1
|
Xiong B, Zhang Y, Liu S, Liao S, Zhou Z, He Q, Zhou Y. NOX Family: Regulators of Reactive Oxygen Species Balance in Tumor Cells. FASEB J 2025; 39:e70565. [PMID: 40266050 DOI: 10.1096/fj.202500238rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Cancer cells are capable of surviving, proliferating, and invading or migrating within hypoxic environments by regulating various adaptive mechanisms. Due to the activation of oncogenes and the inactivation of tumor suppressor genes, and relative deficiencies in oxygen and nutrients, cancer cells demonstrate elevated production of reactive oxygen species (ROS), primarily sourced from NADPH oxidases (NOX family). A key aspect of the reorientation of tumor cell metabolism is the combating of cellular oxidative stress through the promotion of antioxidant molecule synthesis to counteract ROS production. Given that most cancers experience hypoxia and that NOX is closely linked to numerous redox-dependent signaling pathways, the expression and function of NOX are altered in various malignancies. Therefore, this review summarizes the characteristics of NOX family members, their influence on tumor proliferation, invasion, and migration, the role of NOX in promoting tumor angiogenesis, the impact of NOX on the function of immune cells within the tumor microenvironment, and the potential of targeting NOX in tumor therapy. This aims to offer a fresh viewpoint on a comprehensive understanding of the functions of NOX family members.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zihua Zhou
- Department of Oncology, Loudi Central Hospital, Loudi, Hunan, China
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Kim J, Moon JS. Molecular Roles of NADPH Oxidase-Mediated Oxidative Stress in Alzheimer's Disease: Isoform-Specific Contributions. Int J Mol Sci 2024; 25:12299. [PMID: 39596364 PMCID: PMC11594809 DOI: 10.3390/ijms252212299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress is linked to the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder marked by memory impairment and cognitive decline. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau. AD is associated with an imbalance in redox states and excessive reactive oxygen species (ROS). Recent studies report that NADPH oxidase (NOX) enzymes are significant contributors to ROS generation in neurodegenerative diseases, including AD. NOX-derived ROS aggravates oxidative stress and neuroinflammation during AD. In this review, we provide the potential role of all NOX isoforms in AD pathogenesis and their respective structural involvement in AD progression, highlighting NOX enzymes as a strategic therapeutic target. A comprehensive understanding of NOX isoforms and their inhibitors could provide valuable insights into AD pathology and aid in the development of targeted treatments for AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Szekeres FLM, Walum E, Wikström P, Arner A. A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia-reperfusion in the mouse heart. Sci Rep 2021; 11:11970. [PMID: 34099836 PMCID: PMC8184855 DOI: 10.1038/s41598-021-91575-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
The NADPH oxidase enzymes Nox2 and 4, are important generators of Reactive oxygen species (ROS). These enzymes are abundantly expressed in cardiomyocytes and have been implicated in ischemia-reperfusion injury. Previous attempts with full inhibition of their activity using genetically modified animals have shown variable results, suggesting that a selective and graded inhibition could be a more relevant approach. We have, using chemical library screening, identified a new compound (GLX481304) which inhibits Nox 2 and 4 (with IC50 values of 1.25 µM) without general antioxidant effects or inhibitory effects on Nox 1. The compound inhibits ROS production in isolated mouse cardiomyocytes and improves cardiomyocyte contractility and contraction of whole retrogradely (Langendorff) perfused hearts after a global ischemia period. We conclude that a pharmacological and partial inhibition of ROS production by inhibition of Nox 2 and 4 is beneficial for recovery after ischemia reperfusion and might be a promising venue for treatment of ischemic injury to the heart.
Collapse
Affiliation(s)
- Ferenc L M Szekeres
- Division of Genetic Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers Väg 8, 17177, Stockholm, Sweden.
- Division of Biomedicine, Department of Health and Education, University of Skövde, Högskolevägen 1, 541 28, Skövde, Sweden.
| | - Erik Walum
- Glucox Biotech AB, Frälsegårdsvägen 8, 179 97, Färentuna, Sweden
| | - Per Wikström
- Glucox Biotech AB, Frälsegårdsvägen 8, 179 97, Färentuna, Sweden
| | - Anders Arner
- Division of Genetic Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers Väg 8, 17177, Stockholm, Sweden
- Department of Clinical Sciences Lund, Thoracic Surgery, Lund University, c/o Igelösa Life Science AB Igelösa 373, 225 94, Lund, Sweden
| |
Collapse
|
4
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Membranous NOX5-derived ROS oxidizes and activates local Src to promote malignancy of tumor cells. Signal Transduct Target Ther 2020; 5:139. [PMID: 32792487 PMCID: PMC7426961 DOI: 10.1038/s41392-020-0193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species (ROS) localized at the precise subcellular compartments are essential for regulating the activity of signaling proteins. Furthermore, ROS are master regulators of tumor malignant progression that respond to a diverse set of environmental stress, especially hypoxia. NADPH oxidases (NOXs) appear to be activated within discrete subcellular compartments to facilitate local ROS production. However, the subcellular function of NOXs in hypoxic tumor is still unclear. In this study, we demonstrated that NOX5 was greatly upregulated in clinical esophageal squamous cell carcinoma (ESCC) tumors, ESCC cell lines or primary ESCC cells, and elevated NOX5 was correlated to malignancy of ESCC tumors and poor prognosis. NOX5 induced the malignant progression of ESCC by activating Src, especially under hypoxic condition. Mechanistically, we showed that hypoxia promoted the interaction between NOX5 and Pyk2 on cell membrane via facilitating Ca2+-mediated Pyk2 Tyr402 site phosphorylation. Subsequently, Pyk2 acted as a scaffold for c-Abl phosphorylating the catalytic domain of NOX5 Tyr476/478 sites, which in turn upregulated hydrogen peroxide (H2O2) inside the Pyk2/NOX5 complex to oxidize and activate local Src. These findings provide insights into the biological significance of NOX5 in the development of ESCC.
Collapse
|
6
|
Hou L, Zhang L, Hong JS, Zhang D, Zhao J, Wang Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid Redox Signal 2020; 33:374-393. [PMID: 31968994 DOI: 10.1089/ars.2019.8014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The growing incidence of neurodegenerative diseases significantly impacts the individuals who suffer from these disorders and is a major health concern globally. Although the specific mechanisms of neurodegenerative diseases are still far from being acknowledged, it is becoming clear that oxidative stress and neuroinflammation are critical contributing factors to the progression of neurodegeneration. Thus, it is conceivable that the inhibition of oxidative stress and neuroinflammation may represent promising therapeutic targets for the treatment of neurodegenerative diseases. Recent Advances: Recently, the strategy for neurodegenerative disease therapy has shifted from the use of antioxidants and conventional anti-inflammatory targets to upstream mediators due to the failure of most antioxidants and nonsteroidal anti-inflammatory drugs in clinical trials. Nicotinamide adenine dinucleotide phosphate oxidases (NOXs), a family of superoxide-producing enzyme complexes, have been identified as an upstream factor that controls both oxidative stress and neuroinflammation. Genetic inactivation or pharmacological inhibition of NOX enzymes displays potent neuroprotective effects in a broad spectrum of neurodegenerative disease models. Critical Issues: The detailed mechanisms of how NOX enzymes regulate oxidative stress and neuroinflammation still remain unclear. Moreover, the currently available inhibitors of NOX enzymes exhibit nonspecificity, off-target effects, unsuitable pharmacokinetic properties, and even high toxicity, markedly limiting their potential clinical applications. Future Directions: This review provides novel insights into the roles of NOXs in neurodegenerative pharmacology, and indicates the types of NOX enzyme inhibitors that should be identified and developed as candidates for future applications, which might reveal novel neurodegenerative disease therapies based on NOXs.
Collapse
Affiliation(s)
- Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Gonçalves JDS, Carvalho FL, Coutinho ICDR, Morais JCO, Fortunato RS, Milito CB. NADPH Oxidase 5 upregulation is associated with lymphoma aggressiveness. ACTA ACUST UNITED AC 2020; 66:210-215. [PMID: 32428157 DOI: 10.1590/1806-9282.66.2.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Lymphomas are a heterogeneous set of malignant neoplasias of lymphoid B and NK/T mature and immature cells at various stages of differentiation. Genetic and molecular biology tools are used to appropriately classify the type and prognosis of the lymphomas, which have implications in therapeutic effectiveness. Among them, the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase (NOX5) enzymes have been explored. This study analyzed the expression of NADPH oxidase 5 in lymphoma tissue according to the degree of tumor aggressiveness. METHODS Slides from 64 patients with lymphoma who had paraffin-embedded tissue available were reviewed by two independent, experienced pathologists. They classified tumors according to the WHO classification (2017). NOX5 expression in tissues was assessed by immunohistochemical staining using a tissue microarray. The assay was interpreted using a scoring system of 0, 1, 2, and 3, for cytoplasmic staining of NOX5 corresponding to negative, weak, intermediate, and strong staining, respectively. We compared the expression of NOX5 in patients with aggressive versus non-aggressive lymphomas. RESULTS NOX5 expression was positive in 100% (27/27) of aggressive lymphomas and in 19% (7/37) of non-aggressive ones. The seven patients with positive expression of NOX5 presented intermediate staining (2); strong staining (3) was observed only in tissues of aggressive lymphomas, and negative and weak staining (0 and 1) were observed only in non-aggressive lymphomas. CONCLUSIONS Aggressive lymphomas overexpress NOX5 protein. The higher NOX5 expression in aggressive lymphomas can suggest an involvement of this enzyme on the acquisition of an aggressive phenotype in lymphoid neoplasia.
Collapse
Affiliation(s)
- João Dos Santos Gonçalves
- . Aluno do Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabiano Lacerda Carvalho
- . Aluno do Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - José Carlos Oliveira Morais
- . Professor do Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodrigo S Fortunato
- . Professor do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | - Cristiane Bedran Milito
- . Professor do Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Lu J, Jiang G, Wu Y, Antony S, Meitzler JL, Juhasz A, Liu H, Roy K, Makhlouf H, Chuaqui R, Butcher D, Konaté MM, Doroshow JH. NADPH oxidase 1 is highly expressed in human large and small bowel cancers. PLoS One 2020; 15:e0233208. [PMID: 32428030 PMCID: PMC7237001 DOI: 10.1371/journal.pone.0233208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
To facilitate functional investigation of the role of NADPH oxidase 1 (NOX1) and associated reactive oxygen species in cancer cell signaling, we report herein the development and characterization of a novel mouse monoclonal antibody that specifically recognizes the C-terminal region of the NOX1 protein. The antibody was validated in stable NOX1 overexpression and knockout systems, and demonstrates wide applicability for Western blot analysis, confocal microscopy, flow cytometry, and immunohistochemistry. We employed our NOX1 antibody to characterize NOX1 expression in a panel of 30 human colorectal cancer cell lines, and correlated protein expression with NOX1 mRNA expression and superoxide production in a subset of these cells. Although a significant correlation between oncogenic RAS status and NOX1 mRNA levels could not be demonstrated in colon cancer cell lines, RAS mutational status did correlate with NOX1 expression in human colon cancer surgical specimens. Immunohistochemical analysis of a comprehensive set of tissue microarrays comprising over 1,200 formalin-fixed, paraffin-embedded tissue cores from human epithelial tumors and inflammatory disease confirmed that NOX1 is overexpressed in human colon and small intestinal adenocarcinomas, as well as adenomatous polyps, compared to adjacent, uninvolved intestinal mucosae. In contradistinction to prior studies, we did not find evidence of NOX1 overexpression at the protein level in tumors versus histologically normal tissues in prostate, lung, ovarian, or breast carcinomas. This study constitutes the most comprehensive histopathological characterization of NOX1 to date in cellular models of colon cancer and in normal and malignant human tissues using a thoroughly evaluated monoclonal antibody. It also further establishes NOX1 as a clinically relevant therapeutic target in colorectal and small intestinal cancer.
Collapse
Affiliation(s)
- Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jennifer L. Meitzler
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mariam M. Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - James H. Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
9
|
Bouzakri K, Veyrat-Durebex C, Holterman C, Arous C, Barbieux C, Bosco D, Altirriba J, Alibashe M, Tournier BB, Gunton JE, Mouche S, Bietiger W, Forterre A, Berney T, Pinget M, Christofori G, Kennedy C, Szanto I. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid Redox Signal 2020; 32:618-635. [PMID: 31931619 DOI: 10.1089/ars.2018.7579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate β-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, β-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (β) cells. In vivo, mice with β-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in β-cell failure in diabetic conditions.
Collapse
Affiliation(s)
- Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Chet Holterman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Alibashe
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Millennium Institute, The University of Sydney, Sydney, Australia.,Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Thierry Berney
- Division of Transplantation, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Pinget
- Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Christopher Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ildiko Szanto
- Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine at the University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Dei Zotti F, Verdoy R, Brusa D, Lobysheva II, Balligand JL. Redox regulation of nitrosyl-hemoglobin in human erythrocytes. Redox Biol 2019; 34:101399. [PMID: 31838004 PMCID: PMC7327715 DOI: 10.1016/j.redox.2019.101399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress perturbs vascular homeostasis leading to endothelial dysfunction and cardiovascular diseases. Vascular reactive oxygen species (ROS) reduce nitric oxide (NO) bioactivity, a hallmark of cardiovascular and metabolic diseases. We measured steady-state vascular NO levels through the quantification of heme nitrosylated hemoglobin (5-coordinate-α-HbNO) in venous erythrocytes of healthy human subjects using electron paramagnetic resonance (EPR) spectroscopy. To examine how ROS may influence HbNO complex formation and stability, we identified the pro- and anti-oxidant enzymatic sources in human erythrocytes and their relative impact on intracellular redox state and steady-state HbNO levels. We demonstrated that pro-oxidant enzymes such as NADPH oxidases are expressed and produce a significant amount of ROS at the membrane of healthy erythrocytes. In addition, the steady-state levels of HbNO were preserved when NOX (e.g. NOX1 and NOX2) activity was inhibited. We next evaluated the impact of selective antioxidant enzymatic systems on HbNO stability. Peroxiredoxin 2 and catalase, in particular, played an important role in endogenous and exogenous H2O2 degradation, respectively. Accordingly, inhibitors of peroxiredoxin 2 and catalase significantly decreased erythrocyte HbNO concentration. Conversely, steady-state levels of HbNO were preserved upon supplying erythrocytes with exogenous catalase. These findings support HbNO measurements as indicators of vascular oxidant stress and of NO bioavailability and potentially, as useful biomarkers of early endothelial dysfunction.
Collapse
Affiliation(s)
- Flavia Dei Zotti
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Roxane Verdoy
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Davide Brusa
- Institut de Recherche Experimentale et Clinique (IREC), Flow Cytometry Platform, Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Irina I Lobysheva
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Moody TW, Lee L, Iordanskaia T, Ramos-Alvarez I, Moreno P, Boudreau HE, Leto TL, Jensen RT. PAC1 regulates receptor tyrosine kinase transactivation in a reactive oxygen species-dependent manner. Peptides 2019; 120:170017. [PMID: 30273693 PMCID: PMC6438776 DOI: 10.1016/j.peptides.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a growth factor for lung cancer cells. PACAP-27 or PACAP-38 binds with high affinity to non-small cell lung cancer (NSCLC) cells, causing elevated cytosolic Ca2+, increased proliferation and increased phosphorylation of extracellular regulated kinase (ERK) and the epidermal growth factor receptor (EGFR). The role of reactive oxygen species (ROS) was investigated in these processes. Addition of PACAP-38 to NCI-H838 or A549 cells increased the tyrosine phosphorylation of the EGFR, HER2 and ERK significantly by 4-, 3-, and 2-fold, respectively. The transactivation of the EGFR and HER2 was inhibited by gefitinib or lapatinib (tyrosine kinase inhibitors), PACAP (6-38) (PAC1 antagonist), N-acetylcysteine (NAC is an anti-oxidant) or dipheyleneiodonium (DPI is an inhibitor of Nox and Duox enzymes). PACAP-38 addition to NSCLC cells increased ROS which was inhibited by PACAP (6-38), NAC or DPI. Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2 mRNA was present in many NSCLC cell lines. PACAP-38 stimulated the growth of NSCLC cells whereas PACAP (6-38), gefitinib or DPI inhibited proliferation. The results show that ROS are essential for PAC1 to regulate EGFR and HER2 transactivation as well as proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Center for Cancer Research, 9609 Medical Center Drive, Room 2W-340, Bethesda, MD, 20892, USA.
| | - Lingaku Lee
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Tatiana Iordanskaia
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Paola Moreno
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Howard E Boudreau
- National Institute of Allergy and Infectious Diseases, Lab. Host Defenses, 12441 Parklawn Dr., Rockville, MD, 20852, USA
| | - Thomas L Leto
- National Institute of Allergy and Infectious Diseases, Lab. Host Defenses, 12441 Parklawn Dr., Rockville, MD, 20852, USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Augsburger F, Filippova A, Rasti D, Seredenina T, Lam M, Maghzal G, Mahiout Z, Jansen-Dürr P, Knaus UG, Doroshow J, Stocker R, Krause KH, Jaquet V. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol 2019; 26:101272. [PMID: 31330481 PMCID: PMC6658998 DOI: 10.1016/j.redox.2019.101272] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/05/2022] Open
Abstract
Background NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O2•-) and/or hydrogen peroxide (H2O2). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action. Experimental approach We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O2•- or H2O2 using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity. Key results Cells expressing active NOX isoforms formed O2•-, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular H2O2. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors. Conclusion Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.
Collapse
Affiliation(s)
- Fiona Augsburger
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Aleksandra Filippova
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Delphine Rasti
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tamara Seredenina
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Magdalena Lam
- St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Ghassan Maghzal
- St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Zahia Mahiout
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research (IBA), University of Innsbruck, Innsbruck, Austria
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
| |
Collapse
|
13
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
14
|
Diebold BA, Wilder SG, De Deken X, Meitzler JL, Doroshow JH, McCoy JW, Zhu Y, Lambeth JD. Guidelines for the Detection of NADPH Oxidases by Immunoblot and RT-qPCR. Methods Mol Biol 2019; 1982:191-229. [PMID: 31172474 DOI: 10.1007/978-1-4939-9424-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification of NADPH oxidase (NOX) isoforms in tissues is essential for interpreting experiments and for next step decisions regarding cell lines, animal models, and targeted drug design. Two basic methods, immunoblotting and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), are important to monitor NOX protein and messenger RNA (mRNA) levels, respectively, for a range of investigations from understanding cell signaling events to judging NOX inhibitor efficacies. For many other genes that are expressed in high abundance, these methods may seem rather simple. However, detecting the low expression levels of endogenous NOX/DUOX is difficult and can be frustrating, so some guidelines would be helpful to those who are facing difficulties. One reason why detection is so difficult is the limited availability of vetted NOX/DUOX antibodies. Many of the commercial antibodies do not perform well in our hands, and dependable antibodies, often generated by academic laboratories, are in limited supply. Another problem is the growing trend in the NOX literature to omit end-user validation of antibodies by not providing appropriate positive and negative controls. With regard to NOX mRNA levels, knockdown of NOX/DUOX has been reported in cell lines with very low endogenous expression (C q values ≥30) or in cell lines devoid of the targeted NOX isoform (e.g., NOX4 expression in NCI-60 cancer cell panel cell line 786-0). These publications propagate misinformation and hinder progress in understanding NOX/DUOX function. This chapter provides overdue guidelines on how to validate a NOX antibody and provides general methodologies to prepare samples for optimal detection. It also includes validated methodology to perform RT-qPCR for the measurement of NOX mRNA levels, and we suggest that RT-qPCR should be performed prior to embarking on NOX protein detection.
Collapse
Affiliation(s)
- Becky A Diebold
- Department of Pathology, Emory University, Atlanta, GA, USA.
| | | | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W McCoy
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Yerun Zhu
- Department of Pathology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
15
|
Abstract
NOX (NADPH oxidases) are a family of NADPH-dependent transmembrane enzymes that synthesize superoxide and other reactive oxygen species. There are seven isoforms (NOX1-5 and DUOX1-2) which derive from a common ancestral NOX. NOX enzymes are distinguished by different modes of activation, the types of ROS that are produced, the cell types where they are expressed, and distinct functional roles. NOX5 was one of the earliest eukaryotic Nox enzymes to evolve and ironically the last isoform to be discovered in humans. In the time since its discovery, our knowledge of the regulation of NOX5 has expanded tremendously, and we now have a more comprehensive understanding of the molecular mechanisms underlying NOX5-dependent ROS production. In contrast, the cell types where NOX5 is robustly expressed and its functional significance in health and disease remain an underdeveloped area. The goal of this chapter is to provide an up-to-date overview of the mechanisms regulating NOX5 function and its importance in human physiology and pathophysiology.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
Antitumor activity of BJ-1207, a 6-amino-2,4,5-trimethylpyridin-3-ol derivative, in human lung cancer. Chem Biol Interact 2018; 294:1-8. [DOI: 10.1016/j.cbi.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022]
|
17
|
Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal 2018; 28:1238-1261. [PMID: 28990413 DOI: 10.1089/ars.2017.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.
Collapse
Affiliation(s)
- Jana Rudolf
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Houssam Raad
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Alain Taieb
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,3 Service de Dermatologie Adulte et Pédiatrique , CHU de Bordeaux, Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2018; 8:38113-38135. [PMID: 28498822 PMCID: PMC5503519 DOI: 10.18632/oncotarget.17494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
Human colon cancers express higher levels of NADPH oxidase 1 [NOX1] than adjacent normal epithelium. It has been suggested that reactive oxygen species [ROS] derived from NOX1 contribute to DNA damage and neoplastic transformation in the colon, particularly during chronic inflammatory stress. However, the mechanism(s) underlying increased NOX1 expression in malignant tumors or chronic inflammatory states involving the intestine are poorly characterized. We examined the effects of two pro-inflammatory cytokines, IL-4 and IL-13, on the regulation of NOX1. NOX1 expression was increased 4- to 5-fold in a time- and concentration-dependent manner by both cytokines in human colon cancer cell lines when a functional Type II IL-4 receptor was present. Increased NOX1 transcription following IL-4/IL-13 exposure was mediated by JAK1/STAT6 signaling, was associated with a ROS-related inhibition of protein tyrosine phosphatase activity, and was dependent upon activation and specific binding of GATA3 to the NOX1 promoter. NOX1-mediated ROS production increased cell cycle progression through S-phase leading to a significant increase in cellular proliferation. Evaluation of twenty pairs of surgically-resected colon cancers and their associated uninvolved adjacent colonic epithelium demonstrated a significant increase in the active form of NOX1, NOX1-L, in tumors compared to normal tissues, and a significant correlation between the expression levels of NOX1 and the Type II IL-4 receptor in tumor and the uninvolved colon. These studies imply that NOX1 expression, mediated by IL-4/IL-13, could contribute to an oxidant milieu capable of supporting the initiation or progression of colonic cancer, suggesting a role for NOX1 as a therapeutic target.
Collapse
|
19
|
Antony S, Jiang G, Wu Y, Meitzler JL, Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, Juhasz A, Lu J, Liu H, Dahan I, Konate M, Roy KK, Doroshow JH. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27 Kip1 expression in malignant melanoma and other human tumors. Mol Carcinog 2017; 56:2643-2662. [PMID: 28762556 PMCID: PMC5675809 DOI: 10.1002/mc.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased p27Kip1 expression. Similarly, increased normoxic HIF-1α expression and decreased p27Kip1 expression were observed in stable NOX5-overexpressing clones of KARPAS 299 human lymphoma cells and in the human prostate cancer cell line, PC-3. Conversely, knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased cell growth, decreased HIF-1α expression, and increased p27Kip1 expression. Likewise, in an additional human melanoma cell line, WM852, and in PC-3 cells, transient knockdown of endogenous NOX5 resulted in increased p27Kip1 and decreased HIF-1α expression. Knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased Akt and GSK3β phosphorylation, signaling pathways known to modulate p27Kip1 levels. In summary, our findings suggest that NOX5 expression in human UACC-257 melanoma cells could contribute to cell proliferation due, in part, to the generation of high local concentrations of extracellular ROS that modulate multiple pathways that regulate HIF-1α and networks that signal through Akt/GSK3β/p27Kip1 .
Collapse
Affiliation(s)
- Smitha Antony
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jennifer L. Meitzler
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Hala R. Makhlouf
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Dave S. Hoon
- Department of Molecular OncologyJohn Wayne Cancer InstituteSanta MonicaCalifornia
| | - Jiuping Ji
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Yiping Zhang
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Han Liu
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Iris Dahan
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Mariam Konate
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Krishnendu K. Roy
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - James H. Doroshow
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| |
Collapse
|
20
|
Lu J, Risbood P, Kane CT, Hossain MT, Anderson L, Hill K, Monks A, Wu Y, Antony S, Juhasz A, Liu H, Jiang G, Harris E, Roy K, Meitzler JL, Konaté M, Doroshow JH. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases. Biochem Pharmacol 2017; 143:25-38. [PMID: 28709950 PMCID: PMC5610936 DOI: 10.1016/j.bcp.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
The NADPH oxidases (NOXs) play a recognized role in the development and progression of inflammation-associated disorders, as well as cancer. To date, several NOX inhibitors have been developed, through either high throughput screening or targeted disruption of NOX interaction partners, although only a few have reached clinical trials. To improve the efficacy and bioavailability of the iodonium class NOX inhibitor diphenylene iodonium (DPI), we synthesized 36 analogs of DPI, focusing on improved solubility and functionalization. The inhibitory activity of the analogs was interrogated through cell viability and clonogenic studies with a colon cancer cell line (HT-29) that depends on NOX for its proliferative potential. Lack of altered cellular respiration at relevant iodonium analog concentrations was also demonstrated. Additionally, inhibition of ROS generation was evaluated with a luminescence assay for superoxide, or by Amplex Red® assay for H2O2 production, in cell models expressing specific NOX isoforms. DPI and four analogs (NSCs 740104, 751140, 734428, 737392) strongly inhibited HT-29 cell growth and ROS production with nanomolar potency in a concentration-dependent manner. NSC 737392 and 734428, which both feature nitro functional groups at the meta position, had >10-fold higher activity against ROS production by cells that overexpress dual oxidase 2 (DUOX2) than the other compounds examined (IC50≈200-400nM). Based on these results, we synthesized and tested NSC 780521 with optimized potency against DUOX2. Iodonium analogs with anticancer activity, including the first generation of targeted agents with improved specificity against DUOX2, may provide a novel therapeutic approach to NOX-driven tumors.
Collapse
Affiliation(s)
- Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Prabhakar Risbood
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Larry Anderson
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kimberly Hill
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anne Monks
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Erik Harris
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
22
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Mahbouli S, Der Vartanian A, Ortega S, Rougé S, Vasson MP, Rossary A. Leptin induces ROS via NOX5 in healthy and neoplastic mammary epithelial cells. Oncol Rep 2017; 38:3254-3264. [DOI: 10.3892/or.2017.6009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/01/2017] [Indexed: 11/05/2022] Open
|
24
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
25
|
NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Blood 2017; 130:1734-1745. [PMID: 28830888 DOI: 10.1182/blood-2016-10-746347] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/03/2017] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system, acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study, we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox, and not on gp91phox/NOX2, as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover, we revealed that NOX5 expression was strongly increased during Mo-DC differentiation, but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC, and at a lower level in plasmacytoid DC. Interestingly, NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation, and thus could be critical for immunity and inflammation.
Collapse
|
26
|
STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells. Exp Cell Res 2017; 351:51-58. [DOI: 10.1016/j.yexcr.2016.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 11/22/2022]
|
27
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Dho SH, Kim JY, Kwon ES, Lim JC, Park SS, Kwon KS. NOX5-L can stimulate proliferation and apoptosis depending on its levels and cellular context, determining cancer cell susceptibility to cisplatin. Oncotarget 2016; 6:39235-46. [PMID: 26513170 PMCID: PMC4770769 DOI: 10.18632/oncotarget.5743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
The NADPH oxidase, NOX5, is known to stimulate cell proliferation in some cancers by generating reactive oxygen species (ROS). We show here that the long form of NOX5 (NOX5-L) also promotes cell death, and thus determines the balance of proliferation and death, in skin, breast and lung cancer cells. Moderate expression of NOX5-L induced cell proliferation accompanied by AKT and ERK phosphorylation, whereas an increase in NOX5-L above a certain threshold promoted cancer cell death accompanied by caspase-3 activation. Notably, cisplatin treatment increased NOX5-L levels through CREB activation and enhanced NOX5-L activity through augmentation of Ca2+ release and c-Abl expression, ultimately triggering ROS-mediated cancer cell death—a distinct pathway absent in normal cells. These results indicate that NOX5-L determines cellular responses in a concentration- and context-dependent manner.
Collapse
Affiliation(s)
- So Hee Dho
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.,Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea
| | - Ji Young Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Eun-Soo Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea
| | - Sung Sup Park
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-333, Republic of Korea
| |
Collapse
|
29
|
Fernández A, Pupo A, Mena-Ulecia K, Gonzalez C. Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol Pharmacol 2016; 90:385-402. [PMID: 27260771 DOI: 10.1124/mol.116.103804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
The pharmacological modulation of the immunosuppressive tumor microenvironment has emerged as a relevant component for cancer therapy. Several approaches aiming to deplete innate and adaptive suppressive populations, to circumvent the impairment in antigen presentation, and to ultimately increase the frequency of activated tumor-specific T cells are currently being explored. In this review, we address the potentiality of targeting the voltage-gated proton channel, Hv1, as a novel strategy to modulate the tumor microenvironment. The function of Hv1 in immune cells such as macrophages, neutrophils, dendritic cells, and T cells has been associated with the maintenance of NADPH oxidase activity and the generation of reactive oxygen species, which are required for the host defense against pathogens. We discuss evidence suggesting that the Hv1 proton channel could also be important for the function of these cells within the tumor microenvironment. Furthermore, as summarized here, tumor cells express Hv1 as a primary mechanism to extrude the increased amount of protons generated metabolically, thus maintaining physiologic values for the intracellular pH. Therefore, because this channel might be relevant for both tumor cells and immune cells supporting tumor growth, the pharmacological inhibition of Hv1 could be an innovative approach for cancer therapy. With that focus, we analyzed the available compounds that inhibit Hv1, highlighted the need to develop better drugs suitable for patients, and commented on the future perspectives of targeting Hv1 in the context of cancer therapy.
Collapse
Affiliation(s)
- Audry Fernández
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Karel Mena-Ulecia
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Carlos Gonzalez
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| |
Collapse
|
30
|
Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity. Sci Rep 2016; 6:23135. [PMID: 26979487 PMCID: PMC4793251 DOI: 10.1038/srep23135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity.
Collapse
|
31
|
Höll M, Koziel R, Schäfer G, Pircher H, Pauck A, Hermann M, Klocker H, Jansen-Dürr P, Sampson N. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 2016; 55:27-39. [PMID: 25559363 PMCID: PMC4949723 DOI: 10.1002/mc.22255] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA-mediated knockdown of Nox5 impaired proliferation of Nox5-expressing (PC-3, LNCaP) but not Nox5-negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N-acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC-3 cells. Concomitantly, protein kinase C zeta (PKCζ) protein levels and c-Jun N-terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC-3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5-derived ROS and subsequent depletion of PKCζ and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Höll
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Pauck
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015; 6:260-271. [PMID: 26296072 PMCID: PMC4556774 DOI: 10.1016/j.redox.2015.08.010] [Citation(s) in RCA: 1040] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. Calcium and ROS act as signaling molecules inside the cell and their pathways can interact. The mutual interplay of calcium and ROS is required for the fine tuning of signaling. Failure in the interplay results in dysfunction and pathologies.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Katharina Bertram
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany
| | - Sona Hudecova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
33
|
Wieczfinska J, Sokolowska M, Pawliczak R. NOX Modifiers-Just a Step Away from Application in the Therapy of Airway Inflammation? Antioxid Redox Signal 2015; 23:428-45. [PMID: 24383678 PMCID: PMC4543397 DOI: 10.1089/ars.2013.5783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not only contribute to the maintenance of physiological processes in the airways but also participate in the pathogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, expression, and the manner of their potent inhibition might lead to effective therapeutic approaches. RECENT ADVANCES The study of the role of NADPH oxidases family in airway physiology and pathophysiology should be considered as a work in progress. While key questions still remain unresolved, there is significant progress in terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX modifiers in human settings. CRITICAL ISSUES Agents that modify the activity of NADPH enzyme components would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX modifiers. FUTURE DIRECTIONS Many compounds seem to be promising candidates for development into useful therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| | - Milena Sokolowska
- 2 Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Rafal Pawliczak
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
34
|
Carnesecchi S, Rougemont AL, Doroshow JH, Nagy M, Mouche S, Gumy-Pause F, Szanto I. The NADPH oxidase NOX5 protects against apoptosis in ALK-positive anaplastic large-cell lymphoma cell lines. Free Radic Biol Med 2015; 84:22-29. [PMID: 25797883 PMCID: PMC7735533 DOI: 10.1016/j.freeradbiomed.2015.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS) are key modulators of apoptosis and carcinogenesis. One of the important sources of ROS is NADPH oxidases (NOXs). The isoform NOX5 is highly expressed in lymphoid tissues, but it has not been detected in any common Hodgkin or non-Hodgkin lymphoma cell lines. In diverse, nonlymphoid malignant cells NOX5 exerts an antiapoptotic effect. Apoptosis suppression is the hallmark feature of a rare type of lymphoma, termed anaplastic lymphoma kinase-positive (ALK(+)) anaplastic large-cell lymphoma (ALCL), and a major factor in the therapy resistance and relapse of ALK(+) ALCL tumors. We applied RT-PCR and Western blot analysis to detect NOX5 expression in three ALK(+) ALCL cell lines (Karpas-299, SR-786, SUP-M2). We investigated the role of NOX5 in apoptosis by small-interfering RNA (siRNA)-mediated gene silencing and chemical inhibition of NOX5 using FACS analysis and examining caspase 3 cleavage in Karpas-299 cells. We used immunohistochemistry to detect NOX5 in ALK(+) ALCL pediatric tumors. NOX5 mRNA was uniquely detected in ALK(+) ALCL cells, whereas cell lines of other lymphoma classes were devoid of NOX5. Transfection of NOX5-specific siRNA and chemical inhibition of NOX5 abrogated calcium-induced superoxide production and increased caspase 3-mediated apoptosis in Karpas-299 cells. Immunohistochemistry revealed focal NOX5 reactivity in pediatric ALK(+) ALCL tumor cells. These results indicate that NOX5-derived ROS contribute to apoptosis blockage in ALK(+) ALCL cell lines and suggest NOX5 as a potential pharmaceutical target to enhance apoptosis and thus to suppress tumor progression and prevent relapse in pediatric ALK(+) ALCL patients that resist classical therapeutic approaches.
Collapse
Affiliation(s)
- S Carnesecchi
- Department of Cellular Physiology and Metabolism and; Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | - J H Doroshow
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Nagy
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - S Mouche
- Department of Cellular Physiology and Metabolism and
| | - F Gumy-Pause
- Department of Pediatrics, Hematology/Oncology Unit, CANSEARCH Research Laboratory, Geneva, Switzerland
| | - I Szanto
- Department of Cellular Physiology and Metabolism and; Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Hayes P, Dhillon S, O’Neill K, Thoeni C, Hui KY, Elkadri A, Guo CH, Kovacic L, Aviello G, Alvarez LA, Griffiths AM, Snapper SB, Brant SR, Doroshow JH, Silverberg MS, Peter I, McGovern DP, Cho J, Brumell JH, Uhlig HH, Bourke B, Muise AM, Knaus UG. Defects in NADPH Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2015; 1:489-502. [PMID: 26301257 PMCID: PMC4539615 DOI: 10.1016/j.jcmgh.2015.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD). Reactive oxygen species (ROS) generated by nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. METHODS After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 209 children with very early onset inflammatory bowel disease (VEOIBD), the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. RESULTS We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn) and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys) in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. CONCLUSIONS This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD.
Collapse
Affiliation(s)
- Patti Hayes
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sandeep Dhillon
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kim O’Neill
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Cornelia Thoeni
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ken Y. Hui
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conghui H. Guo
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lidija Kovacic
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gabriella Aviello
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Luis A. Alvarez
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Anne M. Griffiths
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott B. Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children’s Hospital Boston; Division of Gastroenterology and Hepatology, Brigham & Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven R. Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine and the Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - James H. Doroshow
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Group, University of Toronto, Zane Cohen Centre for Digestive Diseases, Toronto, Ontario, Canada
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dermot P.B. McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Judy Cho
- Section of Gastroenterology, Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John H. Brumell
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Billy Bourke
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Aleixo M. Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Correspondence Address correspondence to: Aleixo Muise, MD, PhD, Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada.
| | - Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
36
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
37
|
Trocme C, Deffert C, Cachat J, Donati Y, Tissot C, Papacatzis S, Braunersreuther V, Pache JC, Krause KH, Holmdahl R, Barazzone-Argiroffo C, Carnesecchi S. Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways. J Pathol 2014; 235:65-78. [PMID: 25116588 PMCID: PMC4280678 DOI: 10.1002/path.4423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) participate in the pathogenesis of emphysema. Among ROS-producing enzymes, NOX NADPH oxidases are thought to be responsible for tissue injury associated with several lung pathologies. To determine whether NOX2 and/or NOX1 participate in the development of emphysema, their expression patterns were first studied by immunohistochemistry in the lungs of emphysematous patients. Subsequently, we investigated their contribution to elastase-induced emphysema using NOX2- and NOX1-deficient mice. In human lung, NOX2 was mainly detected in macrophages of control and emphysematous lungs, while NOX1 was expressed in alveolar epithelium and bronchial cells. We observed an elevated number of NOX2-positive cells in human emphysematous lungs, as well as increased NOX2 and NOX1 mRNA expression in mouse lungs following elastase exposure. Elastase-induced alveolar airspace enlargement and elastin degradation were prevented in NOX2-deficient mice, but not in NOX1-deficient mice. This protection was independent of inflammation and correlated with reduced ROS production. Concomitantly, an elevation of sirtuin 1 (SIRT1) level and a decrease of matrix metalloproteinase-9 (MMP-9) expression and activity were observed in alveolar macrophages and neutrophils. We addressed the specific role of macrophage-restricted functional NOX2 in elastase-induced lung emphysema using Ncf1 mutant mice and Ncf1 macrophage rescue mice (Ncf1 mutant mice with transgenic expression of Ncf1 only in CD68-positive mononuclear phagocytes; the MN mouse). Compared to WT mice, the lack of functional NOX2 led to decreased elastase-induced ROS production and protected against emphysema. In contrast, ROS production was restored specifically in macrophages from Ncf1 rescue mice and contributes to emphysema. Taken together, our results demonstrate that NOX2 is involved in the pathogenesis of human emphysema and macrophage-specific NOX2 participates in elastase-induced emphysema through the involvement of SIRT1/MMP-9 pathways in mice.
Collapse
Affiliation(s)
- Candice Trocme
- Laboratory of Protein and Enzyme Biochemistry, University Hospital, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
SIGNIFICANCE There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. RECENT ADVANCES NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. CRITICAL ISSUES The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. FUTURE DIRECTIONS Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications.
Collapse
Affiliation(s)
- Zeynab Nayernia
- 1 Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals, Centre Médical Universitaire , Geneva, Switzerland
| | | | | |
Collapse
|
39
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu-Smith F, Dellinger R, Meyskens FL. Updates of reactive oxygen species in melanoma etiology and progression. Arch Biochem Biophys 2014; 563:51-5. [PMID: 24780245 DOI: 10.1016/j.abb.2014.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in all aspects of melanoma development, however, the source of ROS is not well defined. In this review we summarize recent advancement in this rapidly developing field. The cellular ROS pool in melanocytes can be derived from mitochondria, melanosomes, NADPH oxidase (NOX) family enzymes, and uncoupling of nitric oxide synthase (NOS). Current evidence suggests that Nox1, Nox4 and Nox5 are expressed in melanocytic lineage. While there is no difference in Nox1 expression levels in primary and metastatic melanoma tissues, Nox4 expression is significantly higher in a subset of metastatic melanoma tumors as compared to the primary tumors; suggesting distinct and specific signals and effects for NOX family enzymes in melanoma. Targeting these NOX enzymes using specific NOX inhibitors may be effective for a subset of certain tumors. ROS also play important roles in BRAF inhibitor induced drug resistance; hence identification and blockade of the source of this ROS may be an effective way to enhance efficacy and overcome resistance. Furthermore, ROS from different sources may interact with each other and interact with reactive nitrogen species (RNS) and drive the melanomagenesis process at all stages of disease. Further understanding ROS and RNS in melanoma etiology and progression is necessary for developing new prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Feng Liu-Smith
- Department of Epidemiology, University of California School of Medicine, Irvine, CA 92697, United States; Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States.
| | - Ryan Dellinger
- Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States
| | - Frank L Meyskens
- Department of Epidemiology, University of California School of Medicine, Irvine, CA 92697, United States; Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California School of Medicine, Irvine, CA 92697, United States; Department of Public Health, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States
| |
Collapse
|
41
|
Abstract
NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes and other diseases with increased ROS production.
Collapse
|
42
|
Mice lacking NCF1 exhibit reduced growth of implanted melanoma and carcinoma tumors. PLoS One 2013; 8:e84148. [PMID: 24358335 PMCID: PMC3865299 DOI: 10.1371/journal.pone.0084148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022] Open
Abstract
The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1m1J mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1m1J mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1m1J mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors.
Collapse
|