1
|
Jiménez-Salcedo M, Manzano JI, Yuste S, Iñiguez M, Pérez-Matute P, Motilva MJ. Exploring biomarkers of regular wine consumption in human urine: Targeted and untargeted metabolomics approaches. Food Chem 2025; 469:142128. [PMID: 39729665 DOI: 10.1016/j.foodchem.2024.142128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 12/29/2024]
Abstract
The epidemiological assessment of wine consumption usually has been obtained using self-reporting questionnaires. In this study, two metabolomic approaches, targeted and untargeted, were applied to 24-h urine samples from a cohort of La Rioja (Spain) (aged 52-78), comparing moderate and daily wine consumers (20 males and 13 females) without diet intervention, versus non-consumers (8 males and 35 females). Results showed that the non-targeted metabolomics approach has allowed for the annotation of sixteen compounds in 24-h urine samples from regular wine-consumers that were not detected in the urine of non-wine consumers. Additionally, the targeted metabolomics approach showed a wide range of phenol metabolites, mainly hepatic phase-II conjugates, whose concentration was significantly higher in the urine of wine consumers. As a novelty, this study focuses on discovering the main urinary biomarkers of regular wine consumption involving free-living volunteers, without dietary intervention or restrictions that might alter their regular behaviors and lifestyles.
Collapse
Affiliation(s)
- Marta Jiménez-Salcedo
- University of La Rioja, C/Madre de Dios 53, Logroño E-26006, La Rioja, Spain; Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain
| | - José Ignacio Manzano
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain
| | - Silvia Yuste
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain; Antioxidants Research Group, Food Technology Department, Agrotecnio-Recerca Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - María Iñiguez
- Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit, E-26006 Logroño, La Rioja, Spain
| | - Patricia Pérez-Matute
- University of La Rioja, C/Madre de Dios 53, Logroño E-26006, La Rioja, Spain; Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit, E-26006 Logroño, La Rioja, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain.
| |
Collapse
|
2
|
Lucerón-Lucas-Torres M, Ruiz-Grao MC, Cavero-Redondo I, di Lorenzo C, Pascual-Morena C, Priego-Jiménez S, Gómez-Guijarro D, Álvarez-Bueno C. The effects of wine consumption and lipid profile: A systematic review and meta-analysis of clinical trials. J Nutr Health Aging 2025; 29:100539. [PMID: 40121963 DOI: 10.1016/j.jnha.2025.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to analyze the effects of wine consumption on the lipid profile, distinguishing between triglycerides, total cholesterol, LDL, HDL and fibrinogen. METHODS We examined the MEDLINE (via PubMed), Scopus, Cochrane, and Web of Science databases to conduct this systematic review and meta-analysis. PROSPERO has already recorded this study under registration number CRD42023396666. RESULTS Thirty-three studies were included in this systematic review, and 29 were included in the meta-analysis. The pooled ES for the effect of red wine consumption on the different lipid profile parameters was significant only for the effect of red wine on the LDL parameter in the prepost studies (-0.29 (95% CI -0.54, -0.05)). The pooled ES for the effect of white wine in prepost studies and clinical trials for the effect of wine consumption on the different parameters did not show any significant results. CONCLUSION This systematic review and meta-analysis revealed that wine consumption has an effect on reducing LDL and has no effect on total cholesterol, HDL, triglycerides, or fibrinogen. This research revealed that the duration of the intervention affects triglyceride and total cholesterol levels, indicating that longer interventions are more effective for these two parameters. REGISTRATION ID CRD42023396666 (PROSPERO). URL REGISTRATION: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=396666.
Collapse
Affiliation(s)
- Maribel Lucerón-Lucas-Torres
- Centro de Estudios Socio-Sanitarios, Grupo de investigación Age-ABC Universidad de Castilla-La Mancha; Nursing Faculty, University of Castilla-La Mancha, Albacete, Spain
| | - Marta C Ruiz-Grao
- Centro de Estudios Socio-Sanitarios, Grupo de investigación Age-ABC Universidad de Castilla-La Mancha; Nursing Faculty, University of Castilla-La Mancha, Albacete, Spain.
| | | | - Chiara di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Susana Priego-Jiménez
- Centro de Estudios Socio-Sanitarios, Grupo de investigación Age-ABC Universidad de Castilla-La Mancha; Hospital Virgen de la Luz, 16002 Cuenca, Spain
| | | | - Celia Álvarez-Bueno
- Centro de Estudios Socio-Sanitarios, Grupo de investigación Age-ABC Universidad de Castilla-La Mancha; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
3
|
Lucerón Lucas-Torres M, Cavero-Redondo I, Martinez-Vizcaino V, Bizzozero-Peroni B, Pascual-Morena C, Alvarez-Bueno C. Commentary: Association between wine consumption and cancer: a systematic review and meta-analysis. Front Nutr 2024; 11:1511706. [PMID: 39737159 PMCID: PMC11683210 DOI: 10.3389/fnut.2024.1511706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
| | - Ivan Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Vicente Martinez-Vizcaino
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Faculty of Health Sciences, Autonomous University of Chile, Santiago, Chile
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Instituto Superior de Educación Física, Universidad de la República, Montevideo, Uruguay
| | | | - Celia Alvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Faculty of Health Sciences, Autonomous University of Chile, Santiago, Chile
| |
Collapse
|
4
|
Landberg R, Karra P, Hoobler R, Loftfield E, Huybrechts I, Rattner JI, Noerman S, Claeys L, Neveu V, Vidkjaer NH, Savolainen O, Playdon MC, Scalbert A. Dietary biomarkers-an update on their validity and applicability in epidemiological studies. Nutr Rev 2024; 82:1260-1280. [PMID: 37791499 PMCID: PMC11317775 DOI: 10.1093/nutrit/nuad119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The aim of this literature review was to identify and provide a summary update on the validity and applicability of the most promising dietary biomarkers reflecting the intake of important foods in the Western diet for application in epidemiological studies. Many dietary biomarker candidates, reflecting intake of common foods and their specific constituents, have been discovered from intervention and observational studies in humans, but few have been validated. The literature search was targeted for biomarker candidates previously reported to reflect intakes of specific food groups or components that are of major importance in health and disease. Their validity was evaluated according to 8 predefined validation criteria and adapted to epidemiological studies; we summarized the findings and listed the most promising food intake biomarkers based on the evaluation. Biomarker candidates for alcohol, cereals, coffee, dairy, fats and oils, fruits, legumes, meat, seafood, sugar, tea, and vegetables were identified. Top candidates for all categories are specific to certain foods, have defined parent compounds, and their concentrations are unaffected by nonfood determinants. The correlations of candidate dietary biomarkers with habitual food intake were moderate to strong and their reproducibility over time ranged from low to high. For many biomarker candidates, critical information regarding dose response, correlation with habitual food intake, and reproducibility over time is yet unknown. The nutritional epidemiology field will benefit from the development of novel methods to combine single biomarkers to generate biomarker panels in combination with self-reported data. The most promising dietary biomarker candidates that reflect commonly consumed foods and food components for application in epidemiological studies were identified, and research required for their full validation was summarized.
Collapse
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Rachel Hoobler
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Jodi I Rattner
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Liesel Claeys
- International Agency for Research on Cancer, Molecular Mechanisms and Biomarkers Group, Lyon, France
| | - Vanessa Neveu
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Nanna Hjort Vidkjaer
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| |
Collapse
|
5
|
Peerapen P, Putpeerawit P, Boonmark W, Thongboonkerd V. Resveratrol inhibits calcium oxalate crystal growth, reduces adhesion to renal cells and induces crystal internalization into the cells, but promotes crystal aggregation. Curr Res Food Sci 2024; 8:100740. [PMID: 38694557 PMCID: PMC11061250 DOI: 10.1016/j.crfs.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Resveratrol is a natural phenolic compound that belongs to stilbenoid group found in diverse plants. Health benefits and therapeutic potentials of resveratrol have been widely recognized in various diseases. In kidney stone disease, it can alleviate oxalate-induced hyperproduction of free radicals in renal epithelial cells. Nevertheless, its direct effects on calcium oxalate (CaOx) crystal, which is the major stone component, remained unclear. This study therefore addressed the direct effects of resveratrol (at 1, 10 or 100 μM) on each step of CaOx kidney stone formation. The results revealed that resveratrol had no significant effects on CaOx crystallization. However, resveratrol significantly decreased CaOx crystal growth and adhesion to renal epithelial cells at all concentrations, and induced crystal internalization into the cells (a process related to crystal degradation by endolysosomes) in a concentration-dependent manner. On the other hand, resveratrol promoted crystal aggregation. These data indicate that resveratrol serves as a dual modulator on CaOx stone formation. While it inhibits CaOx stone development by reducing crystal growth and adhesion to renal cells and by inducing crystal internalization into the cells, resveratrol promotes crystal aggregation, which is one of the mechanisms leading to kidney stone formation.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattaranit Putpeerawit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
6
|
Lekka P, Fragopoulou E, Terpou A, Dasenaki M. Exploring Human Metabolome after Wine Intake-A Review. Molecules 2023; 28:7616. [PMID: 38005338 PMCID: PMC10673339 DOI: 10.3390/molecules28227616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Wine has a rich history dating back to 2200 BC, originally recognized for its medicinal properties. Today, with the aid of advanced technologies like metabolomics and sophisticated analytical techniques, we have gained remarkable insights into the molecular-level changes induced by wine consumption in the human organism. This review embarks on a comprehensive exploration of the alterations in human metabolome associated with wine consumption. A great number of 51 studies from the last 25 years were reviewed; these studies systematically investigated shifts in metabolic profiles within blood, urine, and feces samples, encompassing both short-term and long-term studies of the consumption of wine and wine derivatives. Significant metabolic alterations were observed in a wide variety of metabolites belonging to different compound classes, such as phenolic compounds, lipids, organic acids, and amino acids, among others. Within these classes, both endogenous metabolites as well as diet-related metabolites that exhibited up-regulation or down-regulation following wine consumption were included. The up-regulation of short-chain fatty acids and the down-regulation of sphingomyelins after wine intake, as well as the up-regulation of gut microbial fermentation metabolites like vanillic and syringic acid are some of the most important findings reported in the reviewed literature. Our results confirm the intact passage of certain wine compounds, such as tartaric acid and other wine acids, to the human organism. In an era where the health effects of wine consumption are of growing interest, this review offers a holistic perspective on the metabolic underpinnings of this centuries-old tradition.
Collapse
Affiliation(s)
- Pelagia Lekka
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agrofood and Management of Natural Resources, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
| | - Marilena Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| |
Collapse
|
7
|
Charoenwoodhipong P, Holt RR, Keen CL, Hedayati N, Sato T, Sone T, Hackman RM. The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study. Nutrients 2023; 15:4054. [PMID: 37764837 PMCID: PMC10535196 DOI: 10.3390/nu15184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Moderate red wine intake has been associated with lower cardiovascular mortality, due in part to the intake of polyphenols and anthocyanins, whose content can vary from varietal and year of harvest. This study assessed the vascular effects in response to a single intake of 2015 and 2018 Zweigelt red wines from Hokkaido, Japan. Healthy men were randomly assigned to consume 240 mL each of a red wine, or a sparkling white grape juice as a control in a randomized three-arm cross-over design with a 7 day washout between arms. The augmentation index (AI; a measure of arterial stiffness) and AI at 75 beats/min (AI75), reactive hyperemia index, systolic and diastolic blood pressure (SBP and DBP, respectively), and platelet reactivity were assessed at baseline and two and four hours after each beverage intake. Changes from the baseline were analyzed using a linear mixed model. Significant treatment effects (p = 0.02) were observed, with AI 13% lower after the intake of the 2015 or 2018 vintages compared to the control. Intake of the 2018 vintage reduced SBP and DBP (-4.1 mmHg and -5.6 mmHg, respectively; p = 0.02) compared to the 2015 wine and the control drink. The amount of hydroxytyrosol in the 2018 wine was almost twice the amount as in the 2015 wine, which may help explain the variable blood pressure results. Future studies exploring the vascular effects of the same red wine from different vintage years and different phenolic profiles are warranted.
Collapse
Affiliation(s)
| | - Roberta R. Holt
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
| | - Carl L. Keen
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nasim Hedayati
- Division of Vascular Surgery, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Tomoyuki Sato
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| | - Robert M. Hackman
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
| |
Collapse
|
8
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Brachem C, Oluwagbemigun K, Langenau J, Weinhold L, Alexy U, Schmid M, Nöthlings U. Exploring the association between habitual food intake and the urine and blood metabolome in adolescents and young adults: a cohort study. Mol Nutr Food Res 2022; 66:e2200023. [PMID: 35785518 DOI: 10.1002/mnfr.202200023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Habitual diet may be reflected in metabolite profiles that can improve accurate assessment of dietary exposure and further enhance our understanding of their link to health conditions. We aimed to explore the relationship of habitual food intake with blood and urine metabolites in adolescents and young adults. METHODS The study population comprised 228 participants (94 male and 134 female) of the DONALD study. Dietary intake was assessed by yearly repeated 3d-food records. Habitual diet was estimated as the average consumption of 23 food groups in adolescence. Using an untargeted metabolomics approach, we quantified 2638 metabolites in plasma and 1407 metabolites in urine. In each sex, we determined unique diet-metabolite associations using orthogonal projection to latent structures (oPLS) and random forests (RF). RESULTS We observed 6 metabolites in agreement between oPLS and RF in urine, 1 in females (vanillylmandelate to processed/ other meat) and 5 in males (indole-3-acetamide, and N6-methyladenosine to eggs; hippurate, citraconate/glutaconate, and X - 12111 to vegetables). We observed no association in blood in agreement. CONCLUSION We observed a limited reflection of habitual food group intake by single metabolites in urine and not in blood. The explored biomarkers should be confirmed in additional studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Julia Langenau
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany.,Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| |
Collapse
|
10
|
Hidalgo-Liberona N, Meroño T, Zamora-Ros R, Rabassa M, Semba R, Tanaka T, Bandinelli S, Ferrucci L, Andres-Lacueva C, Cherubini A. Adherence to the Mediterranean diet assessed by a novel dietary biomarker score and mortality in older adults: the InCHIANTI cohort study. BMC Med 2021; 19:280. [PMID: 34814922 PMCID: PMC8611910 DOI: 10.1186/s12916-021-02154-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dietary biomarkers may complement dietary intake assessment made by dietary questionnaires. We developed an a-posteriori dietary biomarkers score based on Mediterranean diet food groups and evaluated its association with mortality. METHODS 642 participants (56% female), aged ≥65 years, with complete data on dietary biomarkers were followed during 20 years in the InCHIANTI cohort study (Tuscany, Italy). The main outcomes were all-cause, cardiovascular, and cancer mortality. Dietary biomarkers were selected from literature and from correlation analyses with dietary intakes of Mediterranean diet food groups in the study. The baseline levels of the following dietary biomarkers were chosen: urinary total polyphenols and resveratrol metabolites, and plasma carotenoids, selenium, vitamin B12, linolenic, eicosapentaenoic and docosahexaenoic acids, and the mono-unsaturated/saturated fatty acid ratio. Associations of the Mediterranean diet score using dietary biomarkers and a validated food frequency questionnaire (FFQ) (as tertiles) with mortality were assessed through Cox regression. RESULTS During the 20-year follow-up [median (Q1-Q3), 14 (8-18) years], and 435 deaths occurred (139 from cardiovascular diseases and 89 from cancer-related causes). In the fully adjusted models, the dietary biomarker-Mediterranean diet score was inversely associated with all-cause (HRT3vs.T1 0.72; 95%CI 0.56-0.91) and cardiovascular (HRT3vs.T1 0.60; 95%CI 0.38-0.93), but not with cancer mortality. Associations between the FFQ-Mediterranean diet score and mortality were not statistically significant. CONCLUSIONS A greater adherence at baseline to a Mediterranean diet assessed by a dietary biomarker score was associated with a lower risk of mortality in older adults during a 20-year follow-up. The measurement of dietary biomarkers may contribute to guide individualized dietary counseling to older people. TRIAL REGISTRATION NCT01331512.
Collapse
Affiliation(s)
- Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Montserrat Rabassa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Richard Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | | | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
11
|
Schulz M, Hövelmann Y, Hübner F, Humpf HU. Identification of Potential Urinary Biomarkers for Bell Pepper Intake by HPLC-HRMS-Based Metabolomics and Structure Elucidation by NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13644-13656. [PMID: 34735138 DOI: 10.1021/acs.jafc.1c04210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary biomarkers show great promise for objectively assessing the food intake in humans. In this study, potential urinary biomarkers for red bell pepper intake were identified based on a dietary intervention study and a comprehensive metabolomics approach. Spot urine samples from 14 volunteers were collected in the two phases of the study (control phase: abstaining from any bell pepper/paprika products; case phase: consumption of a defined amount of fresh red bell pepper and abstaining from any further bell pepper/paprika products) and analyzed by high-performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS). Comparison of the obtained metabolomics data using statistical analysis revealed that the respective urine metabolomes differ significantly, which was attributable to the bell pepper intake. Some of the most discriminating metabolites were selected and isolated from human urine for unequivocal structure elucidation by nuclear magnetic resonance (NMR) spectroscopy. Herein, seven novel glucuronidated metabolites most likely derived from capsanthin and capsianosides were identified, implying their potential application as dietary biomarkers for the entire Capsicum genus.
Collapse
Affiliation(s)
- Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yannick Hövelmann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Delmas D, Hermetet F, Aires V. PD-1/PD-L1 Checkpoints and Resveratrol: A Controversial New Way for a Therapeutic Strategy. Cancers (Basel) 2021; 13:cancers13184509. [PMID: 34572736 PMCID: PMC8467857 DOI: 10.3390/cancers13184509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Over the last decade, immunotherapies using antibodies targeting the programmed cell death 1 (PD-1) checkpoint or its ligand, programmed death ligand 1 (PD-L1), have emerged as promising therapeutic strategies against cancer. However, some current limitations include a relatively low rate of “responders”, the high cost of the treatment, and a rare risk of hyper-progression. Currently, the main challenge is, therefore, to improve these therapies, for instance, by using combined approaches. Here, we summarize the accumulating evidence that resveratrol (RSV) plays a role in the modulation of the PD-1/PD-L1 axis in cancer cells, suggesting the potential of therapeutic strategies combining RSV with PD-L1 or anti-PD-1 inhibitors. We then discuss the therapeutic potential of polyphenols such as RSV to be used in combination with PD-L1 or PD-1 inhibitors for the management of cancer patients. Abstract Immune checkpoints refer to a range of immunoregulatory molecules that modulate the immune response. For example, proteins expressed at the surface of T-cells (including PD-1 and CTLA-4) and their ligands (PD-L1 and B7-1/B7-2, respectively), expressed by cancer cells and antigen-presenting cells, are needed to prevent excessive immune responses. However, they dampen anti-tumor immunity by limiting T-cell activity, making them promising therapeutic targets in cancer. Although immunotherapies using checkpoint blocking/neutralizing antibodies targeting PD-L1 or PD-1 have proven their superiority over conventional chemotherapies or targeted therapies by enhancing T-cell-mediated anti-tumor immunity, some limitations have emerged. These include a relatively low rate of “responders” (<50%; irrespective of cancer type), the high cost of injections, and a rare risk of hyper-progression. For clinicians, the current challenge is thus to improve the existing therapies, potentially through combinatory approaches. Polyphenols such as resveratrol (RSV), a trihydroxystilbene found in various plants and an adjuvant in numerous nutraceuticals, have been proposed as potential therapeutic targets. Beyond its well-known pleiotropic effects, RSV affects PD-L1 and PD-1 expression as well as PD-L1 subcellular localization and post-translational modifications, which we review here. We also summarize the consequences of PD-1/PD-L1 signaling, the modalities of their blockade in the context of cancer, and the current status and limitations of these immunotherapies. Finally, we discuss their potential use in combination with chemotherapies, and, using RSV as a model, we propose polyphenols as adjuvants to enhance the efficacy of anti-PD-1/anti-PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| | - François Hermetet
- Cancer Campus Gustave Roussy, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1287, “Hematopoietic Stem Cells and the Development of Myeloid Malignancies” Team, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif, France;
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| |
Collapse
|
13
|
Zyba SJ, Weinborn V, Arnold CD, Lehmkuhler AL, Morel FB, Zeilani M, Mitchell AE, Haskell MJ. Evaluation of Saccharin and Resveratrol as Extrinsic Markers of Small-Quantity Lipid-Based Nutrient Supplement Consumption in Healthy Women. Curr Dev Nutr 2021; 5:nzab089. [PMID: 34316533 PMCID: PMC8302444 DOI: 10.1093/cdn/nzab089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dietary supplements, like small-quantity lipid-based nutrient supplements (SQ-LNS), are used in intervention programs to prevent undernutrition among women and young children in low-income countries. An objective marker is needed to track consumption of supplements to evaluate the effectiveness of these programs. OBJECTIVE The aim of this study was to evaluate saccharin and resveratrol as potential adherence markers for tracking recent consumption of a single serving of SQ-LNS in women. METHODS Forty-seven healthy nonpregnant women 18-45 y of age were assigned to consume a single dose of SQ-LNS (20 g) containing either 10 mg sodium saccharin or 5 mg trans-resveratrol, under supervision. On the day before and for 2 d following SQ-LNS consumption, urine samples were collected each day for 24 h as 3 consecutive 4-h collections and one 12-h overnight collection. Urinary concentrations of saccharin and trans-resveratrol-3-O-sulfate, a resveratrol metabolite, were measured by ultra-high-performance liquid chromatography interfaced to a mass spectrometer with electrospray ionization [UHPLC-(ESI-)MS/MS]. Urinary concentrations (μmol/L urine) of saccharin and trans-resveratrol-3-O-sulfate were plotted against time, and receiver operating characteristic (ROC) curves were used to determine the discriminative capacity of each compound, at each post-consumption time point compared with baseline, to detect recent consumption of SQ-LNS. Cutoff values to differentiate supplement consumption from nonconsumption of each marker were developed using the closest-to-(0,1)-corner cut-point approach. RESULTS Forty-five participants were included in the analysis. Urinary concentrations of saccharin and trans-resveratrol-3-O-sulfate increased within 4 h of SQ-LNS consumption. Urinary concentration cutoff values for saccharin (13.4 µmol/L) and trans-resveratrol-3-O-sulfate (0.7 µmol/L) allowed for 78% and 89% sensitivity, respectively, and 100% specificity in detecting consumption of SQ-LNS within the first 12 h after consumption. CONCLUSIONS Urinary concentrations of saccharin and trans-resveratrol-3-O-sulfate reflect consumption of SQ-LNS containing those compounds during the first 12 h post-consumption with high sensitivity and specificity in healthy women and may be useful objective adherence markers for tracking consumption of SQ-LNS.
Collapse
Affiliation(s)
- Sarah J Zyba
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Valerie Weinborn
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Charles D Arnold
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Arlie L Lehmkuhler
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | | | | | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Marjorie J Haskell
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
14
|
Li KJ, Brouwer-Brolsma EM, Burton-Pimentel KJ, Vergères G, Feskens EJM. A systematic review to identify biomarkers of intake for fermented food products. GENES AND NUTRITION 2021; 16:5. [PMID: 33882831 PMCID: PMC8058972 DOI: 10.1186/s12263-021-00686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Background Fermented foods are ubiquitous in human diets and often lauded for their sensory, nutritious, and health-promoting qualities. However, precise associations between the intake of fermented foods and health have not been well-established. This is in part due to the limitations of current dietary assessment tools that rely on subjective reporting, making them prone to memory-related errors and reporting bias. The identification of food intake biomarkers (FIBs) bypasses this challenge by providing an objective measure of intake. Despite numerous studies reporting on FIBs for various types of fermented foods and drinks, unique biomarkers associated with the fermentation process (“fermentation-dependent” biomarkers) have not been well documented. We therefore conducted a comprehensive, systematic review of the literature to identify biomarkers of fermented foods commonly consumed in diets across the world. Results After title, abstract, and full-text screening, extraction of data from 301 articles resulted in an extensive list of compounds that were detected in human biofluids following the consumption of various fermented foods, with the majority of articles focusing on coffee (69), wine (69 articles), cocoa (62), beer (34), and bread (29). The identified compounds from all included papers were consolidated and sorted into FIBs proposed for a specific food, for a food group, or for the fermentation process. Alongside food-specific markers (e.g., trigonelline for coffee), and food-group markers (e.g., pentadecanoic acid for dairy intake), several fermentation-dependent markers were revealed. These comprised compounds related to the fermentation process of a particular food, such as mannitol (wine), 2-ethylmalate (beer), methionine (sourdough bread, cheese), theabrownins (tea), and gallic acid (tea, wine), while others were indicative of more general fermentation processes (e.g., ethanol from alcoholic fermentation, 3-phenyllactic acid from lactic fermentation). Conclusions Fermented foods comprise a heterogeneous group of foods. While many of the candidate FIBs identified were found to be non-specific, greater specificity may be observed when considering a combination of compounds identified for individual fermented foods, food groups, and from fermentation processes. Future studies that focus on how fermentation impacts the composition and nutritional quality of food substrates could help to identify novel biomarkers of fermented food intake. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00686-4.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| | - Kathryn J Burton-Pimentel
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Domínguez-Fernández M, Xu Y, Young Tie Yang P, Alotaibi W, Gibson R, Hall WL, Barron L, Ludwig IA, Cid C, Rodriguez-Mateos A. Quantitative Assessment of Dietary (Poly)phenol Intake: A High-Throughput Targeted Metabolomics Method for Blood and Urine Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:537-554. [PMID: 33372779 DOI: 10.1021/acs.jafc.0c07055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many studies have associated the consumption of (poly)phenol-rich diets with health benefits. However, accurate high-throughput quantitative methods for estimating exposure covering a broad spectrum of (poly)phenols are lacking. We have developed and validated a high-throughput method for the simultaneous quantification of 119 (poly)phenol metabolites in plasma and urine using ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry, with a very fast sample treatment and a single run time of 16 min. This method is highly sensitive, precise, accurate, and shows good linearity for all compounds (R2 > 0.992). This novel method will allow a quantitative assessment of habitual (poly)phenol intake in large epidemiological studies as well as clinical studies investigating the health benefits of dietary (poly)phenols.
Collapse
Affiliation(s)
- Maite Domínguez-Fernández
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, C/ Irunlarrea 1, E-31008 Pamplona, Spain
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Paul Young Tie Yang
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Wafa Alotaibi
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Wendy L Hall
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| | - Leon Barron
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, U.K
| | - Iziar A Ludwig
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avda. Pío XII, 55, E-31008 Pamplona, Spain
| | - Concepción Cid
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, C/ Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
16
|
Saenger T, Hübner F, Lindemann V, Ganswind K, Humpf HU. Urinary Biomarkers for Orange Juice Consumption. Mol Nutr Food Res 2020; 65:e2000781. [PMID: 33216459 DOI: 10.1002/mnfr.202000781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Indexed: 10/23/2022]
Abstract
SCOPE As orange juice belongs to one of the most consumed juices worldwide, a human study is performed to identify urinary biomarkers for the consumption of orange juice in order to differentiate between low, medium, and high intake. METHODS AND RESULTS The 32 study participants abstained from citrus fruits, juices and products thereof, except for one portion of orange juice, for eight days. Throughout the study, spot urine samples are collected and quantitatively analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) regarding their content of several potential biomarkers for orange juice intake after enzymatic treatment with β-glucuronidase. Proline betaine is determined as a long-term biomarker: based on its urinary excretion, orange juice consumption is traceable for at least 72 h after intake. Naringenin and hesperetin are identified as qualitative short-term biomarkers. Synephrine sulfate also showed a fast increase and decrease in a semi-quantitative approach. In the case of phloretin, no correlation between orange juice consumption and the urinary concentration is observed. CONCLUSION Proline betaine is the most promising biomarker for orange juice consumption and allows to differentiate between low, medium, and high intake. Hesperetin and naringenin (as well as synephrine) are applicable as supporting biomarkers, whereas phloretin does not represent a reliable biomarker for orange juice consumption.
Collapse
Affiliation(s)
- Theresa Saenger
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, Münster, 48149, Germany
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, Münster, 48149, Germany
| | - Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, Münster, 48149, Germany
| | - Kristina Ganswind
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, Münster, 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, Münster, 48149, Germany
| |
Collapse
|
17
|
Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. GENES AND NUTRITION 2020; 15:17. [PMID: 32967625 PMCID: PMC7509942 DOI: 10.1186/s12263-020-00675-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Grapes and berries are two types of widely consumed fruits characterized by a high content in different phytochemicals. However, their accurate dietary assessment is particularly arduous, because of the already wide recognized bias associated with self-reporting methods, combined with the large range of species and cultivars and the fact that these fruits are popularly consumed not only in fresh and frozen forms but also as processed and derived products, including dried and canned fruits, beverages, jams, and jellies. Reporting precise type and/or quantity of grape and berries in FFQ or diaries can obviously be affected by errors. Recently, biomarkers of food intake (BFIs) rose as a promising tool to provide accurate information indicating consumption of certain food items. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs have been developed within the Food Biomarker Alliance (FoodBAll) Project. This paper aims to evaluate the putative BIFs for blueberries, strawberries, raspberries, blackberries, cranberries, blackcurrant, and grapes. Candidate BFIs for grapes were resveratrol metabolites and tartaric acid. The metabolites considered as putative BFI for berries consumption were mostly anthocyanins derivatives together with several metabolites of ellagitannins and some aroma compounds. However, identification of BFIs for single berry types encountered more difficulties. In the absence of highly specific metabolites reported to date, we suggested some multi-metabolite panels that may be further investigated as putative biomarkers for some berry fruits.
Collapse
Affiliation(s)
- M Ulaszewska
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - N Vázquez-Manjarrez
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Slavador Zubiran, Mexico City, Mexico
| | - M T Soria-Florido
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trent, Trento, Italy
| | - C Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France
| |
Collapse
|
18
|
Bullón-Vela V, Abete I, Zulet MA, Xu Y, Martínez-González MA, Sayón-Orea C, Ruiz-Canela M, Toledo E, Sánchez VM, Estruch R, Lamuela-Raventós RM, Almanza-Aguilera E, Fitó M, Salas-Salvadó J, Díaz-López A, Tinahones FJ, Tur JA, Romaguera D, Konieczna J, Pintó X, Daimiel L, Rodriguez-Mateos A, Alfredo Martínez J. Urinary Resveratrol Metabolites Output: Differential Associations with Cardiometabolic Markers and Liver Enzymes in House-Dwelling Subjects Featuring Metabolic Syndrome. Molecules 2020; 25:molecules25184340. [PMID: 32971870 PMCID: PMC7570830 DOI: 10.3390/molecules25184340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) components are strongly associated with increased risk of non-alcoholic fatty liver disease (NAFLD) development. Several studies have supported that resveratrol is associated with anti-inflammatory and antioxidant effects on health status. The main objective of this study was to assess the putative associations between some urinary resveratrol phase II metabolites, cardiometabolic, and liver markers in individuals diagnosed with MetS. In this cross-sectional study, 266 participants from PREDIMED Plus study (PREvención con DIeta MEDiterránea) were divided into tertiles of total urinary resveratrol phase II metabolites (sum of five resveratrol conjugation metabolites). Urinary resveratrol metabolites were analyzed by ultra- performance liquid chromatography coupled to triple quadrupole mass spectrometry (UPLC-Q-q-Q MS), followed by micro-solid phase extraction (µ-SPE) method. Liver function markers were assessed using serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Moreover, lipid profile was measured by triglycerides, very-low-density lipoprotein cholesterol (VLDL-c), and total cholesterol/high-density lipoprotein ratio (total cholesterol/HDL). Linear regression adjusted models showed that participants with higher total urine resveratrol concentrations exhibited improved lipid and liver markers compared to the lowest tertile. For lipid determinations: log triglycerides (βT3= −0.15, 95% CI; −0.28, −0.02, p-trend = 0.030), VLDL-c, (βT3= −4.21, 95% CI; −7.97, −0.46, p-trend = 0.039), total cholesterol/HDL ratio Moreover, (βT3= −0.35, 95% CI; −0.66, −0.03, p-trend = 0.241). For liver enzymes: log AST (βT3= −0.12, 95% CI; −0.22, −0.02, p-trend = 0.011, and log GGT (βT3= −0.24, 95% CI; −0.42, −0.06, p-trend = 0.002). However, there is no difference found on glucose variables between groups. To investigate the risk of elevated serum liver markers, flexible regression models indicated that total urine resveratrol metabolites were associated with a lower risk of higher ALT (169.2 to 1314.3 nmol/g creatinine), AST (599.9 to 893.8 nmol/g creatinine), and GGT levels (169.2 to 893.8 nmol/g creatinine). These results suggested that higher urinary concentrations of some resveratrol metabolites might be associated with better lipid profile and hepatic serum enzymes. Moreover, urinary resveratrol excreted showed a reduced odds ratio for higher liver enzymes, which are linked to NAFLD.
Collapse
Affiliation(s)
- Vanessa Bullón-Vela
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Correspondence: ; Tel.: +34-94-842-5600 (ext. 806357)
| | - Maria Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (Y.X.); (A.R.-M.)
| | - Miguel A. Martínez-González
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Carmen Sayón-Orea
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Ruiz-Canela
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Estefanía Toledo
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
| | - Vicente Martín Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| | - Ramon Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Rosa María Lamuela-Raventós
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain
| | - Enrique Almanza-Aguilera
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08007 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Montserrat Fitó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08007 Barcelona, Spain;
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Andrés Díaz-López
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Francisco J. Tinahones
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga-IBIMA, University of Málaga, Virgen de la Victoria Hospital, 29010 Málaga, Spain
| | - Josep A. Tur
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Dora Romaguera
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), 07120 Palma de Mallorca, Spain
| | - Jadwiga Konieczna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), 07120 Palma de Mallorca, Spain
| | - Xavier Pintó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Lidia Daimiel
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; (Y.X.); (A.R.-M.)
| | - José Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (V.B.-V.); (M.A.Z.); (J.A.M.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.A.M.-G.); (C.S.-O.); (M.R.-C.); (E.T.); (R.E.); (R.M.L.-R.); (M.F.); (J.S.-S.); (A.D.-L.); (F.J.T.); (J.A.T.); (D.R.); (J.K.); (X.P.)
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain;
| |
Collapse
|
19
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8:CD011737. [PMID: 32827219 PMCID: PMC8092457 DOI: 10.1002/14651858.cd011737.pub3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, 56,675 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.70 to 0.98, 12 trials, 53,758 participants of whom 8% had a cardiovascular event, I² = 67%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 53. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
20
|
Fragopoulou E, Antonopoulou S. The French paradox three decades later: Role of inflammation and thrombosis. Clin Chim Acta 2020; 510:160-169. [PMID: 32653485 DOI: 10.1016/j.cca.2020.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Although, three decades have pasted from the introduction of "French Paradox", is still an issue for debate. Epidemiology supports the J-shaped relationship between wine consumption and vascular events as well as cardiovascular mortality with a maximum protection at 21 g of alcohol consumption in the form of wine per day. Nevertheless, the aforementioned studies have used an observational design that raises concerns about potential confounding. Randomized clinical studies may provide data to end the controversy and in parallel with in vitro experiments to elucidate the mechanisms by which wine affects cardiovascular disease. In this concept, this review aims to address the presence of bioactive wine micro constituents, their potential mechanisms of action and also to summarize the cardio-protective effects of wine intake based on clinical trials. The role of wine micro-constituents in inflammation and haemostasis is discussed in detail.
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Greece.
| | - Smaragdi Antonopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Greece
| |
Collapse
|
21
|
Hooper L, Abdelhamid AS, Jimoh OF, Bunn D, Skeaff CM. Effects of total fat intake on body fatness in adults. Cochrane Database Syst Rev 2020; 6:CD013636. [PMID: 32476140 PMCID: PMC7262429 DOI: 10.1002/14651858.cd013636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ideal proportion of energy from fat in our food and its relation to body weight is not clear. In order to prevent overweight and obesity in the general population, we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES To assess the effects of proportion of energy intake from fat on measures of body fatness (including body weight, waist circumference, percentage body fat and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) of at least six months duration. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Clinicaltrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) to October 2019. We did not limit the search by language. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included adults aged at least 18 years, 3) randomised to a lower fat versus higher fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of body fatness (body weight, BMI, percentage body fat and waist circumference) independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity, funnel plot analyses and GRADE assessment. MAIN RESULTS We included 37 RCTs (57,079 participants). There is consistent high-quality evidence from RCTs that reducing total fat intake results in small reductions in body fatness; this was seen in almost all included studies and was highly resistant to sensitivity analyses (GRADE high-consistency evidence, not downgraded). The effect of eating less fat (compared with higher fat intake) is a mean body weight reduction of 1.4 kg (95% confidence interval (CI) -1.7 to -1.1 kg, in 53,875 participants from 26 RCTs, I2 = 75%). The heterogeneity was explained in subgrouping and meta-regression. These suggested that greater weight loss results from greater fat reductions in people with lower fat intake at baseline, and people with higher body mass index (BMI) at baseline. The size of the effect on weight does not alter over time and is mirrored by reductions in BMI (MD -0.5 kg/m2, 95% CI -0.6 to -0.3, 46,539 participants in 14 trials, I2 = 21%), waist circumference (MD -0.5 cm, 95% CI -0.7 to -0.2, 16,620 participants in 3 trials; I2 = 21%), and percentage body fat (MD -0.3% body fat, 95% CI -0.6 to 0.00, P = 0.05, in 2350 participants in 2 trials; I2 = 0%). There was no suggestion of harms associated with low fat diets that might mitigate any benefits on body fatness. The reduction in body weight was reflected in small reductions in LDL (-0.13 mmol/L, 95% CI -0.21 to -0.05), and total cholesterol (-0.23 mmol/L, 95% CI -0.32 to -0.14), with little or no effect on HDL cholesterol (-0.02 mmol/L, 95% CI -0.03 to 0.00), triglycerides (0.01 mmol/L, 95% CI -0.05 to 0.07), systolic (-0.75 mmHg, 95% CI -1.42 to -0.07) or diastolic blood pressure(-0.52 mmHg, 95% CI -0.95 to -0.09), all GRADE high-consistency evidence or quality of life (0.04, 95% CI 0.01 to 0.07, on a scale of 0 to 10, GRADE low-consistency evidence). AUTHORS' CONCLUSIONS Trials where participants were randomised to a lower fat intake versus a higher fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI, waist circumference and percentage body fat compared with higher fat arms. Greater fat reduction, lower baseline fat intake and higher baseline BMI were all associated with greater reductions in weight. There was no evidence of harm to serum lipids, blood pressure or quality of life, but rather of small benefits or no effect.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Diane Bunn
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
22
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 5:CD011737. [PMID: 32428300 PMCID: PMC7388853 DOI: 10.1002/14651858.cd011737.pub2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
23
|
Tahiri I, Garro-Aguilar Y, Cayssials V, Achaintre D, Mancini FR, Mahamat-Saleh Y, Boutron-Ruault MC, Kühn T, Katzke V, Boeing H, Trichopoulou A, Karakatsani A, Valanou E, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Macciotta A, Huybrechts I, Agudo A, Scalbert A, Zamora-Ros R. Urinary flavanone concentrations as biomarkers of dietary flavanone intakes in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 2020; 123:691-698. [PMID: 31791423 DOI: 10.1017/s0007114519003131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present study, the aim was to investigate the correlation between the acute and habitual dietary intake of flavanones, their main food sources and the concentrations of aglycones naringenin and hesperetin in 24 h urine in a European population. A 24-h dietary recall (24-HDR) and a 24-h urine sample were collected the same day from a subsample of 475 people from four different countries of the European Prospective Investigation into Cancer and Nutrition study. Acute and habitual dietary data were captured through a standardised 24-HDR and a country/centre-specific validated dietary questionnaire (DQ). The intake of dietary flavanones was estimated using the Phenol-Explorer database. Urinary flavanones (naringenin and hesperetin) were analysed using tandem MS with a previous enzymatic hydrolysis. Weak partial correlation coefficients were found between urinary flavanone concentrations and both acute and habitual dietary flavanone intakes (Rpartial = 0·14-0·17). Partial correlations were stronger between urinary excretions and acute intakes of citrus fruit and juices (Rpartial ∼ 0·6) than with habitual intakes of citrus fruit and juices (Rpartial ∼ 0·24). In conclusion, according to our results, urinary excretion of flavanones can be considered a good biomarker of acute citrus intake. However, low associations between habitual flavanone intake and urinary excretion suggest a possible inaccurate estimation of their intake or a too sporadic intake. For assessing habitual exposures, multiple urinary collections may be needed. These results show that none of the approaches tested is ideal, and the use of both DQ and biomarkers can be recommended.
Collapse
Affiliation(s)
- Iasim Tahiri
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908Barcelona, Spain
| | - Yaiza Garro-Aguilar
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908Barcelona, Spain
| | - Valerie Cayssials
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908Barcelona, Spain
| | - David Achaintre
- Unit of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69008Lyon, France
| | - Francesca Romana Mancini
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Fac. de médecine, Univ. Paris-Sud, Fac. de médecine - Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), Université Paris-Saclay, 94807Villejuif, France
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Institut Gustave Roussy, 94805Villejuif, France
| | - Yahya Mahamat-Saleh
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Fac. de médecine, Univ. Paris-Sud, Fac. de médecine - Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), Université Paris-Saclay, 94807Villejuif, France
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Institut Gustave Roussy, 94805Villejuif, France
| | - Marie-Christine Boutron-Ruault
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Fac. de médecine, Univ. Paris-Sud, Fac. de médecine - Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), Université Paris-Saclay, 94807Villejuif, France
- UMR 1018/Centre de recherche en Épidémiologie et Santé des Populations (CESP), Institut Gustave Roussy, 94805Villejuif, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center, 69120Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, 69120Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, 11527Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, 12462Haidari, Greece
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - Istituto per lo studio, la prevenzione e la rete oncologica (ISPRO), 50139Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133Milan, Italy
| | - Maria Santucci de Magistris
- Dipartimento di Medicina Clinica e Chirurgia, Azienda Ospedaliera Universitaria (AOU) Federico II, 80131Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, "M.P. Arezzzo" Hospital, ASP Ragusa, 97100Ragusa, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, 10124Turin, Italy
| | - Inge Huybrechts
- Unit of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69008Lyon, France
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908Barcelona, Spain
| | - Augustin Scalbert
- Unit of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69008Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908Barcelona, Spain
| |
Collapse
|
24
|
Hernández-Alonso P, Papandreou C, Bulló M, Ruiz-Canela M, Dennis C, Deik A, Wang DD, Guasch-Ferré M, Yu E, Toledo E, Razquin C, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Serra-Majem L, Liang L, Clish CB, Martínez-González MA, Hu FB, Salas-Salvadó J. Plasma Metabolites Associated with Frequent Red Wine Consumption: A Metabolomics Approach within the PREDIMED Study. Mol Nutr Food Res 2019; 63:e1900140. [PMID: 31291050 PMCID: PMC6771435 DOI: 10.1002/mnfr.201900140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Indexed: 01/25/2023]
Abstract
SCOPE The relationship between red wine (RW) consumption and metabolism is poorly understood. It is aimed to assess the systemic metabolomic profiles in relation to frequent RW consumption as well as the ability of a set of metabolites to discriminate RW consumers. METHODS AND RESULTS A cross-sectional analysis of 1157 participants is carried out. Subjects are divided as non-RW consumers versus RW consumers (>1 glass per day RW [100 mL per day]). Plasma metabolomics analysis is performed using LC-MS. Associations between 386 identified metabolites and RW consumption are assessed using elastic net regression analysis taking into consideration baseline significant covariates. Ten-cross-validation (CV) is performed and receiver operating characteristic curves are constructed in each of the validation datasets based on weighted models. A subset of 13 metabolites is consistently selected and RW consumers versus nonconsumers are discriminated. Based on the multi-metabolite model weighted with the regression coefficients of metabolites, the area under the curve is 0.83 (95% CI: 0.80-0.86). These metabolites mainly consisted of lipid species, some organic acids, and alkaloids. CONCLUSIONS A multi-metabolite model identified in a Mediterranean population appears useful to discriminate between frequent RW consumers and nonconsumers. Further studies are needed to assess the contribution of these metabolites in health and disease.
Collapse
Affiliation(s)
- Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Christopher Papandreou
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ruiz-Canela
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferré
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward Yu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Estefanía Toledo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Cristina Razquin
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Department of Endocrinology and Nutrition Institut d’Investigacions Biomèdiques August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Institut d’Investigacions Biomèdiques August Pi Sunyer (IDI-BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Fernando Arós
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, University Hospital of Alava, Vitoria, Spain
| | - Miquel Fiol
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Health Sciences IUNICS, University of Balearic Islands and Hospital Son Espases, Palma de Mallorca, Spain
| | - Lluís Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences IUIBS, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Liming Liang
- Departments of Epidemiology and Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Miguel A Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), Pamplona, Navarra, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Departments of Epidemiology and Statistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, MA, USA
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Serra-Majem L, Román-Viñas B, Sanchez-Villegas A, Guasch-Ferré M, Corella D, La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67:1-55. [PMID: 31254553 DOI: 10.1016/j.mam.2019.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
More than 50 years after the Seven Countries Study, a large number of epidemiological studies have explored the relationship between the Mediterranean diet (MD) and health, through observational, case-control, some longitudinal and a few experimental studies. The overall results show strong evidence suggesting a protective effect of the MD mainly on the risk of cardiovascular disease (CVD) and certain types of cancer. The beneficial effects have been attributed to the types of food consumed, total dietary pattern, components in the food, cooking techniques, eating behaviors and lifestyle behaviors, among others. The aim of this article is to review and summarize the knowledge derived from the literature focusing on the benefits of the MD on health, including those that have been extensively investigated (CVD, cancer) along with more recent issues such as mental health, immunity, quality of life, etc. The review begins with a brief description of the MD and its components. Then we present a review of studies evaluating metabolic biomarkers and genotypes in relation to the MD. Other sections are dedicated to observation and intervention studies for various pathologies. Finally, some insights into the relationship between the MD and sustainability are explored. In conclusion, the research undertaken on metabolomics approaches has identified potential markers for certain MD components and patterns, but more investigation is needed to obtain valid measures. Further evaluation of gene-MD interactions are also required to better understand the mechanisms by which the MD diet exerts its beneficial effects on health. Observation and intervention studies, particularly PREDIMED, have provided invaluable data on the benefits of the MD for a wide range of chronic diseases. However further research is needed to explore the effects of other lifestyle components associated with Mediterranean populations, its environmental impact, as well as the MD extrapolation to non-Mediterranean contexts.
Collapse
Affiliation(s)
- Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain.
| | - Blanca Román-Viñas
- Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain; School of Health and Sport Sciences (EUSES), Universitat de Girona, Salt, Spain; Department of Physical Activity and Sport Sciences, Blanquerna, Universitat Ramon Llull, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Almudena Sanchez-Villegas
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H.Chan School of Public Health, Boston, MA, USA; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dolores Corella
- Genetic and Molecular Epidemiology Unit. Department of Preventive Medicine. University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
26
|
Martín-Calvo N, Martínez-González MÁ. Controversy and debate: Memory-Based Dietary Assessment Methods Paper 2. J Clin Epidemiol 2018; 104:125-129. [DOI: 10.1016/j.jclinepi.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
|
27
|
LU SC, LIAO WR, CHEN SF. Quantification of Trans-resveratrol in Red Wines Using QuEChERS Extraction Combined with Liquid Chromatography–Tandem Mass Spectrometry. ANAL SCI 2018; 34:439-444. [DOI: 10.2116/analsci.17p528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shih-Chieh LU
- Department of Chemistry, National Taiwan Normal University
| | - Wan-Rou LIAO
- Department of Chemistry, National Taiwan Normal University
| | - Sung-Fang CHEN
- Department of Chemistry, National Taiwan Normal University
| |
Collapse
|
28
|
Pastor RF, Restani P, Di Lorenzo C, Orgiu F, Teissedre PL, Stockley C, Ruf JC, Quini CI, Garcìa Tejedor N, Gargantini R, Aruani C, Prieto S, Murgo M, Videla R, Penissi A, Iermoli RH. Resveratrol, human health and winemaking perspectives. Crit Rev Food Sci Nutr 2017; 59:1237-1255. [PMID: 29206058 DOI: 10.1080/10408398.2017.1400517] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resveratrol, (3, 5, 4'-trihydroxystilbene) is a non-flavonoid polyphenol stilbene synthesized by plants when damaged by infectious diseases or ionizing radiation. Although present in more than seventy plant species, grapes and wine are the major dietary contributors of resveratrol, responsible for 98% of the daily intake. In 1992, Renaud and De Lorgeril first linked wine polyphenols, including resveratrol, to the potential health benefits ascribed to regular and moderate wine consumption (the so called "French Paradox"). Since then, resveratrol has received increasing scientific interest, leading to research on its biological actions, and to a large number of published papers, which have been collected and discussed in this review. The relatively low amounts of resveratrol measured in wine following moderate consumption, however, may be insufficient to mitigate biological damage, such as that due to oxidative stress. On this basis, the authors also highlight the importance of viticulture and the winemaking process to enhance resveratrol concentrations in wine in order to bolster potential health benefits.
Collapse
Affiliation(s)
- Raúl Francisco Pastor
- a Polyphenols, Wine and Health, Internal Medicine IV Chair, University of Buenos Aires , Argentina.,b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina
| | - Patrizia Restani
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Chiara Di Lorenzo
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Francesca Orgiu
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Pierre-Louis Teissedre
- d Univ. Bordeaux, ISVV, EA 4577, OEnologie, 210 Chemin de Leysotte, Villenave d'Ornon, France-INRA, ISVV , USC 1366 OEnologie, Villenave d'Ornon , France
| | - Creina Stockley
- e Manager, Health and Regulatory Information, The Australian Wine Research Institute , Urrbrae , South Australia , Australia
| | - Jean Claude Ruf
- f OIV - International Organisation of Vine and Wine , Paris , France
| | | | - Nuria Garcìa Tejedor
- h Agencia Española de Seguridad Alimentaria Y Nutriciòn (AESAN) , Madrid , Spain
| | | | - Carla Aruani
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | | | - Marcelo Murgo
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | - Rodolfo Videla
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | - Alicia Penissi
- b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina.,i National Council of Scientific and Technological Research (CONICET)
| | - Roberto Héctor Iermoli
- a Polyphenols, Wine and Health, Internal Medicine IV Chair, University of Buenos Aires , Argentina.,b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina
| |
Collapse
|
29
|
Suárez M, Caimari A, del Bas JM, Arola L. Metabolomics: An emerging tool to evaluate the impact of nutritional and physiological challenges. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Garcia-Aloy M, Rabassa M, Casas-Agustench P, Hidalgo-Liberona N, Llorach R, Andres-Lacueva C. Novel strategies for improving dietary exposure assessment: Multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Noh H, Freisling H, Assi N, Zamora-Ros R, Achaintre D, Affret A, Mancini F, Boutron-Ruault MC, Flögel A, Boeing H, Kühn T, Schübel R, Trichopoulou A, Naska A, Kritikou M, Palli D, Pala V, Tumino R, Ricceri F, Santucci de Magistris M, Cross A, Slimani N, Scalbert A, Ferrari P. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries. Nutrients 2017; 9:E796. [PMID: 28757581 PMCID: PMC5579590 DOI: 10.3390/nu9080796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
Abstract
We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece). Dietary intakes were assessed with 24-h dietary recalls (24-HDR) and dietary questionnaires (DQ). Thirty-four polyphenols were measured by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS) in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP) and least absolute shrinkage and selection operator (LASSO) methods were used to select polyphenol metabolites. Reduced rank regression (RRR) was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR) of red wine (r = 0.65; AUC = 89.1%), coffee (r = 0.51; AUC = 89.1%), and olives (r = 0.35; AUC = 82.2%). These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ) of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.
Collapse
Affiliation(s)
- Hwayoung Noh
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Nada Assi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Raul Zamora-Ros
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - David Achaintre
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Aurélie Affret
- Université Paris-Saclay, Université Paris-Sud, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Le Centre de recherche en Epidémiologie et Santé des Population (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), 94800 Villejuif, France.
- Gustave Roussy, 94800 Villejuif, France.
| | - Francesca Mancini
- Université Paris-Saclay, Université Paris-Sud, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Le Centre de recherche en Epidémiologie et Santé des Population (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), 94800 Villejuif, France.
- Gustave Roussy, 94800 Villejuif, France.
| | - Marie-Christine Boutron-Ruault
- Université Paris-Saclay, Université Paris-Sud, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Le Centre de recherche en Epidémiologie et Santé des Population (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), 94800 Villejuif, France.
- Gustave Roussy, 94800 Villejuif, France.
| | - Anna Flögel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ruth Schübel
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 115 27 Athens, Greece.
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 157 72 Athens, Greece.
| | - Androniki Naska
- Hellenic Health Foundation, 115 27 Athens, Greece.
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 157 72 Athens, Greece.
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), 50139 Florence, Italy.
| | - Valeria Pala
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy.
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P.Arezzo" Hospital, ASP Ragusa, 97100 Ragusa, Italy.
| | - Fulvio Ricceri
- Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco (TO), Italy.
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
| | | | - Amanda Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | - Nadia Slimani
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| |
Collapse
|
32
|
Zamora-Ros R, Rothwell JA, Achaintre D, Ferrari P, Boutron-Ruault MC, Mancini FR, Affret A, Kühn T, Katzke V, Boeing H, Küppel S, Trichopoulou A, Lagiou P, La Vecchia C, Palli D, Contiero P, Panico S, Tumino R, Ricceri F, Noh H, Freisling H, Romieu I, Scalbert A. Evaluation of urinary resveratrol as a biomarker of dietary resveratrol intake in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 2017; 117:1596-1602. [PMID: 28637522 DOI: 10.1017/s0007114517001465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vitro studies have shown several beneficial properties of resveratrol. Epidemiological evidence is still scarce, probably because of the difficulty in estimating resveratrol exposure accurately. The current study aimed to assess the relationships between acute and habitual dietary resveratrol and wine intake and urinary resveratrol excretion in a European population. A stratified random subsample of 475 men and women from four countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cross-sectional study, who had provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day, were included. Acute and habitual dietary data were collected using standardised 24-HDR software and a validated country-specific dietary questionnaire, respectively. Phenol-Explorer was used to estimate the intake of resveratrol and other stilbenes. Urinary resveratrol was analysed using tandem MS. Spearman's correlation coefficients between estimated dietary intakes of resveratrol and other stilbenes and consumption of wine, their main food source, were very high (r>0·9) when measured using dietary questionnaires and were slightly lower with 24-HDR (r>0·8). Partial Spearman's correlations between urinary resveratrol excretion and intake of resveratrol, total stilbenes or wine were found to be higher when using the 24-HDR (R 2 partial approximately 0·6) than when using the dietary questionnaires (R 2 partial approximately 0·5). Moderate to high correlations between dietary resveratrol, total stilbenes and wine, and urinary resveratrol concentrations were observed. These support the earlier findings that 24-h urinary resveratrol is an effective biomarker of both resveratrol and wine intakes. These correlations also support the validity of the estimation of resveratrol intake using the dietary questionnaire and Phenol-Explorer.
Collapse
Affiliation(s)
- Raul Zamora-Ros
- 1Unit of Nutrition and Cancer,Epidemiology Research Program Catalan Institute of Oncology,Bellvitge Biomedical Research Institute (IDIBELL),08908 Barcelona,Spain
| | - Joseph A Rothwell
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - David Achaintre
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - Pietro Ferrari
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - Marie-Christine Boutron-Ruault
- 3Centre de recherche en épidémiologie et santé des populations (CESP),Institut National de la Santé et de la Recherche Médicale (INSERM),Université de Versailles Saint-Quentin-en-Yvelines (UVSQ),Université Paris-Sud,Université Paris-Saclay,94805 Villejuif,France
| | - Francesca R Mancini
- 3Centre de recherche en épidémiologie et santé des populations (CESP),Institut National de la Santé et de la Recherche Médicale (INSERM),Université de Versailles Saint-Quentin-en-Yvelines (UVSQ),Université Paris-Sud,Université Paris-Saclay,94805 Villejuif,France
| | - Aurelie Affret
- 3Centre de recherche en épidémiologie et santé des populations (CESP),Institut National de la Santé et de la Recherche Médicale (INSERM),Université de Versailles Saint-Quentin-en-Yvelines (UVSQ),Université Paris-Sud,Université Paris-Saclay,94805 Villejuif,France
| | - Tilman Kühn
- 5Division of Cancer Epidemiology,German Cancer Research Center,69120 Heidelberg,Germany
| | - Verena Katzke
- 5Division of Cancer Epidemiology,German Cancer Research Center,69120 Heidelberg,Germany
| | - Heiner Boeing
- 6Department of Epidemiology,German Institute of Human Nutrition Potsdam-Rehbruecke,14558 Nuthetal,Germany
| | - Sven Küppel
- 6Department of Epidemiology,German Institute of Human Nutrition Potsdam-Rehbruecke,14558 Nuthetal,Germany
| | | | - Pagona Lagiou
- 7Hellenic Health Foundation,GR-115 27, Athens,Greece
| | | | - Domenico Palli
- 11Cancer Risk Factors and Life-Style Epidemiology Unit,Cancer Research and Prevention Institute (ISPO),50141 Florence,Italy
| | - Paolo Contiero
- 12Environmental Epidemiology Unit,Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori,20133 Milan,Italy
| | - Salvatore Panico
- 13Dipartimento di Medicina Clinica e Chirurgia,Federico II University,80131 Naples,Italy
| | - Rosario Tumino
- 14Cancer Registry and Histopathology Unit,'Civic M.P. Arezzo' Hospital,97100 Ragusa,Italy
| | - Fulvio Ricceri
- 15Unit of Epidemiology,Regional Health Service ASL TO3,Grugliasco (TO),10093 Turin,Italy
| | - Hwayoung Noh
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - Heinz Freisling
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - Isabelle Romieu
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| | - Augustin Scalbert
- 2Section of Nutrition and Metabolism,International Agency for Research on Cancer (IARC-WHO),69372 Lyon,France
| |
Collapse
|
33
|
Kim YJ, Huh I, Kim JY, Park S, Ryu SH, Kim KB, Kim S, Park T, Kwon O. Integration of Traditional and Metabolomics Biomarkers Identifies Prognostic Metabolites for Predicting Responsiveness to Nutritional Intervention against Oxidative Stress and Inflammation. Nutrients 2017; 9:nu9030233. [PMID: 28273855 PMCID: PMC5372896 DOI: 10.3390/nu9030233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 01/01/2023] Open
Abstract
Various statistical approaches can be applied to integrate traditional and omics biomarkers, allowing the discovery of prognostic markers to classify subjects into poor and good prognosis groups in terms of responses to nutritional interventions. Here, we performed a prototype study to identify metabolites that predict responses to an intervention against oxidative stress and inflammation, using a data set from a randomized controlled trial evaluating Korean black raspberry (KBR) in sedentary overweight/obese subjects. First, a linear mixed-effects model analysis with multiple testing correction showed that four-week consumption of KBR significantly changed oxidized glutathione (GSSG, q = 0.027) level, the ratio of reduced glutathione (GSH) to GSSG (q = 0.039) in erythrocytes, malondialdehyde (MDA, q = 0.006) and interleukin-6 (q = 0.006) levels in plasma, and seventeen NMR metabolites in urine compared with those in the placebo group. A subsequent generalized linear mixed model analysis showed linear correlations between baseline urinary glycine and N-phenylacetylglycine (PAG) and changes in the GSH:GSSG ratio (p = 0.008 and 0.004) as well as between baseline urinary adenine and changes in MDA (p = 0.018). Then, receiver operating characteristic analysis revealed that a two-metabolite set (glycine and PAG) had the strongest prognostic relevance for future interventions against oxidative stress (the area under the curve (AUC) = 0.778). Leave-one-out cross-validation confirmed the accuracy of prediction (AUC = 0.683). The current findings suggest that a higher level of this two-metabolite set at baseline is useful for predicting responders to dietary interventions in subjects with oxidative stress and inflammation, contributing to the emergence of personalized nutrition.
Collapse
Affiliation(s)
- You Jin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Iksoo Huh
- Department of Statistics, Seoul National University, Seoul 08826, Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Saejong Park
- Department of Sport Science, Korea Institute of Sport Science, Seoul 01794, Korea.
| | - Sung Ha Ryu
- College of Pharmacy, Dankook University, Chungnam 31116, Korea.
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam 31116, Korea.
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul 08826, Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
34
|
Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, Andrés-Lacueva C, Cardona F, Tinahones F, Queipo-Ortuño MI. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct 2017; 7:1775-87. [PMID: 26599039 DOI: 10.1039/c5fo00886g] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study evaluated the possible prebiotic effect of a moderate intake of red wine polyphenols on the modulation of the gut microbiota composition and the improvement in the risk factors for the metabolic syndrome in obese patients. Ten metabolic syndrome patients and ten healthy subjects were included in a randomized, crossover, controlled intervention study. After a washout period, the subjects consumed red wine and de-alcoholized red wine over a 30 day period for each. The dominant bacterial composition did not differ significantly between the study groups after the two red wine intake periods. In the metabolic syndrome patients, red wine polyphenols significantly increased the number of fecal bifidobacteria and Lactobacillus (intestinal barrier protectors) and butyrate-producing bacteria (Faecalibacterium prausnitzii and Roseburia) at the expense of less desirable groups of bacteria such as LPS producers (Escherichia coli and Enterobacter cloacae). The changes in gut microbiota in these patients could be responsible for the improvement in the metabolic syndrome markers. Modulation of the gut microbiota by using red wine could be an effective strategy for managing metabolic diseases associated with obesity.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition of the Virgen de la Victoria Hospital, Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain and Biomedical Research Networking Center for Pathophysiology of Obesity and Nutrition, CIBERobn, Madrid, Spain.
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Endocrinology and Nutrition of the Virgen de la Victoria Hospital, Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Pablo Pérez-Martínez
- Biomedical Research Networking Center for Pathophysiology of Obesity and Nutrition, CIBERobn, Madrid, Spain. and Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Spain
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomic Lab. Department of Nutrition and Food Science, XaRTA, INSA, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain and INGENIO-CONSOLIDER Program, Fun-c-food CSD2007-06, Barcelona, Spain
| | - Fernando Cardona
- Clinical Management Unit of Endocrinology and Nutrition of the Virgen de la Victoria Hospital, Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain and Biomedical Research Networking Center for Pathophysiology of Obesity and Nutrition, CIBERobn, Madrid, Spain.
| | - Francisco Tinahones
- Clinical Management Unit of Endocrinology and Nutrition of the Virgen de la Victoria Hospital, Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain and Biomedical Research Networking Center for Pathophysiology of Obesity and Nutrition, CIBERobn, Madrid, Spain.
| | - María Isabel Queipo-Ortuño
- Clinical Management Unit of Endocrinology and Nutrition of the Virgen de la Victoria Hospital, Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain and Biomedical Research Networking Center for Pathophysiology of Obesity and Nutrition, CIBERobn, Madrid, Spain.
| |
Collapse
|
35
|
Saenger T, Hübner F, Humpf HU. Short-term biomarkers of apple consumption. Mol Nutr Food Res 2016; 61. [PMID: 27794196 PMCID: PMC6120132 DOI: 10.1002/mnfr.201600629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022]
Abstract
SCOPE Urinary biomarkers are used to estimate the nutritional intake of humans. The aim of this study was to distinguish between low, medium, and high apple consumption by quantifying possible intake biomarkers in urine samples after apple consumption by HPLC-MS/MS. Apples were chosen as they are the most consumed fruits in Germany. METHODS AND RESULTS Thirty subjects took part in 7-day study. They abstained from apples and apple products except for one weighed apple portion resembling one, two, or four apples. Before apple consumption and during the following days spot urine samples were collected. These urine samples were incubated with β-glucuronidase, diluted, and directly measured by HPLC-MS/MS. Phloretin, epicatechin, procyanidin B2, and quercetin were detected in urine using Scheduled MRMTM mode. Phloretin was confirmed as a urinary biomarker of apple intake and had the ability to discriminate between low or medium (one or two apples) and high apple consumption (four apples). The groups also differ in the excretion of epicatechin and procyanidin B2. CONCLUSION Apple consumption can be monitored by urinary biomarkers for a period of at least 12 h after consumption. Furthermore the amount of apples consumed can be estimated by the concentration of certain biomarkers.
Collapse
Affiliation(s)
- Theresa Saenger
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
36
|
Gürdeniz G, Jensen MG, Meier S, Bech L, Lund E, Dragsted LO. Detecting Beer Intake by Unique Metabolite Patterns. J Proteome Res 2016; 15:4544-4556. [DOI: 10.1021/acs.jproteome.6b00635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gözde Gürdeniz
- Department
of Nutrition, Sports and Exercise, Faculty of Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg
C, 1958, Denmark
| | - Morten Georg Jensen
- Carlsberg Research Laboratory A/S, Gamle Carlsberg Vej 6-10, 1799 Copenhagen V, Denmark
| | - Sebastian Meier
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Lene Bech
- Carlsberg Research Laboratory A/S, Gamle Carlsberg Vej 6-10, 1799 Copenhagen V, Denmark
| | - Erik Lund
- Carlsberg Research Laboratory A/S, Gamle Carlsberg Vej 6-10, 1799 Copenhagen V, Denmark
| | - Lars Ove Dragsted
- Department
of Nutrition, Sports and Exercise, Faculty of Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg
C, 1958, Denmark
| |
Collapse
|
37
|
Zamora-Ros R, Achaintre D, Rothwell JA, Rinaldi S, Assi N, Ferrari P, Leitzmann M, Boutron-Ruault MC, Fagherazzi G, Auffret A, Kühn T, Katzke V, Boeing H, Trichopoulou A, Naska A, Vasilopoulou E, Palli D, Grioni S, Mattiello A, Tumino R, Ricceri F, Slimani N, Romieu I, Scalbert A. Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep 2016; 6:26905. [PMID: 27273479 PMCID: PMC4895229 DOI: 10.1038/srep26905] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023] Open
Abstract
Urinary excretion of 34 dietary polyphenols and their variations according to diet and other lifestyle factors were measured by tandem mass spectrometry in 475 adult participants from the European Prospective Investigation into Cancer and Nutrition (EPIC) cross-sectional study. A single 24-hour urine sample was analysed for each subject from 4 European countries. The highest median levels were observed for phenolic acids such as 4-hydroxyphenylacetic acid (157 μmol/24 h), followed by 3-hydroxyphenylacetic, ferulic, vanillic and homovanillic acids (20-50 μmol/24 h). The lowest concentrations were observed for equol, apigenin and resveratrol (<0.1 μmol/24 h). Urinary polyphenols significantly varied by centre, followed by alcohol intake, sex, educational level, and energy intake. This variability is largely explained by geographical variations in the diet, as suggested by the high correlations (r > 0.5) observed between urinary polyphenols and the intake of their main food sources (e.g., resveratrol and gallic acid ethyl ester with red wine intake; caffeic, protocatechuic and ferulic acids with coffee consumption; and hesperetin and naringenin with citrus fruit intake). The large variations in urinary polyphenols observed are largely determined by food preferences. These polyphenol biomarkers should allow more accurate evaluation of the relationships between polyphenol exposure and the risk of chronic diseases in large epidemiological studies.
Collapse
Affiliation(s)
- Raul Zamora-Ros
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - David Achaintre
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Joseph A. Rothwell
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Nada Assi
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Pietro Ferrari
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Michael Leitzmann
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Marie-Christine Boutron-Ruault
- Inserm, Centre for Research in Epidemiology and Population Health, and the Université Paris-Sud, and the Institute Gustave Roussy, Villejuif, France
| | - Guy Fagherazzi
- Inserm, Centre for Research in Epidemiology and Population Health, and the Université Paris-Sud, and the Institute Gustave Roussy, Villejuif, France
| | - Aurélie Auffret
- Inserm, Centre for Research in Epidemiology and Population Health, and the Université Paris-Sud, and the Institute Gustave Roussy, Villejuif, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
| | - Effie Vasilopoulou
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute – ISPO, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Amalia Mattiello
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University Naples, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, “Civic - M.P. Arezzo” Hospital, ASP Ragusa, Italy
| | - Fulvio Ricceri
- Center for Cancer Prevention (CPO-Piemonte), and Human Genetic Foundation (HuGeF), Turin, Italy
| | - Nadia Slimani
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Isabelle Romieu
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| | - Augustin Scalbert
- Nutrition and Metabolism Unit, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
38
|
Garcia-Perez I, Posma JM, Chambers ES, Nicholson JK, C Mathers J, Beckmann M, Draper J, Holmes E, Frost G. An Analytical Pipeline for Quantitative Characterization of Dietary Intake: Application To Assess Grape Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2423-2431. [PMID: 26909845 DOI: 10.1021/acs.jafc.5b05878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lack of accurate dietary assessment in free-living populations requires discovery of new biomarkers reflecting food intake qualitatively and quantitatively to objectively evaluate effects of diet on health. We provide a proof-of-principle for an analytical pipeline to identify quantitative dietary biomarkers. Tartaric acid was identified by nuclear magnetic resonance spectroscopy as a dose-responsive urinary biomarker of grape intake and subsequently quantified in volunteers following a series of 4-day dietary interventions incorporating 0 g/day, 50 g/day, 100 g/day, and 150 g/day of grapes in standardized diets from a randomized controlled clinical trial. Most accurate quantitative predictions of grape intake were obtained in 24 h urine samples which have the strongest linear relationship between grape intake and tartaric acid excretion (r(2) = 0.90). This new methodological pipeline for estimating nutritional intake based on coupling dietary intake information and quantified nutritional biomarkers was developed and validated in a controlled dietary intervention study, showing that this approach can improve the accuracy of estimating nutritional intakes.
Collapse
Affiliation(s)
- Isabel Garcia-Perez
- Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Imperial College London , London W12 0NN, U.K
| | - Joram M Posma
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London , London SW7 2AZ, U.K
| | - Edward S Chambers
- Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Imperial College London , London W12 0NN, U.K
| | - Jeremy K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London , London SW7 2AZ, U.K
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne NE4 5PL, U.K
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University , Aberystwyth SY23 3DA, U.K
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University , Aberystwyth SY23 3DA, U.K
| | - Elaine Holmes
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London , London SW7 2AZ, U.K
| | - Gary Frost
- Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Imperial College London , London W12 0NN, U.K
| |
Collapse
|
39
|
Rabassa M, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L, Andres-Lacueva C, Cherubini A. Association of habitual dietary resveratrol exposure with the development of frailty in older age: the Invecchiare in Chianti study. Am J Clin Nutr 2015; 102:1534-42. [PMID: 26490492 PMCID: PMC4658467 DOI: 10.3945/ajcn.115.118976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resveratrol may play a protective role against the frailty syndrome (FS) because of its antioxidant and anti-inflammatory properties. OBJECTIVE We prospectively evaluated the association between habitual dietary resveratrol exposure and the development of FS after 3-, 6-, and 9-y follow-up periods in a community-dwelling older population. DESIGN We conducted a longitudinal analysis with the use of data from 769 participants aged ≥65 y from the Invecchiare in Chianti (Aging in Chianti) study. Total dietary resveratrol (TDR) intake was estimated at baseline with the use of a validated food-frequency questionnaire, which was developed to assess participants' usual food intakes over the previous year, and an ad hoc resveratrol database. Total urinary resveratrol (TUR) was analyzed with the use of liquid chromatography-tandem mass spectrometry with a previous solid-phase extraction at baseline. The combination of both measures [total dietary resveratrol plus total urinary resveratrol (TDR+TUR)] was computed with the use of the Howe's method. FS was assessed at baseline and at 3-, 6-, and 9-y of follow-up and was defined as the presence of ≥3 of the following 5 criteria: shrinking, exhaustion, sedentariness, slowness, and weakness. RESULTS TDR+TUR concentrations were inversely associated with FS risk over 3-y of follow-up (OR for comparison of extreme tertiles: 0.11; 95% CI: 0.03, 0.45; P-trend = 0.002) but not after 6- and 9-y of follow-up in multinomial logistic regression models adjusted for baseline frailty status and potential confounders. These results did not differ when analyses were further adjusted for inflammatory markers. CONCLUSION Higher habitual dietary resveratrol exposure was associated with lower risk of older community dwellers developing FS during the first 3 y of follow-up but not after longer follow-up periods.
Collapse
Affiliation(s)
- Montserrat Rabassa
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Catalonian Reference Network on Food Technology (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Campus Torribera, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain
| | - Raul Zamora-Ros
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), Lyon, France
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Catalonian Reference Network on Food Technology (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Campus Torribera, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain
| | | | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, NIH, Baltimore, MD; and
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition and Food Science Department, Catalonian Reference Network on Food Technology (XaRTA), Institute for Research on Nutrition and Food Safety (INSA-UB), Campus Torribera, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain;
| | - Antonio Cherubini
- Geriatrics and Geriatric Emergency Care, Italian National Research Centre on Aging, Ancona, Italy
| |
Collapse
|
40
|
Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev 2015; 2016:CD011834. [PMID: 26250104 PMCID: PMC10403157 DOI: 10.1002/14651858.cd011834] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In order to prevent overweight and obesity in the general population we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES To assess the effects of proportion of energy intake from fat on measures of weight and body fatness (including obesity, waist circumference and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) and cohort studies in adults, children and young people SEARCH METHODS We searched CENTRAL to March 2014 and MEDLINE, EMBASE and CINAHL to November 2014. We did not limit the search by language. We also checked the references of relevant reviews. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included children (aged ≥ 24 months), young people or adults, 3) randomised to a lower fat versus usual or moderate fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We also included cohort studies in children, young people and adults that assessed the proportion of energy from fat at baseline and assessed the relationship with body weight or fatness after at least one year. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of weight and body fatness independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity and funnel plot analyses. MAIN RESULTS We included 32 RCTs (approximately 54,000 participants) and 30 sets of analyses of 25 cohorts. There is consistent evidence from RCTs in adults of a small weight-reducing effect of eating a smaller proportion of energy from fat; this was seen in almost all included studies and was highly resistant to sensitivity analyses. The effect of eating less fat (compared with usual diet) is a mean weight reduction of 1.5 kg (95% confidence interval (CI) -2.0 to -1.1 kg), but greater weight loss results from greater fat reductions. The size of the effect on weight does not alter over time and is mirrored by reductions in body mass index (BMI) (-0.5 kg/m(2), 95% CI -0.7 to -0.3) and waist circumference (-0.3 cm, 95% CI -0.6 to -0.02). Included cohort studies in children and adults most often do not suggest any relationship between total fat intake and later measures of weight, body fatness or change in body fatness. However, there was a suggestion that lower fat intake was associated with smaller increases in weight in middle-aged but not elderly adults, and in change in BMI in the highest validity child cohort. AUTHORS' CONCLUSIONS Trials where participants were randomised to a lower fat intake versus usual or moderate fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI and waist circumference compared with controls. Greater fat reduction and lower baseline fat intake were both associated with greater reductions in weight. This effect of reducing total fat was not consistently reflected in cohort studies assessing the relationship between total fat intake and later measures of body fatness or change in body fatness in studies of children, young people or adults.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | | | | | | | | | | |
Collapse
|
41
|
Rabassa M, Zamora-Ros R, Urpi-Sarda M, Andres-Lacueva C. Resveratrol metabolite profiling in clinical nutrition research--from diet to uncovering disease risk biomarkers: epidemiological evidence. Ann N Y Acad Sci 2015; 1348:107-15. [PMID: 26250997 DOI: 10.1111/nyas.12851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resveratrol is a bioactive plant compound that has drawn scientific and media attention owing to its protective effects against a wide variety of illnesses, including cardiovascular diseases and cancer. In the last two decades, a plethora of preclinical studies have shown these beneficial effects, and some of them have been supported by clinical trials. However, there are few epidemiological studies assessing these relationships, showing mostly inconsistent results among them. This could be partially due to the difficulty of accurately estimating dietary resveratrol exposure. The development of Phenol-Explorer, a database containing resveratrol food-composition data, will facilitate the estimation of resveratrol intake. Moreover, the discovery and validation of a nutritional biomarker of this exposure, urinary resveratrol metabolite profile, will allow a more accurate assessment of dietary resveratrol exposure. Few epidemiological studies have assessed the potential health effects of resveratrol. Resveratrol was not associated with total mortality, cancer, or cardiovascular events, but it was associated with an improvement of serum glucose and triglyceride levels and a decrease in heart rate. Together, these findings suggest a potential cardioprotective effect of resveratrol in epidemiological studies, although the evidence is still scarce.
Collapse
Affiliation(s)
- Montserrat Rabassa
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Lab., XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Raul Zamora-Ros
- Nutrition and Metabolism Section (NME), Biomarkers Group (BMA), International Agency for Research on Cancer (IARC), Lyon, France
| | - Mireia Urpi-Sarda
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Lab., XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Lab., XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Urpi-Sarda M, Boto-Ordóñez M, Queipo-Ortuño MI, Tulipani S, Corella D, Estruch R, Tinahones FJ, Andres-Lacueva C. Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma. Electrophoresis 2015; 36:2259-2268. [DOI: 10.1002/elps.201400506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mireia Urpi-Sarda
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
| | - María Boto-Ordóñez
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
| | - María Isabel Queipo-Ortuño
- Research Laboratory, IMABIS Foundation; Virgen de la Victoria Clinical Hospital; Málaga Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
| | - Sara Tulipani
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
- Research Laboratory, IMABIS Foundation; Virgen de la Victoria Clinical Hospital; Málaga Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Department of Preventive Medicine; University of Valencia; Valencia Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y la Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria; Málaga Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutritional & Food Metabolomics Research Group, Nutrition and Food Science Department, XaRTA, INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER programme; FUN-C-FOOD; Barcelona Spain
| |
Collapse
|
43
|
Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2015:CD011737. [PMID: 26068959 DOI: 10.1002/14651858.cd011737] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA) or monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and EMBASE (Ovid) on 5 March 2014. We also checked references of included studies and reviews. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised with appropriate control group; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) not multifactorial; 4) adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 5) intervention at least 24 months; 6) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors working independently extracted participant numbers experiencing health outcomes in each arm, and we performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses and funnel plots. MAIN RESULTS We include 15 randomised controlled trials (RCTs) (17 comparisons, ˜59,000 participants), which used a variety of interventions from providing all food to advice on how to reduce saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, 13 comparisons, 53,300 participants of whom 8% had a cardiovascular event, I² 65%, GRADE moderate quality of evidence), but effects on all-cause mortality (RR 0.97; 95% CI 0.90 to 1.05; 12 trials, 55,858 participants) and cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 12 trials, 53,421 participants) were less clear (both GRADE moderate quality of evidence). There was some evidence that reducing saturated fats reduced the risk of myocardial infarction (fatal and non-fatal, RR 0.90; 95% CI 0.80 to 1.01; 11 trials, 53,167 participants), but evidence for non-fatal myocardial infarction (RR 0.95; 95% CI 0.80 to 1.13; 9 trials, 52,834 participants) was unclear and there were no clear effects on stroke (any stroke, RR 1.00; 95% CI 0.89 to 1.12; 8 trials, 50,952 participants). These relationships did not alter with sensitivity analysis. Subgrouping suggested that the reduction in cardiovascular events was seen in studies that primarily replaced saturated fat calories with polyunsaturated fat, and no effects were seen in studies replacing saturated fat with carbohydrate or protein, but effects in studies replacing with monounsaturated fats were unclear (as we located only one small trial). Subgrouping and meta-regression suggested that the degree of reduction in cardiovascular events was related to the degree of reduction of serum total cholesterol, and there were suggestions of greater protection with greater saturated fat reduction or greater increase in polyunsaturated and monounsaturated fats. There was no evidence of harmful effects of reducing saturated fat intakes on cancer mortality, cancer diagnoses or blood pressure, while there was some evidence of improvements in weight and BMI. AUTHORS' CONCLUSIONS The findings of this updated review are suggestive of a small but potentially important reduction in cardiovascular risk on reduction of saturated fat intake. Replacing the energy from saturated fat with polyunsaturated fat appears to be a useful strategy, and replacement with carbohydrate appears less useful, but effects of replacement with monounsaturated fat were unclear due to inclusion of only one small trial. This effect did not appear to alter by study duration, sex or baseline level of cardiovascular risk. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturated fats. The ideal type of unsaturated fat is unclear.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | | | | | | |
Collapse
|
44
|
Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog Cardiovasc Dis 2015; 58:50-60. [PMID: 25940230 DOI: 10.1016/j.pcad.2015.04.003] [Citation(s) in RCA: 484] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The PREDIMED (PREvención con DIeta MEDiterránea) multicenter, randomized, primary prevention trial assessed the long-term effects of the Mediterranean diet (MeDiet) on clinical events of cardiovascular disease (CVD). We randomized 7447 men and women at high CVD risk into three diets: MeDiet supplemented with extra-virgin olive oil (EVOO), MeDiet supplemented with nuts, and control diet (advice on a low-fat diet). No energy restriction and no special intervention on physical activity were applied. We observed 288 CVD events (a composite of myocardial infarction, stroke or CVD death) during a median time of 4.8years; hazard ratios were 0.70 (95% CI, 0.53-0.91) for the MeDiet+EVOO and 0.70 (CI, 0.53-0.94) for the MeDiet+nuts compared to the control group. Respective hazard ratios for incident diabetes (273 cases) among 3541 non-diabetic participants were 0.60 (0.43-0.85) and 0.82 (0.61-1.10) for MeDiet+EVOO and MeDiet+nuts, respectively versus control. Significant improvements in classical and emerging CVD risk factors also supported a favorable effect of both MeDiets on blood pressure, insulin sensitivity, lipid profiles, lipoprotein particles, inflammation, oxidative stress, and carotid atherosclerosis. In nutrigenomic studies beneficial effects of the intervention with MedDiets showed interactions with several genetic variants (TCF7L2, APOA2, MLXIPL, LPL, FTO, M4CR, COX-2, GCKR and SERPINE1) with respect to intermediate and final phenotypes. Thus, the PREDIMED trial provided strong evidence that a vegetable-based MeDiet rich in unsaturated fat and polyphenols can be a sustainable and ideal model for CVD prevention.
Collapse
Affiliation(s)
- Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA (Navarra Health Research Institute), Pamplona, Spain; The PREDIMED Research Network (RD 06/0045), Instituto de Salud Carlos III, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Salas-Salvadó
- The PREDIMED Research Network (RD 06/0045), Instituto de Salud Carlos III, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Human Nutrition Department, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ramón Estruch
- The PREDIMED Research Network (RD 06/0045), Instituto de Salud Carlos III, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
45
|
Garcia-Aloy M, Llorach R, Urpi-Sarda M, Jáuregui O, Corella D, Ruiz-Canela M, Salas-Salvadó J, Fitó M, Ros E, Estruch R, Andres-Lacueva C. A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study. Mol Nutr Food Res 2014; 59:212-20. [PMID: 25298021 DOI: 10.1002/mnfr.201400434] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 01/05/2023]
Abstract
SCOPE The aim of the current study was to apply an untargeted metabolomics strategy to characterize a model of cocoa intake biomarkers in a free-living population. METHODS AND RESULTS An untargeted HPLC-q-ToF-MS based metabolomics approach was applied to human urine from 32 consumers of cocoa or derived products (CC) and 32 matched control subjects with no consumption of cocoa products (NC). The multivariate statistical analysis (OSC-PLS-DA) showed clear differences between CC and NC groups. The discriminant biomarkers identified were mainly related to the metabolic pathways of theobromine and polyphenols, as well as to cocoa processing. Consumption of cocoa products was also associated with reduced urinary excretions of methylglutarylcarnitine, which could be related to effects of cocoa exposure on insulin resistance. To improve the prediction of cocoa consumption, a combined urinary metabolite model was constructed. ROC curves were performed to evaluate the model and individual metabolites. The AUC values (95% CI) for the model were 95.7% (89.8-100%) and 92.6% (81.9-100%) in training and validation sets, respectively, whereas the AUCs for individual metabolites were <90%. CONCLUSIONS The metabolic signature of cocoa consumption in free-living subjects reveals that combining different metabolites as biomarker models improves prediction of dietary exposure to cocoa.
Collapse
Affiliation(s)
- Mar Garcia-Aloy
- Biomarkers & Nutrimetabolomic Lab, Nutrition and Food Science Department, XaRTA, INSA, Campus Torribera, Pharmacy Faculty, University of Barcelona, Spain**; INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Semba RD, Ferrucci L, Bartali B, Urpí-Sarda M, Zamora-Ros R, Sun K, Cherubini A, Bandinelli S, Andres-Lacueva C. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med 2014; 174:1077-84. [PMID: 24819981 PMCID: PMC4346286 DOI: 10.1001/jamainternmed.2014.1582] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Resveratrol, a polyphenol found in grapes, red wine, chocolate, and certain berries and roots, is considered to have antioxidant, anti-inflammatory, and anticancer effects in humans and is related to longevity in some lower organisms. OBJECTIVE To determine whether resveratrol levels achieved with diet are associated with inflammation, cancer, cardiovascular disease, and mortality in humans. DESIGN Prospective cohort study, the Invecchiare in Chianti (InCHIANTI) Study ("Aging in the Chianti Region"), 1998 to 2009 conducted in 2 villages in the Chianti area in a population-based sample of 783 community-dwelling men and women 65 years or older. EXPOSURES Twenty-four-hour urinary resveratrol metabolites. MAIN OUTCOMES AND MEASURES Primary outcome measure was all-cause mortality. Secondary outcomes were markers of inflammation (serum C-reactive protein [CRP], interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]) and prevalent and incident cancer and cardiovascular disease. RESULTS Mean (95% CI) log total urinary resveratrol metabolite concentrations were 7.08 (6.69-7.48) nmol/g of creatinine. During 9 years of follow-up, 268 (34.3%) of the participants died. From the lowest to the highest quartile of baseline total urinary resveratrol metabolites, the proportion of participants who died from all causes was 34.4%, 31.6%, 33.5%, and 37.4%, respectively (P = .67). Participants in the lowest quartile had a hazards ratio for mortality of 0.80 (95% CI, 0.54-1.17) compared with those in the highest quartile of total urinary resveratrol in a multivariable Cox proportional hazards model that adjusted for potential confounders. Resveratrol levels were not significantly associated with serum CRP, IL-6, IL-1β, TNF, prevalent or incident cardiovascular disease, or cancer. CONCLUSIONS AND RELEVANCE In older community-dwelling adults, total urinary resveratrol metabolite concentration was not associated with inflammatory markers, cardiovascular disease, or cancer or predictive of all-cause mortality. Resveratrol levels achieved with a Western diet did not have a substantial influence on health status and mortality risk of the population in this study.
Collapse
Affiliation(s)
- Richard D Semba
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, Maryland
| | | | - Mireia Urpí-Sarda
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| | - Raul Zamora-Ros
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| | - Kai Sun
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antonio Cherubini
- Geriatrics and Geriatric Emergency Department, Istituto Nazionale di Riposo e Cura per Anziani V.E.II.-Istituto di Ricovero e Cura a Carattere Scientifico (INRCA-IRCCS), Ancona, Italy
| | | | - Cristina Andres-Lacueva
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| |
Collapse
|
47
|
Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr 2014; 100:11-26. [PMID: 24787490 PMCID: PMC4144095 DOI: 10.3945/ajcn.113.077743] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
Much experimental evidence supports a protective role of dietary polyphenols against chronic diseases such as cardiovascular diseases, diabetes, and cancer. However, results from observational epidemiologic studies are still limited and are often inconsistent. This is largely explained by the difficulties encountered in the estimation of exposure to the polyphenol metabolome, which is composed of ~500 polyphenols distributed across a wide variety of foods and characterized by diverse biological properties. Exposure to the polyphenol metabolome in epidemiologic studies can be assessed by the use of detailed dietary questionnaires or the measurement of biomarkers of polyphenol intake. The questionnaire approach has been greatly facilitated by the use of new databases on polyphenol composition but is limited by bias as a result of self-reporting. The use of polyphenol biomarkers holds much promise for objective estimation of polyphenol exposure in future metabolome-wide association studies. These approaches are reviewed and their advantages and limitations discussed by using examples of epidemiologic studies on polyphenols and cancer. The current improvement in these techniques, along with greater emphasis on the intake of individual polyphenols rather than polyphenols considered collectively, will help unravel the role of these major food bioactive constituents in disease prevention.
Collapse
Affiliation(s)
- Raul Zamora-Ros
- From the Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (RZ-R, JAR, IR, and AS); the Unit of Nutrition, Environment, and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain (RZ-R); and the Cancer and Environment Unit, Centre Léon Bérard, Lyon, France (MT)
| | - Marina Touillaud
- From the Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (RZ-R, JAR, IR, and AS); the Unit of Nutrition, Environment, and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain (RZ-R); and the Cancer and Environment Unit, Centre Léon Bérard, Lyon, France (MT)
| | - Joseph A Rothwell
- From the Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (RZ-R, JAR, IR, and AS); the Unit of Nutrition, Environment, and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain (RZ-R); and the Cancer and Environment Unit, Centre Léon Bérard, Lyon, France (MT)
| | - Isabelle Romieu
- From the Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (RZ-R, JAR, IR, and AS); the Unit of Nutrition, Environment, and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain (RZ-R); and the Cancer and Environment Unit, Centre Léon Bérard, Lyon, France (MT)
| | - Augustin Scalbert
- From the Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France (RZ-R, JAR, IR, and AS); the Unit of Nutrition, Environment, and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain (RZ-R); and the Cancer and Environment Unit, Centre Léon Bérard, Lyon, France (MT)
| |
Collapse
|
48
|
Quifer-Rada P, Martínez-Huélamo M, Chiva-Blanch G, Jáuregui O, Estruch R, Lamuela-Raventós RM. Urinary isoxanthohumol is a specific and accurate biomarker of beer consumption. J Nutr 2014; 144:484-8. [PMID: 24477299 DOI: 10.3945/jn.113.185199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biomarkers of food consumption are a powerful tool to obtain more objective measurements of dietary exposure and to monitor compliance in clinical trials. In this study, we evaluated the effectiveness of urinary isoxanthohumol (IX) excretion as an accurate biomarker of beer consumption. A dose-response clinical trial, a randomized, crossover clinical trial, and a cohort study were performed. In the dose-response trial, 41 young volunteers (males and females, aged 28 ± 3 y) consumed different doses of beer at night and a spot urine sample was collected the following morning. In the clinical trial, 33 males with high cardiovascular risk (aged 61 ± 7 y) randomly were administered 30 g of ethanol/d as gin or beer, or an equivalent amount of polyphenols as nonalcoholic beer for 4 wk. Additionally, a subsample of 46 volunteers from the PREDIMED (Prevenciόn con Dieta Mediterránea) study (males and females, aged 63 ± 5 y) was also evaluated. Prenylflavonoids were quantified in urine samples by liquid chromatography coupled to mass spectrometry. IX urinary recovery increased linearly with the size of the beer dose in male volunteers. A significant increase in IX excretion (4.0 ± 1.6 μg/g creatinine) was found after consumption of beer and nonalcoholic beer for 4 wk (P < 0.001). Receiver operating characteristic curves showed that IX is able to discriminate between beer consumers and abstainers with a sensitivity of 67% and specificity of 100% (positive predictive value = 70%, negative predictive value = 100% in real-life conditions). IX in urine samples was found to be a specific and accurate biomarker of beer consumption and may be a powerful tool in epidemiologic studies.
Collapse
Affiliation(s)
- Paola Quifer-Rada
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Urinary tartaric acid as a potential biomarker for the dietary assessment of moderate wine consumption: a randomised controlled trial. Br J Nutr 2014; 111:1680-5. [PMID: 24507823 DOI: 10.1017/s0007114513004108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The availability of biomarkers that allow the estimation of the intake of specific foods and dietary components, as an alternative or addition to self-reported dietary questionnaires, could greatly enhance the effectiveness of nutritional research. The aim of the present study was to assess tartaric acid, one of the major components of red and white wines, as a potential biomarker of wine consumption. A total of twenty-one healthy men participated in a randomised cross-over feeding trial. They consumed a single dose of 100, 200 or 300 ml wine at dinner. Before each intervention, the participants followed a 7 d washout period during which they avoided consuming wine or grape-based products. Morning urine was collected and analysed by liquid chromatography coupled to electrospray ionisation tandem MS. A strong significant correlation was found between wine intake and urinary tartaric acid (r(s) = 0·9220; P <0·001). Using a cut-off value of 8·84 μg/mg creatinine, tartaric acid allowed wine consumers to be differentiated from non-wine consumers. The results suggest that urinary tartaric acid may be a sensitive and specific dietary biomarker of wine consumption.
Collapse
|
50
|
Amoutzopoulos B, Löker GB, Samur G, Cevikkalp SA, Yaman M, Köse T, Pelvan E. Effects of a traditional fermented grape-based drink 'hardaliye' on antioxidant status of healthy adults: a randomized controlled clinical trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3604-3610. [PMID: 23553618 DOI: 10.1002/jsfa.6158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The antioxidative effects of the traditional grape-based beverage, hardaliye, were investigated with a 40-day randomized controlled clinical trial on 89 healthy adults. Subjects were randomly divided into three groups: high hardaliye (HH), low hardaliye (LH) and control group. HH and LH groups consumed 500 mL and 250 mL hardaliye per day, respectively, and the control group did not consume any hardaliye. Dien conjugate (DC), malondialdehyde (MDA), vitamin C, total antioxidant capacity (TAC) and homocysteine concentrations were measured in fasting blood samples collected at baseline and after intervention. RESULTS Significant decreases in DC, MDA and homocysteine concentrations were observed in HH and LH groups (P < 0.001) after intervention, whereas the control group showed no change. The reduction in homocysteine was significantly different between HH and LH groups (P < 0.001), except for DC and MDA. TAC and vitamin C were slightly increased; however, the change was not statistically significant. CONCLUSION Dietary supplementation with hardaliye affect the MDA, DC and homocysteine levels in blood, possibly due to the presence of antioxidant compounds. Dose response was only observed for homocysteine. Further studies need to be performed to assess the effects on antioxidant capacity.
Collapse
Affiliation(s)
- Birdem Amoutzopoulos
- Scientific and Technological Research Council of Turkey (TUBITAK) Marmara Research Center, Food Institute, 41470, Kocaeli, Turkey
| | | | | | | | | | | | | |
Collapse
|