1
|
Rao T, Tong H, Li J, Huang J, Yin Y, Zhang J. Exploring the role and mechanism of hyperoside against cardiomyocyte injury in mice with myocardial infarction based on JAK2/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155319. [PMID: 38518637 DOI: 10.1016/j.phymed.2023.155319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most deadly diseases in the world. Hyperoside (Hyp) has been shown to have a protective effect on cardiovascular function through various signaling pathways, but whether it can protect myocardial infarction by regulating JAK2/STAT3 signaling pathway is unknown. AIM OF THE STUDY To investigate whether Hyp could protect the heart against myocardial infarction injury in mice by modulating JAK2/STAT3 signaling pathway and its potential mechanism. METHODS In vivo experiments, the myocardial infarction model was established by ligating the left anterior descending coronary artery (LAD) of male C57BL/6 mice permanently. The mice were divided into seven groups: sham group, MI group, MI+Hyp (9 mg/kg), MI+Hyp (18 mg/kg) group, MI+Hyp (36 mg/kg) group, MI+Captopril group (15 mg/kg) group and MI+Hyp (36 mg/kg)+AG490 (7.5 mg/kg) group. Each group of animals were given different concentrations of hyperoside, positive control drug or inhibitor of JAK2/STAT3 singaling. After 14 days of administration, the electrocardiogram (ECG), echocardiography and serum myocardial injury markers were examined; Slices of mouse myocardial tissue were assessed for histopathological changes by HE, Masson and Sirius Red staining. TTC and TUNEL staining were used to evaluate the myocardial infarction area and cardiomyocytes apoptosis respectively. The expression of JAK2/STAT3 signaling pathway, apoptosis and autophagy-related proteins were detected by western blot. In vitro experiments, rat H9c2 cardiomyocytes were deprived of oxygen and glucose (OGD) to stimulate myocardial ischemia. The experiment was divided into seven groups: Control group, OGD group, OGD+Hyp (20 μM) group, OGD+Hyp (40 μM) group, OGD+Hyp (80 μM), OGD+Captopril (10 μM) group and OGD+Hyp (80 μM)+AG490 (100 μM) group. Myocardial cell damage and redox index were measured 12 h after OGD treatment. ROS content in cardiomyocytes was detected by immunofluorescence. Cardiomyocytes apoptosis was detected by flow cytometry. The expressions of JAK2/STAT3 signaling pathway-related proteins, apoptosis and autophagy related proteins were detected by western blot. RESULTS In vivo, hyperoside could ameolirate ECG abnormality, increase cardiac function, reduce myocardial infarction size and significantly reduce myocardial fibrosis level and oxidation level. The experimental results in vitro showed that Hyp could reduce the ROS content in cardiomyocytes, decrease the level of oxidative stress and counteract the apoptosis induced by OGD injury . Both in vivo and in vitro experiments showed that hyperoside could increase phosphorylated JAK2 and STAT3, indicating that hyperoside could play a cardioprotective role by activating JAK2/STAT3 signaling pathway. It was also shown that hyperoside could increase the autophagy level of cardiomyocytes in vivo and in vitro. However the cardiomyocyte-protective effect of Hyp was abolished in combination with JAK2/ STAT3 signaling pathway inhibitor AG490. These results indicated that the protective effect of Hyp on cardiomyocyte injury was at least partially achieved through the activation of the JAK2/STAT3 signaling pathway. CONCLUSION Hyp can significantly improve cardiac function, ameliorate myocardial hypertrophy and myocardial remodeling in MI mice. The mechanism may be related to improving mitochondrial autophagy of cardiomyocytes to maintain the advantage of autophagy, and blocking apoptosis pathway through phagocytosis, thus suppressing apoptosis level of cardiomyocytes. These effects of Hyp are achieved, at least in part, by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tingcai Rao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of School of Pharmacy, Chongqing Health Vocational College, NO.99 Xirong Road, Dazu, 404100, PR China
| | - Hua Tong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of Fuyang fifth People's Hospital, NO.227 Taihe Road, Yingquan District, Anhui Fuyang, 236000, PR China
| | - Jiahao Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Junyan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
2
|
Deng J, Liu Q, Ye L, Wang S, Song Z, Zhu M, Qiang F, Zhou Y, Guo Z, Zhang W, Chen T. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery. Biomed Pharmacother 2024; 173:116337. [PMID: 38422659 DOI: 10.1016/j.biopha.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In myocardial ischemia/reperfusion injury (MIRI), moderate mitophagy is a protective or adaptive mechanism because of clearing defective mitochondria accumulates during MIRI. However, excessive mitophagy lead to an increase in defective mitochondria and ultimately exacerbate MIRI by causing overproduction or uncontrolled production of mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1), Parkin, FUN14 domain containing 1 (FUNDC1) and B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B19KD interaction protein 3 (BNIP3) are the main mechanistic regulators of mitophagy in MIRI. Pink1 and Parkin are mitochondrial surface proteins involved in the ubiquitin-dependent pathway, while BNIP3 and FUNDC1 are mitochondrial receptor proteins involved in the non-ubiquitin-dependent pathway, which play a crucial role in maintaining mitochondrial homeostasis and mitochondrial quality. These proteins can induce moderate mitophagy or inhibit excessive mitophagy to protect against MIRI but may also trigger excessive mitophagy or insufficient mitophagy, thereby worsening the condition. Understanding the actions of these mitophagy mechanistic proteins may provide valuable insights into the pathological mechanisms underlying MIRI development. Based on the above background, this article reviews the mechanism of mitophagy involved in MIRI through Pink1/Parkin pathway and the receptor mediated pathway led by FUNDC1 and BNIP3, as well as the related drug treatment, aim to provide effective strategies for the prevention and treatment of MIRI.
Collapse
Affiliation(s)
- Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linxi Ye
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuo Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mingyan Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fangfang Qiang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yulin Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China.
| |
Collapse
|
3
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
4
|
Shao Y, Wu W, Fan F, Liu H, Ming Y, Liao W, Bai C, Gao Y. Extracellular Vesicle Content Changes Induced by Melatonin Promote Functional Recovery of Pancreatic Beta Cells in Acute Pancreatitis. J Inflamm Res 2023; 16:6397-6413. [PMID: 38161354 PMCID: PMC10757806 DOI: 10.2147/jir.s430916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Aim Acute pancreatitis is an inflammatory disorder of the pancreas, which causes abnormal activation of immune cells. The macrophages were accumulated in pancreas and infiltrated into islets during the AP process to induce abnormal glucose metabolism. However, the role of macrophages in abnormal glucose metabolism remains understood. Extracellular vesicles act in the regulation of intercellular function, but whether EVs secreted by macrophages contribute to β cell failure and apoptosis in AP is unclear. Based on this, the aim of this study was to reveal the role of macrophages-EVs in AP and develop a treatment for symptoms of hyperglycemia in AP. Methods The AP model was established and treated by various doses of melatonin to analyze the therapeutic effect. The accumulation and polarization of macrophages in the AP pancreas were observed, and the β cells were incubated with pancreatic derived EVs to analyze the role in β cell failure and apoptosis. Results The results showed that macrophages were recruited and polarized to M1 phenotype macrophages in the pancreas of AP mice, which obtained inflammatory EVs that contained specific miRNAs to induce β cell failure and apoptosis. Then, the EVs derived from M1 macrophages triggered β cell failure and apoptosis. Melatonin prevented polarization of macrophages to the M1 phenotype in vivo, which reduced the secretion of inflammatory EVs, changed the abundance of miRNAs in EVs, and therefore decreased inflammatory EV-mediated β cell failure and apoptosis. Conclusion Our results demonstrate that similar to 20S proteasome inhibitor MG132, analyses indicated that melatonin prevented degradation of IκBα through the ubiquitylation pathway to restrict p50 subunits to the cytoplasm of macrophages, inhibited activation of the NF-κB pathway to downregulate the transcription of specific miRNAs, and reduced miRNA transport into EVs.
Collapse
Affiliation(s)
- Yuming Shao
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Haifeng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yuhua Gao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| |
Collapse
|
5
|
Cai S, Chang J, Su M, Wei Y, Sun H, Chen C, Yiu KH. miR-455-5p promotes pathological cardiac remodeling via suppression of PRMT1-mediated Notch signaling pathway. Cell Mol Life Sci 2023; 80:359. [PMID: 37951845 PMCID: PMC10640488 DOI: 10.1007/s00018-023-04987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sidong Cai
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengqi Su
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yinxia Wei
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haoran Sun
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Zeng Z, Wu D, Tang L, Hu X, Zhang J, Geng F. Exploring the binding effects and inhibiting mechanism of hyperoside to lipase using multi-spectroscopic approaches, isothermal titration calorimetry, inhibition kinetics and molecular dynamics. RSC Adv 2023; 13:6507-6517. [PMID: 36845588 PMCID: PMC9950857 DOI: 10.1039/d2ra06715c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/12/2023] [Indexed: 02/28/2023] Open
Abstract
Hyperoside (HYP) is a flavonoid with various physiological activities. The present study examined the interaction mechanism between HYP and lipase using multi-spectrum and computer-aided techniques. Results demonstrated that the force type of HYP on lipase was mainly hydrogen bond, hydrophobic interaction force, and van der Waals force, and HYP had an excellent binding affinity with lipase at 1.576 × 105 M-1. HYP dose-dependently inhibited lipase in the inhibition experiment, and its IC50 value was 1.92 × 10-3 M. Moreover, the results suggested that HYP could inhibit the activity by binding to essential groups. Conformational studies indicated that the conformation and microenvironment of lipase were slightly changed after the addition of HYP. Computational simulations further confirmed the structural relationships of HYP to lipase. The interaction between HYP and lipase can provide ideas for the development of functional foods related to weight loss. The results of this study help comprehend the pathological significance of HYP in biological systems, as well as its mechanism.
Collapse
Affiliation(s)
- Zhen Zeng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Lan Tang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Jing Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| |
Collapse
|
8
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
10
|
Hua F, Zhou P, Bao G, Ling T. Flavonoids in Lu’an GuaPian tea as potential inhibitors of TMA‐lyase in acute myocardial infarction. J Food Biochem 2022; 46:e14110. [DOI: 10.1111/jfbc.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Fang Hua
- School of Pharmacy Anhui Xinhua University Hefei China
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine Anhui University of Chinese Medicine Hefei China
| | - Guan‐hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| | - Tie‐jun Ling
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| |
Collapse
|
11
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
12
|
Yi T, Chen H, Zhan J, Li Y, Long Z, Wu Z, Yang M, Peng T, Li H. Ubiquinol-cytochrome c reductase core protein 1 contributes to cardiac tolerance to acute exhaustive exercise. Exp Biol Med (Maywood) 2021; 247:165-173. [PMID: 34648372 DOI: 10.1177/15353702211046546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an indispensable component of mitochondrial complex III. It plays a key role in cardioprotection and maintaining mitochondrion function. However, the exact role of UQCRC1 in maintaining cardiac function has not been reported by in vivo models. Also, the exact biological functions of UQCRC1 are far from fully understood. UQCRC1+/- mice had decreased both mRNA and protein expression of UQCRC1 in the left ventricular myocardia, and these mice had reduced tolerance to acute exhaustive exercise including decreased time and distance with higher apoptosis rate, higher expression level of cleaved CASPASE 3, and higher ratio of cleaved PARP1 to full-length PARP1. Moreover, UQCRC1 knockdown led to increased LV interventricular septal thicknesses both at systole and diastole, as well as decreased LV volume both at end-systole and end-diastole. Finally, UQCRC1 gene disruption resulted in mitochondrial vacuolation, fibril disarrangement, and more severe morphological and structural changes in mitochondria after acute exhaustive exercise. In conclusion, UQCRC1 contributes to cardiac tolerance to acute exhaustive exercise in mice, and it may be an essential component of complex III, playing a crucial role in maintaining cardiac functions.
Collapse
Affiliation(s)
- Tingting Yi
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.,Department of Anesthesiology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Huifang Chen
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.,Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Jian Zhan
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.,Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yu Li
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zonghong Long
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zhuoxi Wu
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Mi Yang
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Taotao Peng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hong Li
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
13
|
Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside Reduces Rotenone-induced Neuronal Injury by Suppressing Autophagy. Neurochem Res 2021; 46:3149-3158. [PMID: 34415495 DOI: 10.1007/s11064-021-03404-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
Hyperoside has a variety of pharmacological activities, including anti-liver injury, anti-depression, anti-inflammatory, and anti-cancer activities. However, the effect of hyperoside on Parkinson's disease (PD) is still unclear. Therefore, we tried to study the therapeutic effect and mechanism of hyperoside on PD in vivo and in vitro models. Rotenone was used to induce PD rat model and SH-SY5Y cell injury model, and hyperoside was used for intervention. Immunohistochemistry, animal behavior assays, TUNEL and Western blot were constructed to observe the protective effect and related mechanisms of hyperoside in vivo. Cell counting kit-8 (CCK-8), flow cytometry, Rh123 staining and Western blot were used for in vitro assays. Rapamycin (RAP) pretreatment was used in rescue experiments to verify the relationship between hyperoside and autophagy in rotenone-induced SH-SY5Y cells. Hyperoside promoted the number of tyrosine hydroxylase (TH)-positive cells, improved the behavioral defects of rats, and inhibited cell apoptosis in vivo. Different concentrations of hyperoside had no significant effect on SH-SY5Y cell viability, but dramatically reversed the rotenone-induced decrease in cell viability, increased apoptosis and loss of cell mitochondrial membrane potential in vitro. Additionally, hyperoside reversed the regulation of rotenone on the Beclin1, LC3II, Bax, cleaved caspase 3, Cyc and Bcl-2 expressions in rat SNpc tissues and SH-SY5Y cells, while promoted the regulation of rotenone on the P62 and α-synuclcin. Furthermore, RAP reversed the effect of hyperoside on rotenone-induced SH-SY5Y cells. Hyperoside may play a neuroprotective effect in rotenone-induced PD rat model and SH-SY5Y cell model by affecting autophagy.
Collapse
Affiliation(s)
- Huijie Fan
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Yanrong Li
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Mengying Sun
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Wushuai Xiao
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Lijuan Song
- Neurobiology Research Center, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Bo Zhang
- Health Commission of Shanxi Province, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Bloomington, USA
| | - Cungen Ma
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Zhi Chai
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| |
Collapse
|
14
|
Yang Y, Li J, Rao T, Fang Z, Zhang J. The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114187. [PMID: 33957207 DOI: 10.1016/j.jep.2021.114187] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Hypericum are widely distributed in China. Hypericum perforatum L. (genus Hypericum, family Hypericaceae) has a long history as a traditional Chinese medicine, which was traditionally used for the treatment of emotional distress, cardiothoracic depression, and acute mastitis. Hyperoside (Hyp) extracted from Hypericum perforatum L. has been affirmed to exert therapeutic effects on cardiovascular diseases, with widespread existence in plants of genus Hypericum. Hyp could also be extracted from Crataegus pinnatifida Bunge (genus Crataegus pinnatifida Bunge, family Rosaceae), another traditional Chinese medicine that traditionally prevented and treated heart disease in China. The cardioprotection and mechanism of Hyp comprise anti-inflammation, anti-fibrosis, activation of autophagy, and reversal of cardiac remodeling. AIM OF THE STUDY This study aimed to explore the Hyp effect against MI and its underlying mechanism. MATERIALS AND METHODS The MI model was constructed in the KM mice via a ligating surgery of the left anterior descending (LAD) coronary artery. Subsequently, the mice were divided into following seven groups: Sham group, MI group, MI + Hyp 9 mg/kg group, MI + Hyp18 mg/kg group, MI + Hyp36 mg/kg group, MI + Fosinopril group, and MI + Hyp-36 mg/kg+3-MA group. Each group was treated with Hyp in different concentrations or positive medicine for two weeks except for the sham group. After two weeks, we examined the cardiac function, electrocardiogram (ECG), myocardial hypertrophy in the non-infarct area, collagen volume fraction (CVF), perivascular collagen area (PVCA) in the infarct area, and several serum cytokines. Autophagy and inflammation in cardiomyocytes were assessed via measuring autophagy-associated proteins and NLRP1 inflammasome pathway related proteins. RESULTS Hyp reversed LV remodeling and adverse ECG changes through reducing CVF and myocardial hypertrophy. Additionally, Hyp treatment could reduce inflammation levels in cardiomyocytes, compared with those in MI group. Moreover, NLRP1inflammation pathway was activated after MI. Up-regulation of autophagic flux suppressed NLRP1 inflammation pathway after Hyp treatment. However, co-treatment with 3-MA abrogated above effects of Hyp. CONCLUSIONS Hyp had obvious protective effect on heart injury in MI mice. Echocanrdiographic and histological measurements demonstrated that Hyp treatment improved cardiac function, and ameliorated myocardial hypertrophy and fibrinogen deposition after MI. The partial mechanism is that Hyp could up-regulate autophagy after MI. Furthermore, the promotion of autophagic flux would suppress NLRP1 inflammation pathway induced by MI.
Collapse
Affiliation(s)
- Yongkang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Tingcai Rao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Zhirui Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Junyan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, People's Republic of China.
| |
Collapse
|
15
|
Qing Y, Wang X, Wang H, Hu P, Li H, Yu X, Zhu M, Wang Z, Zhu Y, Xu J, Guo Q, Hui H. Pharmacologic targeting of the P-TEFb complex as a therapeutic strategy for chronic myeloid leukemia. Cell Commun Signal 2021; 19:83. [PMID: 34372855 PMCID: PMC8351106 DOI: 10.1186/s12964-021-00764-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis. This study aimed to investigate the involved molecular mechanisms of wogonin on anti- chronic myeloid leukemia (CML) cells. MATERIALS AND METHODS mRNA and protein levels were analysed by RT-qPCR and western blot. Flow cytometry was used to assess cell differentiation and apoptosis. Cell transfection, immunofluorescence analysis and co-immunoprecipitation (co-IP) assays were applied to address the potential regulatory mechanism of wogonin. KU-812 cells xenograft NOD/SCID mice model was used to assess and verify the mechanism in vivo. RESULTS We reported that the anti-CML effects in K562, KU-812 and primary CML cells induced by wogonin were regulated by P-TEFb complex. We also confirmed the relationship between CDK9 and erythroid differentiation via knockdown the expression of CDK9. For further study the mechanism of erythroid differentiation induced by wogonin, co-IP experiments were used to demonstrate that wogonin increased the binding between GATA-1 and FOG-1 but decreased the binding between GATA-1 and RUNX1, which were depended on P-TEFb. Also, wogonin induced apoptosis and decreased the mRNA and protein levels of MCL-1 in KU-812 cells, which is the downstream of P-TEFb. In vivo studies showed wogonin had good anti-tumor effects in KU-812 xenografts NOD/ SCID mice model and decreased the proportion of human CD45+ cells in spleens of mice. We also verified that wogonin exhibited anti-CML effects through modulating P-TEFb activity in vivo. CONCLUSIONS Our study indicated a special mechanism involving the regulation of P-TEFb kinase activity in CML cells, providing evidences for further application of wogonin in CML clinical treatment. Video Abstract.
Collapse
Affiliation(s)
- Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxuan Yu
- Department of Pharmacology, School of Medicine and Holostic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
16
|
Li Q, Xing C, Yuan Y. Mitochondrial Targeting of Herbal Medicine in Chronic Kidney Disease. Front Pharmacol 2021; 12:632388. [PMID: 34122064 PMCID: PMC8188236 DOI: 10.3389/fphar.2021.632388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of nephrons and an eventual decline in glomerular filtration rate. CKD increases mortality and has a significant impact on the quality of life and the economy, which is becoming a major public health issue worldwide. Since current conventional-medicine treatment options for CKD are not satisfactory, many patients seek complementary and alternative medicine treatments including Traditional Chinese Medicine. Herbal medicine is often used to relieve symptoms of renal diseases in the clinic. The kidney is abundant in the number of mitochondria, which provide enough energy for renal function and metabolism. In recent years, a vital role for mitochondrial dysfunction has been suggested in CKD. Mitochondria have become a new target for the treatment of diseases. A growing number of studies have demonstrated herbal medicine could restore mitochondrial function and alleviate renal injury both in vivo and in vitro. In this review, we sum up the therapeutic effect of herbal medicine in CKD via targeting mitochondrial function. This implies future strategies in preventing CKD.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Liu YR, Yang NJ, Zhao ML, Tang ZS, Duan JA, Zhou R, Chen L, Sun J, Song ZX, Hu JH, Shi XB. Hypericum perforatum L. Regulates Glutathione Redox Stress and Normalizes Ggt1/Anpep Signaling to Alleviate OVX-Induced Kidney Dysfunction. Front Pharmacol 2021; 12:628651. [PMID: 33981220 PMCID: PMC8109178 DOI: 10.3389/fphar.2021.628651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/19/2021] [Indexed: 11/28/2022] Open
Abstract
Menopause and associated renal complications are linked to systemic redox stress, and the causal factors remain unclear. As the role of Hypericum perforatum L. (HPL) in menopause-induced kidney disease therapy is still ambiguous, we aim to explore the effects of HPL on systemic redox stress under ovariectomy (OVX)-induced kidney dysfunction conditions. Here, using combined proteomic and metabolomic approaches, we constructed a multi-scaled “HPL-disease-gene-metabolite” network to generate a therapeutic “big picture” that indicated an important link between glutathione redox stress and kidney impairment. HPL exhibited the potential to maintain cellular redox homeostasis by inhibiting gamma-glutamyltransferase 1 (Ggt1) overexpression, along with promoting the efflux of accumulated toxic amino acids and their metabolites. Moreover, HPL restored alanyl-aminopeptidase (Anpep) expression and metabolite shifts, promoting antioxidative metabolite processing, and recovery. These findings provide a comprehensive description of OVX-induced glutathione redox stress at multiple levels and support HPL therapy as an effective modulator in renal tissues to locally influence the glutathione metabolism pathway and subsequent redox homeostasis.
Collapse
Affiliation(s)
- Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ning-Juan Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Zhou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lin Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Hang Hu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin-Bo Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
18
|
He S, Yin X, Wu F, Zeng S, Gao F, Xin M, Wang J, Chen J, Zhang L, Zhang J. Hyperoside protects cardiomyocytes against hypoxia‑induced injury via upregulation of microRNA‑138. Mol Med Rep 2021; 23:286. [PMID: 33649812 PMCID: PMC7905326 DOI: 10.3892/mmr.2021.11925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Following hypoxia, cardiomyocytes are susceptible to damage, against which microRNA (miR)‑138 may act protectively. Hyperoside (Hyp) is a Chinese herbal medicine with multiple biological functions that serve an important role in cardiovascular disease. The aim of the present study was to investigate the role of Hyp in hypoxic cardiomyocytes and its effect on miR‑138. A hypoxia model was established in both H9C2 cells and C57BL/6 mice, which were stimulated by Hyp. The expression levels of miR‑138 were increased in the hypoxic myocardium in the presence of Hyp at concentrations of >50 µmol/l in vivo and >50 mg/kg in vitro. Using Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine assays, it was observed that Hyp improved hypoxia‑induced impairment of cell proliferation. Cell apoptosis was evaluated by flow cytometry and a TUNEL assay. The number of apoptotic cells in the Hyp group was lower than that in the control group. As markers of myocardial injury, the levels of lactate dehydrogenase, creatine kinase‑myocardial band isoenzyme and malondialdehyde were decreased in the Hyp group compared with the control group, whereas the levels of superoxide dismutase were increased. A marked decrease in the levels of cleaved caspase‑3 and cleaved poly(ADP) ribose polymerase and a marked increase in expression levels of Bcl‑2 were observed in the presence of Hyp. However, miR‑138 inhibition by antagomir attenuated the protective effects of Hyp. Furthermore, Hyp treatment was associated with marked downregulation of mixed lineage kinase 3 and lipocalin‑2, but not pyruvate dehydrogenase kinase 1, in hypoxic H9C2 cells. These findings demonstrated that Hyp may be beneficial for myocardial cell survival and may alleviate hypoxic injury via upregulation of miR‑138, thereby representing a promising potential strategy for clinical cardioprotection.
Collapse
Affiliation(s)
- Siyi He
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqiang Yin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
- Department of Graduate Student, North Sichuan Medical College, Nanchong, Sichuan 637199, P.R. China
| | - Fan Wu
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shaojie Zeng
- Medical Team, Unit 95437, People's Liberation Army, Nanchong, Sichuan 637100, P.R. China
| | - Feng Gao
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Mei Xin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jian Wang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jie Chen
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Le Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jinbao Zhang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
19
|
|
20
|
Amadi PU, Agomuo EN, Adumekwe C. Vascular Effects of Avocado Seed Glycosides during Diabetes-induced Endothelial Damage. Cardiovasc Hematol Disord Drug Targets 2020; 20:202-213. [PMID: 32386502 PMCID: PMC8226154 DOI: 10.2174/1871529x20666200510012012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES The relationship between vascular damage and diabetes mellitus was exploited using avocado seed extracts. The purpose of the study was to understand the therapeutic relevance of glycosides compared to standard vascular and anti-diabetic drugs. Constituent Avocado Seed Glycosides (ASG) were analysed and administered to rats with Diabetes-Induced Vascular Damage (DIVD). METHODS The rats were first administered with streptozotocin and screened after seven days for alterations in blood glucose, insulin, vascular cell adhesion molecule (VCAM-1), Von Willebrand factor (VWF), Renin-Angiotensin-Aldosterone System (RAS), eNOx, and endothelin-1 (ET-1). Only rats that satisfied these criteria were recruited and treated with either glibenclamide, met.su + losart, or 200 mg/kg body weight ASG for 28 days. RESULTS There was an abundance of digitoxin (13.41 mg/100g), digoxin (17.98 mg/100g), avicularin (165.85 mg/100g), and hyperoside (282.51 mg/100g). ASG or met.su + losart exhibited slight modulatory properties on glucose homeostasis. Rats with DIVD showed elevated renin, angiotensin, VCAM-1 and Lp-PLA2 levels but slightly decreased with glibenclamide treatment and normalized with ASG or met.su + losart administration. All treatments normalized Hcy levels. DIVD caused the overproduction of CnT, LDH, Crt-K, LDL-c, TG, and TC and suppressed HDL-c but was completely normalized by the ASG. Water intake remained altered in treated rats. CONCLUSION The ASG had no relevant effect on glucose homeostasis during DIVD but showed significant vasoprotective properties.
Collapse
Affiliation(s)
- Peter U. Amadi
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| | - Emmanuel N. Agomuo
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| | - Chiamaka Adumekwe
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| |
Collapse
|
21
|
Guo X, Zhang Y, Lu C, Qu F, Jiang X. Protective effect of hyperoside on heart failure rats via attenuating myocardial apoptosis and inducing autophagy. Biosci Biotechnol Biochem 2019; 84:714-724. [PMID: 31797747 DOI: 10.1080/09168451.2019.1685369] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure (HF) is one of the most severe heart conditions, which lacks effective therapies. Therefore, it is necessary to develop more efficient drugs for HF. In this study, we investigated the cardioprotective effects of hyperoside against the pathological progression of HF. Thoracic aortic constriction (TAC) was performed to induce HF in rats. Hyperoside treatment improved cardiac function, decreased cardiomyocyte cross-sectional area and heart weight to body weight (HW/BW) ratio in HF rats. Moreover, hyperoside administration repressed apoptosis as evidenced by changing apoptosis-related protein levels, and promoted autophagy in TAC rats and angiotensin II (AngII)-induced H9C2 cells. Inhibition of autophagy by 3-methyladenine (3-MA) attenuated the beneficial effect of hyperoside against apoptosis in H9C2 cells. In summary, these data confirm that hyperoside effectively alleviates HF via suppressing apoptosis and inducing autophagy, which provides evidence that hyperoside may serve as a promising natural drug for treating HF.
Collapse
Affiliation(s)
- Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, People's Republic of China
| | - Yongtao Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Changhong Lu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, People's Republic of China
| | - Fengxia Qu
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, People's Republic of China
| | - Xianyan Jiang
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, People's Republic of China
| |
Collapse
|
22
|
Shi Y, Qiu X, Dai M, Zhang X, Jin G. Hyperoside Attenuates Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats. Transplant Proc 2019; 51:2051-2059. [PMID: 31399183 DOI: 10.1016/j.transproceed.2019.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatic ischemia-reperfusion (IR) injury is a serious complication of many clinical conditions, which may lead to liver or multiple organ failure. Hyperoside, a flavonoid compound, has been reported to protect against myocardial and cerebral injury induced by IR. This study aimed to investigate the protective effects of hyperoside on hepatic IR injury in rats. METHODS Using the 70% hepatic IR injury model, we divided 32 male Wistar rats into 4 groups (n = 8): sham-operated, IR+saline (saline/p.o.), IR+vehicle (carboxy methyl cellulose/p.o.), and IR+hyperoside (50 mg/kg/d/p.o.). At 24 hours after reperfusion, blood and liver tissue were collected. The effects of hyperoside on hepatic IR injury were assessed through tests of serum transaminase, hepatic histopathology, and measurement of markers of oxidative stress and apoptosis. RESULTS Pretreatment with hyperoside protected the liver from IR injury by a reduction in serum aspartate aminotransferase/alanine aminotransferase levels and a decrease in the severity of histologic changes. Hyperoside treatment also decreased the activity of malondialdehyde, increased the activities of superoxide dismutase and glutathione peroxidase, up-regulated the expression of heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1, and reduced the apoptotic index after IR injury. A decrease in the expression of caspase-3 and an increase in the ratio of B cell lymphoma 2 to B cell lymphoma 2-associated X also were observed. CONCLUSION Hyperoside has a protective effect on hepatic IR injury in rats, which may be due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxia Qiu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mengjun Dai
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuebin Zhang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Guangxin Jin
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
23
|
Sophia S, Abouzari Lotf E, Ahmad A, Moozarm Nia P, Rasit Ali R. GO-modified membranes for vanadium redox flow battery. E3S WEB OF CONFERENCES 2019; 90:01004. [DOI: 10.1051/e3sconf/20199001004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Graphene oxide (GO) has attracted tremendous attention in membrane-based separation field as it can filter ions and molecules. Recently, GO-based materials have emerged as excellent modifiers for vanadium redox flow battery (VRFB) application. Its high mechanical and chemical stability, nearly frictionless surface, high flexibility, and low cost make GO-based materials as proper materials for the membranes in VRFB. In VRFB, a membrane acts as the key component to determine the performance. Therefore, employing low vanadium ion permeability with excellent stability membrane in vanadium electrolytes is important to ensure high battery performance. Herein, recent progress of GO-modified membranes for VRFB is briefly reviewed. This review begins with current membranes used for VRFB, followed by the challenges faced by the membranes. In addition, the transport mechanism of vanadium ion and the stability properties of GO-modified membranes are also discussed to enlighten the role of GO in the modified membranes.
Collapse
|
24
|
Xin H, Cui Y, An Z, Yang Q, Zou X, Yu N. Attenuated glutamate induced ROS production by antioxidative compounds in neural cell lines. RSC Adv 2019; 9:34735-34743. [PMID: 35530670 PMCID: PMC9074000 DOI: 10.1039/c9ra03848e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Glutamate is an excitatory neurotransmitter involved in neural function. Excess accumulation of intercellular glutamate leads to increasing concentration of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in neuronal cells. In this study, we investigated the antioxidant activity of several typical superior compounds among four neuronal cells, and determined the scavenging activity of free radicals. The in vivo assay was also carried out to compare the protective effect of glutamate-induced cell damage. Hierarchical clustering analysis was used to identify the common properties. Glutamate induced neurotoxicity and ROS production, suggesting glutamate cytotoxicity was related to oxidative stress and widely exists in different cell lines. Those screening compounds exhibited strong antioxidant ability, but low cytotoxicity to neuronal cells, acting as agents against neurodegenerative diseases. Finally, a hierarchical clustering analysis assay indicated that hyperoside and rutin hydrate are the most effective compounds for attenuating intercellular ROS levels. The results suggested the activity more or less relies on structure, rather than residues. These data generate new supporting ideas to remove intracellular ROS and the identified compounds serve as potential therapeutic agents in multiple neurological diseases. Glutamate is an excitatory neurotransmitter involved in neural function.![]()
Collapse
Affiliation(s)
- Haolin Xin
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases
- Department of Neurology
- Nankai University
- Huanhu Hospital
- Tianjin
| | - Ying Cui
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Zhongping An
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases
- Department of Neurology
- Nankai University
- Huanhu Hospital
- Tianjin
| | - Qian Yang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases
- Department of Neurology
- Nankai University
- Huanhu Hospital
- Tianjin
| | - Xuan Zou
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases
- Department of Neurology
- Nankai University
- Huanhu Hospital
- Tianjin
| | - Ning Yu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases
- Department of Neurology
- Nankai University
- Huanhu Hospital
- Tianjin
| |
Collapse
|
25
|
Beneficial effects of hyperoside on bone metabolism in ovariectomized mice. Biomed Pharmacother 2018; 107:1175-1182. [DOI: 10.1016/j.biopha.2018.08.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
|
26
|
Wu B, Feng J, Yu L, Wang Y, Chen Y, Wei Y, Han J, Feng X, Zhang Y, Di S, Ma Z, Fan C, Ha X. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol 2018; 175:4137-4153. [PMID: 30051466 PMCID: PMC6177614 DOI: 10.1111/bph.14457] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.
Collapse
Affiliation(s)
- Bing Wu
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
- Department of CardiologyTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jian‐yu Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Li‐ming Yu
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Yan‐chun Wang
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yong‐qing Chen
- Department of CardiologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yan Wei
- Department of ophthalmologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Jin‐song Han
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Xiao Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu Zhang
- Department of Cardiovascular SurgeryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Shou‐yin Di
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhi‐qiang Ma
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Chong‐xi Fan
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
- Department of Biomedical EngineeringFourth Military Medical UniversityXi'anChina
| | - Xiao‐qin Ha
- Department of Clinical LaboratoryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| |
Collapse
|
27
|
Jang SA, Park DW, Sohn EH, Lee SR, Kang SC. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chem Biol Interact 2018; 294:48-55. [DOI: 10.1016/j.cbi.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
|
28
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Schinella GR, Mosca SM, Ríos JL. Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food Funct 2018; 9:6129-6145. [DOI: 10.1039/c8fo01307a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms involved in ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Luisa F. González Arbeláez
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Juliana C. Fantinelli
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Guillermo R. Schinella
- Cátedra de Farmacología Básica
- Facultad de Ciencias Médicas
- Universidad Nacional de La Plata
- 1900 La Plata
- Argentina
| | - Susana M. Mosca
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - José-Luis Ríos
- Departament de Farmacologia
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| |
Collapse
|
29
|
Zhang Y, Wang M, Dong H, Yu X, Zhang J. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. Int J Mol Med 2017; 41:77-86. [PMID: 29115390 PMCID: PMC5746319 DOI: 10.3892/ijmm.2017.3211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The development of diabetes mellitus (DM) is accompanied by hyperglycemia-induced oxidative stress. Hyperoside is a major bioactive component in Zanthoxylum bungeanum leaves (HZL) and is a natural antioxidant. However, the effects of HZL on DM and its mechanisms of action remain undefined. The present study evaluated the anti-hypoglycemic and hepatocyte-protective effects of HZL in mice with diabetes induced by a high-carbohydrate/high-fat diet (HFD) and alloxan. We also aimed to eludicate the underlying mechanisms. Our resutls demonstrated that the administration of HZL significantly reduced body weight gain, serum glucose levels and insulin levels in diabetic mice compared with the vehicle-treated mice. In addition, the levels of dyslipidemia markers including total cholesterol, triglyceride and low-density lipoprotein cholesterol in the HFD-treated mice were markedly decreased. Further experiments using hepatocytes from mice revealed that HZL significantly attenuated liver injury associated with DM compared with vehicle treatment, as evidenced by lower levels of alanine aminotransferase and aspartate aminotransferase in serum and by lower levels of lipid peroxidation, nitric oxide content and inducible nitric oxide synthase activity in liver tissues. Nuclear factor-κB (NF-κB) and mitogen-associated protein kinase (MAPK) signaling pathways were investigated to elucidate the molecular mechanisms responsible for the protective effects of HZL against diabetic liver injury. The results indicated that HZL inhibited the phosphorylation of p65/NF-κB, MAPK (including p38, JNK and ERK1/2) and activating transcription factor 3 protein expression, with an additional suppression of Bax, cytochrome c, caspase-9 and caspase-3 in the liver tissues of diabetic mice. Taken together, our findings suggest that HZL, which was effective in inhibiting oxidative stress-related pathways may be beneficial for use in the treatment of DM.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xiaomin Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|
30
|
Protective Effects of Isorhamnetin on Cardiomyocytes Against Anoxia/Reoxygenation-induced Injury Is Mediated by SIRT1. J Cardiovasc Pharmacol 2017; 67:526-37. [PMID: 26859194 DOI: 10.1097/fjc.0000000000000376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been reported that apoptosis plays a very important role on anoxia/reoxygenation (A/R)-induced injury, and human silent information regulator type 1 (SIRT1) can inhibit the apoptosis of cardiomyocytes. It has been proved that isorhamnetin (IsoRN), 3'-O-methyl-quecetin, can protect the cardiomyocytes, but the mechanism is still not clear. The aim of the study was to explore whether the protective effects of IsoRN on the cardiomyocytes against the A/R-induced injury are mediated by SIRT1. The effects of IsoRN on cardioprotection against A/R injury in neonatal rat cardiomyocytes were monitored by cell viability, the levels of mitochondrial membrane potential (Δψm), apoptosis, and intracellular reactive oxygen species (ROS), the levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and mitochondrial permeability transition pores (mPTP). The effects on protein expression were measured by western blot assay. The results showed that IsoRN can reduce A/R-induced injury by decreasing the level of lactate dehydrogenase and creatine phosphokinase release from the cardiomyocytes, increasing cell viability and expression of SIRT1, reducing the generation of reactive oxygen species, inhibiting opening of mitochondrial permeability transition pores and loss of Δψm and activation of caspase-3, and decreasing the release of cytochrome c, and reducing apoptosis. In addition, sirtinol, a SIRT1 inhibitor, drastically reduced the protective effects of IsoRN on cardioprotective effects in cardiomocytes. In conclusion, we firstly demonstrated that SIRT1 may be involved in the protective effects of IsoRN on cardiomocytes against the A/R-induced injury.
Collapse
|
31
|
Laikowski MM, dos Santos PR, Souza DM, Minetto L, Girondi N, Pires C, Alano G, Roesch-Ely M, Tasso L, Moura S. Rourea cuspidata : Chemical composition and hypoglycemic activity. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Xiao R, Xiang AL, Pang HB, Liu KQ. Hyperoside protects against hypoxia/reoxygenation induced injury in cardiomyocytes by suppressing the Bnip3 expression. Gene 2017; 629:86-91. [PMID: 28754633 DOI: 10.1016/j.gene.2017.07.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/15/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
AIMS Role of hyperoside in protecting cardiomyocytes from ischemia/reperfusion induced injury has been proved. However, possible protecting mechanisms remain unclear. To fix the problem, an essential pro-apoptotic protein Bnip3 was studied in our experiments. METHODS AND RESULTS Neonatal rat cardiomyocytes were used and submitted to hypoxia for 8h followed by reoxygenation for 2h to simulate the ischemia/reperfusion injury. Hypoxia/reoxygenation(H/R) induced damage to cardiomyocytes and the protective effect of hyperoside were examined by means of MTT assay. H/R-induced apoptosis was assessed by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling(TUNEL) and DNA Ladder assay. mRNA expression of Bnip3 was determined by use of quantitative real-time reverse transcription polymerase chain reaction assay. Protein levels of Bnip3, Bax, Bcl-2 and cleaved caspase-3 were examined using western-blot assay. Our results showed that H/R caused great damage to cardiomyocytes, upregulated the protein expressions of Bnip3, Bax, cleaved caspase3, and decreased the expression of the anti-apoptotic protein of Bcl-2. Whereas, compared with the H/R group, a decrease in activities of Bnip3, Bax, cleaved caspase3, and a promoting expression of Bcl-2 were detected in the H/R goup pretreated with hyperoside. CONCLUSION It was concluded in our study that H/R-induced apoptotic effect in cardiomyocytes could be attenuated by hyperoside, and the protective role of hyperoside, if not completely, could be partly through the suppression of the pro-apoptotic gene Bnip3.
Collapse
Affiliation(s)
- Rui Xiao
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430015, PR China; Tianjin University of Traditional Chinese Medicine, 300193, PR China
| | - An-Li Xiang
- City College, Wuhan University of Science and Technology, 430083, PR China
| | - Hong-Bo Pang
- Tianjin University of Traditional Chinese Medicine, 300193, PR China
| | | |
Collapse
|
33
|
An X, Zhang L, Yuan Y, Wang B, Yao Q, Li L, Zhang J, He M, Zhang J. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci Rep 2017; 7:6413. [PMID: 28743882 PMCID: PMC5527129 DOI: 10.1038/s41598-017-06844-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Glomerular basement membrane (GBM) damage plays a pivotal role in pathogenesis of albuminuria in diabetic nephropathy (DN). Heparan sulfate (HS) degradation induced by podocyte heparanase is the major cause of GBM thickening and abnormal perm-selectivity. In the present study, we aimed to examine the prophylactic effect of hyperoside on proteinuria development and GBM damage in DN mouse model and the cultured mouse podocytes. Pre-treatment with hyperoside (30 mg/kg/d) for four weeks could significantly decrease albuminuria, prevent GBM damage and oxidative stress in diabetes mellitus (DM) mice. Immunofluorescence staining, Real time PCR and Western blot analysis showed that decreased HS contents and increased heparanase expression in DN mice were also significantly improved by hyperoside pre-treatment. Meanwhile, transmission electron microscope imaging showed that hyperoside significantly alleviated GBM thickening in DN mice. In addition, hyperoside pre-treatment inhibited the increased heparanase gene (HPR1) promoter activity and heparanase expression induced by high glucose or reactive oxidative species (ROS) in cultured podocytes. Our data suggested that hyperoside has a prophylactic effect on proteinuria development and GBM damage in DM mice by decreasing podocyte heparanase expression.
Collapse
Affiliation(s)
- Xiaofei An
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province People's Hospital, Nanjing, 210029, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Ling Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Jisheng Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Jinan Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, 201508, China.
| |
Collapse
|
34
|
Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2- O-β-D-glucoside. Nutr Metab (Lond) 2017; 14:45. [PMID: 28702068 PMCID: PMC5504778 DOI: 10.1186/s12986-017-0200-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
35
|
Zou L, Chen S, Li L, Wu T. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. ACTA ACUST UNITED AC 2017; 69:451-460. [PMID: 28434817 DOI: 10.1016/j.etp.2017.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/12/2023]
Abstract
CONTEXT Hyperoside was used to treat cardiovascular disease for many years in China. It was shown great effect on regulation of lipid metabolism. But there is lack of reports about the effects of hyperoside on liver diseases. OBJECTIVE This study was designed to investigate the potentially protective effects of hyperoside and the role of transcription factor nuclear factor-erythroid 2(NF-E2)-related factor 2 (Nrf2) signaling in the regulation on Carbon Tetrachloride (CCl4)-induced chronic liver fibrosis in mice. MATERIALS AND METHODS All mice were divided into six groups containing 6 animals per group. Mice in different group were given relative processing for 4 weeks. The potentially protective effects of hyperoside on CCl4-induced chronic liver fibrosis in mice were depicted histologically and biochemically. RESULTS CCl4 administration caused a marked increase in the levels of serum aminotransferases, serum monoamine oxidase (MAO) and lipid peroxidation, MAO in mouse liver homogenates. Also decreased activities of cellular antioxidant defense enzymes were found after CCl4 exposure. Histopathological changes induced by CCl4 including regenerative nodules, deteriorated parenchyma. Hyperoside and silymarin reduced these changes and attenuated the pathological effects of CCl4 induced liver injury. In addition, hyperoside exhibited antioxidant effects in vitro. In Western blot analysis, the protein level of Nrf2 was downregulated after CCl4 administration and reversed by hyperoside. CONCLUSION Hyperoside increased the activity of the antioxidant and phase II detoxifying enzymes through the activation of Nrf2 nuclear translocated in the CCl4-induced liver fibrosis mice.
Collapse
Affiliation(s)
- Liyi Zou
- School of Pharmacy, Guangdong Medical University, Dongguan 523-808, China
| | - Shaoru Chen
- State key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Li
- Dongguan Scientific Research Center, Guangong Medical University, Dongguan, Guangdong, 523-808, China.
| | - Tie Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523-808, China.
| |
Collapse
|
36
|
Wang LL, Li WW, Wu CS, Zhang JL, Song YX, Song FJ, Fu H, Liu GX, Wang XM. Relationship between Tissue Distributions of Modified Wuzi Yanzong Prescription () in Rats and Meridian Tropism Theory. Chin J Integr Med 2016; 24:117-124. [PMID: 28000096 DOI: 10.1007/s11655-016-2270-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the relationship between tissue distributions of modified Wuzi Yanzong prescription (, MWP) in rats and meridian tropism theory. METHODS A high-performance liquid chromatography with Fourier transform-mass spectrometry (HPLC-FT) method was used to identify the metabolites of MWP in different tissues of rats after continued oral administration of MWP for 7 days. The relationship between MWP and meridian tropism theory was studied according to the tissue distributions of the metabolites of MWP in rats and the relevant literature. RESULTS Nineteen metabolites, mainly flavanoid compounds, were detected in the different rat tissues and classified to each herb in MWP. Further, it was able to establish that the tissue distributions of the metabolites of MWP were consistent with the descriptions of meridian tropism of MWP available in literature, this result might be useful in clarifying the mechanism of MWP on meridian tropism. In the long run, these data might provide scientific evidence of the meridian tropism theory to further promote the reasonable, effective utilization, and modernization of Chinese medicine. CONCLUSION The tissue distributions of MWP in vivo were consistent with the descriptions of meridian tropism of MWP.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Wei-Wei Li
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Cai-Sheng Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Xiang Song
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Fang-Jiao Song
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Hong Fu
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Geng-Xin Liu
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xue-Mei Wang
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
37
|
Involvement of Bcl-2 Signal Pathway in the Protective Effects of Apigenin on Anoxia/Reoxygenation-induced Myocardium Injury. J Cardiovasc Pharmacol 2016; 67:152-63. [PMID: 26466327 DOI: 10.1097/fjc.0000000000000331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apigenin is a type of flavonoids, which has been demonstrated to protect myocardium against ischemia/reperfusion (I/R) injury. However, the mechanism is still unclear. We hypothesized that the mechanism of cardioprotective action of apigenin on the I/R-induced injury might be caused via B-cell lymphoma (Bcl) signaling pathway. In this study, an in vitro I/R model was replicated on Langendorff-perfused heart and H9c2 cardiomyocytes by anoxia/reoxygenation (A/R) treatment. The recovery of cardiac contractile function, infarct size, lactate dehydrogenase (LDH) and creatine kinase (CK) in the perfusate, the expression and activity of Bcl-2 and caspase-3, and cardiomyocyte apoptosis were measured in the Langendorff heart undergoing A/R injury. In addition, the cell viability, LDH release, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), expression of cytochrome c in the cytosol, and cell apoptosis were examined in the culture of H9c2 cardiomyocytes after the A/R. The results showed that apigenin significantly improved rat heart contractile function, reduced LDH release, infarct size and apoptotic rate, upregulated the expression of Bcl-2 and caspase-3, and downregulated the expression of cleaved caspase-3 after the A/R. Moreover, apigenin increased the cell viability and decreased the release of LDH, production of reactive oxygen species, release of mitochondrial cytochrome c into the cytosol, and cell apoptosis in the culture of H9c2 cardiomyocytes after the A/R. In addition, inhibition of Bcl-2 activity by ABT-737 markedly attenuated the protective effect of apigenin on the A/R-induced myocardium injury. Taken together, we firstly demonstrated that the effect of apigenin against A/R injury in cardiomyocytes involves Bcl-2 signal pathway and at least partly depends on its effect of upregulating the expression of Bcl-2.
Collapse
|
38
|
González Arbeláez LF, Fantinelli JC, Ciocci Pardo A, Caldiz CI, Ríos JL, Schinella GR, Mosca SM. Effect of an Ilex paraguariensis (yerba mate) extract on infarct size in isolated rat hearts: the mechanisms involved. Food Funct 2016; 7:816-24. [PMID: 26661577 DOI: 10.1039/c5fo01255d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tea made from Ilex paraguariensis (IP) dried and minced leaves is a beverage widely consumed by large populations in South America as a source of caffeine (stimulant action) and for its medicinal properties. However, there is little information about the action of IP on the myocardium in the ischemia-reperfusion condition. Therefore, the objective of this study was to examine the effects of an aqueous extract of IP on infarct size in a model of regional ischemia. Isolated rat hearts were perfused by the Langendorff technique and subjected to 40 min of coronary artery occlusion followed by 60 min of reperfusion (ischemic control hearts). Other hearts received IP 30 μg mL(-1) during the first 10 min of reperfusion in the absence or presence of l(G)-nitro-l-arginine methyl ester [l-NAME, a nitric oxide synthase (NOS) inhibitor]. The infarct size was determined by triphenyltetrazolium chloride (TTC) staining. Post-ischemic myocardial function and coronary perfusion were also assessed. Cardiac oxidative damage was evaluated by using the thiobarbituric acid reactive substance (TBARS) concentration and the reduced glutathione (GSH) content. To analyze the mechanisms involved, the expressions of phosphorylated forms of eNOS and Akt were measured. In isolated mitochondria the Ca(2+)-induced mitochondrial permeability transition pore (mPTP) opening was determined. IP significantly decreased the infarct size and improved post-ischemic myocardial function and coronary perfusion. TBARS decreased, GSH was partially preserved, the levels of P-eNOS and P-Akt increased and mPTP opening diminished after IP addition. These changes were abolished by l-NAME. Therefore, our data demonstrate that acute treatment with IP only during reperfusion was effective in reducing myocardial post-ischemic alterations. These actions would be mediated by a decrease of mitochondrial permeability through IP-activated Akt/eNOS-dependent pathways.
Collapse
Affiliation(s)
- Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Spain
| | - Guillermo R Schinella
- Cátedra de Farmacología Básica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CIC, Provincia de Buenos Aires, La Plata, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| |
Collapse
|
39
|
Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Sheikh Y, Maibam BC, Talukdar NC, Deka DC, Borah JC. In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:21-28. [PMID: 27282664 DOI: 10.1016/j.jep.2016.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/25/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkia roxburghii G. Don. is a traditional medicinal plant and its pods are extensively used as food and medicine. It is believed by the traditional healers to have medicinal properties to treat diabetes, hypertension and urinary tract infections (Jamaluddin et al., 1994). MATERIALS AND METHODS The methanolic extract of pods of P roxburghii and fractions were screened for their α-glucosidase and α-amylase inhibitory activity. Anti-hyperglycemic effects were studied on streptozotocin (45mg/kg b.w.) induced diabetes in albino rats (seven groups, n=7 n=6), using different doses for 14 days. Plasma glucose concentration (HbA1c) was analysed using whole blood, while SGOT, SGPT, TG, TC and uric acid were analysed using serum, employing commercial kits. Quantitative analysis of the major active constituent was carried out by HPLC-PDA. RESULTS Bioactivity guided chemical investigation of the edible pods of P roxburghii identified sub-fraction EA-Fr 5 which significantly inhibited α-glucosidase (IC50 0.39±0.06 µgmL(-1)), reduced the blood glucose level to normal, and lowered the elevated levels of liver function enzymes SGOT and SGPT in STZ-induced diabetic rats. EA-Fr 5 was found to contain epigallocatechin gallate (1) and hyperin (2) which exhibited significantly higher α-glucosidase inhibitory potency with IC50 0.51±0.09 and 0.71±0.03µM respectively. EA-Fr 5 contained 379.82±2.90mg/g of EGCG, the major active constituent which manifests a broad spectrum of biological activities. CONCLUSION The present investigation for the first time reports the occurrence of EGCG and hyperin in P roxburghii and substantiates the traditional use of pods of P roxburghii as dietary supplement for management of diabetes with significantly promising α-glucosidase inhibitory potency and anti-hyperglycemic as well as hepatoprotective effects.
Collapse
Affiliation(s)
- Yunus Sheikh
- Laboratory of Natural Medicinal Chemistry, Natural Product Chemistry & Pharmacology Programme, Institute of Bioresources & Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Beebina Chanu Maibam
- Laboratory of Natural Medicinal Chemistry, Natural Product Chemistry & Pharmacology Programme, Institute of Bioresources & Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Narayan Chandra Talukdar
- Laboratory of Natural Medicinal Chemistry, Natural Product Chemistry & Pharmacology Programme, Institute of Bioresources & Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | | | - Jagat Chandra Borah
- Laboratory of Natural Medicinal Chemistry, Natural Product Chemistry & Pharmacology Programme, Institute of Bioresources & Sustainable Development, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
41
|
Zhang L, He S, Yang F, Yu H, Xie W, Dai Q, Zhang D, Liu X, Zhou S, Zhang K. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Can J Physiol Pharmacol 2016; 94:1249-1256. [PMID: 27704873 DOI: 10.1139/cjpp-2016-0066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate the therapeutic effects of hyperoside (Hyp) on glomerulosclerosis in diabetic nephropathy and its underlying mechanisms. Blood glucose, kidney mass, and renal function of mice were measured. Renal morphology was observed using hematoxylin and eosin, periodic acid - Schiff's, and Masson's trichrome stain. Fibronectin (FN) and collagen IV (COL IV) in kidney were determined by Western blot and immunohistochemical studies. Matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 in renal tissues were detected on both the mRNA and protein levels. miRNA expression and artificial alterations by miRNA agomir transfection were evaluated to investigate the protective mechanism of Hyp in mesangial cells. Hyp effectively improved renal function and physiologic features of db/db mice. Hyp also ameliorated glomerulosclerosis by suppressing FN, COL IV, and TIMP-1 expressions and promoting MMP-9 and MMP-2 expressions. The change in MMP-9 mRNA expression was inconsistent with that in protein levels in kidney, indicating that there was a post-transcriptional regulation. Further exploration in vitro showed that miR-21 was downregulated by Hyp, increasing expression of its target, MMP-9. These results suggest that Hyp can ameliorate glomerulosclerosis in diabetic nephropathy by downregulating miR-21 to increase expression of its target, MMP-9.
Collapse
Affiliation(s)
- Le Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Siyi He
- b Department of Cardiovascular Surgery, Chengdu Military General Hospital, Chengdu 610083, China
| | - Fan Yang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yu
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Xie
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Dai
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Di Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaoqin Liu
- c Department of Applied Chemistry, Chongqing Chemical Industry Vocational College, Chongqing 400020, China
| | - Shiwen Zhou
- d National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Kebin Zhang
- a Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
42
|
Zhang J, Fu H, Xu Y, Niu Y, An X. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. J Nat Med 2016; 70:740-8. [PMID: 27255369 DOI: 10.1007/s11418-016-1007-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/30/2016] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications in diabetes. Podocyte injury such as slit diaphragm effacement is regarded as a determinant in the occurrence and development of albuminuria in DN. In this study, we examined the effect of hyperoside, an active flavonoid glycoside, on proteinuria and renal damage in a streptozotocin-induced DN mouse model at the early stage. The results showed that oral administration of hyperoside (30 mg/kg/day for 4 weeks could significantly decrease urinary microalbumin excretion and glomerular hyperfiltration in DN mice, but did not affect the glucose and lipid metabolism. Periodic acid-Schiff staining and transmission electron microscopy showed that glomerular mesangial matrix expansion and podocyte process effacement in DN mice were significantly improved by hyperoside. Further investigations via immunofluorescence staining, real-time reverse transcription polymerase chain reaction and Western blot analysis showed that the decreased slit diaphragm protein nephrin and podocin mRNA expression and protein levels in DN mice were restored by hyperoside treatment. Collectively, these findings demonstrated that hyperoside could decrease albuminuria at the early stage of DN by ameliorating renal damage and podocyte injury.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, 210029, Nanjing, China
| | - Haiyan Fu
- Department of Nephrology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yan Xu
- Department of Otorhinolaryngology, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Yunfei Niu
- Department of Bone Molecular Biology, Changhai Hospital, The Second Military University, 200433, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, 210029, Nanjing, China.
| |
Collapse
|
43
|
Inhibitory effects of hyperoside on lung cancer by inducing apoptosis and suppressing inflammatory response via caspase-3 and NF-κB signaling pathway. Biomed Pharmacother 2016; 82:216-25. [PMID: 27470358 DOI: 10.1016/j.biopha.2016.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignancies in the world and the most threatening cancer to human health. Effective therapies based on non-cytotoxic induction in cell inflammation- and apoptosis-responsive pathways are thought to represent a novel advance in treating lung cancer. However, many studies are still required for effective pharmaceutical to induce cancer cell death. Hyperoside (Hyp) is the chief component of some Chinese herbs with anticancer effect. Here, we investigated the role of hyperoside on the lung cancer cell migration, invasion, inflammation and apoptosis in A549 cells in vitro and xenografts of nude mice in vivo. A549 cells were injected in nude mice for establishing tumors. Our results showed that hyperoside suppressed the proliferation, migration and invasion. Additionally, apoptosis was induced by hyperoside via Bcl-2/Bax-regulated Caspase3 activation, suggesting that hyperoside might inhibit lung cancer progression through apoptotic induction. And also, hyperoside could prevent progression and development of lung cancer through inactivating NF-κB signaling pathway. Subsequently, inflammatory cytokines, including TNF-α, IL-6, IL-1β and IL-18, were down-regulated significantly. And animal experiments also illustrated that the tumor volume and weight were reduced after hyperoside administration, which was also through apoptosis induction and prevention of inflammation response by Caspase3 activation and NF-κB inactivation. To our knowledge, it was the first time to evaluate the effects of hyperoside on preventing progression and development of lung cancer in vivo and in vitro to assess the possible therapies of hyperoside as a future approach for preventing lung cancer progression and development.
Collapse
|
44
|
Dietary Flavonoid Hyperoside Induces Apoptosis of Activated Human LX-2 Hepatic Stellate Cell by Suppressing Canonical NF-κB Signaling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1068528. [PMID: 27110557 PMCID: PMC4826685 DOI: 10.1155/2016/1068528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC) apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA), type I collagen, and intracellular reactive oxygen species (ROS). Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-XL, and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis.
Collapse
|
45
|
Wang Y, Lin HQ, Xiao CY, Law WK, Hu JS, Ip TM, Wan DCC. Using molecular docking screening for identifying hyperoside as an inhibitor of fatty acid binding protein 4 from a natural product database. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
46
|
Protective effect of hyperoside on cardiac ischemia reperfusion injury through inhibition of ER stress and activation of Nrf2 signaling. ASIAN PAC J TROP MED 2016; 9:76-80. [DOI: 10.1016/j.apjtm.2015.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
|
47
|
Xing HY, Cai YQ, Wang XF, Wang LL, Li P, Wang GY, Chen JH. The Cytoprotective Effect of Hyperoside against Oxidative Stress Is Mediated by the Nrf2-ARE Signaling Pathway through GSK-3β Inactivation. PLoS One 2015; 10:e0145183. [PMID: 26674355 PMCID: PMC4682950 DOI: 10.1371/journal.pone.0145183] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) acts as a negative regulator of NF-E2 related factor 2 (Nrf2) by inducing Nrf2 degradation and nuclear export. Our previous study demonstrated that the flavonoid hyperoside elicits cytoprotection against oxidative stress by activating the Keap1-Nrf2-ARE signaling pathway, thus increasing the expression of antioxidant enzymes, such as heme oxygenase-1 (HO-1), superoxide dismutase (SOD) and catalase. However, the role of GSK-3β in hyperoside-mediated Nrf2 activation is unclear. Here, we demonstrate that in a normal human hepatocyte cell line, (L02), hyperoside is capable of inducing the phosphorylation of GSK-3β at Ser9 without affecting the protein levels of GSK-3β and its phosphorylation at Thr390. Lithium chloride (LiCl) and short interfering RNA (siRNA)-mediated inhibition of GSK-3β significantly enhanced the ability of hyperoside to protect L02 liver cells from H2O2-induced oxidative damage, leading to increased cell survival shown by the maintenance of cell membrane integrity and elevated levels of glutathione (GSH), one of the endogenous antioxidant biomarkers. Further study showed that LiCl and siRNA-mediated inhibition of GSK-3β increased hyperoside-induced HO-1 expression, and the effect was dependent upon enhanced Nrf2 nuclear translocation and gene expression. These activities were followed by ARE-mediated transcriptional activation in the presence of hyperoside, which was abolished by the transfection of the cells with Nrf2 siRNA. Furthermore, the siRNA-mediated inhibition of Keap1 also enhanced hyperoside-induced Nrf2 nuclear accumulation and HO-1 expression, which was relatively smaller than the effects obtained from GSK-3β siRNA administration. Moreover, Keap1 siRNA administration alone had no significant effect on the phosphorylation and protein expression of GSK-3β. Collectively, our data provide evidence that hyperoside attenuates H2O2 -induced L02 cell damage by activating the Nrf2-ARE signaling pathway through both an increase in GSK-3β inhibitory phosphorylation at Ser9 and an inhibition of Keap1 and that hyperoside-mediated GSK-3β inhibition exhibits more significant effects.
Collapse
Affiliation(s)
- Hai-Yan Xing
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Yong-Qing Cai
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Xian-Feng Wang
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Lin-Li Wang
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Pan Li
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Guan-Ying Wang
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Jian-Hong Chen
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
- * E-mail:
| |
Collapse
|
48
|
Huang C, Yang Y, Li WX, Wu XQ, Li XF, Ma TT, Zhang L, Meng XM, Li J. Hyperin attenuates inflammation by activating PPAR-γ in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells. Int Immunopharmacol 2015; 29:440-447. [DOI: 10.1016/j.intimp.2015.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
49
|
Thomas CJ, Lim NR, Kedikaetswe A, Yeap YY, Woodman OL, Ng DCH, May CN. Evidence that the MEK/ERK but not the PI3K/Akt pathway is required for protection from myocardial ischemia-reperfusion injury by 3',4'-dihydroxyflavonol. Eur J Pharmacol 2015; 758:53-9. [PMID: 25820159 DOI: 10.1016/j.ejphar.2015.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
The novel pro-drug of 3'4'-dihydroxyflavonol, NP202, potently reduces myocardial infarct size resulting from ischemia-reperfusion (I/R) through mechanisms that remain to be fully defined. In this study, we investigated whether cardioprotection induced by NP202 depended on activation of the reperfusion injury survival kinase (RISK) pathways. We therefore examined the effects of PD98059 and LY294002, specific inhibitors of the MEK/ERK1/2 and PI3K/Akt pathways, respectively. In isolated cardiomyocytes, H2O2induced oxidative stress activated ERK1/2 and this was further enhanced by DiOHF, the active parent compound of NP202. Although oxidative stress did not stimulate Akt in cardiomyocytes, co-treatment with DiOHF substantially increased Akt phosphorylation. This suggests that DiOHF is a potent modulator of RISK pathways specifically in the context of stress stimulation. In anesthetised sheep, following 1h ischemia and 3h reperfusion, the contribution of the RISK pathways to NP202-mediated cardioprotection was determined by treating the animals with PD98059, LY294002 or vehicle prior to NP202 administration and reperfusion. Infarct size, as a percentage of the area-at-risk, was substantially reduced by NP202 (from 78±6 to 46±4%, P<0.05). Inhibition of MEK/ERK1/2 abolished the cardioprotective effects of NP202 (infarct size 81±4%), whereas inhibition of PI3K/Akt had no effect (infarct size 53±4%). Our combined cellular and animal studies indicate that NP202 potently protects against myocardial I/R injury through complex mechanisms that involved augmentation of MEK/ERK1/2 signaling, but not PI3K/Akt signaling.
Collapse
Affiliation(s)
- Colleen J Thomas
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| | - Nicholas R Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Alphious Kedikaetswe
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Yvonne Y Yeap
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Huo Y, Yi B, Chen M, Wang N, Chen P, Guo C, Sun J. Induction of Nur77 by hyperoside inhibits vascular smooth muscle cell proliferation and neointimal formation. Biochem Pharmacol 2014; 92:590-8. [PMID: 25316569 DOI: 10.1016/j.bcp.2014.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 02/02/2023]
Abstract
Nur77 is an orphan nuclear receptor that belongs to the nuclear receptor 4A (NR4A) subfamily, which has been implicated in a variety of biological events, such as cell apoptosis, proliferation, inflammation, and metabolism. Activation of Nur77 has recently been shown to be beneficial for the treatment of cardiovascular and metabolic diseases. The purpose of this study is to identify novel natural Nur77 activators and investigate their roles in preventing vascular diseases. By measuring Nur77 expression using quantitative RT-PCR, we screened active ingredients extracted from Chinese herb medicines with beneficial cardiovascular effects. Hyperoside (quercetin 3-D-galactoside) was identified as one of the potent activators for inducing Nur77 expression and activating its transcriptional activity in vascular smooth muscle cells (VSMCs). We demonstrated that hyperoside, in a time and dose dependent manner, markedly increased the expression of Nur77 in rat VSMCs, with an EC50 of ∼0.83 μM. Mechanistically, we found that hyperoside significantly increased the phosphorylation of ERK1/2 MAP kinase and its downstream target cAMP response element-binding protein (CREB), both of which contributed to the hyperoside-induced Nur77 expression in rat VSMCs. Moreover, through activation of Nur77 receptor, hyperoside markedly inhibited both vascular smooth muscle cell proliferation in vitro and the carotid artery ligation-induced neointimal formation in vivo. These findings demonstrate that hyperoside is a potent natural activator of Nur77 receptor, which can be potentially used for prevention and treatment of occlusive vascular diseases.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA Primers
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Nuclear Receptor Subfamily 4, Group A, Member 1/biosynthesis
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Polymerase Chain Reaction
- Quercetin/analogs & derivatives
- Quercetin/pharmacology
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Tunica Intima/drug effects
Collapse
Affiliation(s)
- Yan Huo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust Street, Room 368G, Philadelphia 19107, USA
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust Street, Room 368G, Philadelphia 19107, USA
| | - Ming Chen
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust Street, Room 368G, Philadelphia 19107, USA
| | - Nadan Wang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust Street, Room 368G, Philadelphia 19107, USA
| | - Pengguo Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust Street, Room 368G, Philadelphia 19107, USA.
| |
Collapse
|