1
|
Harris A, Burnham K, Pradhyumnan R, Jaishankar A, Häkkinen L, Góngora-Rosero RE, Piazza Y, Andl CD, Andl T. Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization. Int J Mol Sci 2025; 26:3144. [PMID: 40243939 PMCID: PMC11989042 DOI: 10.3390/ijms26073144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Kaylee Burnham
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Ram Pradhyumnan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Arthi Jaishankar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Rafael E. Góngora-Rosero
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Yelena Piazza
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| |
Collapse
|
2
|
Loi M, Valenti F, Medici G, Mottolese N, Candini G, Bove AM, Trebbi F, Pincigher L, Fato R, Bergamini C, Trazzi S, Ciani E. Beneficial Antioxidant Effects of Coenzyme Q10 in In Vitro and In Vivo Models of CDKL5 Deficiency Disorder. Int J Mol Sci 2025; 26:2204. [PMID: 40076840 PMCID: PMC11900000 DOI: 10.3390/ijms26052204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
CDKL5 deficiency disorder (CDD), a developmental encephalopathy caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene, is characterized by a complex and severe clinical picture, including early-onset epilepsy and cognitive, motor, visual, and gastrointestinal disturbances. This disease still lacks a medical treatment to mitigate, or reverse, its course and improve the patient's quality of life. Although CDD is primarily a genetic brain disorder, some evidence indicates systemic abnormalities, such as the presence of a redox imbalance in the plasma and skin fibroblasts from CDD patients and in the cardiac myocytes of a mouse model of CDD. In order to shed light on the role of oxidative stress in the CDD pathophysiology, in this study, we aimed to investigate the therapeutic potential of Coenzyme Q10 (CoQ10), which is known to be a powerful antioxidant, using in vitro and in vivo models of CDD. We found that CoQ10 supplementation not only reduces levels of reactive oxygen species (ROS) and normalizes glutathione balance but also restores the levels of markers of DNA damage (γ-H2AX) and senescence (lamin B1), restoring cellular proliferation and improving cellular survival in a human neuronal model of CDD. Importantly, oral supplementation with CoQ10 exerts a protective role toward lipid peroxidation and DNA damage in the heart of a murine model of CDD, the Cdkl5 (+/-) female mouse. Our results highlight the therapeutic potential of the antioxidant supplement CoQ10 in counteracting the detrimental oxidative stress induced by CDKL5 deficiency.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Angelica Marina Bove
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Federica Trebbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (F.V.); (L.P.); (R.F.); (C.B.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (G.M.); (N.M.); (G.C.); (A.M.B.); (F.T.); (E.C.)
| |
Collapse
|
3
|
Varone M, Scavo G, Colardo M, Martella N, Pensabene D, Bisesto E, Del Busso A, Segatto M. p75NTR Modulation Reduces Oxidative Stress and the Expression of Pro-Inflammatory Mediators in a Cell Model of Rett Syndrome. Biomedicines 2024; 12:2624. [PMID: 39595188 PMCID: PMC11592079 DOI: 10.3390/biomedicines12112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Rett syndrome (RTT) is an early-onset neurological disorder primarily affecting females, leading to severe cognitive and physical disabilities. Recent studies indicate that an imbalance of redox homeostasis and exacerbated inflammatory responses are key players in the clinical manifestations of the disease. Emerging evidence highlights that the p75 neurotrophin receptor (p75NTR) is implicated in the regulation of oxidative stress (OS) and inflammation. Thus, this study is aimed at investigating the effects of p75NTR modulation by LM11A-31 on fibroblasts derived from RTT donors. Methods: RTT cells were treated with 0.1 µM of LM11A-31 for 24 h, and results were obtained using qPCR, immunofluorescence, ELISA, and Western blot techniques. Results: Our findings demonstrate that LM11A-31 reduces OS markers in RTT fibroblasts. Specifically, p75NTR modulation by LM11A-31 restores protein glutathionylation and reduces the expression of the pro-oxidant enzyme NOX4. Additionally, LM11A-31 significantly decreases the expression of the pro-inflammatory mediators interleukin-6 and interleukin-8. Additionally, LM11A-31 normalizes the expression levels of transcription factors involved in the regulation of the antioxidant response and inflammation. Conclusions: Collectively, these data suggest that p75NTR modulation may represent an effective therapeutic target to improve redox balance and reduce inflammation in RTT.
Collapse
Affiliation(s)
- Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Giuseppe Scavo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Emanuele Bisesto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Andrea Del Busso
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.V.); (G.S.); (M.C.); (N.M.); (D.P.); (E.B.); (A.D.B.)
| |
Collapse
|
4
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
5
|
Leoncini S, Boasiako L, Di Lucia S, Beker A, Scandurra V, Vignoli A, Canevini MP, Prato G, Nobili L, Nicotera AG, Di Rosa G, Chiarini MBT, Cutrera R, Grosso S, Lazzeri G, Tongiorgi E, Morano P, Botteghi M, Barducci A, De Felice C. 24-h continuous non-invasive multiparameter home monitoring of vitals in patients with Rett syndrome by an innovative wearable technology: evidence of an overlooked chronic fatigue status. Front Neurol 2024; 15:1388506. [PMID: 38952469 PMCID: PMC11215834 DOI: 10.3389/fneur.2024.1388506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Background Sleep is disturbed in Rett syndrome (RTT), a rare and progressive neurodevelopmental disorder primarily affecting female patients (prevalence 7.1/100,000 female patients) linked to pathogenic variations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Autonomic nervous system dysfunction with a predominance of the sympathetic nervous system (SNS) over the parasympathetic nervous system (PSNS) is reported in RTT, along with exercise fatigue and increased sudden death risk. The aim of the present study was to test the feasibility of a continuous 24 h non-invasive home monitoring of the biological vitals (biovitals) by an innovative wearable sensor device in pediatric and adolescent/adult RTT patients. Methods A total of 10 female patients (mean age 18.3 ± 9.4 years, range 4.7-35.5 years) with typical RTT and MECP2 pathogenic variations were enrolled. Clinical severity was assessed by validated scales. Heart rate (HR), respiratory rate (RR), and skin temperature (SkT) were monitored by the YouCare Wearable Medical Device (Accyourate Group SpA, L'Aquila, Italy). The average percentage of maximum HR (HRmax%) was calculated. Heart rate variability (HRV) was expressed by consolidated time-domain and frequency-domain parameters. The HR/LF (low frequency) ratio, indicating SNS activation under dynamic exercise, was calculated. Simultaneous continuous measurement of indoor air quality variables was performed and the patients' contributions to the surrounding water vapor partial pressure [PH2O (pt)] and carbon dioxide [PCO2 (pt)] were indirectly estimated. Results Of the 6,559.79 h of biovital recordings, 5051.03 h (77%) were valid for data interpretation. Sleep and wake hours were 9.0 ± 1.1 h and 14.9 ± 1.1 h, respectively. HRmax % [median: 71.86% (interquartile range 61.03-82%)] and HR/LF [median: 3.75 (interquartile range 3.19-5.05)] were elevated, independent from the wake-sleep cycle. The majority of HRV time- and frequency-domain parameters were significantly higher in the pediatric patients (p ≤ 0.031). The HRV HR/LF ratio was associated with phenotype severity, disease progression, clinical sleep disorder, subclinical hypoxia, and electroencephalographic observations of multifocal epileptic activity and general background slowing. Conclusion Our findings indicate the feasibility of a continuous 24-h non-invasive home monitoring of biovital parameters in RTT. Moreover, for the first time, HRmax% and the HR/LF ratio were identified as potential objective markers of fatigue, illness severity, and disease progression.
Collapse
Affiliation(s)
- Silvia Leoncini
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- U.O.S.A. Programmazione e Ricerca Clinica, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lidia Boasiako
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sofia Di Lucia
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Valeria Scandurra
- Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Milan, Italy
| | - Maria Paola Canevini
- Epilepsy Center – Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Giulia Prato
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | | | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, University Hospital “G. Martino”, Messina, Italy
- Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Maria Beatrice Testa Chiarini
- Pneumology and Cystic Fibrosis Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Salvatore Grosso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Pediatrics Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giacomo Lazzeri
- U.O.S.A. Programmazione e Ricerca Clinica, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Botteghi
- Department of Clinical and Molecular Sciences – Experimental Pathology Research Group, Università Politecnica delle Marche, Ancona, Italy
- Medical Physics Activities Coordination Centre – Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | | | - Claudio De Felice
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Pediatrics Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
6
|
Audouard E, Khefif N, Gillet-Legrand B, Nobilleau F, Bouazizi O, Stanga S, Despres G, Alves S, Lamazière A, Cartier N, Piguet F. Modulation of Brain Cholesterol Metabolism through CYP46A1 Overexpression for Rett Syndrome. Pharmaceutics 2024; 16:756. [PMID: 38931878 PMCID: PMC11207948 DOI: 10.3390/pharmaceutics16060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the X-linked gene methyl-CpG-binding protein 2 (Mecp2), a ubiquitously expressed transcriptional regulator. RTT results in mental retardation and developmental regression that affects approximately 1 in 10,000 females. Currently, there is no curative treatment for RTT. Thus, it is crucial to develop new therapeutic approaches for children suffering from RTT. Several studies suggested that RTT is linked with defects in cholesterol homeostasis, but for the first time, therapeutic evaluation is carried out by modulating this pathway. Moreover, AAV-based CYP46A1 overexpression, the enzyme involved in cholesterol pathway, has been demonstrated to be efficient in several neurodegenerative diseases. Based on these data, we strongly believe that CYP46A1 could be a relevant therapeutic target for RTT. Herein, we evaluated the effects of intravenous AAVPHP.eB-hCYP46A1-HA delivery in male and female Mecp2-deficient mice. The applied AAVPHP.eB-hCYP46A1 transduced essential neurons of the central nervous system (CNS). CYP46A1 overexpression alleviates behavioral alterations in both male and female Mecp2 knockout mice and extends the lifespan in Mecp2-deficient males. Several parameters related to cholesterol pathway are improved and correction of mitochondrial activity is demonstrated in treated mice, which highlighted the clear therapeutic benefit of CYP46A1 through the neuroprotection effect. IV delivery of AAVPHP.eB-CYP46A1 is perfectly well tolerated with no inflammation observed in the CNS of the treated mice. Altogether, our results strongly suggest that CYP46A1 is a relevant target and overexpression could alleviate the phenotype of Rett patients.
Collapse
Affiliation(s)
- Emilie Audouard
- TIDU GENOV, Institut du Cerveau, ICM, F-75013 Paris, France;
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Nicolas Khefif
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Béatrix Gillet-Legrand
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Fanny Nobilleau
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Ouafa Bouazizi
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Orbassano, Italy
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
| | - Gaëtan Despres
- Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, F-75013 Paris, France
| | - Sandro Alves
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Antonin Lamazière
- Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, F-75013 Paris, France
| | - Nathalie Cartier
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Françoise Piguet
- TIDU GENOV, Institut du Cerveau, ICM, F-75013 Paris, France;
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| |
Collapse
|
7
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
8
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
9
|
Golubiani G, van Agen L, Tsverava L, Solomonia R, Müller M. Mitochondrial Proteome Changes in Rett Syndrome. BIOLOGY 2023; 12:956. [PMID: 37508386 PMCID: PMC10376342 DOI: 10.3390/biology12070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7-18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. Mecp2-/y hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of Mecp2-/y mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the Mecp2-/y neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder.
Collapse
Affiliation(s)
- Gocha Golubiani
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
| | - Laura van Agen
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
| | - Lia Tsverava
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
- Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
- Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
10
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Pepe G, Fioriniello S, Marracino F, Capocci L, Maglione V, D'Esposito M, Di Pardo A, Della Ragione F. Blood–Brain Barrier Integrity Is Perturbed in a Mecp2-Null Mouse Model of Rett Syndrome. Biomolecules 2023; 13:biom13040606. [PMID: 37189354 DOI: 10.3390/biom13040606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked MECP2 gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated. Impaired vascular function has been previously reported in RTT mouse models; however, whether an altered brain vascular homeostasis and the subsequent blood–brain barrier (BBB) breakdown occur in RTT and contribute to the disease-related cognitive impairment is still unknown. Interestingly, in symptomatic Mecp2-null (Mecp2-/y, Mecp2tm1.1Bird) mice, we found enhanced BBB permeability associated with an aberrant expression of the tight junction proteins Ocln and Cldn-5 in different brain areas, in terms of both transcript and protein levels. Additionally, Mecp2-null mice showed an altered expression of different genes encoding factors with a role in the BBB structure and function, such as Cldn3, Cldn12, Mpdz, Jam2, and Aqp4. With this study, we provide the first evidence of impaired BBB integrity in RTT and highlight a potential new molecular hallmark of the disease that might open new perspectives for the setting-up of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | | | | | - Maurizio D'Esposito
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | - Floriana Della Ragione
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| |
Collapse
|
12
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
13
|
Sun J, Osenberg S, Irwin A, Ma LH, Lee N, Xiang Y, Li F, Wan YW, Park IH, Maletic-Savatic M, Ballas N. Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation. Cell Rep 2023; 42:111942. [PMID: 36640327 PMCID: PMC10857774 DOI: 10.1016/j.celrep.2022.111942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/12/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Mutations in the MECP2 gene underlie a spectrum of neurodevelopmental disorders, most commonly Rett syndrome (RTT). We ask whether MECP2 mutations interfere with human astrocyte developmental maturation, thereby affecting their ability to support neurons. Using human-based models, we show that RTT-causing MECP2 mutations greatly impact the key role of astrocytes in regulating overall brain bioenergetics and that these metabolic aberrations are likely mediated by dysfunctional mitochondria. During post-natal maturation, astrocytes rely on neurons to induce their complex stellate morphology and transcriptional changes. While MECP2 mutations cause cell-intrinsic aberrations in the astrocyte transcriptional landscape, surprisingly, they do not affect the neuron-induced astrocyte gene expression. Notably, however, astrocytes are unable to develop complex mature morphology due to cell- and non-cell-autonomous aberrations caused by MECP2 mutations. Thus, MECP2 mutations critically impact key cellular and molecular features of human astrocytes and, hence, their ability to interact and support the structural and functional maturation of neurons.
Collapse
Affiliation(s)
- Jialin Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sivan Osenberg
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Irwin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Li-Hua Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nigel Lee
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mirjana Maletic-Savatic
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Nurit Ballas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Baroncelli L, Auel S, Rinne L, Schuster AK, Brand V, Kempkes B, Dietrich K, Müller M. Oral Feeding of an Antioxidant Cocktail as a Therapeutic Strategy in a Mouse Model of Rett Syndrome: Merits and Limitations of Long-Term Treatment. Antioxidants (Basel) 2022; 11:antiox11071406. [PMID: 35883897 PMCID: PMC9311910 DOI: 10.3390/antiox11071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that typically arises from spontaneous germline mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. For the first 6–18 months of life, the development of the mostly female patients appears normal. Subsequently, cognitive impairment, motor disturbances, hand stereotypies, epilepsy, and irregular breathing manifest, with previously learned skills being lost. Early mitochondrial impairment and a systemic oxidative burden are part of the complex pathogenesis, and contribute to disease progression. Accordingly, partial therapeutic merits of redox-stabilizing and antioxidant (AO) treatments were reported in RTT patients and Mecp2-mutant mice. Pursuing these findings, we conducted a full preclinical trial on male and female mice to define the therapeutic value of an orally administered AO cocktail composed of vitamin E, N-acetylcysteine, and α-lipoic acid. AO treatment ameliorated some of the microcephaly-related aspects. Moreover, the reduced growth, lowered blood glucose levels, and the hippocampal synaptic plasticity of Mecp2−/y mice improved. However, the first-time detected intensified oxidative DNA damage in Mecp2-mutant cortex persisted. The behavioral performance, breathing regularity, and life expectancy of Mecp2-mutant mice did not improve upon AO treatment. Long-term-treated Mecp2+/− mice eventually became obese. In conclusion, the AO cocktail ameliorated a subset of symptoms of the complex RTT-related phenotype, thereby further confirming the potential merits of AO-based pharmacotherapies. Yet, it also became evident that long-term AO treatment may lose efficacy and even aggravate the metabolic disturbances in RTT. This emphasizes the importance of a constantly well-balanced redox balance for systemic well-being.
Collapse
Affiliation(s)
- Laura Baroncelli
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Institute of Neuroscience, National Research Council (CNR), via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, I-56128 Pisa, Italy
| | - Stefanie Auel
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Lena Rinne
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Ann-Kathrin Schuster
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Victoria Brand
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Belinda Kempkes
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Katharina Dietrich
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
15
|
Leoncini S, Signorini C, Boasiako L, Scandurra V, Hayek J, Ciccoli L, Rossi M, Canitano R, De Felice C. Breathing Abnormalities During Sleep and Wakefulness in Rett Syndrome: Clinical Relevance and Paradoxical Relationship With Circulating Pro-oxidant Markers. Front Neurol 2022; 13:833239. [PMID: 35422749 PMCID: PMC9001904 DOI: 10.3389/fneur.2022.833239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBreathing abnormalities are common in Rett syndrome (RTT), a pervasive neurodevelopmental disorder almost exclusively affecting females. RTT is linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Our aim was to assess the clinical relevance of apneas during sleep-wakefulness cycle in a population with RTT and the possible impact of apneas on circulating oxidative stress markers.MethodsFemale patients with a clinical diagnosis of typical RTT (n = 66), MECP2 gene mutation, and apneas were enrolled (mean age: 12.5 years). Baseline clinical severity, arterial blood gas analysis, and red blood cell count were assessed. Breathing was monitored during the wakefulness and sleep states (average recording time: 13 ± 0.5 h) with a portable polygraphic screening device. According to prevalence of breath holdings, the population was categorized into the wakefulness apnea (WA) and sleep apnea (SA) groups, and apnea-hypopnea index (AHI) was calculated. The impact of respiratory events on oxidative stress was assessed by plasma and intra-erythrocyte non-protein-bound iron (P-NPBI and IE-NPBI, respectively), and plasma F2-isoprostane (F2-IsoP) assays.ResultsSignificant prevalence of obstructive apneas with values of AHI > 15 was present in 69.7% of the population with RTT. The group with SA showed significantly increased AHI values > 15 (p = 0.0032), total breath holding episodes (p = 0.007), and average SpO2 (p = 0.0001) as well as lower nadir SpO2 (p = 0.0004) compared with the patients with WAs. The subgroups of patients with WA and SA showed no significant differences in arterial blood gas analysis variables (p > 0.089). Decreased mean cell hemoglobin (MCH) (p = 0.038) was observed in the group with WAs. P-NPBI levels were significantly higher in the group with WA than in that with SAs (p = 0.0001). Stepwise multiple linear regression models showed WA being related to nadir SpO2, average SpO2, and P-NPBI (adjusted R2 = 0.613, multiple correlation coefficient = 0.795 p < 0.0001), and P-NPBI being related to average SpO2, blood PaCO2, red blood cell mean corpuscular volume (MCV), age, and topiramate treatment (adjusted R2 = 0.551, multiple correlation coefficient = 0.765, p < 0.0001).ConclusionOur findings indicate that the impact of apneas in RTT is uneven according to the sleep-wakefulness cycle, and that plasma redox active iron represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Silvia Leoncini
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lidia Boasiako
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Valeria Scandurra
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Canitano
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Claudio De Felice
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
16
|
Liu S, Pei P, Li L, Wu H, Zheng X, Wang S, Xiao Y, Pan H, Bao X, Qi Y, Ma Y. Mitochondrial DNA Copy Number in Rett Syndrome Caused by Methyl-CpG-Binding Protein-2 Variants. J Pediatr 2022; 241:154-161. [PMID: 34619114 DOI: 10.1016/j.jpeds.2021.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine changes in mitochondrial DNA (mtDNA) copy number in peripheral blood in Rett syndrome caused by methyl-CpG-binding protein-2 (MECP2) variants and explore the mechanism of mitochondrial dysfunction in Rett syndrome. STUDY DESIGN Female patients who were diagnosed with Rett syndrome and had an MECP2 variant (n = 142) were recruited in this study, along with the same number of age- and sex-matched healthy controls. MtDNA copy number was quantified by real-time quantitative polymerase chain reaction with TaqMan probes. The differences in mtDNA copy number between the Rett syndrome group and the control group were analyzed using the independent-samples t test. Linear regression, biserial correlation analysis, and one-way ANOVA were applied for the correlations between mtDNA copy number and age, clinical severity, variant types, functional domains, and hot-spot variants. RESULTS MtDNA copy number was found to be significantly increased in the patients with Rett syndrome with MECP2 gene variants compared with the control subjects. Age, clinical severity, variant types, functional domains, and hot-spot variants were not related to mtDNA copy number in patients with Rett syndrome. CONCLUSIONS MtDNA copy number is increased significantly in patients with Rett syndrome, suggesting that changes in mitochondrial function in Rett syndrome trigger a compensatory increase in mtDNA copy number and providing new possibilities for treating Rett syndrome, such as mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Siwen Liu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Pei Pei
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Lin Li
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hairong Wu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xuefei Zheng
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Songtao Wang
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yang Xiao
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hong Pan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
17
|
Signorini C, De Felice C, Durand T, Galano JM, Oger C, Leoncini S, Hayek J, Lee JCY, Lund TC, Orchard PJ. Isoprostanoid Plasma Levels Are Relevant to Cerebral Adrenoleukodystrophy Disease. Life (Basel) 2022; 12:146. [PMID: 35207434 PMCID: PMC8874514 DOI: 10.3390/life12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral adrenoleukodystrophy (ALD) is a rare neuroinflammatory disorder characterized by progressive demyelination. Mutations within the ABCD1 gene result in very long-chain fatty acid (VLCFA) accumulation within the peroxisome, particularly in the brain. While this VLCFA accumulation is known to be the driving cause of the disease, oxidative stress can be a contributing factor. For patients with early cerebral disease, allogeneic hematopoietic stem cell transplantation (HSCT) is the standard of care, and this can be supported by antioxidants. To evaluate the involvement of fatty acid oxidation in the disease, F2-isoprostanes (F2-IsoPs), F2-dihomo-isoprostanes (F2-dihomo-IsoPs) and F4-neuroprostanes (F4-NeuroPs)-which are oxygenated metabolites of arachidonic (ARA), adrenic (AdA) and docosahexaenoic (DHA) acids, respectively-in plasma samples from ALD subjects (n = 20)-with various phenotypes of the disease-were measured. Three ALD groups were classified according to patients with: (1) confirmed diagnosis of ALD but without cerebral disease; (2) cerebral disease in early period post-HSCT (<100 days post-HSCT) and on intravenous N-acetyl-L-cysteine (NAC) treatment; (3) cerebral disease in late period post-HSCT (beyond 100 days post-HSCT) and off NAC therapy. In our observation, when compared to healthy subjects (n = 29), in ALD (i), F2-IsoPs levels were significantly (p < 0.01) increased in all patients, with the single exception of the early ALD and on NAC subjects; (ii) significant elevated (p < 0.0001) amounts of F2-dihomo-IsoPs were detected, with the exception of patients with a lack of cerebral disease; (iii), a significant increase (p < 0.003) in F4-NeuroP plasma levels was detected in all ALD patients. Moreover, F2-IsoPs plasma levels were significantly higher (p = 0.038) in early ALD in comparison to late ALD stage, and F4-NeuroPs were significantly lower (p = 0.012) in ALD subjects with a lack of cerebral disease in comparison to the late disease stage. Remarkably, plasma amounts of all investigated isoprostanoids were shown to discriminate ALD patients vs. healthy subjects. Altogether, isoprostanoids are relevant to the phenotype of X-ALD and may be helpful in predicting the presence of cerebral disease and establishing the risk of progression.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (C.O.)
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (J.H.)
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (J.H.)
- Pediatric Speciality Center “L’Isola di Bau”, Certaldo, 50052 Florence, Italy
| | | | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.)
| |
Collapse
|
18
|
Golubiani G, Lagani V, Solomonia R, Müller M. Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex: Evidence for a Pronounced Multi-Facetted Metabolic Component in Rett Syndrome. Cells 2021; 10:cells10092494. [PMID: 34572143 PMCID: PMC8472238 DOI: 10.3390/cells10092494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/10/2023] Open
Abstract
Using unsupervised metabolomics, we defined the complex metabolic conditions in the cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and cognitive disabilities in females, results in profound cognitive impairment with autistic features, motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene, which encodes a transcriptional modulator. It then causes a deregulation of several target genes and metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and 33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochondrial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated pathways that were identified—in particular the markedly affected amino acid and carbohydrate metabolism—confirm a complex and multifaceted metabolic component in RTT, which in turn signifies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of potential biomarkers for a more detailed rating of disease severity and disease progression.
Collapse
Affiliation(s)
- Gocha Golubiani
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; (V.L.); (R.S.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
19
|
Coccini T, Ottonello M, Spigno P, Malovini A, Fiabane E, Roda E, Signorini C, Pistarini C. Biomarkers for alcohol abuse/withdrawal and their association with clinical scales and temptation to drink. A prospective pilot study during 4-week residential rehabilitation. Alcohol 2021; 94:43-56. [PMID: 33887366 DOI: 10.1016/j.alcohol.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
A bulk of evidence in the field of translational medicine applied to clinical toxicology and rehabilitation has highlighted the possibility of using biomarkers as a support in the diagnosis of alcohol-related diseases and in monitoring of alcohol withdrawal. In a cohort of 55 subjects admitted to a 4-week residential rehabilitation period for alcohol detoxification, we applied a complementary approach correlating novel and conventional peripheral blood and urine parameters in combination with clinical and functional evaluation, contextually considered with the patient's history. Biomarkers of oxidative, inflammatory, hepatic, and neurochemical effects paralleled by alcohol craving and clinical scale measurements were determined at two specific time points, i.e., admission and discharge. Concerning the post-discharge assessment (i.e., relapse evaluation one month after discharge), a follow-up oral interview during a clinical examination was applied to evaluate alcohol abstinence.Selected biomarkers, i.e., MCP1, F2-IsoPs, and SOD1, were altered in chronic alcoholics at admission, and then showed a clearly changing trend during hospitalization. Our findings demonstrated that these specific non-traditional biomarkers, measured together with more conventional ones (e.g., CDT, EtG, IL8, ALT, AST, GGT), could represent novel key parameters for monitoring alcohol use disorders and withdrawal, being also suggestive of the complexity of the psychoneuroimmune response to alcohol. A general improvement in psychological functioning (i.e., decreases in anxiety, depression, and psychological distress) was also revealed during the 4-week rehabilitation treatment, paralleled by an increase of well-being and positive changes in terms of scores. Moreover, a positive association between SOD1 and drink craving at admission was evidenced. Notably, both SOD1 and well-being displayed a significant relation with lower risk of alcohol relapse one month after discharge, indicating that SOD1 is a good predictor of reduced relapse probability. This 4-week residential rehabilitation protocol represents a sound strategy enabling identification of alcohol use disorders and monitoring of alcohol addiction state and withdrawal. However, it has to be emphasized that results derived from this pilot study need to be extensively validated in large and independent cohorts of subjects.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
| | - Marcella Ottonello
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| | - Paola Spigno
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Fiabane
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Caterina Pistarini
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| |
Collapse
|
20
|
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front Physiol 2021; 12:640374. [PMID: 34335286 PMCID: PMC8320392 DOI: 10.3389/fphys.2021.640374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.
Collapse
|
21
|
A O, U M, Lf B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine 2021; 69:103474. [PMID: 34256347 PMCID: PMC8324816 DOI: 10.1016/j.ebiom.2021.103474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Whereas energy function in the aging brain and their related neurodegenerative diseases has been explored in some detail, there is limited knowledge about molecular mechanisms and brain networks of energy metabolism during infancy and childhood. In this review we describe current insights on physiological brain energetics at prenatal and neonatal stages, and in childhood. We then describe the main groups of inborn errors of energy metabolism affecting the brain. Of note, scarce basic neuroscience research in this field limits the opportunity for these disorders to provide paradigms of energy utilization during neurodevelopment. Finally, we report energy metabolism disturbances in well-known non-metabolic neurodevelopmental disorders. As energy metabolism is a fundamental biological function, brain energy utilization is likely altered in most neuropediatric diseases. Precise knowledge on mechanisms of brain energy disturbance will open the possibility of metabolic modulation therapies regardless of disease etiology.
Collapse
Affiliation(s)
- Oyarzábal A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Musokhranova U
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barros Lf
- Center for Scientific Studies - CECs, Valdivia 5110466, Chile
| | - García-Cazorla A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
22
|
Signorini C, Leoncini S, Durand T, Galano JM, Guy A, Bultel-Poncé V, Oger C, Lee JCY, Ciccoli L, Hayek J, De Felice C. Circulating 4-F 4t-Neuroprostane and 10-F 4t-Neuroprostane Are Related to MECP2 Gene Mutation and Natural History in Rett Syndrome. Int J Mol Sci 2021; 22:ijms22084240. [PMID: 33921863 PMCID: PMC8073126 DOI: 10.3390/ijms22084240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype-phenotype associations in RTT.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
- Correspondence: (C.S.); (C.D.F.); Tel.: +39-0577-234499 (C.S.)
| | - Silvia Leoncini
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, CEDEX 5, 34093 Montpellier, France; (T.D.); (J.-M.G.); (A.G.); (V.B.-P.); (C.O.)
| | | | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Pediatric Speciality Center “L’Isola di Bau”, 50052 Certaldo, Florence, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Correspondence: (C.S.); (C.D.F.); Tel.: +39-0577-234499 (C.S.)
| |
Collapse
|
23
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021; 700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner. Despite significant progresses in our understanding of MeCP2 over the last few decades, there is still a considerable knowledge gap to translate the in vitro and in vivo experimental findings into therapeutic interventions. In this review, we provide a synopsis of the role of MeCP2 in the pathophysiology of non-neurological disorders, MeCP2-based research directions and therapeutic strategies for non-neurological disorders are also discussed.
Collapse
|
25
|
Correlation of dystonia severity and iron accumulation in Rett syndrome. Sci Rep 2021; 11:838. [PMID: 33436916 PMCID: PMC7804965 DOI: 10.1038/s41598-020-80723-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Individuals with Rett syndrome (RTT) commonly demonstrate Parkinsonian features and dystonia at teen age; however, the pathological reason remains unclear. Abnormal iron accumulation in deep gray matter were reported in some Parkinsonian-related disorders. In this study, we investigated the iron accumulation in deep gray matter of RTT and its correlation with dystonia severity. We recruited 18 RTT-diagnosed participants with MECP2 mutations, from age 4 to 28, and 28 age-gender matched controls and investigated the iron accumulation by susceptibility weighted image (SWI) in substantia nigra (SN), globus pallidus (GP), putamen, caudate nucleus, and thalamus. Pearson's correlation was applied for the relation between iron accumulation and dystonia severity. In RTT, the severity of dystonia scales showed significant increase in subjects older than 10 years, and the contrast ratios of SWI also showed significant differences in putamen, caudate nucleus and the average values of SN, putamen, and GP between RTT and controls. The age demonstrated moderate to high negative correlations with contrast ratios. The dystonia scales were correlated with the average contrast ratio of SN, putamen and GP, indicating iron accumulation in dopaminergic system and related grey matter. As the first SWI study for RTT individuals, we found increased iron deposition in dopaminergic system and related grey matter, which may partly explain the gradually increased dystonia.
Collapse
|
26
|
Adebayo OL, Dewenter I, Rinne L, Golubiani G, Solomonia R, Müller M. Intensified mitochondrial hydrogen peroxide release occurs in all brain regions, affects male as well as female Rett mice, and constitutes a life-long burden. Arch Biochem Biophys 2020; 696:108666. [PMID: 33160914 DOI: 10.1016/j.abb.2020.108666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/28/2022]
Abstract
The neurodevelopmental disorder Rett syndrome (RTT) affects mostly females. Upon an apparently normal initial development, cognitive impairment, irregular breathing, motor dysfunction, and epilepsy occur. The complex pathogenesis includes, among others, mitochondrial impairment, redox imbalance, and oxidative damage. As these arise already in neonatal Rett mice, they were proposed contributors of disease progression. Several mitochondrial studies in RTT used either full brains or selected brain regions only. Here, we mapped mitochondria-related ROS generation brain wide. Using sophisticated multi-sample spectrofluorimetry, H2O2 release by isolated mitochondria was quantified in a coupled reaction of Amplex UltraRed and horseradish peroxidase. All brain regions and the entire lifespan were characterized in male and female mice. In WT mice, mitochondrial H2O2 release was usually highest in cortex and lowest in hippocampus. Maximum rates occurred at postnatal day (PD) 10 and they slightly declined with further maturation. Already at PD 10, male and female Rett mice showed exaggerated mitochondrial H2O2 releases in first brain regions and persistent brain-wide increases from PD 50 on. Interestingly, female Rett mice were more intensely affected than male Rett mice, with their brainstem, midbrain and hippocampus being most severely struck. In conclusion, we used a reliable multi-sample cuvette-based assay on mitochondrial ROS release to perform brain-wide analyzes along the entire lifespan. Mitochondrial H2O2 release in Rett mice is intensified in all brain regions, affects hemizygous males and heterozygous females, and involves all maturational stages. Therefore, intensified mitochondrial H2O2 release seriously needs to be considered throughout RTT pathogenesis and may constitute a potential therapeutic target.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Germany; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230, Ede, Osun State, Nigeria
| | - Ina Dewenter
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Germany
| | - Lena Rinne
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Germany
| | - Gocha Golubiani
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Germany; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Michael Müller
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Germany.
| |
Collapse
|
27
|
Romano A, Caprì T, Semino M, Bizzego I, Di Rosa G, Fabio RA. Gross Motor, Physical Activity and Musculoskeletal Disorder Evaluation Tools for Rett Syndrome: A Systematic Review. Dev Neurorehabil 2020; 23:485-501. [PMID: 31668104 DOI: 10.1080/17518423.2019.1680761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In recent years, much attention has been paid to motor impairment of persons with Rett Syndrome (RTT), with increasing literature aimed to describe gross motor functioning and musculoskeletal disorders of the RTT population. The aim of this systematic review is to describe clinical evaluation tools used in the last decade to assess motor functioning and musculoskeletal abnormalities of patients with RTT. Thirty-four studies were reviewed and 20 tools were presented. Results showed that only two tools were used to measure functional change after rehabilitative or therapeutic interventions. This review underlies the lack of adequate evaluation tools to assess musculoskeletal abnormalities and deformities in RTT population. The absence of these assessments could be due to a statistical difficulty as it is challenging to build an evaluation tool that can score the entities of the abnormalities related to the amount of disability they cause.
Collapse
Affiliation(s)
- Alberto Romano
- Movement Analysis and Robotics Laboratory (MARLab) , Rome, Italy
| | - Tindara Caprì
- Department of Clinical and Experimental Medicine, University of Messina , Via Bivona, Messina, Italy
| | - Martina Semino
- Centro AIRETT Ricerca e Innovazione (CARI), Research and Innovation Airett Center , Verona, Italy
| | - Ilaria Bizzego
- Centro AIRETT Ricerca e Innovazione (CARI), Research and Innovation Airett Center , Verona, Italy
| | - Gabriella Di Rosa
- Division of Child Neurology and Psychiatry, G. Martino Hospital, University of Messina , Messina, Italy
| | - Rosa Angela Fabio
- Department of Clinical and Experimental Medicine, University of Messina , Via Bivona, Messina, Italy
| |
Collapse
|
28
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
29
|
Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L, Pietraforte D, Di Domenico F, Perluigi M, Vacca RA, De Filippis B. The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. J Clin Med 2020; 9:jcm9061669. [PMID: 32492904 PMCID: PMC7355965 DOI: 10.3390/jcm9061669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | | | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
- Correspondence:
| |
Collapse
|
30
|
Jagtap S, Thanos JM, Fu T, Wang J, Lalonde J, Dial TO, Feiglin A, Chen J, Kohane I, Lee JT, Sheridan SD, Perlis RH. Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Hum Mol Genet 2020; 28:3625-3636. [PMID: 31518399 DOI: 10.1093/hmg/ddz208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Collapse
Affiliation(s)
- Smita Jagtap
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Thomas O Dial
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Chen
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Neul JL, Skinner SA, Annese F, Lane J, Heydemann P, Jones M, Kaufmann WE, Glaze DG, Percy AK. Metabolic Signatures Differentiate Rett Syndrome From Unaffected Siblings. Front Integr Neurosci 2020; 14:7. [PMID: 32161522 PMCID: PMC7052375 DOI: 10.3389/fnint.2020.00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023] Open
Abstract
Rett syndrome (RTT, OMIM 312750), a severe neurodevelopmental disorder characterized by regression with loss of spoken language and hand skills, development of characteristic hand stereotypies, and gait dysfunction, is primarily caused by de novo mutations in the X-linked gene Methyl-CpG-binding protein 2 (MECP2). Currently, treatment options are limited to symptomatic management, however, reversal of disease phenotype is possible in mouse models by restoration of normal MECP2 gene expression. A significant challenge is the lack of biomarkers of disease state, disease severity, or treatment response. Using a non-targeted metabolomic approach we evaluated metabolite profiles in plasma from thirty-four people with RTT compared to thirty-seven unaffected age- and gender-matched siblings. We identified sixty-six significantly altered metabolites that cluster broadly into amino acid, nitrogen handling, and exogenous substance pathways. RTT disease metabolite and metabolic pathways abnormalities point to evidence of oxidative stress, mitochondrial dysfunction, and alterations in gut microflora. These observed changes provide insight into underlying pathological mechanisms and the foundation for biomarker discovery of disease severity biomarkers.
Collapse
Affiliation(s)
- Jeffrey L Neul
- Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,Baylor College of Medicine, Houston, TX, United States
| | | | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, United States
| | - Jane Lane
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Mary Jones
- Benioff Children's Hospital Oakland, University of California, San Francisco, San Francisco, CA, United States
| | | | | | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Guo J, Han S, Lu X, Guo Z, Zeng S, Zheng X, Zheng B. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Can K, Menzfeld C, Rinne L, Rehling P, Kügler S, Golubiani G, Dudek J, Müller M. Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O 2 Consumption and ROS Release. Front Physiol 2019; 10:479. [PMID: 31114506 PMCID: PMC6503037 DOI: 10.3389/fphys.2019.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y ) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.
Collapse
Affiliation(s)
- Karolina Can
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lena Rinne
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Peter Rehling
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Klinik für Neurologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gocha Golubiani
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Jan Dudek
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
36
|
Müller M. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neurosci Biobehav Rev 2019; 98:154-163. [PMID: 30639673 DOI: 10.1016/j.neubiorev.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder affecting mostly girls. A seemingly normal initial development is followed by developmental stagnation and regression, leading to severe mental impairment with autistic features, motor dysfunction, irregular breathing and epilepsy. Currently, a cure does not exist. Due to the close association of RTT with mitochondrial alterations, cellular redox-impairment and oxidative stress, compounds stabilizing mitochondrial function, cellular redox-homeostasis, and oxidant detoxification are increasingly considered as treatment concepts. Indeed, antioxidants and free-radical scavengers ameliorate certain aspects of the complex and severe clinical presentation of RTT. To further evaluate these strategies, reliable biosensors are needed to quantify redox-conditions in brain and peripheral organs of mouse models or in patient-derived cells. Genetically-encoded redox-sensors meet these requirements. Expressed in transgenic mouse-models such as our unique Rett-redox indicator mice, they will report for any cell type desired the severity of oxidant stress throughout the various disease stages of RTT. Furthermore, these sensors will be crucial to evaluate in vitro and in vivo the outcome of mitochondria- and redox-balance targeted treatments.
Collapse
Affiliation(s)
- Michael Müller
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, D-37073 Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro-und Sinnesphysiologie, Humboldtallee 23, D-37073 Göttingen, Germany.
| |
Collapse
|
37
|
Mitochondrial Electron Transport Chain Complex Dysfunction in MeCP2 Knock-Down Astrocytes: Protective Effects of Quercetin Hydrate. J Mol Neurosci 2018; 67:16-27. [PMID: 30519865 DOI: 10.1007/s12031-018-1197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022]
Abstract
Astrocytes play the central role in CNS metabolism to support neuronal functions. Mehyl-CpG-binding protein 2 (MeCP2) is the global transcription factor with differential expression in neuronal and non-neuronal cells. MeCP2 mutation and downstream detrimental effects have been reported in astrocytes also in MeCP2-associated neurodevelopmental disorder-Rett syndrome. Several studies have shown mitochondrial impairment linked to ROS production and reduced ATP synthesis in Rett patients and models, but consequences of MeCP2 deficiency on mitochondrial electron transport chain complexes in astrocytes and effect of known antioxidant quercetin aglycone has not yet been reported. The present study aimed to investigate effect of quercetin on mitochondrial functioning in MeCP2-deficient astrocytes. Our data show onefold upregulated Uqcrc1 and Ndufv2 gene expression, subtle change in protein expression, and significantly reduced mitochondrial respiratory chain complex-II and complex-III enzyme activities in MeCP2 knock-down astrocytes. Intracellular calcium robustly increased and mitochondrial membrane potential decreased, while no change in ROS was observed in MeCP2 knock-down astrocytes. Quercetin increased MeCP2 and normalized Uqcrc1 and Ndufv2 gene expression but did not modulate MeCP2 and Ndufv2 proteins expression. Interestingly, quercetin upregulated significantly the mitochondrial respiratory complex-II, complex-III, and complex-IV activities in dose-dependent manner. It also restored intracellular calcium level and mitochondrial membrane potential. In vitro observations suggest the beneficial effect of quercetin in mitochondrial functioning in MeCP2-deficient condition. There are no reports focusing on role of quercetin in mitochondrial function in MeCP2-deficient astrocytes, and these observations serve as preliminary data to evaluate quercetin's effects in vivo.
Collapse
|
38
|
Shovlin S, Tropea D. Transcriptome level analysis in Rett syndrome using human samples from different tissues. Orphanet J Rare Dis 2018; 13:113. [PMID: 29996871 PMCID: PMC6042368 DOI: 10.1186/s13023-018-0857-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of neuro-genetic disorders have been mostly investigated in the brain, however, for some pathologies, transcriptomic analysis in multiple tissues represent an opportunity and a challenge to understand the consequences of the genetic mutation. This is the case for Rett Syndrome (RTT): a neurodevelopmental disorder predominantly affecting females that is characterised by a loss of purposeful movements and language accompanied by gait abnormalities and hand stereotypies. Although the genetic aetiology is largely associated to Methyl CpG binding protein 2 (MECP2) mutations, linking the pathophysiology of RTT and its clinical symptoms to direct molecular mechanisms has been difficult.One approach used to study the consequences of MECP2 dysfunction in patients, is to perform transcriptomic analysis in tissues derived from RTT patients or Induced Pluripotent Stem cells. The growing affordability and efficiency of this approach has led to a far greater understanding of the complexities of RTT syndrome but is also raised questions about previously held convictions such as the regulatory role of MECP2, the effects of different molecular mechanisms in different tissues and role of X Chromosome Inactivation in RTT.In this review we consider the results of a number of different transcriptomic analyses in different patients-derived preparations to unveil specific trends in differential gene expression across the studies. Although the analyses present limitations- such as the limited sample size- overlaps exist across these studies, and they report dysregulations in three main categories: dendritic connectivity and synapse maturation, mitochondrial dysfunction, and glial cell activity.These observations have a direct application to the disorder and give insights on the altered mechanisms in RTT, with implications on potential diagnostic criteria and treatments.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute- TTMI, St James Hospital, D8, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute- TTMI, St James Hospital, D8, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCIN, Loyd Building, Dublin2, Dublin, Ireland
| |
Collapse
|
39
|
Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants (Basel) 2018; 7:antiox7070088. [PMID: 29997375 PMCID: PMC6071265 DOI: 10.3390/antiox7070088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.
Collapse
|
40
|
Ahmed-Farid OA, Rizk HA, Shehata AM. Hydrogen peroxide modulates redox status, energy metabolism, and gene expression in a dose- and time-dependent manner in rat liver. J Biochem Mol Toxicol 2018; 32:e22199. [DOI: 10.1002/jbt.22199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Omar A. Ahmed-Farid
- Physiology Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Hanan A. Rizk
- Pharmacology Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Ahmed M. Shehata
- Physiology Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| |
Collapse
|
41
|
Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front Physiol 2018; 9:858. [PMID: 30038581 PMCID: PMC6046448 DOI: 10.3389/fphys.2018.00858] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complex systemic response evolved to cope with cellular injury, either due to infectious agents or, in general, with sporadic events challenging tissue integrity and function. Researchers involved in different fields have the tendency to look at the inflammatory response with different angles, according to their specific interest. Established its complexity, one of the most evident features of the inflammatory response is the generation of a pro-oxidative environment due to the production of high fluxes of pro-oxidant species. This production begins locally, close to the sites of tissue damage or infection, but eventually becomes a chronic challenge for the organism, if the inflammatory response is not properly controlled. In this review, we focus on this specific aspect of chronic, low-level sub-clinical inflammatory response. We propose the term "OxInflammation" as a novel operative term describing a permanent pro-oxidative feature that interact, in a positive feed-back manner, to a not yet clinically detectable inflammatory process, leading in a long run (chronically) to a systemic/local damage, as a consequence of the cross talk between inflammatory, and oxidative stress mediators. Therefore, it could be useful to analyze inflammatory markers in pathologies where there is an alteration of the redox homeostasis, although an inflammatory status is not clinically evident.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics - Food and Nutrition Research Centre (C.R.E.A.-AN), Rome, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
42
|
Di Stefano A, Coccini T, Roda E, Signorini C, Balbi B, Brunetti G, Ceriana P. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int J Chron Obstruct Pulmon Dis 2018; 13:1691-1700. [PMID: 29872287 PMCID: PMC5973466 DOI: 10.2147/copd.s159915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background and aims Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by different phenotypes with either bronchial airways alterations or emphysema prevailing. As blood biomarkers could be clinically useful for COPD stratification, we aimed at investigating the levels of blood biomarkers in COPD patients differentiated by phenotype: prevalent chronic airway disease versus emphysema. Methods In 23 COPD patients with prevalent airway disease (COPD-B), 22 COPD patients with prevalent emphysema (COPD-E), 9 control smokers (CSs), and 18 control nonsmokers (CNSs), we analyzed the expression levels of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, epidermal growth factor (EGF), monocyte chemotactic protein (MCP)-1, and vascular endothelial growth factor by enzyme-linked immunosorbent assay in plasma/serum; glutathione peroxidase and superoxide dismutase (SOD)-1 by immunochemical kits in plasma; and free F2-isoprostanes (F2-IsoPs) by gas chromatography in plasma. Results F2-IsoPs level was increased in COPD-B and COPD-E compared with CSs and CNSs; in addition, CS showed higher levels than CNSs; SOD1 level was lower in COPD-B and COPD-E than that in CNSs. Interestingly, MCP-1 level was higher only in COPD-E versus CSs and CNSs; EGF and IL-8 levels were higher in COPD-B and COPD-E versus CNSs; IL-6 level was increased in all three smoking groups (COPD-B, COPD-E, and CSs) versus CNS; IFN-γ and IL-1α levels were higher in CSs than in CNSs; and IL-1α level was also higher in CSs versus COPD-B and COPD-E. In all subjects, F2-IsoPs level correlated positively and significantly with MCP-1, IL-2, IL-1β, IFN-γ, and TNF-α and negatively with SOD1. When correlations were restricted to COPD-E and COPD-B groups, F2-IsoPs maintained the positive associations with IFN-γ, TNF-α, and IL-2. Conclusion We did not find any specific blood biomarkers that could differentiate COPD patients with prevalent airway disease from those with prevalent emphysema. The MCP-1 increase in COPD-E, associated with the imbalance of oxidant/antioxidant markers, may play a role in inducing emphysema.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Elisa Roda
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bruno Balbi
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Giuseppe Brunetti
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Piero Ceriana
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| |
Collapse
|
43
|
Gold WA, Krishnarajy R, Ellaway C, Christodoulou J. Rett Syndrome: A Genetic Update and Clinical Review Focusing on Comorbidities. ACS Chem Neurosci 2018; 9:167-176. [PMID: 29185709 DOI: 10.1021/acschemneuro.7b00346] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a unique neurodevelopmental disorder that primarily affects females resulting in severe cognitive and physical disabilities. Despite the commendable collective efforts of the research community to better understand the genetics and underlying biology of RTT, there is still no cure. However, in the past 50 years, since the first report of RTT, steady progress has been made in the accumulation of clinical and molecular information resulting in the identification of a number of genes associated with RTT and associated phenotypes, improved diagnostic criteria, natural history studies, curation of a number of databases capturing genotypic and phenotypic data, a number of promising clinical trials and exciting novel therapeutic options which are currently being tested in laboratory and clinical settings. This Review focuses on the current knowledge of the clinical aspects of RTT, with particular attention being paid to clinical trials and the comorbidities of the disorder as well as the genetic etiology and the recognition of new diseases genes.
Collapse
Affiliation(s)
- Wendy A Gold
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Rahul Krishnarajy
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Carolyn Ellaway
- Genetic
Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - John Christodoulou
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Neurodevelopmental
Genomics Research Group, Murdoch Children’s Research Institute,
and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
44
|
Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol 2018; 8:170216. [PMID: 29445033 PMCID: PMC5830535 DOI: 10.1098/rsob.170216] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Vashi
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
45
|
Nance E, Kambhampati SP, Smith ES, Zhang Z, Zhang F, Singh S, Johnston MV, Kannan RM, Blue ME, Kannan S. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. J Neuroinflammation 2017; 14:252. [PMID: 29258545 PMCID: PMC5735803 DOI: 10.1186/s12974-017-1004-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background Rett syndrome (RTT) is a pervasive developmental disorder that is progressive and has no effective cure. Immune dysregulation, oxidative stress, and excess glutamate in the brain mediated by glial dysfunction have been implicated in the pathogenesis and worsening of symptoms of RTT. In this study, we investigated a new nanotherapeutic approach to target glia for attenuation of brain inflammation/injury both in vitro and in vivo using a Mecp2-null mouse model of Rett syndrome. Methods To determine whether inflammation and immune dysregulation were potential targets for dendrimer-based therapeutics in RTT, we assessed the immune response of primary glial cells from Mecp2-null and wild-type (WT) mice to LPS. Using dendrimers that intrinsically target activated microglia and astrocytes, we studied N-acetyl cysteine (NAC) and dendrimer-conjugated N-acetyl cysteine (D-NAC) effects on inflammatory cytokines by PCR and multiplex assay in WT vs Mecp2-null glia. Since the cysteine-glutamate antiporter (Xc−) is upregulated in Mecp2-null glia when compared to WT, the role of Xc− in the uptake of NAC and l-cysteine into the cell was compared to that of D-NAC using BV2 cells in vitro. We then assessed the ability of D-NAC given systemically twice weekly to Mecp2-null mice to improve behavioral phenotype and lifespan. Results We demonstrated that the mixed glia derived from Mecp2-null mice have an exaggerated inflammatory and oxidative stress response to LPS stimulation when compared to WT glia. Expression of Xc− was significantly upregulated in the Mecp2-null glia when compared to WT and was further increased in the presence of LPS stimulation. Unlike NAC, D-NAC bypasses the Xc− for cell uptake, increasing intracellular GSH levels while preventing extracellular glutamate release and excitotoxicity. Systemically administered dendrimers were localized in microglia in Mecp2-null mice, but not in age-matched WT littermates. Treatment with D-NAC significantly improved behavioral outcomes in Mecp2-null mice, but not survival. Conclusions These results suggest that delivery of drugs using dendrimer nanodevices offers a potential strategy for targeting glia and modulating oxidative stress and immune responses in RTT. Electronic supplementary material The online version of this article (10.1186/s12974-017-1004-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Siva P Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fan Zhang
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarabdeep Singh
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael V Johnston
- Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA
| | - Mary E Blue
- Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Fabio R, Martino G, Capri T, Giacchero R, Giannatiem S, Antonietti A, La Briola F, Banderali G, Canevini M, Vignoli A. Long Chain Poly-unsaturated Fatty Acid Supplementation in Rett Syndrome: A Randomized Placebo-controlled Trial. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajcn.2018.37.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Valacchi G, Pecorelli A, Cervellati C, Hayek J. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation. Free Radic Biol Med 2017; 111:270-280. [PMID: 28063942 DOI: 10.1016/j.freeradbiomed.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients..
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Viale Mario Bracci, 53100 Siena, Italy
| |
Collapse
|
48
|
Pathogenesis of Lethal Aspiration Pneumonia in Mecp2-null Mouse Model for Rett Syndrome. Sci Rep 2017; 7:12032. [PMID: 28931890 PMCID: PMC5607245 DOI: 10.1038/s41598-017-12293-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2), located on the X chromosome. Many RTT patients have breathing abnormalities, such as apnea and breathing irregularity, and respiratory infection is the most common cause of death in these individuals. Previous studies showed that MeCP2 is highly expressed in the lung, but its role in pulmonary function remains unknown. In this study, we found that MeCP2 deficiency affects pulmonary gene expression and structures. We also found that Mecp2-null mice, which also have breathing problems, often exhibit inflammatory lung injury. These injuries occurred in specific sites in the lung lobes. In addition, polarizable foreign materials were identified in the injured lungs of Mecp2-null mice. These results indicated that aspiration might be a cause of inflammatory lung injury in Mecp2-null mice. On the other hand, MeCP2 deficiency affected the expression of several neuromodulator genes in the lower brainstem. Among them, neuropeptide substance P (SP) immunostaining was reduced in Mecp2-null brainstem. These findings suggest that alteration of SP expression in brainstem may be involved in autonomic dysregulation, and may be one of the causes of aspiration in Mecp2-null mice.
Collapse
|
49
|
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3064016. [PMID: 28894505 PMCID: PMC5574314 DOI: 10.1155/2017/3064016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with mutations in the MECP2 gene. Mostly girls are affected, and an apparently normal development is followed by cognitive impairment, motor dysfunction, epilepsy, and irregular breathing. Various indications suggest mitochondrial dysfunction. In Rett mice, brain ATP levels are reduced, mitochondria are leaking protons, and respiratory complexes are dysregulated. Furthermore, we found in MeCP2-deficient mouse (Mecp2−/y) hippocampus an intensified mitochondrial metabolism and ROS generation. We now used emission ratiometric 2-photon imaging to assess mitochondrial morphology, mass, and membrane potential (ΔΨm) in Mecp2−/y hippocampal astrocytes. Cultured astrocytes were labeled with the ΔΨm marker JC-1, and semiautomated analyses yielded the number of mitochondria per cell, their morphology, and ΔΨm. Mecp2−/y astrocytes contained more mitochondria than wild-type (WT) cells and were more oxidized. Mitochondrial size, ΔΨm, and vulnerability to pharmacological challenge did not differ. The antioxidant Trolox opposed the oxidative burden and decreased the mitochondrial mass, thereby dampening the differences among WT and Mecp2−/y astrocytes; mitochondrial size and ΔΨm were not markedly affected. In conclusion, mitochondrial alterations and redox imbalance in RTT also involve astrocytes. Mitochondria are more numerous in Mecp2−/y than in WT astrocytes. As this genotypic difference is abolished by Trolox, it seems linked to the oxidative stress in RTT.
Collapse
|
50
|
Mackay J, Downs J, Wong K, Heyworth J, Epstein A, Leonard H. Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study. J Neurodev Disord 2017; 9:15. [PMID: 28465761 PMCID: PMC5410057 DOI: 10.1186/s11689-017-9196-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rett syndrome is a severe neurodevelopmental disorder associated with mutations in the MECP2 gene. Irregular breathing patterns and abdominal bloating are prominent but poorly understood features. Our aims were to characterize the abnormal breathing patterns and abdominal bloating, investigate the distribution of these by age and mutation type and examine their impact and management from a caregiver perspective. METHODS We invited previously recruited families from the International Rett Syndrome Study to complete a web-based questionnaire concerning their family member with Rett syndrome aged between 2 and 57 years. We used logistic regression to investigate presence, frequency and impact of breath-holding, hyperventilation, or abdominal bloating by age group and mutation type. Age of onset for both breathing abnormalities was investigated using time-to-onset analysis, and the Kaplan-Meier method was used to estimate the failure function for the study sample. Descriptive statistics were used to characterize the management of irregular breathing. RESULTS Questionnaires were returned by 413/482 (85.7%) families. Breath-holding was reported for 68.8%, hyperventilation for 46.4% and abdominal bloating for 42.4%. Hyperventilation was more prevalent and frequent in those younger than 7 years of age and abdominal bloating in those aged over 20 years. Onset of breathing irregularities usually occurred during early childhood. Caregivers perceived that daily life was considerably impacted for almost half (44.1%) of those with abdominal bloating and in just over than a third of those with breath-holding (35.8%) or hyperventilation (35.1%). Although perceived impact was broadly comparable between age and mutation groups for breath-holding, hyperventilation and abdominal bloating, girls and women with a p.Arg294* mutation were considered to be more affected by all three conditions. Only 31 individuals had received medically prescribed treatments including 12 different medications, added oxygen, rebreathing apparatus or non-invasive ventilation. CONCLUSIONS Autonomic disturbances are prevalent and burdensome in Rett syndrome. This information may guide the design of inclusion criteria and outcome measures for clinical intervention trials targeting autonomic abnormalities. Further investigation of available treatments is necessary to delineate evidence-based management pathways.
Collapse
Affiliation(s)
- Jessica Mackay
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, WA 6872 Australia
- School of Population Health, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, WA 6872 Australia
- School of Physiotherapy and Exercise Science, Curtin University, GPO Box U1987, Perth, WA 6845 Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, WA 6872 Australia
| | - Jane Heyworth
- School of Population Health, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Amy Epstein
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, WA 6872 Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, WA 6872 Australia
| |
Collapse
|