1
|
Orrico F, Lopez AC, Silva N, Franco M, Mouro-Chanteloup I, Denicola A, Ostuni MA, Thomson L, Möller MN. Hydrogen peroxide diffusion across the red blood cell membrane occurs mainly by simple diffusion through the lipid fraction. Free Radic Biol Med 2025; 226:389-396. [PMID: 39551450 DOI: 10.1016/j.freeradbiomed.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hydrogen peroxide (H2O2) is an oxidant produced endogenously by several enzymatic pathways. While it can cause molecular damage, H2O2 also plays a role in regulating cell proliferation and survival through redox signaling pathways. In the vascular system, red blood cells (RBCs) are notably efficient at metabolizing H2O2. In addition to a robust antioxidant defense, we recently determined that human RBCs also have a high membrane permeability to H2O2 that is independent of aquaporin 1 or aquaporin 3. In this work, we sought to further investigate the permeation mechanism of H2O2 through the membrane of human RBCs. First, we explored the role of other erythrocytic membrane proteins in H2O2 transport, including urea transporter B and ammonia transporter Rh proteins. However, no differences were found in H2O2 permeability in RBCs lacking these proteins compared to control RBCs. We then focused on the hypothesis that H2O2 diffuses through the lipid bilayer. To test this, we studied H2O2 permeability in RBCs from patients with Gaucher disease (GD), which accumulate sphingolipids in the membrane, affecting RBC morphology and deformability. We found that RBCs from GD patients exhibited lower H₂O₂ membrane permeability. In another approach, we treated normal RBCs with hexanol, which fluidizes the lipid fraction of the RBC membrane, and observed an increase in the permeability to H2O2. In contrast, hexanol had no effect on the rate of water efflux by aquaporin 1. Together, these results support the hypothesis that H2O2 diffusion through the RBC membrane occurs primarily through the lipid fraction.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Ana C Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Nicolás Silva
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Mélanie Franco
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France.
| | | | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France.
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Matias N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
2
|
Ochiai Y, Suzuki-Karasaki M, Ando T, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Nitric oxide-dependent cell death in glioblastoma and squamous cell carcinoma via prodeath mitochondrial clustering. Eur J Cell Biol 2024; 103:151422. [PMID: 38795505 DOI: 10.1016/j.ejcb.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM. Time-lapse analysis revealed a time-dependent increase in NO accompanied by MPMC. In contrast, APAM caused minimal increases in MPMC and NO levels in nontransformed cells. NO, hydroxyl radicals, and lipid peroxide levels increased near the damaged nuclear periphery, possibly within mitochondria. NO scavenging prevented tubulin remodeling, MPMC, perinuclear oxidant production, nuclear damage, and cell death. Conversely, synthetic NO donors augmented all the prodeath events and acted synergistically with APAM. Salinomycin, an emerging drug against multidrug-resistant cancers, had similar NO-dependent effects. These results suggest that APAM and salinomycin induce NO-dependent cell death, where MPMC and oxidative mitochondria play critical roles. Our findings encourage further investigations on MPMC as a potential target for NO-driven anticancer agents against drug-resistant cancers.
Collapse
Affiliation(s)
- Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Ando
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
3
|
King TJ, Petrick HL, Millar PJ, Burr JF. Acute oral antioxidant consumption does not alter brachial artery flow mediated dilation in young adults independent of exercise training status. Appl Physiol Nutr Metab 2024; 49:375-384. [PMID: 37944127 DOI: 10.1139/apnm-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Endothelium-dependent vasodilation can be tested using a variety of shear stress paradigms, some of which may involve the production of reactive oxygen species. The purpose of this study was to compare different methods for assessing endothelial function and their specific involvement of reactive oxygen species and influence of aerobic training status. Twenty-nine (10 F) young and healthy participants (VO2max: 34-74 mL·kg-1·min-1) consumed either an antioxidant cocktail (AOC; vitamin C, vitamin E, α-lipoic acid) or placebo (PLA) on each of two randomized visits. Endothelial function was measured via three different brachial artery flow-mediated dilation (FMD) tests: reactive hyperemia (RH-FMD: 5 min cuff occlusion and release), sustained shear (SS-FMD: 6 min rhythmic handgrip), and progressive sustained shear (P-SS-FMD: three intensities of 3 min of rhythmic handgrip). Baseline artery diameter decreased (all tests: 3.8 ± 0.5 to 3.7 ± 0.6 mm, p = 0.004), and shear rate stimulus increased (during RH-FMD test, p = 0.021; during SS-FMD test, p = 0.36; during P-SS-FMD test, p = 0.046) following antioxidant consumption. However, there was no difference in FMD following AOC consumption (RH-FMD, PLA: 8.1 ± 2.6%, AOC: 8.2 ± 3.5%, p = 0.92; SS-FMD, PLA: 6.9 ± 3.9%, AOC: 7.8 ± 5.2%, p = 0.15) or FMD per shear rate slope (P-SS-FMD: PLA: 0.0039 ± 0.0035 mm·s-1, AOC: 0.0032 ± 0.0017 mm·s-1, p = 0.28) and this was not influenced by training status/fitness (all p > 0.60). Allometric scaling did not alter these outcomes (all p > 0.40). Reactive oxygen species may not be integral to endothelium-dependent vasodilation tested using reactive, sustained, or progressive shear protocols in young males and females, regardless of fitness level.
Collapse
Affiliation(s)
- Trevor J King
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - Heather L Petrick
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres MJ, Bordas-Murphy H, Schulz ME, Pearson PJ, Freed JK. Necessary Role of Ceramides in the Human Microvascular Endothelium During Health and Disease. Circ Res 2024; 134:81-96. [PMID: 38037825 PMCID: PMC10766100 DOI: 10.1161/circresaha.123.323445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Elevated plasma ceramides and microvascular dysfunction both independently predict adverse cardiac events. Despite the known detrimental effects of ceramide on the microvasculature, evidence suggests that activation of the shear-sensitive, ceramide-forming enzyme NSmase (neutral sphingomyelinase) elicits formation of vasoprotective nitric oxide (NO). Here, we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults (non-coronary artery disease [CAD]) and patients diagnosed with CAD. METHODS Human arterioles were dissected from discarded surgical adipose tissue (n=166), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO and mitochondrial hydrogen peroxide (H2O2) production were measured in arterioles using fluorescence microscopy. H2O2 fluorescence was assessed in isolated human umbilical vein endothelial cells. RESULTS Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to NOX-2 (NADPH-oxidase 2)-dependent H2O2-mediated flow-induced dilation. Endothelial dysfunction was prevented by treatment with sphingosine-1-phosphate (S1P) and partially prevented by C2-ceramide and an agonist of S1P-receptor 1 (S1PR1); the inhibition of the S1P/S1PR1 signaling axis induced endothelial dysfunction via NOX-2. Ceramide increased NO production in arterioles from non-CAD adults, an effect that was diminished with inhibition of S1P/S1PR1/S1P-receptor 3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired the overall ability to induce mitochondrial H2O2 production and subsequently dilate to flow, an effect not restored with exogenous S1P. Acute ceramide administration to arterioles from patients with CAD promoted H2O2 as opposed to NO production, an effect dependent on S1P-receptor 3 signaling. CONCLUSION These data suggest that despite differential downstream signaling between health and disease, NSmase-mediated ceramide formation is necessary for proper functioning of the human microvascular endothelium. Therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Boran Katunaric
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Zachary Zirgibel
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Brian Lindemer
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Maria J. Jaramillo-Torres
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Henry Bordas-Murphy
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Mary E. Schulz
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| | - Paul J. Pearson
- Department of Surgery, Division of Cardiothoracic Surgery (P.J.P.), Medical College of Wisconsin, Milwaukee, WI
| | - Julie K. Freed
- Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (G.S., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
- Department of Anesthesiology (G.S., B.K., Z.Z., B.L., M.J.J.-T., H.B.-M., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Chaurasiya V, Pham DD, Harju J, Juuti A, Penttilä A, Emmagouni SKG, Nguyen VD, Zhang B, Perttunen S, Keskitalo S, Zhou Y, Pietiläinen KH, Haridas PAN, Olkkonen VM. Human visceral adipose tissue microvascular endothelial cell isolation and establishment of co-culture with white adipocytes to analyze cell-cell communication. Exp Cell Res 2023; 433:113819. [PMID: 37852349 DOI: 10.1016/j.yexcr.2023.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Doctoral Programme in Biomedicine, University of Helsinki, Finland.
| | - Dan Duc Pham
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jukka Harju
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Birong Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Research Group & Proteomics Unit, HiLIFE Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
6
|
Katunaric B, SenthilKumar G, Schulz ME, De Oliveira N, Freed JK. S1P (Sphingosine-1-Phosphate)-Induced Vasodilation in Human Resistance Arterioles During Health and Disease. Hypertension 2022; 79:2250-2261. [PMID: 36070401 PMCID: PMC9473289 DOI: 10.1161/hypertensionaha.122.19862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preclinical studies suggest that S1P (sphingosine-1-phosphate) influences blood pressure regulation primarily through NO-induced vasodilation. Because microvascular tone significantly contributes to mean arterial pressure, the mechanism of S1P on human resistance arterioles was investigated. We hypothesized that S1P induces NO-mediated vasodilation in human arterioles from adults without coronary artery disease (non-coronary artery disease) through activation of 2 receptors, S1PR1 (S1P receptor 1) and S1PR3 (S1P receptor 3). Furthermore, we tested whether this mechanism is altered in vessels from patients diagnosed with coronary artery disease. METHODS Human arterioles (50-200 µm in luminal diameter) were dissected from otherwise discarded surgical adipose tissue, cannulated, and pressurized. Following equilibration, resistance vessels were preconstricted with ET-1 (endothelin-1) and changes in internal diameter to increasing concentrations of S1P (10-12 to 10-7 M) in the presence or absence of various inhibitors were measured. RESULTS S1P resulted in significant dilation that was abolished in vessels treated with S1PR1 and S1PR3 inhibitors and in vessels with reduced expression of each receptor. Dilation to S1P was significantly reduced in the presence of the NOS (NO synthase) inhibitor Nω-nitro-L-arginine methyl ester and the NO scavenger 2-4-(carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Interestingly, dilation was also significantly impaired in the presence of PEG-catalase (polyethylene glycol-catalase), apocynin, and specific inhibitors of NOX (NADPH oxidases) 2 and 4. Dilation in vessels from patients diagnosed with coronary artery disease was dependent on H2O2 alone which was only dependent on S1PR3 activation. CONCLUSIONS These translational studies highlight the inter-species variation observed in vascular signaling and provide insight into the mechanism by which S1P regulates microvascular resistance and ultimately blood pressure in humans.
Collapse
Affiliation(s)
- Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary E. Schulz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Nilto De Oliveira
- Department of Surgery, Division of Adult Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
8
|
Causer AJ, Khalaf M, Klein Rot E, Brand K, Smith J, Bailey SJ, Cummings MH, Shepherd AI, Saynor ZL, Shute JK. CFTR limits F-actin formation and promotes morphological alignment with flow in human lung microvascular endothelial cells. Physiol Rep 2021; 9:e15128. [PMID: 34851051 PMCID: PMC8634629 DOI: 10.14814/phy2.15128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Micro- and macrovascular endothelial dysfunction in response to shear stress has been observed in cystic fibrosis (CF), and has been associated with inflammation and oxidative stress. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) regulates endothelial actin cytoskeleton dynamics and cellular alignment in response to flow. Human lung microvascular endothelial cells (HLMVEC) were cultured with either the CFTR inhibitor GlyH-101 (20 µM) or CFTRinh-172 (20 µM), tumor necrosis factor (TNF)-α (10 ng/ml) or a vehicle control (0.1% dimethyl sulfoxide) during 24 and 48 h of exposure to shear stress (11.1 dynes/cm2 ) or under static control conditions. Cellular morphology and filamentous actin (F-actin) were assessed using immunocytochemistry. [Nitrite] and endothelin-1 ([ET-1]) were determined in cell culture supernatant by ozone-based chemiluminescence and ELISA, respectively. Treatment of HLMVECs with both CFTR inhibitors prevented alignment of HLMVEC in the direction of flow after 24 and 48 h of shear stress, compared to vehicle control (both p < 0.05). Treatment with TNF-α significantly increased total F-actin after 24 h versus control (p < 0.05), an effect that was independent of shear stress. GlyH-101 significantly increased F-actin after 24 h of shear stress versus control (p < 0.05), with a significant (p < 0.05) reduction in cortical F-actin under both static and flow conditions. Shear stress decreased [ET-1] after 24 h (p < 0.05) and increased [nitrite] after 48 h (p < 0.05), but neither [nitrite] nor [ET-1] was affected by GlyH-101 (p > 0.05). CFTR appears to limit cytosolic actin polymerization, while maintaining a cortical rim actin distribution that is important for maintaining barrier integrity and promoting alignment with flow, without effects on endothelial nitrite or ET-1 production.
Collapse
Affiliation(s)
- Adam J. Causer
- Department for HealthUniversity of BathBathUK
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Maha Khalaf
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Emily Klein Rot
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - Kimberly Brand
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - James Smith
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Michael H. Cummings
- Department of Diabetes and EndocrinologyQueen Alexandra HospitalPortsmouthUK
| | - Anthony I. Shepherd
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Zoe L. Saynor
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Janis K. Shute
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
9
|
Wang T, Liu J, Liu H, Lee SR, Gonzalez L, Gorecka J, Shu C, Dardik A. Activation of EphrinB2 Signaling Promotes Adaptive Venous Remodeling in Murine Arteriovenous Fistulae. J Surg Res 2021; 262:224-239. [PMID: 33039109 PMCID: PMC8024410 DOI: 10.1016/j.jss.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Arteriovenous fistulae (AVF) are the preferred mode of vascular access for hemodialysis. Before use, AVF remodel by thickening and dilating to achieve a functional conduit via an adaptive process characterized by expression of molecular markers characteristic of both venous and arterial identity. Although signaling via EphB4, a determinant of venous identity, mediates AVF maturation, the role of its counterpart EphrinB2, a determinant of arterial identity, remains unclear. We hypothesize that EphrinB2 signaling is active during AVF maturation and may be a mechanism of venous remodeling. METHODS Aortocaval fistulae were created or sham laparotomy was performed in C57Bl/6 mice, and specimens were examined on Days 7 or 21. EphrinB2 reverse signaling was activated with EphB4-Fc applied periadventitially in vivo and in endothelial cell culture medium in vitro. Downstream signaling was assessed using immunoblotting and immunofluorescence. RESULTS Venous remodeling during AVF maturation was characterized by increased expression of EphrinB2 as well as Akt1, extracellular signal-regulated kinases 1/2 (ERK1/2), and p38. Activation of EphrinB2 with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and was associated with increased diameter and wall thickness in the AVF. Both mouse and human endothelial cells treated with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and increased endothelial cell tube formation and migration. CONCLUSIONS Activation of EphrinB2 signaling by EphB4-Fc was associated with adaptive venous remodeling in vivo while activating endothelial cell function in vitro. Regulation of EphrinB2 signaling may be a new strategy to improve AVF maturation and patency.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jia Liu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Haiyang Liu
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Shin-Rong Lee
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Luis Gonzalez
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jolanta Gorecka
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
10
|
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H2080-H2100. [PMID: 33834868 PMCID: PMC8163660 DOI: 10.1152/ajpheart.00917.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) affects one in three adults and remains the leading cause of death in America. Advancing age is a major risk factor for CVD. Recent plateaus in CVD-related mortality rates in high-income countries after decades of decline highlight a critical need to identify novel therapeutic targets and strategies to mitigate and manage the risk of CVD development and progression. Vascular dysfunction, characterized by endothelial dysfunction and large elastic artery stiffening, is independently associated with an increased CVD risk and incidence and is therefore an attractive target for CVD prevention and management. Vascular mitochondria have emerged as an important player in maintaining vascular homeostasis. As such, age- and disease-related impairments in mitochondrial function contribute to vascular dysfunction and consequent increases in CVD risk. This review outlines the role of mitochondria in vascular function and discusses the ramifications of mitochondrial dysfunction on vascular health in the setting of age and disease. The adverse vascular consequences of increased mitochondrial-derived reactive oxygen species, impaired mitochondrial quality control, and defective mitochondrial calcium cycling are emphasized, in particular. Current evidence for both lifestyle and pharmaceutical mitochondrial-targeted strategies to improve vascular function is also presented.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
11
|
Katunaric B, Cohen KE, Beyer AM, Gutterman DD, Freed JK. Sweat the small stuff: The human microvasculature and heart disease. Microcirculation 2021; 28:e12658. [PMID: 32939881 PMCID: PMC7960576 DOI: 10.1111/micc.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023]
Abstract
Traditionally thought of primarily as the predominant regulator of myocardial perfusion, it is becoming more accepted that the human coronary microvasculature also exerts a more direct influence on the surrounding myocardium. Coronary microvascular dysfunction (CMD) not only precedes large artery atherosclerosis, but is associated with other cardiovascular diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy. It is also highly predictive of cardiovascular events in patients with or without atherosclerotic cardiovascular disease. This review focuses on this recent paradigm shift and delves into the clinical consequences of CMD. Concepts of how resistance arterioles contribute to disease will be discussed, highlighting how the microvasculature may serve as a potential target for novel therapies and interventions. Finally, both invasive and non-invasive methods with which to assess the coronary microvasculature both for diagnostic and risk stratification purposes will be reviewed.
Collapse
Affiliation(s)
- Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andreas M. Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D. Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Micera M, Botto A, Geddo F, Antoniotti S, Bertea CM, Levi R, Gallo MP, Querio G. Squalene: More than a Step toward Sterols. Antioxidants (Basel) 2020; 9:antiox9080688. [PMID: 32748847 PMCID: PMC7464659 DOI: 10.3390/antiox9080688] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Squalene (SQ) is a natural triterpene widely distributed in nature. It is a metabolic intermediate of the sterol biosynthetic pathway and represents a possible target in different metabolic and oxidative stress-related disorders. Growing interest has been focused on SQ’s antioxidant properties, derived from its chemical structure. Strong evidence provided by ex vivo models underline its scavenging activity towards free radicals, whereas only a few studies have highlighted its effect in cellular models of oxidative stress. Given the role of unbalanced free radicals in both the onset and progression of several cardiovascular diseases, an in depth evaluation of SQ’s contribution to antioxidant defense mechanisms could represent a strategic approach in dealing with these pathological conditions. At present experimental results overall show a double-edged sword role of squalene in cardiovascular diseases and its function has to be better elucidated in order to establish intervention lines focused on its features. This review aims to summarize current knowledge about endogenous and exogenous sources of SQ and to point out the controversial role of SQ in cardiovascular physiology.
Collapse
Affiliation(s)
- Marco Micera
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
- Exenia Group S.r.l., 10064 Pinerolo (TO), Italy;
| | | | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
| | - Cinzia Margherita Bertea
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
- Correspondence:
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (M.M.); (F.G.); (S.A.); (C.M.B.); (R.L.); (G.Q.)
| |
Collapse
|
13
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
14
|
Therapeutic targets for endothelial dysfunction in vascular diseases. Arch Pharm Res 2019; 42:848-861. [PMID: 31420777 DOI: 10.1007/s12272-019-01180-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells are located on the surface of the blood vessels. It has been recognized as an important barrier to the regulation of vascular homeostasis by regulating the blood flow of micro- or macrovascular vessels. Indeed, endothelial dysfunction is an initial stage of vascular diseases and is an important prognostic indicator of cardiovascular and metabolic diseases such as atherosclerosis, hypertension, heart failure, or diabetes. Therefore, in order to develop therapeutic targets for vascular diseases, it is important to understand the key factors involved in maintaining endothelial function and the signaling pathways affecting endothelial dysfunction. The purpose of this review is to describe the function and underlying signaling pathway of oxidative stress, inflammatory factors, shear stress, and epigenetic factors in endothelial dysfunction, and introduce recent therapeutic targets for the treatment of cardiovascular diseases.
Collapse
|
15
|
Abstract
SIGNIFICANCE Angiogenesis is the formation of new vessels that sprout from existing vessels. This process is highly complex and requires a coordinated shift of the endothelial phenotype from a quiescent cell in the vessel wall into a migrating or proliferating cell. Such change in the life of the endothelial cell is induced by a variety of factors such as hypoxia, metabolic changes, or cytokines. Recent Advances: Within the last years, it became clear that the cellular redox state and oxidation of signaling molecules or phosphatases are critical modulators in angiogenesis. CRITICAL ISSUES According to the wide variety of stimuli that induce angiogenesis, a complex signaling network is needed to support a coordinated response of the endothelial cell. Reactive oxygen species (ROS) now are second messengers that either directly oxidize a target molecule or initiate a cascade of redox sensitive steps that transmit the signal. Further Directions: For the understanding of redox signaling, it is essential to recognize and accept that ROS do not represent master regulators of angiogenetic processes. They rather modulate existing signal cascades. This review summarizes some current findings on redox signaling in angiogenesis.
Collapse
Affiliation(s)
- Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,2 German Center for Cardiovascular Research (DZHK), Rhine-Main, Frankfurt, Germany
| |
Collapse
|
16
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
18
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
19
|
Muñoz M, Martínez MP, López-Oliva ME, Rodríguez C, Corbacho C, Carballido J, García-Sacristán A, Hernández M, Rivera L, Sáenz-Medina J, Prieto D. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. Redox Biol 2018; 19:92-104. [PMID: 30125808 PMCID: PMC6105769 DOI: 10.1016/j.redox.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
Abstract
The role of NADPH oxidase (Nox)-derived reactive oxygen species in kidney vascular function has extensively been investigated in the harmful context of oxidative stress in diabetes and obesity-associated kidney disease. Since hydrogen peroxide (H2O2) has recently been involved in the non-nitric oxide (NO) non-prostanoid relaxations of intrarenal arteries, the present study was sought to investigate whether NADPH oxidases may be functional sources of vasodilator H2O2 in the kidney and to assess their role in the endothelium-dependent relaxations of human and rat intrarenal arteries. Renal interlobar arteries isolated from the kidney of renal tumor patients who underwent nephrectomy, and from the kidney of Wistar rats, were mounted in microvascular myographs to assess function. Superoxide (O2.-) and H2O2 production was measured by chemiluminescence and Amplex Red fluorescence, and Nox2 and Nox4 enzymes were detected by Western blotting and by double inmunolabeling along with eNOS. Nox2 and Nox4 proteins were expressed in the endothelium of renal arterioles and glomeruli co-localized with eNOS, levels of expression of both enzymes being higher in the cortex than in isolated arteries. Pharmacological inhibition of Nox with apocynin and of CYP 2C epoxygenases with sulfaphenazol, but not of the NO synthase (NOS), reduced renal NADPH-stimulated O2.- and H2O2 production. Under conditions of cyclooxygenase and NOS blockade, acetylcholine induced endothelium-dependent relaxations that were blunted by the non-selective Nox inhibitor apocynin and by the Nox2 or the Nox1/4 inhibitors gp91ds-tat and GKT136901, respectively. Acetylcholine stimulated H2O2 production that was reduced by gp91ds-tat and by GKT136901. These results suggest the specific involvement of Nox4 and Nox2 subunits as physiologically relevant endothelial sources of H2O2 generation that contribute to the endothelium-dependent vasodilatation of renal arteries and therefore have a protective role in kidney vasculature.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
20
|
Kadlec AO, Gutterman DD. The Yin and Yang of endothelium-derived vasodilator factors. Am J Physiol Heart Circ Physiol 2018; 314:H892-H894. [PMID: 29351003 PMCID: PMC6008146 DOI: 10.1152/ajpheart.00019.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
21
|
Gensberger ET, Scharrer S, Regele H, Aumayr K, Kopecky C, Gmeiner B, Hermann M, Zeillinger R, Bajar T, Winnicki W, Sengölge G. Known players, new interplay in atherogenesis: Chronic shear stress and carbamylated-LDL induce and modulate expression of atherogenic LR11 in human coronary artery endothelium. Thromb Haemost 2017; 111:323-32. [DOI: 10.1160/th12-12-0924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 10/10/2013] [Indexed: 11/05/2022]
Abstract
SummaryIn this study we examined whether low-density lipoprotein (LDL) receptor family members represent a link between blood flow characteristics and modified low-density lipoproteins involved in endothelial injury, a pivotal factor in atherogenesis. We demonstrated the expression of pro-atherogenic LDL receptor relative (LR11) for the first time in human coronary artery endothelial cells (HCAEC) in vitro and in vivo. Next, LR11 expression and regulation were explored in HCAEC cultured conventionally or on the inner surface of hollow fiber capillaries under exposure to shear stress for 10 days in the presence or absence of LDL. There was no LR11 expression under static conditions. When exposed to chronic low shear stress (2.5 dynes/cm2) transmembrane and soluble endothelial-LR11 were detected in high levels irrespective of the type of LDL added (carbamylated or native). In contrast, chronic high shear stress (25 dynes/cm2) inhibited the LR11-inducing effect of LDL such that transmembrane and soluble LR11 expression became non-detectable with native LDL. Carbamylated LDL significantly counteracted this atheroprotective effect of high shear stress as shown by lower, yet sustained expression of soluble and transmembrane LR11. Oxidised LDL showed similar effects compared to carbamylated LDL but caused significantly lower LR11 expression under chronic high shear stress. Medium from HCAEC under LR11-inducing conditions enhanced vascular smooth muscle cell migration, which was abrogated by the anti-LR11 antibody. Expression of LR11 depended entirely on p38MAPK phosphorylation. We conclude that coronary endothelial LR11 expression modulated by LDL and chronic shear stress contributes to atherogenesis. LR11 and p38MAPK are potential targets for prevention of atherosclerosis.
Collapse
|
22
|
Tremblay JC, Pyke KE. Flow-mediated dilation stimulated by sustained increases in shear stress: a useful tool for assessing endothelial function in humans? Am J Physiol Heart Circ Physiol 2017; 314:H508-H520. [PMID: 29167121 DOI: 10.1152/ajpheart.00534.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Investigations of human conduit artery endothelial function via flow-mediated vasodilation (FMD) have largely been restricted to the reactive hyperemia (RH) technique, wherein a transient increase in shear stress after the release of limb occlusion stimulates upstream conduit artery vasodilation (RH-FMD). FMD can also be assessed in response to sustained increases in shear stress [sustained stimulus (SS)-FMD], most often created with limb heating or exercise. Exercise in particular creates a physiologically relevant stimulus because shear stress increases, and FMD occurs, during typical day-to-day activity. Several studies have identified that various conditions and acute interventions have a disparate impact on RH-FMD versus SS-FMD, sometimes with only the latter demonstrating impairment. Indeed, evidence suggests that transient (RH) and sustained (SS) shear stress stimuli may be transduced via different signaling pathways, and, as such, SS-FMD and RH-FMD appear to offer unique insights regarding endothelial function. The present review describes the techniques used to assess SS-FMD and summarizes the evidence regarding 1) SS-FMD as an index of endothelial function in humans, highlighting comparisons with RH-FMD, and 2) potential differences in shear stress transduction and vasodilator production stimulated by transient versus sustained shear stress stimuli. The evidence suggests that SS-FMD is a useful tool to assess endothelial function and that further research is required to characterize the mechanisms involved and its association with long-term cardiovascular outcomes. NEW & NOTEWORTHY Sustained increases in peripheral conduit artery shear stress, created via distal skin heating or exercise, provide a physiologically relevant stimulus for flow-mediated dilation (FMD). Sustained stimulus FMD and FMD stimulated by transient, reactive hyperemia-induced increases in shear stress provide distinct assessments of conduit artery endothelial function.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
23
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
24
|
Kandasamy J, Olave N, Ballinger SW, Ambalavanan N. Vascular Endothelial Mitochondrial Function Predicts Death or Pulmonary Outcomes in Preterm Infants. Am J Respir Crit Care Med 2017; 196:1040-1049. [PMID: 28485984 DOI: 10.1164/rccm.201702-0353oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Vascular endothelial mitochondrial dysfunction contributes to the pathogenesis of several oxidant stress-associated disorders. Oxidant stress is a major contributor to the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity that often leads to sequelae in adult survivors. OBJECTIVES This study was conducted to identify whether differences in mitochondrial bioenergetic function and oxidant generation in human umbilical vein endothelial cells (HUVECs) obtained from extremely preterm infants were associated with risk for BPD or death before 36 weeks postmenstrual age. METHODS HUVEC oxygen consumption and superoxide and hydrogen peroxide generation were measured in 69 infants. MEASUREMENTS AND MAIN RESULTS Compared with HUVECs from infants who survived without BPD, HUVECs obtained from infants who developed BPD or died had a lower maximal oxygen consumption rate (mean ± SEM, 107 ± 8 vs. 235 ± 22 pmol/min/30,000 cells; P < 0.001), produced more superoxide after exposure to hyperoxia (mean ± SEM, 89,807 ± 16,616 vs. 162,706 ± 25,321 MitoSOX Red fluorescence units; P < 0.05), and released more hydrogen peroxide into the supernatant after hyperoxia exposure (mean ± SEM, 1,879 ± 278 vs. 842 ± 119 resorufin arbitrary fluorescence units; P < 0.001). CONCLUSIONS Our results indicating that endothelial cells of premature infants who later develop BPD or die have impaired mitochondrial bioenergetic capacity and produce more oxidants at birth suggest that the vascular endothelial mitochondrial dysfunction seen at birth in these infants persists through their postnatal life and contributes to adverse pulmonary outcomes and increased early mortality.
Collapse
Affiliation(s)
| | | | - Scott W Ballinger
- 2 Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- 1 Department of Pediatrics and.,2 Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
25
|
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2017; 175:1279-1292. [PMID: 28430357 DOI: 10.1111/bph.13828] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix, collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for developing promising clinical strategies targeting ROS to decrease cardiovascular risks. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Vieceli Dalla Sega F, Aquila G, Fortini F, Vaccarezza M, Secchiero P, Rizzo P, Campo G. Context-dependent function of ROS in the vascular endothelium: The role of the Notch pathway and shear stress. Biofactors 2017; 43:475-485. [PMID: 28419584 DOI: 10.1002/biof.1359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) act as signal molecules in several biological processes whereas excessive, unregulated, ROS production contributes to the development of pathological conditions including endothelial dysfunction and atherosclerosis. The maintenance of a healthy endothelium depends on many factors and on their reciprocal interactions; in this framework, the Notch pathway and shear stress (SS) play two lead roles. Recently, evidence of a crosstalk between ROS, Notch, and SS, is emerging. The aim of this review is to describe the way ROS interact with the Notch pathway and SS protecting from-or promoting-the development of endothelial dysfunction. © 2017 BioFactors, 43(4):475-485, 2017.
Collapse
Affiliation(s)
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA) Center, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, (RA), Italy
| | - Gianluca Campo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria S. Anna, Cona, (FE), Italy
| |
Collapse
|
27
|
Plotnick MD, D'Urzo KA, Gurd BJ, Pyke KE. The influence of vitamin C on the interaction between acute mental stress and endothelial function. Eur J Appl Physiol 2017; 117:1657-1668. [PMID: 28612123 DOI: 10.1007/s00421-017-3655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine whether orally administered vitamin C attenuates expected mental stress-induced reductions in brachial artery endothelial function as measured by flow-mediated dilation (FMD). METHODS Fifteen men (21 ± 2 years) were given 1000 mg of vitamin C or placebo over two visits in a randomized, double-blinded, within-subject design. Acute mental stress was induced using the Trier Social Stress Test (TSST). Saliva samples for cortisol determination and FMD measures were obtained at baseline, pre-TSST, and 30 and 90-min post-TSST. An additional saliva sample was obtained immediately post-TSST. Cardiovascular stress reactivity was characterized by changes in heart rate (HR) and mean arterial pressure (MAP). RESULTS A significant stress response was elicited by the TSST in both conditions [MAP, HR, and salivary cortisol increased (p < 0.001)]. Overall FMD did not differ pre- vs. post-stress (time: p = 0.631) and there was no effect of vitamin C (condition: p = 0.792) (interaction between time and condition, p = 0.573). However, there was a correlation between cortisol reactivity and changes in FMD from pre- to post-stress in the placebo condition (r 2 = 0.66, p < 0.001) that was abolished in the vitamin C condition (r 2 = 0.02, p = 0.612). CONCLUSION Acute mental stress did not impair endothelial function, and vitamin C disrupted the relationship between cortisol reactivity and changes in FMD post-stress. This suggests that acute mental stress does not universally impair endothelial function and that reactive oxygen species signaling may influence the interaction between FMD and stress responses.
Collapse
Affiliation(s)
- Meghan D Plotnick
- School of Kinesiology and Health Studies, Queen's University, 28 Division St., Kingston, ON, K7L 3N6, Canada
| | - Katrina A D'Urzo
- School of Kinesiology and Health Studies, Queen's University, 28 Division St., Kingston, ON, K7L 3N6, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, 28 Division St., Kingston, ON, K7L 3N6, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Queen's University, 28 Division St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
28
|
Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol 2017; 13:288-300. [PMID: 28600985 PMCID: PMC5466665 DOI: 10.1016/j.redox.2017.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID) was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox) system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1) FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2) human adipose microvascular endothelial cell (HAMECs) expression of nitric oxide (NO), endothelial NO synthase (eNOS), and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9), reactive oxygen species (ROS) were increased while NO and arteriolar FID were reduced following 60 min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2) inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3) isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic), Tetrahydrobiopterin (BH4; eNOS cofactor), and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the availability of NO and enhances peroxynitrite formation. Therefore, the Nox2 pathway should be considered as a target for the prevention of oxidative stress-associated endothelial dysfunction during hyperinsulinemia. Hyperinsulinemia impairs FID and induces ROS production in human muscle arterioles. Insulin-induced ROS production in endotelial cells is mediated by NADPH oxidase. Long exposure to high insulin levels reduces eNOS phosphorylation and NO production.
Collapse
|
29
|
Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM, Gutterman DD. PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension 2017; 70:166-173. [PMID: 28533333 DOI: 10.1161/hypertensionaha.117.09289] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/12/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022]
Abstract
Blood flow through healthy human vessels releases NO to produce vasodilation, whereas in patients with coronary artery disease (CAD), the mediator of dilation transitions to mitochondria-derived hydrogen peroxide (mtH2O2). Excessive mtH2O2 production contributes to a proatherosclerotic vascular milieu. Loss of PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) is implicated in the pathogenesis of CAD. We hypothesized that PGC-1α suppresses mtH2O2 production to reestablish NO-mediated dilation in isolated vessels from patients with CAD. Isolated human adipose arterioles were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the presence of PEG (polyethylene glycol)-catalase (H2O2 scavenger) or L-NAME (NG-nitro-l-arginine methyl ester; NOS inhibitor). In contrast to the exclusively NO- or H2O2-mediated dilation seen in either non-CAD or CAD conditions, respectively, flow-mediated dilation in CAD vessels was sensitive to both L-NAME and PEG-catalase after PGC-1α upregulation using ZLN005 and α-lipoic acid. PGC-1α overexpression in CAD vessels protected against the vascular dysfunction induced by an acute increase in intraluminal pressure. In contrast, downregulation of PGC-1α in non-CAD vessels produces a CAD-like phenotype characterized by mtH2O2-mediated dilation (no contribution of NO). Loss of PGC-1α may contribute to the shift toward the mtH2O2-mediated dilation observed in vessels from subjects with CAD. Strategies to boost PGC-1α levels may provide a therapeutic option in patients with CAD by shifting away from mtH2O2-mediated dilation, increasing NO bioavailability, and reducing levels of mtH2O2 Furthermore, increased expression of PGC-1α allows for simultaneous contributions of both NO and H2O2 to flow-mediated dilation.
Collapse
Affiliation(s)
- Andrew O Kadlec
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Dawid S Chabowski
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Joseph C Hockenberry
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Mary F Otterson
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - David D Gutterman
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
30
|
Hu P, Wu X, Khandelwal AR, Yu W, Xu Z, Chen L, Yang J, Weisbrod RM, Lee KSS, Seta F, Hammock BD, Cohen RA, Zeng C, Tong X. Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1382-1391. [PMID: 28185955 DOI: 10.1016/j.bbadis.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.
Collapse
Affiliation(s)
- Pingping Hu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
31
|
Latham Birt SH, Purcell R, Botham KM, Wheeler-Jones CPD. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway. J Lipid Res 2016; 57:1204-18. [PMID: 27185859 PMCID: PMC4918850 DOI: 10.1194/jlr.m067108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction.
Collapse
Affiliation(s)
- Sally H Latham Birt
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Kathleen M Botham
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | |
Collapse
|
32
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
33
|
Sánchez-Gómez FJ, Calvo E, Bretón-Romero R, Fierro-Fernández M, Anilkumar N, Shah AM, Schröder K, Brandes RP, Vázquez J, Lamas S. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation. Free Radic Biol Med 2015; 89:419-30. [PMID: 26427883 DOI: 10.1016/j.freeradbiomed.2015.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Blotting, Western
- Cattle
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Fluorescent Antibody Technique
- Hydrogen Peroxide/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidase 4
- NADPH Oxidases/physiology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidants/pharmacology
- Oxidation-Reduction
- Phosphorylation/drug effects
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Signal Transduction/drug effects
- Stress, Mechanical
- Sulfenic Acids/chemistry
- Superoxides
Collapse
Affiliation(s)
- Francisco J Sánchez-Gómez
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Enrique Calvo
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Rosa Bretón-Romero
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Marta Fierro-Fernández
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Narayana Anilkumar
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE5 9NU, UK
| | - Ajay M Shah
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE5 9NU, UK
| | - Katrin Schröder
- Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ralf P Brandes
- Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Campus Universidad Autónoma, E-28049 Madrid, Spain.
| |
Collapse
|
34
|
Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, King MR, Reinhart-King CA. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J 2015; 108:471-8. [PMID: 25650915 DOI: 10.1016/j.bpj.2014.12.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022] Open
Abstract
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.
Collapse
Affiliation(s)
- Julie C Kohn
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Dennis W Zhou
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - François Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Allen L Zhou
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Brooke N Mason
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael J Mitchell
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
35
|
Rashdan NA, Lloyd PG. Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4. Am J Physiol Heart Circ Physiol 2015; 309:H1655-66. [PMID: 26408539 DOI: 10.1152/ajpheart.00408.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 01/02/2023]
Abstract
Placental growth factor (PLGF), a potent stimulator of arteriogenesis, is upregulated during outward arterial remodeling. Increased fluid shear stress (FSS) is a key physiological stimulus for arteriogenesis. However, the role of FSS in regulating PLGF expression is unknown. To test the hypothesis that FSS regulates PLGF expression in vascular cells and to identify the signaling pathways involved, human coronary artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells were cultured on either side of porous Transwell inserts. HCAEC were then exposed to pulsatile FSS of 0.07 Pa ("normal," mimicking flow through quiescent collaterals), 1.24 Pa ("high," mimicking increased flow in remodeling collaterals), or 0.00 Pa ("static") for 2 h. High FSS increased secreted PLGF protein ∼1.4-fold compared with static control (n = 5, P < 0.01), while normal FSS had no significant effect on PLGF. Similarly, high flow stimulated PLGF mRNA expression nearly twofold in isolated mouse mesenteric arterioles. PLGF knockdown using siRNA revealed that HCAEC were the primary source of PLGF in cocultures (n = 5, P < 0.01). Both H2O2 and nitric oxide production were increased by FSS compared with static control (n = 5, P < 0.05). N(G)-nitro-l-arginine methyl ester (100 μM) had no significant effect on the FSS-induced increase in PLGF. In contrast, both catalase (500 U/ml) and diphenyleneiodonium (5 μM) attenuated the effects of FSS on PLGF protein in cocultures. Diphenyleneiodonium also blocked the effect of high flow to upregulate PLGF mRNA in isolated arterioles. Further studies identified NADPH oxidase 4 as a source of reactive oxygen species for this pathway. We conclude that FSS regulates PLGF expression via NADPH oxidase 4 and reactive oxygen species signaling.
Collapse
Affiliation(s)
- Nabil A Rashdan
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Pamela G Lloyd
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
36
|
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72:3281-303. [PMID: 25972278 PMCID: PMC11113497 DOI: 10.1007/s00018-015-1928-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimo M. Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, 3000 Leuven, Belgium
- Laboratory of Endothelial Molecular Biology, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 2015; 6:e1827. [PMID: 26181207 PMCID: PMC4650738 DOI: 10.1038/cddis.2015.193] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/26/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.
Collapse
Affiliation(s)
- J Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - X Bi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - T Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Q Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - S-X Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - J-J Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - G-S Liu
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia
| | - Y Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - P Bu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - F Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| |
Collapse
|
38
|
Stimulation of cardiomyogenesis from mouse embryonic stem cells by nuclear translocation of cardiotrophin-1. Int J Cardiol 2015; 193:23-33. [PMID: 26005169 DOI: 10.1016/j.ijcard.2015.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cardiotrophin-1 (CT-1) controls cardiomyogenesis of mouse embryonic stem (ES) cells. OBJECTIVES To investigate the signaling pathway underlying the action of CT-1 on cardiac cell differentiation. METHODS Protein expression was analyzed by western blot technique and cardiac areas by immunohistochemistry. Calcium, reactive oxygen species (ROS) and nitric oxide (NO) were assessed by microfluorometry using fluo-4, H2DCF, and DAF-2DA, respectively. Gene inactivation of CT-1 was achieved by siRNA technology. RESULTS CT-1 as well as its receptor gp 130 were transiently upregulated during differentiation of ES cells. Exogenous CT-1 enhanced cardiomyogenesis, increased the cardiac transcription factors MEF2c, Nkx-2.5, TEAD3 and GATA4, the cardiac proteins α-actinin, MLC2a, MYH7, MLC1a, MLC2v and HCN4 as well as vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGF-BB), fibroblast growth factor-2 (FGF-2) and atrial natriuretic peptide (ANP). CT-1 downregulation by small interfering RNA (siRNA) inhibited cardiomyogenesis and decreased VEGF, PDGF-BB, FGF-2 and ANP expression. CT-1 raised intracellular calcium which was abolished by the intracellular calcium chelator BAPTA, AM and thapsigargin. Moreover, CT-1 treatment increased ROS, followed by NO generation and NOS3 activation. During ES cell differentiation CT-1 was translocated to the cell nucleus. Exogenous CT-1 induced nuclear translocation of endogenous CT-1, which was inhibited by BAPTA, the NOS inhibitor L-N(G)-Nitroarginine methyl ester (l-NAME), the radical scavenger N-(2-mercaptopropionyl)-glycine (NMPG) as well as the janus kinase 2 (JAK2) inhibitor AG490 and the PI3 kinase (PI3K) inhibitor LY294002. CONCLUSIONS Nuclear translocation of CT-1 regulates cardiomyogenesis of ES cells and involves calcium, NO, ROS as well as CT-1 regulated signaling pathways.
Collapse
|
39
|
Guo S, Chen X. The human Nox4: gene, structure, physiological function and pathological significance. J Drug Target 2015; 23:888-96. [PMID: 25950600 DOI: 10.3109/1061186x.2015.1036276] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of a variety of diseases such as cardiovascular diseases and cancer. NADPH oxidase (Nox), a multicomponent enzyme, has been identified as one of the key sources of ROS. Nox4, one of the seven members of Nox family (Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2), has been extensively investigated in recent years. Its unique structures result in the constitutive generation of hydrogen peroxide (H2O2) as the main product. As a key oxygen sensor, Nox4-derived H2O2 plays diverse roles in cell proliferation, migration and death. Increased expression of Nox4 in cancer has been observed, which participates in metastasis, angiogenesis and apoptosis. Expression of Nox4 in endothelial cells actively mediated endothelial activation, dysfunction and injury, which contributes to the development of atherosclerosis, hypertension, cardiac hypertrophy and among others. This article explores the experimental studies related to the gene, structure, physiological function and pathological significance of Nox4. As Nox4 might serve as a potential target for the therapy of cardiovascular diseases and cancer, the Nox4 inhibitor is also discussed in this article.
Collapse
Affiliation(s)
- Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
40
|
Bretón-Romero R, Acín-Perez R, Rodríguez-Pascual F, Martínez-Molledo M, Brandes RP, Rial E, Enríquez JA, Lamas S. Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2403-13. [DOI: 10.1016/j.bbamcr.2014.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/15/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
41
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
42
|
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237:208-19. [PMID: 25244505 DOI: 10.1016/j.atherosclerosis.2014.09.001] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
In the vascular wall, reactive oxygen species (ROS) are produced by several enzyme systems including NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and the mitochondrial electron transport chain. On the other hand, the vasculature is protected by antioxidant enzyme systems, including superoxide dismutases, catalase, glutathione peroxidases and paraoxonases, which detoxify ROS. Cardiovascular risk factors such as hypercholesterolemia, hypertension, and diabetes mellitus enhance ROS generation, resulting in oxidative stress. This leads to oxidative modification of lipoproteins and phospholipids, mechanisms that contribute to atherogenesis. In addition, oxidation of tetrahydrobiopterin may cause eNOS uncoupling and thus potentiation of oxidative stress and reduction of eNOS-derived NO, which is a protective principle in the vasculature. This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sven Horke
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
43
|
Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab 2014; 25:452-63. [PMID: 25066192 DOI: 10.1016/j.tem.2014.06.012] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 02/03/2023]
Abstract
NADPH oxidases (NOXs) are reactive oxygen species (ROS)-generating enzymes implicated in the pathophysiology of vascular diseases such as hypertension and stroke. Endothelial cells express four NOX isoforms including the superoxide-generating enzymes NOX1, NOX2, and NOX5 and the hydrogen peroxide-generating enzyme NOX4. Studies on arteries from patients with coronary artery disease, and in animals with experimentally induced hypertension, diabetes, or atherosclerosis, suggest that NOX1, NOX2, and NOX5 promote endothelial dysfunction, inflammation, and apoptosis in the vessel wall, whereas NOX4 is by contrast vasoprotective in increasing nitric oxide bioavailability and suppressing cell death pathways. Based on these findings and promising preclinical studies with the NOX1/NOX2 antagonist, apocynin, we suggest that the field is poised for clinical evaluation of NOX inhibitors as therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia.
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bretón-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2014; 2:529-34. [PMID: 24634835 PMCID: PMC3953958 DOI: 10.1016/j.redox.2014.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 12/27/2022] Open
Abstract
Redox signaling is implicated in different physiological and pathological events in the vasculature. Among the different reactive oxygen species, hydrogen peroxide (H2O2) is a very good candidate to perform functions as an intracellular messenger in the regulation of several biological events. In this review, we summarize the main physiological sources of H2O2 in the endothelium and the molecular mechanisms by which it is able to act as a signaling mediator in the vasculature.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| | - Santiago Lamas
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| |
Collapse
|
46
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 2014; 20:887-98. [PMID: 23682993 PMCID: PMC3924808 DOI: 10.1089/ars.2013.5414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. RECENT ADVANCES Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. CRITICAL ISSUES Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.
Collapse
Affiliation(s)
- Ralf P Brandes
- 1 Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt , Frankfurt am Main, Germany
| | | | | |
Collapse
|
47
|
Das R, Xu S, Quan X, Nguyen TT, Kong ID, Chung CH, Lee EY, Cha SK, Park KS. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 2013; 306:F155-67. [PMID: 24259511 DOI: 10.1152/ajprenal.00438.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Injury to podocytes leads to the onset of chronic renal diseases characterized by proteinuria. Elevated transforming growth factor (TGF)-β in kidney tissue is associated with podocyte damage that ultimately results in apoptosis and detachment. We investigated the proapoptotic mechanism of TGF-β in immortalized mouse podocytes. Exogenous TGF-β1-induced podocyte apoptosis through caspase-3 activation, which was related to elevated ROS levels generated by selective upregulation of NADPH oxidase 4 (Nox4). In mouse podocytes, Nox4 was predominantly localized to mitochondria, and Nox4 upregulation by TGF-β1 markedly depolarized mitochondrial membrane potential. TGF-β1-induced ROS production and caspase activation were mitigated by an antioxidant, the Nox inhibitor diphenyleneiodonium, or small interfering RNA for Nox4. A TGF-β receptor I blocker, SB-431542, completely reversed the changes triggered by TGF-β1. Knockdown of either Smad2 or Smad3 prevented the increase of Nox4 expression, ROS generation, loss of mitochondrial membrane potential, and caspase-3 activation by TGF-β1. These results suggest that TGF-β1-induced mitochondrial Nox4 upregulation via the TGF-β receptor-Smad2/3 pathway is responsible for ROS production, mitochondrial dysfunction, and apoptosis, which may at least in part contribute to the development and progression of proteinuric glomerular diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Ranjan Das
- Dept. of Physiology and Institute of Lifestyle Medicine, Yonsei Univ. Wonju College of Medicine, Ilsan-dong, Wonju, Gangwon-Do 220-701, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tan SM, Sharma A, Yuen DYC, Stefanovic N, Krippner G, Mugesh G, Chai Z, de Haan JB. The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One 2013; 8:e69193. [PMID: 23874911 PMCID: PMC3712958 DOI: 10.1371/journal.pone.0069193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-β (TGF-β) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-β-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.
Collapse
Affiliation(s)
- Sih Min Tan
- Oxidative Stress Group, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bretón-Romero R, Kalwa H, Lamas S, Michel T. Role of PTEN in modulation of ADP-dependent signaling pathways in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2586-2595. [PMID: 23806663 DOI: 10.1016/j.bbamcr.2013.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/20/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
Abstract
ADP plays critical signaling roles in the vascular endothelium. ADP receptors are targeted by several cardiovascular drugs, yet the intracellular pathways modulated by ADP are incompletely understood. These studies have identified important roles for the phosphatase PTEN in ADP-dependent modulation of the endothelial isoform of nitric oxide synthase (eNOS) as well as of lipid and protein kinase pathways in endothelial cells. We find that ADP-promoted eNOS activation as well as phosphorylation of p38 MAPK are enhanced by siRNA-mediated PTEN knockdown. However, the increase in ADP-dependent eNOS activation promoted by PTEN knockdown is abrogated by siRNA-mediated knockdown of p38 MAPK. These findings indicate that PTEN tonically suppresses both p38 phosphorylation as well as ADP-stimulated eNOS activity. A key enzymatic activity of PTEN is its role as a lipid phosphatase, catalyzing the dephosphorylation of phosphoinositol-3,4,5-trisphosphate (PIP3) to phosphoinositol-4,5-bisphosphate (PIP2). We performed biochemical analyses of cellular phospholipids in endothelial cells to show that siRNA-mediated PTEN knockdown leads to a marked increase in PIP3. Because these complex lipids activate the small GTPase Rac1, we explored the role of PTEN in ADP-modulated Rac1 activation. We used a FRET biosensor for Rac1 to show that ADP-dependent Rac1 activation is blocked by siRNA-mediated PTEN knockdown. We then exploited a FRET biosensor for PIP3 to show that the striking ADP-dependent increase in intracellular PIP3 is entirely blocked by PTEN knockdown. These studies identify a key role for PTEN in the modulation of lipid mediators involved in ADP receptor-regulated endothelial signaling pathways involving eNOS activation in vascular endothelial cells.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hermann Kalwa
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM). c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain..
| | - Thomas Michel
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Enhanced Aβ(1-40) production in endothelial cells stimulated with fibrillar Aβ(1-42). PLoS One 2013; 8:e58194. [PMID: 23505467 PMCID: PMC3591408 DOI: 10.1371/journal.pone.0058194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/04/2013] [Indexed: 12/25/2022] Open
Abstract
Amyloid accumulation in the brain of Alzheimer’s patients results from altered processing of the 39- to 43-amino acid amyloid β protein (Aβ). The mechanisms for the elevated amyloid (Aβ1–42) are considered to be over-expression of the amyloid precursor protein (APP), enhanced cleavage of APP to Aβ, and decreased clearance of Aβ from the central nervous system (CNS). We report herein studies of Aβ stimulated effects on endothelial cells. We observe an interesting and as yet unprecedented feedback effect involving Aβ1–42 fibril-induced synthesis of APP by Western blot analysis in the endothelial cell line Hep-1. We further observe an increase in the expression of Aβ1–40 by flow cytometry and fluorescence microscopy. This phenomenon is reproducible for cultures grown both in the presence and absence of serum. In the former case, flow cytometry reveals that Aβ1–40 accumulation is less pronounced than under serum-free conditions. Immunofluorescence staining further corroborates these observations. Cellular responses to fibrillar Aβ1–42 treatment involving eNOS upregulation and increased autophagy are also reported.
Collapse
|