, Neuparth MJ, Pires MJ, Faustino-Rocha AI, Santos LL, Oliveira PA, Duarte JA, Moreira-Gonçalves D, Ferreira R. Exercise training protects against cancer-induced cardiac remodeling in an animal model of urothelial carcinoma. Arch Biochem Biophys 2018; 645:12-18. [PMID: 29548774 DOI: 10.1016/j.abb.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
Abstract
Limiting cancer-induced cardiac damage has become an increasingly important issue to improve survival rates and quality of life. Exercise training has been shown to reduce cardiovascular complications in several diseases; however, its therapeutic role against cardiovascular consequences of cancer is in its infancy. In order to add new insights on the potential therapeutic effect of exercise training on cancer-related cardiac dysfunction, we used an animal model of urothelial carcinoma submitted to 13 weeks of treadmill exercise after 20 weeks of exposure to the carcinogenic N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). Data showed that 13 weeks of treadmill exercise reverted cancer-induced cardiomyocytes atrophy and fibrosis, improved cardiac oxidative capacity given by citrate synthase activity and MnSOD content, and increased the levels of the mitochondrial biogenesis markers PGC-1α and mtTFA. Moreover, exercise training reverted cancer-induced decrease of cardiac c-kit levels suggesting enhanced regenerative ability of heart. These cardiac adaptations to exercise were related to a lower incidence of malignant urothelial lesions and less signs of inflammation. Taken together, data from the present study support the beneficial effect of exercise training when started after cancer diagnosis, envisioning the improvement of the cardiovascular function.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Rita Nogueira-Ferreira
- iBiMED, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Dulce Carvalho
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina Correia
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria João Neuparth
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Maria João Pires
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - Ana Isabel Faustino-Rocha
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Paula Alexandra Oliveira
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
43
|
Parry TL, Starnes JW, O'Neal SK, Bain JR, Muehlbauer MJ, Honcoop A, Ilaiwy A, Christopher P, Patterson C, Willis MS. Untargeted metabolomics analysis of ischemia-reperfusion-injured hearts ex vivo from sedentary and exercise-trained rats. Metabolomics 2018; 14:8. [PMID: 30104954 PMCID: PMC6086497 DOI: 10.1007/s11306-017-1303-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The effects of exercise on the heart and its resistance to disease are well-documented. Recent studies have identified that exercise-induced resistance to arrhythmia is due to the preservation of mitochondrial membrane potential. OBJECTIVES To identify novel metabolic changes that occur parallel to these mitochondrial alterations, we performed non-targeted metabolomics analysis on hearts from sedentary and exercise-trained rats challenged with isolated heart ischemia-reperfusion injury (I/R). METHODS Eight-week old Sprague-Dawley rats were treadmill trained 5 days/week for 6 weeks (exercise duration and intensity progressively increased to 1 h at 30 m/min up a 10.5% incline, 75-80% VO2max). The recovery of pre-ischemic function for sedentary rat hearts was 28.8 ± 5.4% (N = 12) compared to exercise trained hearts, which recovered 51.9% ± 5.7 (N = 14) (p < 0.001). RESULTS Non-targeted GC-MS metabolomics analysis of (1) sedentary rat hearts; (2) exercise-trained rat hearts; (3) sedentary rat hearts challenged with global ischemia-reperfusion (I/R) injury; and (4) exercise-trained rat hearts challenged with global I/R (10/group) revealed 15 statistically significant metabolites between groups by ANOVA using Metaboanalyst (p < 0.001). Enrichment analysis of these metabolites for pathway-associated metabolic sets indicated a > 10-fold enrichment for ammonia recycling and protein biosynthesis. Subsequent comparison of the sedentary hearts post-I/R and exercise-trained hearts post-I/R further identified significant differences in three metabolites (oleic acid, pantothenic acid, and campesterol) related to pantothenate and CoA biosynthesis (p ≤ 1.24E-05, FDR ≤ 5.07E-4). CONCLUSIONS These studies shed light on novel mechanisms in which exercise-induced cardioprotection occurs in I/R that complement both the mitochondrial stabilization and antioxidant mechanisms recently described. These findings also link protein synthesis and protein degradation (protein quality control mechanisms) with exercise-linked cardioprotection and mitochondrial susceptibility for the first time in cardiac I/R.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, 27599, USA
| | - Joseph W Starnes
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Aubree Honcoop
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Peter Christopher
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pathology & Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Zhang H, Chang Z, Mehmood K, Abbas RZ, Nabi F, Rehman MU, Wu X, Tian X, Yuan X, Li Z, Zhou D. Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway. Biol Trace Elem Res 2018; 181:62-70. [PMID: 28497347 DOI: 10.1007/s12011-017-1024-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40-100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P < 0.05) decreased the level of SOD and increased the level of MDA in PK-15 cells. Altogether, these results suggest that nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenyu Chang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaoxing Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinxin Tian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaodan Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhaoyang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
45
|
Liu X, Platt C, Rosenzweig A. The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029850. [PMID: 28389519 DOI: 10.1101/cshperspect.a029850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncoding microRNAs (miRNAs) have emerged as central regulators of cardiac biology, modulating cardiac development and the response to pathological stress in disease. Although less well developed, emerging evidence suggests miRNAs are likely also important in the heart's response to the physiological stress of exercise. Given the well-recognized cardiovascular benefits of exercise, elucidating the contribution of miRNAs to this response has the potential not only to reveal novel aspects of cardiovascular biology but also to identify new targets for therapeutic intervention that may complement those discovered through studies of diseased hearts. Here, we first provide an overview of the cardiovascular effects of exercise as well as some of the major protein signaling mechanisms contributing to these effects. We then review the evidence that both cardiac and circulating miRNAs are dynamically regulated by exercise and regulate these mechanisms and phenotypes.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Colin Platt
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Anthony Rosenzweig
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
47
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
48
|
Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci 2017; 67:639-654. [PMID: 28685325 PMCID: PMC5684252 DOI: 10.1007/s12576-017-0555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
Cardiac myocytes are terminally differentiated cells and possess extremely limited regenerative capacity; therefore, preservation of mature cardiac myocytes throughout the individual's entire life span contributes substantially to healthy living. Autophagy, a lysosome-dependent cellular catabolic process, is essential for normal cardiac function and mitochondria maintenance. Therefore, it may be reasonable to hypothesize that if endurance exercise promotes cardiac autophagy and mitochondrial autophagy or mitophagy, exercise-induced cardiac autophagy (EICA) or exercise-induced cardiac mitophagy (EICM) may confer propitious cellular environment and thus protect the heart against detrimental stresses, such as an ischemia-reperfusion (I/R) injury. However, although the body of evidence supporting EICA and EICM is growing, the molecular mechanisms of EICA and EICM and their possible roles in cardioprotection against an I/R injury are poorly understood. Here, we introduce the general mechanisms of autophagy in an attempt to integrate potential molecular pathways of EICA and EICM and also highlight a potential insight into EICA and EICM in cardioprotection against an I/R insult.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| | - Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Wankeun Song
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ludmila M Cosio-Lima
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Mark H Roltsch
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| |
Collapse
|
49
|
Sprick JD, Rickards CA. Combining remote ischemic preconditioning and aerobic exercise: a novel adaptation of blood flow restriction exercise. Am J Physiol Regul Integr Comp Physiol 2017; 313:R497-R506. [PMID: 28835447 PMCID: PMC5792145 DOI: 10.1152/ajpregu.00111.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022]
Abstract
Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65-70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4-5 mmHg lower with BFRE versus CE during the reperfusion periods (P ≤ 0.05 for reperfusion periods 3 and 4). There were no differences in MCAv or PCAv between trials (P ≥ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC.
Collapse
Affiliation(s)
- Justin D Sprick
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caroline A Rickards
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
50
|
da Silva VL, Lima-Leopoldo AP, Ferron AJT, Cordeiro JP, Freire PP, de Campos DHS, Padovani CR, Sugizaki MM, Cicogna AC, Leopoldo AS. Moderate exercise training does not prevent the reduction in myocardial L-type Ca 2+ channels protein expression at obese rats. Physiol Rep 2017; 5:5/19/e13466. [PMID: 29038363 PMCID: PMC5641941 DOI: 10.14814/phy2.13466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Authors have showed that obesity implicates cardiac dysfunction associated with myocardial L-type calcium channels (LTCCs) activity impairments, as well as moderate exercise training (MET) seems to be an important therapeutic tool. We tested the hypothesis that MET promotes improvements on LTCCS activity and protein expression at obesity induced by unsaturated high-fat diets, which could represent a protective effects against development of cardiovascular damage. Male Wistar rats were randomized in control (C, n = 40), which received a standard diet and obese (Ob; n = 40), which received high-fat diet. After 20 weeks, the animals were assigned at four groups: control (C; n = 12); control submitted to exercise training (ET; n = 14); obese (Ob; n = 10); and obese submitted to exercise training (ObET; n = 11). ET (5 days/week during 12 weeks) began in the 21th week and consisted of treadmill running that was progressively increased to reach 60 min. Final body weight (FBW), body fat (BF), adiposity index (AI), comorbidities, and hormones were evaluated. Cardiac remodeling was assessed by morphological and isolated papillary muscles function. LTCCs activity was determined using specific blocker, while protein expression of LTCCs was evaluated by Western blot. Unsaturated high-fat diet promoted obesity during all experimental protocol. MET controlled obesity process by decreasing of FBW, BF, and AI. Obesity implicated to LTCCs protein expression reduction and MET was not effective to prevent this condition. ET was efficient to promote several improvements to body composition and metabolic parameters; however, it was not able to prevent or reverse the downregulation of LTCCs protein expression at obese rats.
Collapse
Affiliation(s)
- Vitor L da Silva
- Department of Internal Medicine, São Paulo State University, Botucatu, Brazil
| | - Ana P Lima-Leopoldo
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Artur J T Ferron
- Department of Internal Medicine, São Paulo State University, Botucatu, Brazil
| | - Jóctan P Cordeiro
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Paula P Freire
- Department of Morphology, São Paulo State University, Botucatu, Brazil
| | - Dijon H S de Campos
- Department of Internal Medicine, São Paulo State University, Botucatu, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Mário M Sugizaki
- Institute of Health Science, Federal University of Mato Grosso, Sinop, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, São Paulo State University, Botucatu, Brazil
| | - André S Leopoldo
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|