1
|
Liao S, Chen D, Long H, Jiang S, Fan J, Li S, Qi Y, Xue L, Ding Y, Chen Y. Hydrogen sulfide attenuates oxidative stress-induced cellular senescence via the Sirt3/SOD2 signaling pathway in chronic obstructive pulmonary disease. Chin Med J (Engl) 2025:00029330-990000000-01470. [PMID: 40082252 DOI: 10.1097/cm9.0000000000003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Senescence significantly participates in shaping the pathobiological process underlying chronic obstructive pulmonary disease (COPD). Currently, the mechanisms underlying the anti-aging effects within COPD of hydrogen sulfide (H2S) are not fully illustrated. METHODS Immunohistochemistry (IHC) staining was performed on human lung tissue to detect the expression levels of sirtuin 3 (Sirt3), cyclin-dependent kinase 4 inhibitor (P16), and cystathionin gamma lyase (CTH). An animal model including wild-type (WT) and Sirt3 knockout (KO) mice was established by exposing them to cigarette smoking (CS) for 24 weeks, with or without intraperitoneal injection of sodium hydrosulfide (NaHS, 50 µmol∙L-1∙kg-1) 30 min prior to CS exposure. Lung function was assessed. The expression levels of P16, cyclin-dependent kinase inhibitor 1 (P21), Sirt3, manganese superoxide dismutase (SOD2), manganese acetylated superoxide dismutase (ac-SOD2), interleukin-6 (IL-6), IL-8, malondialdehyde (MDA), and glutathione (GSH), as well as the activity of SOD2 and Sirt3, were evaluated. Human bronchial epithelial BEAS-2B cells were subjected to diverse cigarette smoking extract (CSE) concentrations for 48 h with or without sodium hydrosulfide (NaHS). Subsequently, the levels of total intracellular reactive oxygen species (T-ROS), mitochondrial reactive oxygen species (mitoROS), mitochondrial membrane potential (MMP), senescence-associated β-galactosidase (SA-β-gal) staining positive cells, and related marker proteins and cytokines were assessed. Furthermore, the Sirt3-specific inhibitor 3-TYP and small interfering RNAs (siRNAs) of Sirt3 were used to examine the mechanisms whereby H2S inhibits oxidative stress and senescence in COPD. RESULTS IHC showed a significant reduction of CTH and Sirt3 protein levels in the lung tissue of COPD with smoking patients and smokers without COPD compared to non-smokers. Furthermore, the expression of the aging marker protein P16 was notably elevated in the COPD with smoking group compared to the smokers without COPD and non-smoker groups. Furthermore, our results demonstrated that exposure to CS resulted in imbalanced oxidative and cellular senescence, including elevated mitoROS, T-ROS, MDA, and ac-SOD2, along with increased proportions of SA-β-gal staining positive cells and the increased expression levels of IL-6, IL-8, P21, and P16, as well as decreased GSH levels, SOD2 and Sirt3 activities, and Sirt3 expression, which ultimately contribute to emphysema development and impaired lung function. However, pretreatment with NaHS effectively reversed these detrimental effects. Nevertheless, the protective effect of NaHS was alleviated in Sirt3 KO mice and in cellular models treated with Sirt3 siRNA and 3-TYP. CONCLUSION Our study indicates that H2S inhibits oxidative stress and cellular senescence by modulating the Sirt3/SOD2 signaling pathway, therefore attenuating the emphysema and impaired lung function induced by CS.
Collapse
Affiliation(s)
- Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Dian Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Huanyu Long
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jing Fan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shurun Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yongfen Qi
- Department of Pathogenic Biology, Peking University School of Basic Medicine, Beijing 100191, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Yanling Ding
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
2
|
Wu L, Zhang E, Tu Y, Chen Y, Wang C, Ren Y, Fang B. Inherent immunity and adaptive immunity: Mechanism and role in AECOPD. Innate Immun 2025; 31:17534259251322612. [PMID: 40017227 PMCID: PMC11869301 DOI: 10.1177/17534259251322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the leading cause of hospitalization and mortality in COPD patients. The occurrence of antibiotic resistance and the progression of non-infectious diseases contribute to poor patient outcomes. Thus, a comprehensive understanding of the mechanisms underlying AECOPD is essential for effective prevention. It is widely acknowledged that the immune system plays a fundamental role in pathogen clearance and the development of inflammation. Immune dysregulation, either due to deficiency or hyperactivity, has been implicated in AECOPD pathogenesis. Therefore, the purpose of this review is to investigate the possible mechanisms underlying dysregulated immune function and disease progression in COPD patients, specifically focusing on the innate and adaptive immune responses. The ultimate aim is to provide new insights for clinical prevention and treatment strategies targeting AECOPD.
Collapse
Affiliation(s)
- Linguangjin Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| | - Erxin Zhang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| |
Collapse
|
3
|
Taniguchi N, Ohkawa Y, Kuribara T, Abe J, Harada Y, Takahashi M. Roles of Glyco-Redox in Epithelial Mesenchymal Transition and Mesenchymal Epithelial Transition, Cancer, and Various Diseases. Antioxid Redox Signal 2024; 41:910-926. [PMID: 39345141 DOI: 10.1089/ars.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Significance: Reduction-oxidation (redox) regulation is an important biological phenomenon that provides a balance between antioxidants and the generation of reactive oxygen species and reactive nitrogen species under pathophysiological conditions. Structural and functional changes in glycans are also important as post-translational modifications of proteins. The integration of glycobiology and redox biology, called glyco-redox has provided new insights into the mechanisms of epithelial-mesenchymal transition (EMT)/mesenchymal-epithelial transition (MET), cancer, and various diseases including Alzheimer's disease, chronic obstructive lung disease, type 2 diabetes, interstitial pneumonitis, and ulcerative colitis. Recent Advances: Glycans are biosynthesized by specific glycosyltransferases and each glycosyltransferase is either directly or indirectly regulated by oxidative stress and redox regulation. A typical example of glyco-redox is the role of N-glycan referred to as core fucose in superoxide dismutase 3. This glycan was found to be involved in the growth inhibition of cancer cell lines. Critical Issues: The significance of glyco-redox in EMT/MET, cancer, and various diseases was found in major N-glycan branching glycosyltransferases β1,4N-acetylglucosaminyltransferase III, β1,4N-acetylglucosaminyltransferase IV, β1,6N-acetylglucosaminyltransferase V, β1,4-acetylglucosaminyltransfearfse VI, β1,6-acetylglucosaminyltransferase IX, α-1,6 fucosyltransferase, and β-galactoside α-2,6-sialyltransferase 1. Herein, we summarize previous reports on target proteins and how this relates to oxidative stress. We also discuss the products of these processes and their significance to cancer and various diseases. Future Direction: A clear-cut understanding of the significance of glyco-redox in relation to prevention, diagnosis, and therapeutics is required. These studies will open a new road toward glycobiology and redox biology. Antioxid. Redox Signal. 41, 910-926.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Taiki Kuribara
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Junpei Abe
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Zhao J, Jing C, Fan R, Zhang W. Prognostic model of fibroblasts in idiopathic pulmonary fibrosis by combined bulk and single-cell RNA-sequencing. Heliyon 2024; 10:e34519. [PMID: 39113997 PMCID: PMC11305307 DOI: 10.1016/j.heliyon.2024.e34519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Fibroblasts play an important role in the development of idiopathic pulmonary fibrosis (IPF). Methods We employed single-cell RNA-sequencing data obtained from the Gene Expression Omnibus database to perform cell clustering and annotation analyses. We then performed secondary clustering of fibroblasts and conducted functional enrichment and cell trajectory analyses of the two newly defined fibroblast subtypes. Bulk RNA-sequencing data were used to perform consensus clustering and weighted gene co-expression network analysis. We constructed a fibroblast-related prognostic model using least absolute shrinkage, selection operator regression, and Cox regression analysis. The prognostic model was validated using a validation dataset. Immune infiltration and functional enrichment analyses were conducted for patients in the high- and low-risk IPF groups. Results We characterized two fibroblast subtypes that are active in IPF (F3+ and ROBO2+). Using fibroblast-related genes, we identified five genes (CXCL14, TM4SF1, CYTL1, SOD3, and MMP10) for the prognostic model. The area under the curve values of our prognostic model were 0.852, 0.859, and 0.844 at one, two, and three years in the training set, and 0.837, 0.758, and 0.821 at one, two, and three years in the validation set, respectively. Conclusion This study annotates and characterizes different subtypes of fibroblasts in IPF.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanqing Jing
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Carlsten C. Inhaled Microplastics and Airway Development: Concerning Evidence from Organoids. Am J Respir Crit Care Med 2024; 209:355-356. [PMID: 38128549 PMCID: PMC10878384 DOI: 10.1164/rccm.202311-2131ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Chris Carlsten
- University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Ren Y, Li G, Li E, Deng K, Lian J, Gao Q, Wang H, Wang X, Wang Z, Shen T, Jiang Z, Li X, Qiu G. Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions. Eur J Pharmacol 2024; 964:176272. [PMID: 38110140 DOI: 10.1016/j.ejphar.2023.176272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Postoperative abdominal adhesion (PAA) is a common postoperative complication. Clinically, various methods have been used to prevent the occurrence of PAA, such as drugs and physiotherapy; however, no satisfactory results have been obtained. Luteolin (LUT) is a natural flavonoid that reduces inflammation and acts as an antioxidant. This research aimed to examine the impact and mechanism of LUT in reducing PAA. METHODS C57/BL6 mice were used in vivo experiments. PAA model was established using a brush friction method. Visual scoring and hematoxylin and eosin staining were used to score the severity of adhesions. Network pharmacology was used to infer potential targets and core pathways of LUT. Hydrogen peroxide (H2O2) was used to induce oxidative stress in vitro, while the reactive oxygen species (ROS) assay kit was used to evaluate oxidative stress levels. Western blotting, cell immunofluorescence, and multiple immunofluorescence assays were used to detect α-SMA, vimentin, E-cadherin, collagen I, or AKT phosphorylation level. Scratch assay was used to detect cell migration. RESULTS LUT reduced the degree of PAA in mice. It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells. Network pharmacology analysis showed that LUT likely exerted anti-adhesion activity by regulating the PI3K-Akt signaling pathway. Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells. LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression. CONCLUSION LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA. To this end, LUT has potential in PAA therapy.
Collapse
Affiliation(s)
- Yiwei Ren
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Gan Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Enmeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kai Deng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qi Gao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an Medical University, 710061 Xi'an, Shaanxi, China
| | - Huijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
7
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
8
|
Abd Elrazik NA, Helmy SA. Betanin protects against bleomycin-induced pulmonary fibrosis by regulating the NLRP3/IL-1β/TGF-β1 pathway-mediated epithelial-to-mesenchymal transition. Food Funct 2024; 15:284-294. [PMID: 38083874 DOI: 10.1039/d3fo03464j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease that leads to dyspnea and progressive loss of lung function. This study aimed to investigate the protective effect of betanin (BET), the major pigment in red beetroot, on pulmonary fibrosis induced by bleomycin (BLM) in rats and to assess the underlying mechanisms. In this view, total and differential cell counts and LDH activity in bronchoalveolar lavage fluid were estimated. Furthermore, MDA and GSH contents in the lungs were colorimetrically measured, while hydroxyproline, NLRP3, ASC, caspase-1, TGF-β1, and vimentin levels in lung tissue were evaluated using the ELISA technique. Moreover, IL-1β, E-cadherin, and α-SMA expressions were analyzed by immunostaining of lung specimens. BET treatment protects against pulmonary fibrosis as indicated by the reduction in total and differential cell counts, LDH activity, hydroxyproline, NLRP3, ASC, caspase-1, IL-1β, and TGF-β1 levels. MDA content was also decreased following BET administration, while GSH content was elevated. Additionally, BET suppressed the EMT process as evidenced by an increase in E-cadherin expression besides the reduction in vimentin and α-SMA expressions. To conclude, these results revealed the protective effect of BET against pulmonary fibrosis that might be attributed to the attenuation of the NLRP3/IL-1β/TGF-β1 signaling pathway and EMT process.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
9
|
Evangelista-Leite D, Carreira ACO, Nishiyama MY, Gilpin SE, Miglino MA. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials 2023; 302:122338. [PMID: 37820517 DOI: 10.1016/j.biomaterials.2023.122338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; School of Medical Sciences, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Ana C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of São Paulo, São Paulo, 05360-130, Brazil; Center for Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| | - Milton Y Nishiyama
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Sarah E Gilpin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| |
Collapse
|
10
|
Ramundo V, Zanirato G, Palazzo ML, Riganti C, Aldieri E. APE-1/Ref-1 Inhibition Blocks Malignant Pleural Mesothelioma Cell Proliferation and Migration: Crosstalk between Oxidative Stress and Epithelial Mesenchymal Transition (EMT) in Driving Carcinogenesis and Metastasis. Int J Mol Sci 2023; 24:12570. [PMID: 37628748 PMCID: PMC10454819 DOI: 10.3390/ijms241612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM pathogenesis has been related both to oxidative stress, evoked by and in response to asbestos fibers exposure, and epithelial mesenchymal transition (EMT), an event induced by oxidative stress itself and related to cancer proliferation and metastasis. Asbestos-related primary oxidative damage is counteracted in the lungs by various redox-sensitive factors, often hyperactivated in some cancers. Among these redox-sensitive factors, Apurinic-apyrimidinic endonuclease 1 (APE-1)/Redox effector factor 1 (Ref-1) has been demonstrated to be overexpressed in MPM and lung cancer, but the molecular mechanism has not yet been fully understood. Moreover, asbestos exposure has been associated with induced EMT events, via some EMT transcription factors, such as Twist, Zeb-1 and Snail-1, in possible crosstalk with oxidative stress and inflammation events. To demonstrate this hypothesis, we inhibited/silenced Ref-1 in MPM cells; as a consequence, both EMT (Twist, Zeb-1 and Snail-1) markers and cellular migration/proliferation were significantly inhibited. Taken as a whole, these results show, for the first time, crosstalk between oxidative stress and EMT in MPM carcinogenesis and invasiveness, thus improving the knowledge to better address a preventive and therapeutic approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| |
Collapse
|
11
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
12
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
13
|
Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D, Liu Z. The Road from AKI to CKD: Molecular Mechanisms and Therapeutic Targets of Ferroptosis. Cell Death Dis 2023; 14:426. [PMID: 37443140 PMCID: PMC10344918 DOI: 10.1038/s41419-023-05969-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Acute kidney injury (AKI) is a prevalent pathological condition that is characterized by a precipitous decline in renal function. In recent years, a growing body of studies have demonstrated that renal maladaptation following AKI results in chronic kidney disease (CKD). Therefore, targeting the transition of AKI to CKD displays excellent therapeutic potential. However, the mechanism of AKI to CKD is mediated by multifactor, and there is still a lack of effective treatments. Ferroptosis, a novel nonapoptotic form of cell death, is believed to have a role in the AKI to CKD progression. In this study, we retrospectively examined the history and characteristics of ferroptosis, summarized ferroptosis's research progress in AKI and CKD, and discussed how ferroptosis participates in regulating the pathological mechanism in the progression of AKI to CKD. Furthermore, we highlighted the limitations of present research and projected the future evolution of ferroptosis. We hope this work will provide clues for further studies of ferroptosis in AKI to CKD and contribute to the study of effective therapeutic targets to prevent the progression of kidney diseases.
Collapse
Affiliation(s)
- Runzhi Guo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Fei Cheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
14
|
Tiendrébéogo AJF, Soumagne T, Pellegrin F, Dagouassat M, Tran Van Nhieu J, Caramelle P, Paul EN, Even B, Zysman M, Julé Y, Samb A, Boczkowski J, Lanone S, Schlemmer F. The telomerase activator TA-65 protects from cigarette smoke-induced small airway remodeling in mice through extra-telomeric effects. Sci Rep 2023; 13:25. [PMID: 36646720 PMCID: PMC9842758 DOI: 10.1038/s41598-022-25993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-β1 (TGF-β1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-β expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-β expression in vivo, the blockade of TGF-β-induced myofibroblast differentiation, and the reduction of TGF-β-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.
Collapse
Affiliation(s)
- Arnaud Jean Florent Tiendrébéogo
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Thibaud Soumagne
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - François Pellegrin
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maylis Dagouassat
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Jeanne Tran Van Nhieu
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Pathologie, 94000 Créteil, France
| | - Philippe Caramelle
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Emmanuel N. Paul
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Benjamin Even
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maeva Zysman
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | | | - Abdoulaye Samb
- Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Jorge Boczkowski
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service d’explorations fonctionnelles respiratoires, DHU A-TVB, FHU Senec, 94000 Créteil, France
| | - Sophie Lanone
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Frédéric Schlemmer
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Unité de Pneumologie, DHU A-TVB, FHU Senec, 94000 Créteil, France
| |
Collapse
|
15
|
Airway Smooth Muscle Regulated by Oxidative Stress in COPD. Antioxidants (Basel) 2023; 12:antiox12010142. [PMID: 36671004 PMCID: PMC9854973 DOI: 10.3390/antiox12010142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle. Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target against COPD; oxidative stress should be included in treatable traits for COPD to advance precision medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel agent for COPD.
Collapse
|
16
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
17
|
Yuan C, Chen X, Shen C, Chen L, Zhao Y, Wang X, Cao M, Zhao Z, Chen T, Zhang B, Iqbal T, Li C, Zhou X. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells. Theriogenology 2022; 194:75-82. [DOI: 10.1016/j.theriogenology.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
18
|
Rudrapal M, Maji S, Prajapati SK, Kesharwani P, Deb PK, Khan J, Mohamed Ismail R, Kankate RS, Sahoo RK, Khairnar SJ, Bendale AR. Protective Effects of Diets Rich in Polyphenols in Cigarette Smoke (CS)-Induced Oxidative Damages and Associated Health Implications. Antioxidants (Basel) 2022; 11:1217. [PMID: 35883708 PMCID: PMC9311530 DOI: 10.3390/antiox11071217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cigarette smoking has been responsible for causing many life-threatening diseases such as pulmonary and cardiovascular diseases as well as lung cancer. One of the prominent health implications of cigarette smoking is the oxidative damage of cellular constituents, including proteins, lipids, and DNA. The oxidative damage is caused by reactive oxygen species (ROS, oxidants) present in the aqueous extract of cigarette smoke (CS). In recent years, there has been considerable interest in the potential health benefits of dietary polyphenols as natural antioxidant molecules. Epidemiological studies strongly suggest that long-term consumption of diets (fruits, vegetables, tea, and coffee) rich in polyphenols offer protective effects against the development of cancer, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases. For instance, green tea has chemopreventive effects against CI-induced lung cancer. Tea might prevent CS-induced oxidative damages in diseases because tea polyphenols, such as catechin, EGCG, etc., have strong antioxidant properties. Moreover, apple polyphenols, including catechin and quercetin, provide protection against CS-induced acute lung injury such as chronic obstructive pulmonary disease (COPD). In CS-induced health problems, the antioxidant action is often accompanied by the anti-inflammatory effect of polyphenols. In this narrative review, the CS-induced oxidative damages and the associated health implications/pathological conditions (or diseases) and the role of diets rich in polyphenols and/or dietary polyphenolic compounds against various serious/chronic conditions of human health have been delineated.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune 411019, Maharashtra, India
| | - Siddhartha Maji
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Shiv Kumar Prajapati
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Payal Kesharwani
- RamEesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India; (S.M.); (S.K.P.); (P.K.)
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences (CAMS), Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Randa Mohamed Ismail
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences (CAMS), Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.)
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Center (NRC), Giza 12622, Egypt
| | - Rani S. Kankate
- Department of Pharmaceutical Chemistry, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, Maharashtra, India;
| | - Ranjan Kumar Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India;
| | - Shubham J. Khairnar
- Department of Pharmacology, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, Maharashtra, India;
| | - Atul R. Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik 422213, Maharashtra, India;
| |
Collapse
|
19
|
Singh P, Salman KA, Shameem M, Warsi MS. Withania somnifera (L.) Dunal as Add-On Therapy for COPD Patients: A Randomized, Placebo-Controlled, Double-Blind Study. Front Pharmacol 2022; 13:901710. [PMID: 35784687 PMCID: PMC9243480 DOI: 10.3389/fphar.2022.901710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The current gold-standard therapies for chronic obstructive pulmonary disease (COPD) lack disease-modifying potential and exert adverse side effects. Moreover, COPD patients are at a higher risk of severe outcomes if they get infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of the current epidemic. This is the first study to document clinical research on an adaptogenic and steroidal activity–containing herb as a complementary medicine for COPD treatment. Objective: We aimed to evaluate the efficacy of Withania somnifera (L.) Dunal [Solanaceae] (WS) as an add-on therapy for COPD patients. Methods: A randomized, placebo-controlled, and double-blind clinical study was conducted. A total of 150 patients were randomly assigned to three groups: control, placebo, and WS group. In addition to conventional medicines, WS root capsules or starch capsules were given twice a day to the WS group and the placebo group, respectively. Their lung functioning, quality of life, exercise tolerance, systemic oxidative stress (OS), and systemic inflammation were assessed before and after 12 weeks of intervention. WS root phytochemicals were identified by LC-ESI-MS. The inhibitory activity of these phytochemicals against angiotensin-converting enzyme 2 (ACE-2); the SARS-CoV-2 receptor; myeloperoxidase (MPO); and interleukin-6 (IL-6) was evaluated by in silico docking to investigate the mechanism of action of WS. Results: The pulmonary functioning, quality of life, and exercise tolerance improved, and inflammation reduced notably the most in the WS group. Systemic oxidative stress subsided significantly only in the WS group. Although a minor placebo effect was observed in the SGRQ test, but it was not present in other tests. Withanolides found in the WS roots demonstrated substantial inhibitory activity against the proteins ACE-2, MPO, and IL-6, compared to that of a standard drug or known inhibitor. Moreover, FEV1% predicted had significant correlation with systemic antioxidative status (positive correlation) and malondialdehyde (MDA, negative correlation), suggesting that the antioxidative potential of WS has significant contribution to improving lung functioning. Conclusion: Our study clinically demonstrated that WS root when given along with conventional drugs ameliorated COPD significantly more in comparison to the conventional drugs alone, in GOLD 2 and 3 categories of COPD patients. In silico, it has potent inhibitory activity against SARS-CoV-2 receptor, ACE-2, MPO, and IL-6.
Collapse
Affiliation(s)
- Priyam Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
- *Correspondence: Priyam Singh,
| | - Khushtar Anwar Salman
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shameem
- Department of Tuberculosis and Respiratory Diseases, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
20
|
Zhou J, Tan Y, Wang R, Li X. Role of Ferroptosis in Fibrotic Diseases. J Inflamm Res 2022; 15:3689-3708. [PMID: 35783244 PMCID: PMC9248952 DOI: 10.2147/jir.s358470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis is a unique and pervasive form of regulated cell death driven by iron-dependent phospholipid peroxidation. It results from disturbed cellular metabolism and imbalanced redox homeostasis and is regulated by various cellular metabolic pathways. Recent preclinical studies have revealed that ferroptosis may be an attractive therapeutic target in fibrotic diseases, such as liver fibrosis, pulmonary fibrosis, kidney fibrosis, and myocardial fibrosis. This review summarizes the latest knowledge on the regulatory mechanism of ferroptosis and its roles in fibrotic diseases. These updates may provide a novel perspective for the treatment of fibrotic diseases as well as future research.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yuan Tan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Rurong Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xuehan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Correspondence: Xuehan Li, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, Sichuan Province, 610041, People’s Republic of China, Tel +86 18980099133, Email
| |
Collapse
|
21
|
Barnes PJ. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2022; 11:antiox11050965. [PMID: 35624831 PMCID: PMC9138026 DOI: 10.3390/antiox11050965] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
There is a marked increase in oxidative stress in the lungs of patients with COPD, as measured by increased exhaled 8-isoprostane, ethane, and hydrogen peroxide in the breath. The lung may be exposed to exogenous oxidative stress from cigarette smoking and indoor or outdoor air pollution and to endogenous oxidative stress from reactive oxygen species released from activated inflammatory cells, particularly neutrophils and macrophages, in the lungs. Oxidative stress in COPD may be amplified by a reduction in endogenous antioxidants and poor intake of dietary antioxidants. Oxidative stress is a major driving mechanism of COPD through the induction of chronic inflammation, induction of cellular senescence and impaired autophagy, reduced DNA repair, increased autoimmunity, increased mucus secretion, and impaired anti-inflammatory response to corticosteroids. Oxidative stress, therefore, drives the pathology of COPD and may increase disease progression, amplify exacerbations, and increase comorbidities through systemic oxidative stress. This suggests that antioxidants may be effective as disease-modifying treatments. Unfortunately, thiol-based antioxidants, such as N-acetylcysteine, have been poorly effective, as they are inactivated by oxidative stress in the lungs, so there is a search for more effective and safer antioxidants. New antioxidants in development include mitochondria-targeted antioxidants, NOX inhibitors, and activators of the transcription factor Nrf2, which regulates several antioxidant genes.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London SW5 9LH, UK
| |
Collapse
|
22
|
Russo C, Valle MS, Casabona A, Spicuzza L, Sambataro G, Malaguarnera L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines 2022; 10:biomedicines10040898. [PMID: 35453648 PMCID: PMC9026965 DOI: 10.3390/biomedicines10040898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle dysfunction is frequently associated with chronic obstructive pulmonary disease (COPD), which is characterized by a permanent airflow limitation, with a worsening respiratory disorder during disease evolution. In COPD, the pathophysiological changes related to the chronic inflammatory state affect oxidant–antioxidant balance, which is one of the main mechanisms accompanying extra-pulmonary comorbidity such as muscle wasting. Muscle impairment is characterized by alterations on muscle fiber architecture, contractile protein integrity, and mitochondrial dysfunction. Exogenous and endogenous sources of reactive oxygen species (ROS) are present in COPD pathology. One of the endogenous sources of ROS is represented by mitochondria. Evidence demonstrated that vitamin D plays a crucial role for the maintenance of skeletal muscle health. Vitamin D deficiency affects oxidative stress and mitochondrial function influencing disease course through an effect on muscle function in COPD patients. This review will focus on vitamin-D-linked mechanisms that could modulate and ameliorate the damage response to free radicals in muscle fibers, evaluating vitamin D supplementation with enough potent effect to contrast mitochondrial impairment, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Antonino Casabona
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
- Correspondence:
| |
Collapse
|
23
|
Suliman HB, Healy Z, Zobi F, Kraft BD, Welty-Wolf K, Smith J, Barkauskas C, Piantadosi CA. Nuclear respiratory factor-1 negatively regulates TGF-β1 and attenuates pulmonary fibrosis. iScience 2022; 25:103535. [PMID: 34977500 PMCID: PMC8683592 DOI: 10.1016/j.isci.2021.103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The preclinical model of bleomycin-induced lung fibrosis is useful to study mechanisms related to human pulmonary fibrosis. Using BLM in mice, we find low HO-1 expression. Although a unique Rhenium-CO-releasing molecule (ReCORM) up-regulates HO-1, NRF-1, CCN5, and SMAD7, it reduces TGFβ1, TGFβr1, collagen, α-SMA, and phosphorylated Smad2/3 levels in mouse lung and in human lung fibroblasts. ChIP assay studies confirm NRF-1 binding to the promoters of TGFβ1 repressors CCN5 and Smad7. ReCORM did not blunt lung fibrosis in Hmox1-deficient alveolar type 2 cell knockout mice, suggesting this gene participates in lung protection. In human lung fibroblasts, TGFβ1-dependent production of α-SMA is abolished by ReCORM or by NRF-1 gene transfection. We demonstrate effective HO-1/NRF-1 signaling in lung AT2 cells protects against BLM induced lung injury and fibrosis by maintaining mitochondrial health, function, and suppressing the TGFβ1 pathway. Thus, protection of AT2 cell mitochondrial integrity via HO-1/NRF-1 presents an innovative therapeutic target.
Collapse
Affiliation(s)
- Hagir B. Suliman
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zachary Healy
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bryan D. Kraft
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Karen Welty-Wolf
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Joshua Smith
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Christina Barkauskas
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Claude A. Piantadosi
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Liu T, Xu P, Ke S, Dong H, Zhan M, Hu Q, Li J. Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway. Arch Biochem Biophys 2022; 715:109087. [PMID: 34801472 DOI: 10.1016/j.abb.2021.109087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an important pathological process in the occurrence of pulmonary fibrosis. Changes in histone methylation modifications of key genes play an important role in this process. As a histone methyltransferase, the regulatory mechanism and role of SET domain bifurcated 1 (SETDB1) in pulmonary fibrosis remain unclear. We found that SETDB1 inhibited EMT and that cells attenuated the expression of SETDB1 to relieve this inhibition during transforming growth factor-β (TGF-β)-induced EMT. Silencing SETDB1 expression significantly enhanced the mesenchymal phenotype induced by TGF-β and the expression and deposition of fibronectin and significantly reduced the expression of E-cadherin. The decrease in E-cadherin expression and the induction of EMT led to increased lipid reactive oxygen species (ROS) and ferrous ions, which induced ferroptosis. Chromatin immunoprecipitation (ChIP) results showed that SETDB1 regulates the expression of Snai1 by catalyzing the histone H3 lysine 9 trimethylation (H3K9me3) of Snai1, the main transcription factor that initiates the process of EMT, and thus, indirectly regulates E-cadherin. Surprisingly, when examining the effect of overexpressed SETDB1 on EMT, we found that overexpressed SETDB1 alleviated EMT and also caused ferroptosis. We suggest that the overexpression of SETDB1 partially reverses the mesenchymal phenotype to an epithelial state, while those cells that fail to reverse are depleted by ferroptosis. In conclusion, the histone methylase SETDB1 regulates Snai1 epigenetically, driving EMT gene reprogramming and ferroptosis in response to TGF-β. However, there are unexplored links between the epigenetic reprogramming and transcriptional processes that regulate EMT in a TGF-β-dependent manner.
Collapse
Affiliation(s)
- Tiantian Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Pengli Xu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Shaorui Ke
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Haoran Dong
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Mengmeng Zhan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Qin Hu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
25
|
Integrative transcriptomic and proteomic analysis reveals mechanisms of silica-induced pulmonary fibrosis in rats. BMC Pulm Med 2022; 22:13. [PMID: 34991559 PMCID: PMC8740005 DOI: 10.1186/s12890-021-01807-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. Methods Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). Results In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. Conclusion Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01807-w.
Collapse
|
26
|
Chung J, Huda MN, Shin Y, Han S, Akter S, Kang I, Ha J, Choe W, Choi TG, Kim SS. Correlation between Oxidative Stress and Transforming Growth Factor-Beta in Cancers. Int J Mol Sci 2021; 22:ijms222413181. [PMID: 34947978 PMCID: PMC8707703 DOI: 10.3390/ijms222413181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
| | - Md Nazmul Huda
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences UAMS, Little Rock, AR 72205, USA
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Joohun Ha
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wonchae Choe
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
27
|
Peptide DR8 analogs alleviate pulmonary fibrosis via suppressing TGF-β1 mediated epithelial-mesenchymal transition and ERK1/2 pathway in vivo and in vitro. Eur J Pharm Sci 2021; 167:106009. [PMID: 34537373 DOI: 10.1016/j.ejps.2021.106009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that lacks effective treatments in clinic. It is characterized by repair disorder of epithelial cells, formation of fibroblast foci as well as destruction of alveolar structure. Previously we first determined that parent peptide DR8 (DHNNPQIR-NH2) has anti-fibrotic activity in bleomycin-induced mice. In order to further improve the druggability of DR8, including anti-fibrotic activity, stability and security, the structure-activity relationship was investigated using a series of D-amino acid and alanine scanning analogs of DR8. The results indicated that peptides DR8-3D and DR8-8A exhibited potent anti-fibrotic activity and better stability. Further mechanism research revealed that DR8-3D and DR8-8A ameliorated lung fibrosis by inhibiting TGF-β1 mediated epithelial-mesenchymal transition process and ERK1/2 signaling pathway in vitro and in vivo. Moreover, we found that anti-fibrotic activity of DR8 was closely related to the residues aspartic acid (Asp)1, histidine (His)2, proline (Pro)5 and glutamine (Gln)6, which suggested that the position of residues asparagine (Asn)3, asparagine (Asn)4, isoleucine (Ile)7 and arginine (Arg)8 could be further modified to optimized its anti-fibrotic effect. Therefore, we consider that DR8-3D and DR8-8A not only could be used as a potential leading compound for the treatment of bleomycin-induced lung fibrosis but also laid a foundation for the development of new anti-fibrotic drugs.
Collapse
|
28
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
29
|
Assayag M, Goldstein S, Samuni A, Berkman N. 3-Carbamoyl-proxyl nitroxide radicals attenuate bleomycin-induced pulmonary fibrosis in mice. Free Radic Biol Med 2021; 171:135-142. [PMID: 33989760 DOI: 10.1016/j.freeradbiomed.2021.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with a poor prognosis and limited treatment options. Oxidative and nitrosative stress is implicated as one of the main pathogenic pathways in IPF. The rationale for the use of antioxidants to treat lung fibrosis is appealing, however to date a consistent beneficial effect for such an approach has not been observed. We have recently demonstrated that nitroxides, particularly 3-carbamoyl-proxyl (3-CP), markedly reduce airway inflammation, airway hyper-responsiveness, and protein nitration of the lung tissue in a mouse model of ovalbumin-induced acute asthma, thus prompting its use for the treatment of IPF. The present study investigates the effect of 3-CP on the development of lung fibrosis using the murine intratracheal bleomycin model. 3-CP was administered either intranasally or orally during the entire experiment or starting 7 days after induction of the lung injury. 3-CP was found to be both a preventive and a therapeutic drug reducing the lung fibrosis (histological score), the increase in collagen content, protein nitration, TGF-β levels, the degree of weight loss as well as inhibiting the impairment of lung function. Nitroxides are catalytic antioxidants that preferentially detoxify radicals, and therefore the effect of 3-CP on the severity of the disease supports the involvement of reactive oxygen and nitrogen species in the disease pathology.
Collapse
Affiliation(s)
- Miri Assayag
- Institute of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Israel
| | - Sara Goldstein
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Amram Samuni
- Institute of Medical Research, Israel-Canada Medical School, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah Medical Center and Faculty of Medicine, Israel
| |
Collapse
|
30
|
Transforming Growth Factor- β and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers (Basel) 2021; 13:cancers13123093. [PMID: 34205678 PMCID: PMC8235010 DOI: 10.3390/cancers13123093] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Metabolic changes in tumor microenvironment play a critical role in cancer, related to the accumulated alterations in signaling pathways that control cellular metabolism. Cancer metabolic deregulation is related to specific events such as the control of oxidative stress, and in particular the redox imbalance with aberrant oxidant production and/or a deregulation of the efficacy of the antioxidant systems. In cancer cells, different cytokines are involved in the development and/or progression of cancer; among these cytokines, the transforming growth factor β (TGF-β) is central to tumorigenesis and cancer progression. In tumor cells, it has been demonstrated that there is a close correlation between oxidative stress and TGF-β; this crosstalk strongly contributes to tumorigenesis, both in tumor development and in mediating its invasiveness. This review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in an attempt to improve the pharmacological and therapeutic approach against cancer. Abstract Cancer metabolism involves different changes at a cellular level, and altered metabolic pathways have been demonstrated to be heavily involved in tumorigenesis and invasiveness. A crucial role for oxidative stress in cancer initiation and progression has been demonstrated; redox imbalance, due to aberrant reactive oxygen species (ROS) production or deregulated efficacy of antioxidant systems (superoxide dismutase, catalase, GSH), contributes to tumor initiation and progression of several types of cancer. ROS may modulate cancer cell metabolism by acting as secondary messengers in the signaling pathways (NF-kB, HIF-1α) involved in cellular proliferation and metastasis. It is known that ROS mediate many of the effects of transforming growth factor β (TGF-β), a key cytokine central in tumorigenesis and cancer progression, which in turn can modulate ROS production and the related antioxidant system activity. Thus, ROS synergize with TGF-β in cancer cell metabolism by increasing the redox imbalance in cancer cells and by inducing the epithelial mesenchymal transition (EMT), a crucial event associated with tumor invasiveness and metastases. Taken as a whole, this review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in the attempt to improve the pharmacological and therapeutic approach against cancer.
Collapse
|
31
|
Evangelista-Leite D, Carreira ACO, Gilpin SE, Miglino MA. Protective Effects of Extracellular Matrix-Derived Hydrogels in Idiopathic Pulmonary Fibrosis. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:517-530. [PMID: 33899554 DOI: 10.1089/ten.teb.2020.0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with significant gas exchange impairment owing to exaggerated extracellular matrix (ECM) deposition and myofibroblast activation. IPF has no cure, and although nintedanib and pirfenidone are two approved medications for symptom management, the total treatment cost is exuberant and prohibitive to a global uninsured patient population. New therapeutic alternatives with moderate costs are needed to treat IPF. ECM hydrogels derived from decellularized lungs are cost-effective therapeutic candidates to treat pulmonary fibrosis because of their reported antioxidant properties. Oxidative stress contributes to IPF pathophysiology by damaging macromolecules, interfering with tissue remodeling, and contributing to myofibroblast activation. Thus, preventing oxidative stress has beneficial outcomes in IPF. For this purpose, this review describes ECM hydrogel's properties to regulate oxidative stress and tissue remodeling in IPF.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center), University of São Paulo, São Paulo, Brazil
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Jiang Z, Zhang Y, Zhu Y, Li C, Zhou L, Li X, Zhang F, Qiu X, Qu Y. Cathelicidin induces epithelial-mesenchymal transition to promote airway remodeling in smoking-related chronic obstructive pulmonary disease. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:223. [PMID: 33708850 PMCID: PMC7940876 DOI: 10.21037/atm-20-2196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) is an important characteristic in the remodeling of airways that occurs in chronic obstructive pulmonary disease (COPD). Cigarette smoke is a potential driving factor of this EMT in COPD. However, the mechanisms by which cigarette smoke induce EMT remain uncertain. Cathelicidin has been implicated as a causal factor of airway inflammation and mucus hypersecretion in smoking-related COPD. This study aimed to investigate whether cathelicidin induces EMT to promote airway remodeling in this disease. Methods Human lung tissue was collected from smokers with COPD and smokers without COPD. The EMT markers E-cadherin and vimentin were examined by immunohistochemistry. Mouse models of COPD were established by taking mice with airway cathelin-related antimicrobial peptide (CRAMP), the murine homologue of cathelicidin, either upregulated or downregulated by intranasal introduction of lentiviral vectors and then exposing them to cigarette smoke. E-cadherin and vimentin expression in the airways of the model mice was examined using immunofluorescence. Tumor necrosis factor alpha (TNF-α) converting enzyme (TACE), transforming growth factor alpha (TGF-α), and epidermal growth factor receptor (EGFR) expression was analyzed by Western blot. Additionally, NCI-H292 human airway epithelial cells, both with and without cathelicidin downregulation, were stimulated with cigarette smoke extract (CSE) and LL-37 synthetic peptide, a bioactive fragment of cathelicidin. This was done to confirm that the TACE/TGF-α/EGFR signaling pathway is activated in humans exposed to cigarette smoke. Results Significant EMT was found in the small airways of smokers both with and without COPD, as well as in the airways of COPD model mice. Downregulation of CRAMP in COPD mice, however, ameliorated airway EMT induced by cigarette smoke. Conversely, upregulation of CRAMP enhanced airway EMT in vivo; TACE, TGF-α, and EGFR were found to be involved in this process. In vitro, EMT induced by CSE and LL-37 was inhibited by blocking TACE, TGF-α, and EGFR expression. Conclusions Cathelicidin promotes airway EMT by activating the TACE/TGF-α/EGFR signaling pathway. This mediates smoking-induced airway remodeling in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Zhiming Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pulmonary and Critical Care Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yuke Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yibing Zhu
- Medical Research and Biometrics Center, National Center of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Beijing, China
| | - Chong Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lei Zhou
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaolin Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fuxiang Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xianming Qiu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yiqing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
33
|
Liu S, Chen X, Zhang S, Wang X, Du X, Chen J, Zhou G. miR‑106b‑5p targeting SIX1 inhibits TGF‑β1‑induced pulmonary fibrosis and epithelial‑mesenchymal transition in asthma through regulation of E2F1. Int J Mol Med 2021; 47:24. [PMID: 33495833 PMCID: PMC7846424 DOI: 10.3892/ijmm.2021.4857] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways, characterized by lung eosinophilia, mucus hypersecretion by goblet cells and airway hyper-responsiveness to inhaled allergens. The present study aimed to identify the function of microRNA (miR/miRNA)-106b-5p in TGF-β1-induced pulmonary fibrosis and epithelial-mesenchymal transition (EMT) via targeting sine oculis homeobox homolog 1 (SIX1) through regulation of E2F transcription factor 1 (E2F1) in asthma. Asthmatic mouse models were induced with ovalbumin. miRNA expression was evaluated using reverse transcription-quantitative PCR. Transfection experiments using bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify the target gene of miR-106b-5p. The present study revealed downregulated miR-106b-5p expression and upregulated SIX1 expression in asthmatic mice and TGF-β1-induced BEAS-2B cells. Moreover, miR-106b-5p overexpression inhibited TGF-β1-induced fibrosis and EMT in BEAS-2B cells, while miR-106b-5p-knockdown produced the opposite effects. Subsequently, miR-106b-5p was found to regulate SIX1 through indirect regulation of E2F1. Additionally, E2F1- and SIX1-knockdown blocked TGF-β1-induced fibrosis and EMT in BEAS-2B cells. In addition, miR-106b-5p negatively regulated SIX1 via E2F1 in BEAS-2B cells. The present study demonstrated that the miR-106b-5p/E2F1/SIX1 signaling pathway may provide potential therapeutic targets for asthma.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Siqing Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinyu Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoliu Du
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahe Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
34
|
Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X, Liu N. Lipid Peroxidation, GSH Depletion, and SLC7A11 Inhibition Are Common Causes of EMT and Ferroptosis in A549 Cells, but Different in Specific Mechanisms. DNA Cell Biol 2020; 40:172-183. [PMID: 33351681 DOI: 10.1089/dna.2020.5730] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) is thought to be involved in the pathogenesis of pulmonary fibrosis. Emerging evidence suggested that there are some common causes between ferroptosis and pulmonary fibrosis. The interaction of EMT and ferroptosis and its mechanism were investigated by detecting the expression levels of α-smooth muscle actin (α-SMA), E-cadherin, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) and measuring the contents of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH). The cellular morphology and ultrastructure of mitochondria were studied by microscope and transmission electron microscope (TEM), respectively. The results showed that ferroptosis in A549 cells was induced by Erastin, which decreased the expression levels of E-cadherin (E-Ca), α-SMA, and SLC7A11, accompanied with ROS and MDA increase, as well as GSH decrease. TGF-β1 promoted ultrastructure variation of mitochondria similar to ferroptosis and mesenchymal changes in morphology during EMT of A549 cells, accompanied with reduced GSH content and expression of SLC7A11, as well as ROS and MDA increase. Ferrostatin-1 (Fer-1) recovered ferroptosis induced by Erastin, but had no effect on the morphological change caused by TGF-β1. Furthermore, Fer-1 reduced ROS and MDA production, and increased SLC7A11 expression in the early subsequently increased GSH. However, the effects of Fer-1 on above indicators were different in time. The expression of GPX4 had no significant change during EMT induced by TGF-β1 and ferroptosis induced by Erastin in A549 cells. It is indicating that Erastin promoted the de-epithelialization of lung epithelial cells, but inhibited the process of myofibroblast differentiation; Fer-1 could partially inhibit EMT induced by TGF-β1, but reverse ferroptosis induced by Erastin. TGF-β1 could delay the ferroptosis, but could not prevent it. Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. The exact effects of GPX4 involved in EMT and ferroptosis in A549 cells need further study.
Collapse
Affiliation(s)
- Lulu Sun
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiqun Zhang
- Dental Implant Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Na Ni
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Naiguo Liu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
35
|
Wang R, Li J, Zhang X, Zhang X, Zhang X, Zhu Y, Chen C, Liu Z, Wu X, Wang D, Dongye M, Wang J, Lin H. Extracellular vesicles promote epithelial-to-mesenchymal transition of lens epithelial cells under oxidative stress. Exp Cell Res 2020; 398:112362. [PMID: 33221317 DOI: 10.1016/j.yexcr.2020.112362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Posterior capsule opacification (PCO), resulting from residual lens epithelial cell (LEC) epithelial-mesenchymal transition (EMT), abnormal proliferation, and migration, is the most common complication of cataract surgery. A recent study determined that extracellular vesicles (EVs) and reactive oxygen species (ROS) regulate the EMT process during cutaneous wound healing and tumour metastasis. However, their underlying mechanism in PCO is unclear. In this study, we examined the secreted EVs from a scratch model in vitro. We found that the production of ROS was increased after mechanical injury, especially at the wound edge, and there was an increased viability of LECs, which can be blocked by diphenyleneiodonium, an NADPH oxidase inhibitor. Cell viability and migration were increased upon treatment with 1 μM H2O2, but significantly reduced when the concentration of H2O2 increased to 100 μM. Transwell assay showed that both post-surgery LECs and LECs treated with 1 μM H2O2 significantly induced the migration of normal LECs by EV secretion. Extraction and quantification of EVs derived from injured and H2O2-treated LECs showed a similar increase in production. Co-incubation of EVs from both injured and H2O2-treated LECs with normal LECs and organ-cultured mouse lenses activated EMT, which was attenuated by a ROS inhibitor. These results suggest that EVs participate in ROS-induced lens EMT, making EVs a potential target for treating PCO.
Collapse
Affiliation(s)
- Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jianbing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xinyu Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
36
|
Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, Li J, Fei G. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother 2020; 132:110827. [PMID: 33065391 DOI: 10.1016/j.biopha.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress plays a critical role in pulmonary fibrosis after acute lung injury (ALI), and epithelial-mesenchymal transition (EMT) events are involved in this process. The purpose of this study was to investigate the protective effects of melatonin, a natural antioxidant, on lipopolysaccharide (LPS)-induced EMT in human alveolar epithelial cells. METHODS Human type II alveolar epithelial cell-derived A549 cells were incubated with LPS and melatonin alone or in combination for up to 24 h. The morphological changes of the treated cells were evaluated as well as indexes of oxidative stress. EMT-related proteins and the Nrf2 signaling pathway were detected by western blot analysis and immunofluorescence staining, respectively. To further investigate the underlying mechanisms, the effects of melatonin on cells transfected Nrf2 short hairpin RNA (shRNA) and the PI3K / GSK-3β signaling pathway were evaluated. RESULTS Treatment with melatonin upregulated Nrf2 expression, inhibited LPS-induced cell morphological change, reversed the expressions of EMT-related proteins, and reduced reactive oxygen species (ROS) production in A549 cells, as well as the levels of malondialdehyde (MDA) and anti-oxidative enzymes. Yet, the effects of melatonin were almost completely abolished in cells transfected Nrf2 shRNA. Furthermore, the data demonstrated that melatonin could activate the PI3K/AKT signaling pathway, resulting in phosphorylation of GSK-3β (Ser9) and upregulation of the Nrf2 protein in A549 cells, which ultimately attenuated LPS-induced EMT. CONCLUSION The present study is the first to demonstrate that melatonin can protect human alveolar epithelial cells against oxidative stress by effectively inhibiting LPS-induced EMT, which was mostly dependent on upregulation of the Nrf2 pathway via the PI3K/GSK-3β axis. Further studies are warranted to investigate the role of melatonin for the treatment of oxidative stress-associated diseases, as well as pulmonary fibrosis after ALI.
Collapse
Affiliation(s)
- Zhenxing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Yueguo Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Wenying Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Jiaying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Jiajia Li
- Center Lab of The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, China.
| |
Collapse
|
37
|
The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel) 2020; 9:antiox9070624. [PMID: 32708578 PMCID: PMC7402141 DOI: 10.3390/antiox9070624] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The novel COVID-19 pandemic is affecting the world’s population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease.
Collapse
|
38
|
Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol 2020; 33:101544. [PMID: 32336666 PMCID: PMC7251237 DOI: 10.1016/j.redox.2020.101544] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, SW3 6LY, London, UK.
| |
Collapse
|
39
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
40
|
Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact 2020; 319:109024. [PMID: 32097614 DOI: 10.1016/j.cbi.2020.109024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Silicosis is an occupational pulmonary fibrosis that is caused by inhalation of silica (SiO2), and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a natural product, has been reported to possess antioxidant and anti-fibrotic properties in various diseases. The purpose of the current study was to examine Tan IIA's protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. We found that in vivo treatment with Tan IIA significantly relieved silica-induced lung fibrosis in a silicosis rat model by histological and immunohistochemical analyses. Further, in vitro mechanistic investigations, mainly using western blot and immunofluorescence analyses, revealed that Tan IIA administration markedly inhibited the silica-induced epithelial-mesenchymal transition (EMT) and transforming growth factor-β1 (TGF-β1)/Smad signaling pathway and also reduced silica-induced oxidative stress and activated the nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway in A549 and human bronchial epithelial (HBE) cells. Furthermore, through transfection with siRNA, we demonstrate that Nrf2 activation partially mediates the suppression effects of Tan IIA on EMT and TGF-β1/Smad signaling pathway activation induced by silica exposure, thus mediating the anti-fibrotic effects of Tan IIA against silica-induced pulmonary fibrosis. In our study, Tan IIA has been identified as a possible anti-oxidative and anti-fibrotic drug for silicosis.
Collapse
|
41
|
Song MK, Kim DI, Lee K. Time-course transcriptomic alterations reflect the pathophysiology of polyhexamethylene guanidine phosphate-induced lung injury in rats. Inhal Toxicol 2020; 31:457-467. [PMID: 31971030 DOI: 10.1080/08958378.2019.1707912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Humidifier-disinfectant-induced lung injury is a new syndrome associated with a high mortality rate and characterized by severe hypersensitivity pneumonitis, acute interstitial pneumonia, or acute respiratory distress syndrome. Polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent, is a major component associated with severe lung injury. In-depth studies are needed to determine how PHMG-P affects pathogenesis at the molecular level. Therefore, in this study, we analyzed short-term (4 weeks) and long-term (10 weeks) PHMG-P-exposure-specific gene-expression patterns in rats to improve our understanding of time-dependent changes in fibrosis.Materials and methods: Gene-expression profiles were analyzed in rat lung tissues using DNA microarrays and bioinformatics tools.Results: Clustering analysis of gene-expression data showed different gene-alteration patterns in the short- and long-term exposure groups and higher sensitivity to gene-expression changes in the long-term exposure group than in the short-term exposure group. Supervised analysis revealed 34 short-term and 335 long-term exposure-specific genes, and functional analysis revealed that short-term exposure-specific genes were involved in PHMG-P-induced initial inflammatory responses, whereas long-term exposure-specific genes were involved in PHMG-P-related induction of chronic lung fibrosis.Conclusion: The results of transcriptomic analysis were consistent with lung histopathology results. These findings indicated that exposure-time-specific changes in gene expression closely reflected time-dependent pathological changes in PHMG-P-induced lung injury.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Elko EA, Mahoney JM, Vacek P, van der Vliet A, Anathy V, van der Velden JLJL, Janssen-Heininger YMW, Seward DJ. Age-dependent dysregulation of redox genes may contribute to fibrotic pulmonary disease susceptibility. Free Radic Biol Med 2019; 141:438-446. [PMID: 31315063 PMCID: PMC6820706 DOI: 10.1016/j.freeradbiomed.2019.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Aging is associated with enhanced oxidative stress and increased susceptibility to numerous diseases. This relationship is particularly striking with respect to the incidence of fibrotic lung disease. To identify potential mechanisms underlying the association between aging and susceptibility to fibrotic lung disease we analyzed transcriptome data from 342 disease-free human lung samples as a function of donor age. Our analysis reveals that aging in lung is accompanied by modest yet progressive changes in genes modulating redox homeostasis, the TGF-beta 1 signaling axis, and the extracellular matrix (ECM), pointing to an aging lung functional network (ALFN). Further, the transcriptional changes we document are tissue-specific, with age-dependent gene expression patterns differing across organ systems. Our findings suggest that the age-associated increased incidence of fibrotic pulmonary disease occurs in the context of tissue-specific, age-dependent transcriptional changes. Understanding the relationship between age-associated gene expression and susceptibility to fibrotic pulmonary disease may allow for more accurate risk stratification and effective therapeutic interventions within this challenging clinical space.
Collapse
Affiliation(s)
- Evan A Elko
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, 05405, USA
| | - Pamela Vacek
- Medical Biostatistics, The University of Vermont, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - Jos L J L van der Velden
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | | | - David J Seward
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
43
|
Wang D, Yan Z, Bu L, An C, Deng B, Zhang J, Rao J, Cheng L, Zhang J, Zhang B, Xie J. Protective effect of peptide DR8 on bleomycin-induced pulmonary fibrosis by regulating the TGF-β/MAPK signaling pathway and oxidative stress. Toxicol Appl Pharmacol 2019; 382:114703. [PMID: 31398421 DOI: 10.1016/j.taap.2019.114703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis (PF) is a fatal and irreversible lung disease that eventually causes respiratory failure, lung dysfunction and death. The peptide DHNNPQIR-NH2 (DR8) has been reported to possess potent antioxidant activity, and an imbalance of oxidation/antioxidation is a crucial mechanism that causes PF. Here, we studied the ability of DR8 to improve PF and further explored the pathway in which DR8 plays a critical role. We found that after prophylactic or therapeutic treatment with DR8, fibrosis-associated indices, including marker proteins, proinflammatory cytokines and profibrogenic cytokines, were significantly downregulated. Importantly, DR8 could reduce bleomycin-induced pathological changes and collagen deposition, especially collagen I content. Furthermore, DR8 prominently upregulated nonenzymatic antioxidants and enzymatic antioxidants. Consistent with the in vivo results, we observed that DR8 significantly inhibited the proliferation and reactive oxygen species (ROS) generation of A549 cells and NIH3T3 cells stimulated with transforming growth factor-β1 (TGF-β1), as well as decreased NADPH oxidase 4 (NOX4) levels under the same conditions. Moreover, DR8 reversed the TGF-β1-induced upregulation of phosphorylated ERK1/2 and p38 MAPK in cells and the bleomycin-induced upregulation of these indices in mice. Our results indicate that DR8 could prevent and treat PF by reducing oxidative damage and suppressing the TGF-β/MAPK pathway. Because of the high efficiency and low toxicity of DR8, we consider that DR8 could be a candidate drug for PF, and our studies establish a foundation for the development of a lead compound to be used as a therapy for fibrosis-related diseases.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhibin Yan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lili Bu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chunmei An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bochuan Deng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianfeng Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Rao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
44
|
Cameli P, Carleo A, Bergantini L, Landi C, Prasse A, Bargagli E. Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation 2019; 43:1-7. [DOI: 10.1007/s10753-019-01059-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Jaeger VK, Lebrecht D, Nicholson AG, Wells A, Bhayani H, Gazdhar A, Tamm M, Venhoff N, Geiser T, Walker UA. Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Sci Rep 2019; 9:5500. [PMID: 30940853 PMCID: PMC6445113 DOI: 10.1038/s41598-019-41933-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in the aetiology of interstitial lung disease (ILD). We investigated the role of large-scale somatically acquired mutations in mitochondrial DNA (mtDNA) and consecutive respiratory chain dysfunction as a trigger of ROS-formation and lung fibrosis. Mitochondria were analysed in lung biopsies from 30 patients with idiopathic or connective tissue disease (CTD)-related ILD and 13 controls. In 17 patients we had paired biopsies from upper and lower lobes. Control samples were taken from lung cancer resections without interstitial fibrosis. Malondialdehyde, a marker of ROS-formation, was elevated in ILD-biopsies (p = 0.044). The activity of the mitochondrial respiratory chain (cytochrome c-oxidase/succinate dehydrogenase [COX/SDH]-ratio) was depressed in ILD (median = 0.10,) compared with controls (0.12, p < 0.001), as was the expression of mtDNA-encoded COX-subunit-2 protein normalized for the nucleus-encoded COX-subunit-4 (COX2/COX4-ratio; ILD-median = 0.6; controls = 2.2; p < 0.001). Wild-type mtDNA copies were slightly elevated in ILD (p = 0.088). The common mtDNA deletion was only present at low levels in controls (median = 0%) and at high levels in ILD (median = 17%; p < 0.001). In ILD-lungs with paired biopsies, lower lobes contained more malondialdehyde and mtDNA deletions than upper lobes and had lower COX2/COX4-ratios and COX/SDH-ratios (all p < 0.001). Acquired mtDNA-mutations and consecutive respiratory chain dysfunction may both trigger and perpetuate ROS-formation in ILD.
Collapse
Affiliation(s)
- Veronika K Jaeger
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Dirk Lebrecht
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Athol Wells
- National Heart and Lung Institute, Imperial College, London, UK.,Interstitial Lung Disease Unit, Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Harshil Bhayani
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Michael Tamm
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Ricca C, Aillon A, Viano M, Bergandi L, Aldieri E, Silvagno F. Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-β activity. J Steroid Biochem Mol Biol 2019; 187:97-105. [PMID: 30465855 DOI: 10.1016/j.jsbmb.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D and TGF-β exert opposite effects on epithelial-mesenchymal EMT transition. Here we report a novel mechanism of action of TGF-β that promotes the counteracting activity of vitamin D; in two models of human epithelial-mesenchymal EMT transition we demonstrated for the first time that TGF-β strongly induced the expression of vitamin D receptor (VDR) and that 1,25(OH)2D3 was able to contrast the TGF-β-driven EMT transition by transcriptional modulation. In human bronchial epithelial cells the effects of TGF-β on EMT transition markers (E-Cadherin expression and cell motility) were reversed by pre-treatment and co-treatment with 1,25(OH)2D3, but not when the hormone was given later. Silencing experiments demonstrated that the inhibition of TGF-β activity was VDR-dependent. 1,25(OH)2D3 abrogated the mitochondrial stimulation triggered by TGF-β. In fact we showed that 1,25(OH)2D3 repressed the transcriptional induction of respiratory complex, limited the enhanced mitochondrial membrane potential and restrained the increased levels of mitochondrial ATP; 1,25(OH)2D3 also decreased the production of reactive oxygen species promoted by TGF-β. Overall, our study suggests that the overexpression and activity of VDR may be a regulatory response to TGF-β signaling that could be exploited in clinical protocols, unraveling the therapeutic potentiality of 1,25(OH)2D3 in the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Alessia Aillon
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Marta Viano
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| |
Collapse
|
47
|
Ren Z, Shen J, Mei X, Dong H, Li J, Yu H. Hesperidin inhibits the epithelial to mesenchymal transition induced by transforming growth factor-β1 in A549 cells through Smad signaling in the cytoplasm. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zhouxin Ren
- Henan University of Traditional Chinese Medicine, China
| | - Junling Shen
- Henan University of Tradicional Chinese Medicine, China
| | - Xiaofeng Mei
- Henan University of Traditional Chinese Medicine, China
| | - Haoran Dong
- Laboratory of Chinese Medicine for Respiratory Disease, Popular Republic of China
| | - Jiansheng Li
- Henan University of Traditional Chinese Medicine, China
| | - Haibin Yu
- Henan University of Tradicional Chinese Medicine, China
| |
Collapse
|
48
|
Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomed Pharmacother 2018; 108:224-231. [PMID: 30219680 DOI: 10.1016/j.biopha.2018.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis is a multifaceted disease with high mortality and morbidity, and it is commonly nonresponsive to conventional therapy. PURPOSE We explore the possible discourse of sinapic acid (SA) against the prevention of bleomycin (BLM)-instigated lung fibrosis in rats through modulation of Nrf2/HO-1 and NF-κB signaling pathways. DESIGN/METHODS Lung fibrosis was persuaded in Sprague-Dawley rats by a single intratracheal BLM (6.5 U/kg) injection. Then, these rats were treated with SA (10 and 20 mg/kg, p.o.) for 28 days. The normal control rats provided saline as a substitute of BLM. The lung function and biochemical, histopathological, and molecular alterations were studied in serum, bronchoalveolar lavage fluid (BALF), and the lungs tissues. RESULTS SA treatment significantly restored BLM-induced alterations in body weight index and serum biomarkers [lactate dehydrogenase (LDH) and alkaline phosphatase (ALP)]. SA (10 and 20 mg/kg) treatment appeared to show a pneumoprotective effect through upregulation of antioxidant status, downregulation of inflammatory cytokines and MMP-7 expression, and reduction of collagen accumulation (hydroxyproline). Nrf2, HO-1, and TGF-β expression was downregulated in BLM-induced fibrosis model, while the reduced expression levels were significantly and dose-dependently upregulated by SA (10 and 20 mg/kg) treatment. We demonstrated that SA ameliorates BLM-induced lung injuries through inhibition of apoptosis and induction of Nrf2/HO-1-mediated antioxidant enzymes via NF-κB inhibition. The histopathological findings also revealed that SA treatment (10 and 20 mg/kg) significantly ameliorated BLM-induced lung injury. CONCLUSION The present results showed the ability of SA to restore the antioxidant system and to inhibit oxidative stress, proinflammatory cytokines, extracellular matrix, and TGF-β. This is first report demonstrating that SA amoleriates BLM induced lung injuries through inhibition of apoptosis and induction of Nrf2 and HO-1 mediated antioxidant enzyme via NF-κB inhibition. The histopathological finding reveals that SA treatment (10 and 20 mg/kg) significantly ameliorates BLM induced lung injuries.
Collapse
|
49
|
Katikireddy KR, White TL, Miyajima T, Vasanth S, Raoof D, Chen Y, Price MO, Price FW, Jurkunas UV. NQO1 downregulation potentiates menadione-induced endothelial-mesenchymal transition during rosette formation in Fuchs endothelial corneal dystrophy. Free Radic Biol Med 2018; 116:19-30. [PMID: 29294389 PMCID: PMC5815941 DOI: 10.1016/j.freeradbiomed.2017.12.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a genetic and oxidative stress disorder of post-mitotic human corneal endothelial cells (HCEnCs), which normally exhibit hexagonal shape and form a compact monolayer compatible with normal corneal functioning and clear vision. FECD is associated with increased DNA damage, which in turn leads to HCEnC loss, resulting in the formation rosettes and aberrant extracellular matrix (ECM) deposition in the form of pro-fibrotic guttae. Since the mechanism of ECM deposition in FECD is currently unknown, we aimed to investigate the role of endothelial-mesenchymal transition (EMT) in FECD using a previously established cellular in vitro model that recapitulates the characteristic rosette formation, by employing menadione (MN)-induced oxidative stress. We demonstrate that MN treatment alone, or a combination of MN and TGF-β1 induces reactive oxygen species (ROS), cell death, and EMT in HCEnCs during rosette formation, resulting in upregulation of EMT- and FECD-associated markers such as Snail1, N-cadherin, ZEB1, and transforming growth factor-beta-induced (TGFβI), respectively. Additionally, FECD ex vivo specimens displayed a loss of organized junctional staining of plasma membrane-bound N-cadherin, with corresponding increase in fibronectin and Snail1 compared to ex vivo controls. Addition of N-acetylcysteine (NAC) downregulated all EMT markers and abolished rosette formation. Loss of NQO1, a metabolizing enzyme of MN, led to greater increase in intracellular ROS levels as well as a significant upregulation of Snail1, fibronectin, and N-cadherin compared to normal cells, indicating that NQO1 regulates Snail1-mediated EMT. This study provides first line evidence that MN-induced oxidative stress leads to EMT in corneal endothelial cells, and the effect of which is further potentiated when redox cycling activity of MN is enhanced by the absence of NQO1. Given that NAC inhibits Snail-mediated EMT, this may be a potential therapeutic intervention for FECD.
Collapse
Affiliation(s)
- Kishore Reddy Katikireddy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Tomas L White
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Taiga Miyajima
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Shivakumar Vasanth
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Duna Raoof
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; Harvard Eye Associates, Laguna Hills, CA 92660, USA
| | - Yuming Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Marianne O Price
- Cornea Research Foundation of America, Indianapolis, IN 46260, USA
| | - Francis W Price
- Cornea Research Foundation of America, Indianapolis, IN 46260, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Liang S, Meng X, Wang Z, Liu J, Kuang H, Wang Q. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-β1/Smad2 signaling. Int J Biol Macromol 2018; 106:947-954. [DOI: 10.1016/j.ijbiomac.2017.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
|