1
|
Mora-Zenil J, Morán J. ROS produced by NOX promote the neurite growth in a PI3K/Akt independent manner. J Neurosci Res 2024; 102:e25259. [PMID: 37840360 DOI: 10.1002/jnr.25259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/17/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Reactive oxygen species (ROS) function as signaling molecules in several physiologic and pathologic processes. In central nervous system, ROS are critical for differentiation, migration, polarization, and neurite growth. These actions are mediated by reversible oxidation of target proteins. On the other hand, PI3K/Akt signaling pathway is susceptible to be modulated by ROS and it has been implicated in neurite growth. In this study, we evaluated the participation of ROS in the neurite growth of cultured rat cerebellar granule neurons (CGN), as well as the possible regulation of the PI3K/Akt pathway by ROS during neurite outgrowth. For this purpose, CGN were treated with cellular or mitochondrial antioxidants, or an NOX inhibitor and neurite growth was evaluated. Moreover, to assess the participation Akt in this process, the p-Akt levels were measured in CGN treated with antioxidants or a NOX inhibitor. The effect of antioxidants on the neurite growth in the presence of a PI3K inhibitor was also measured. We found that cellular antioxidants and the NOX inhibitor decreased the neurite growth, but not the mitochondrial antioxidant. Interestingly, the antioxidants increased the p-Akt levels; however, the effect of antioxidants on neurite growth was no dependent on the Akt activity since the inhibitor of PI3K did not modify the antioxidant action on neurite growth. Our results show that the PI3K/Akt pathway participates in neurite growth and that ROS produced by NOX could function as signals in this process; however, this action is not mediated by a redox regulation of Akt activity.
Collapse
Affiliation(s)
- Janeth Mora-Zenil
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
3
|
Eller-Borges R, Rodrigues EG, Teodoro ACS, Moraes MS, Arruda DC, Paschoalin T, Curcio MF, da Costa PE, Do Nascimento IR, Calixto LA, Stern A, Monteiro HP, Batista WL. Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide. Nitric Oxide 2023; 132:15-26. [PMID: 36736618 DOI: 10.1016/j.niox.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Caroline S Teodoro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor R Do Nascimento
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
4
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
5
|
Branicky R, Wang Y, Khaki A, Liu JL, Kramer-Drauberg M, Hekimi S. Stimulation of RAS-dependent ROS signaling extends longevity by modulating a developmental program of global gene expression. SCIENCE ADVANCES 2022; 8:eadc9851. [PMID: 36449615 PMCID: PMC9710873 DOI: 10.1126/sciadv.adc9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
We show that elevation of mitochondrial superoxide generation increases Caenorhabditis elegans life span by enhancing a RAS-dependent ROS (reactive oxygen species) signaling pathway (RDRS) that controls the expression of half of the genome as well as animal composition and physiology. RDRS stimulation mimics a program of change in gene expression that is normally observed at the end of postembryonic development. We further show that RDRS is regulated by negative feedback from the superoxide dismutase 1 (SOD-1)-dependent conversion of superoxide into cytoplasmic hydrogen peroxide, which, in turn, acts on a redox-sensitive cysteine (C118) of RAS. Preventing C118 oxidation by replacement with serine, or mimicking oxidation by replacement with aspartic acid, leads to opposite changes in the expression of the same large set of genes that is affected when RDRS is stimulated by mitochondrial superoxide. The identities of these genes suggest that stimulation of the pathway extends life span by boosting turnover and repair while moderating damage from metabolic activity.
Collapse
|
6
|
Huynh MV, Parsonage D, Forshaw TE, Chirasani VR, Hobbs GA, Wu H, Lee J, Furdui CM, Poole LB, Campbell SL. Oncogenic KRAS G12C: Kinetic and redox characterization of covalent inhibition. J Biol Chem 2022; 298:102186. [PMID: 35753348 PMCID: PMC9352912 DOI: 10.1016/j.jbc.2022.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 μM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.
Collapse
Affiliation(s)
- Minh V Huynh
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - G Aaron Hobbs
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jingyun Lee
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
Hurst M, McGarry DJ, Olson MF. Rho GTPases: Non-canonical regulation by cysteine oxidation. Bioessays 2021; 44:e2100152. [PMID: 34889471 DOI: 10.1002/bies.202100152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Rho GTPases are critically important and are centrally positioned regulators of the actomyosin cytoskeleton. By influencing the organization and architecture of the cytoskeleton, Rho proteins play prominent roles in many cellular processes including adhesion, migration, intra-cellular transportation, and proliferation. The most important method of Rho GTPase regulation is via the GTPase cycle; however, post-translational modifications (PTMs) also play critical roles in Rho protein regulation. Relative to other PTMs such as lipidation or phosphorylation that have been extensively characterized, protein oxidation is a regulatory PTM that has been poorly studied. Protein oxidation primarily occurs from the reaction of reactive oxygen species (ROS), such as hydrogen peroxide (H2 O2 ), with amino acid side chain thiols on cysteine (Cys) and methionine (Met) residues. The versatile redox modifications of cysteine residues exemplify their integral role in cell signalling processes. Here we review prominent members of the Rho GTPase family and discuss how lipidation, phosphorylation, and oxidation on conserved cysteine residues affects their regulation and function.
Collapse
Affiliation(s)
- Mackenzie Hurst
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - David J McGarry
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bago Á, Íñiguez MA, Serrador JM. Nitric Oxide and Electrophilic Cyclopentenone Prostaglandins in Redox signaling, Regulation of Cytoskeleton Dynamics and Intercellular Communication. Front Cell Dev Biol 2021; 9:673973. [PMID: 34026763 PMCID: PMC8137968 DOI: 10.3389/fcell.2021.673973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) and electrophilic cyclopentenone prostaglandins (CyPG) are local mediators that modulate cellular response to oxidative stress in different pathophysiological processes. In particular, there is increasing evidence about their functional role during inflammation and immune responses. Although the mechanistic details about their relationship and functional interactions are still far from resolved, NO and CyPG share the ability to promote redox-based post-translational modification (PTM) of proteins that play key roles in cellular homeostasis, signal transduction and transcription. NO-induced S-nitrosylation and S-glutathionylation as well as cyclopentenone-mediated adduct formation, are a few of the main PTMs by which intra- and inter-cellular signaling are regulated. There is a growing body of evidence indicating that actin and actin-binding proteins are susceptible to covalent PTM by these agents. It is well known that the actin cytoskeleton is key for the establishment of interactions among leukocytes, endothelial and muscle cells, enabling cellular activation and migration. In this review we analyze the current knowledge about the actions exerted by NO and CyPG electrophilic lipids on the regulation of actin dynamics and cytoskeleton organization, and discuss some open questions regarding their functional relevance in the regulation of intercellular communication.
Collapse
Affiliation(s)
- Ángel Bago
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| | - Miguel A Íñiguez
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan M Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| |
Collapse
|
9
|
Kramer-Drauberg M, Ambrogio C. Discoveries in the redox regulation of KRAS. Int J Biochem Cell Biol 2020; 131:105901. [PMID: 33309959 DOI: 10.1016/j.biocel.2020.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Oncogenic KRAS is one of the most common drivers of human cancer. Despite intense research, no effective therapy to directly inhibit oncogenic KRAS has yet been approved and KRAS mutant tumors remain associated with a poor prognosis. This short review discusses the current knowledge of the redox regulation of RAS and examines the newest findings on cysteine 118 (C118) as a potential novel target for KRAS inhibition.
Collapse
Affiliation(s)
- Maximilian Kramer-Drauberg
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Pignataro M, Di Rocco G, Lancellotti L, Bernini F, Subramanian K, Castellini E, Bortolotti CA, Malferrari D, Moro D, Valdrè G, Borsari M, Del Monte F. Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation. Redox Biol 2020; 37:101691. [PMID: 32863228 PMCID: PMC7472925 DOI: 10.1016/j.redox.2020.101691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023] Open
Abstract
Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury.
Collapse
Affiliation(s)
- Marcello Pignataro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, USA
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lidia Lancellotti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Elena Castellini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Daniele Malferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Moro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Valdrè
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, USA; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Arrington ME, Temple B, Schaefer A, Campbell SL. The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2. J Biol Chem 2020; 295:12130-12142. [PMID: 32636302 PMCID: PMC7443499 DOI: 10.1074/jbc.ra120.012915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The RAS-related C3 botulinum toxin substrate 2 (RAC2) is a member of the RHO subclass of RAS superfamily GTPases required for proper immune function. An activating mutation in a key switch II region of RAC2 (RAC2E62K) involved in recognizing modulatory factors and effectors has been identified in patients with common variable immune deficiency. To better understand how the mutation dysregulates RAC2 function, we evaluated the structure and stability, guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) activity, and effector binding of RAC2E62K Our findings indicate the E62K mutation does not alter RAC2 structure or stability. However, it does alter GEF specificity, as RAC2E62K is activated by the DOCK GEF, DOCK2, but not by the Dbl homology GEF, TIAM1, both of which activate the parent protein. Our previous data further showed that the E62K mutation impairs GAP activity for RAC2E62K As this disease mutation is also found in RAS GTPases, we assessed GAP-stimulated GTP hydrolysis for KRAS and observed a similar impairment, suggesting that the mutation plays a conserved role in GAP activation. We also investigated whether the E62K mutation alters effector binding, as activated RAC2 binds effectors to transmit signaling through effector pathways. We find that RAC2E62K retains binding to an NADPH oxidase (NOX2) subunit, p67phox, and to the RAC-binding domain of p21-activated kinase, consistent with our earlier findings. Taken together, our findings indicate that the RAC2E62K mutation promotes immune dysfunction by promoting RAC2 hyperactivation, altering GEF specificity, and impairing GAP function yet retaining key effector interactions.
Collapse
Affiliation(s)
- Megan E Arrington
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
12
|
Marcar L, Bardhan K, Gheorghiu L, Dinkelborg P, Pfäffle H, Liu Q, Wang M, Piotrowska Z, Sequist LV, Borgmann K, Settleman JE, Engelman JA, Hata AN, Willers H. Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Rep 2020; 27:3422-3432.e4. [PMID: 31216465 PMCID: PMC6624074 DOI: 10.1016/j.celrep.2019.05.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor-sensitive phenotype that is conferred by TKI treatment in vitro and in vivo and appears independent of any particular TKI resistance mechanism. We find that PARP-1 protects cells against cytotoxic reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Compared to TKI-naive cells, TKI-resistant cells exhibit signs of increased RAC1 activity. PARP-1 catalytic function is required for PARylation of RAC1 at evolutionarily conserved sites in TKI-resistant cells, which restricts NOX-mediated ROS production. Our data identify a role of PARP-1 in controlling ROS levels upon EGFR TKI treatment, with potentially broad implications for therapeutic targeting of the mechanisms that govern the survival of oncogene-driven cancer cells.
Collapse
Affiliation(s)
- Lynnette Marcar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kankana Bardhan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Heike Pfäffle
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zofia Piotrowska
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Jeffrey E Settleman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Kramer-Drauberg M, Liu JL, Desjardins D, Wang Y, Branicky R, Hekimi S. ROS regulation of RAS and vulva development in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008838. [PMID: 32544191 PMCID: PMC7319342 DOI: 10.1371/journal.pgen.1008838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.
Collapse
Affiliation(s)
| | - Ju-Ling Liu
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David Desjardins
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Hsu AP, Donkó A, Arrington ME, Swamydas M, Fink D, Das A, Escobedo O, Bonagura V, Szabolcs P, Steinberg HN, Bergerson J, Skoskiewicz A, Makhija M, Davis J, Foruraghi L, Palmer C, Fuleihan RL, Church JA, Bhandoola A, Lionakis MS, Campbell S, Leto TL, Kuhns DB, Holland SM. Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 2019; 133:1977-1988. [PMID: 30723080 PMCID: PMC6497516 DOI: 10.1182/blood-2018-11-886028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 2 (RAC2), through interactions with reduced NAD phosphate oxidase component p67 phox , activates neutrophil superoxide production, whereas interactions with p21-activated kinase are necessary for fMLF-induced actin remodeling. We identified 3 patients with de novo RAC2[E62K] mutations resulting in severe T- and B-cell lymphopenia, myeloid dysfunction, and recurrent respiratory infections. Neutrophils from RAC2[E62K] patients exhibited excessive superoxide production, impaired fMLF-directed chemotaxis, and abnormal macropinocytosis. Cell lines transfected with RAC2[E62K] displayed characteristics of active guanosine triphosphate (GTP)-bound RAC2 including enhanced superoxide production and increased membrane ruffling. Biochemical studies demonstrated that RAC2[E62K] retains intrinsic GTP hydrolysis; however, GTPase-activating protein failed to accelerate hydrolysis resulting in prolonged active GTP-bound RAC2. Rac2+/E62K mice phenocopy the T- and B-cell lymphopenia, increased neutrophil F-actin, and excessive superoxide production seen in patients. This gain-of-function mutation highlights a specific, nonredundant role for RAC2 in hematopoietic cells that discriminates RAC2 from the related, ubiquitous RAC1.
Collapse
Affiliation(s)
| | - Agnes Donkó
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | - Danielle Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Omar Escobedo
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Paul Szabolcs
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Melanie Makhija
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | | | | | | | - Joseph A Church
- Pediatric Allergy/Immunology, Children's Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of USC, Los Angeles, CA; and
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | | | - Sharon Campbell
- Biochemistry and Biophysics, UNC Lineberger Comprehensive Cancer Center, UNC, Chapel Hill, NC
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | |
Collapse
|
16
|
Guerrero-Gómez D, Mora-Lorca JA, Sáenz-Narciso B, Naranjo-Galindo FJ, Muñoz-Lobato F, Parrado-Fernández C, Goikolea J, Cedazo-Minguez Á, Link CD, Neri C, Sequedo MD, Vázquez-Manrique RP, Fernández-Suárez E, Goder V, Pané R, Cabiscol E, Askjaer P, Cabello J, Miranda-Vizuete A. Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ 2019; 26:1545-1565. [PMID: 30770874 DOI: 10.1038/s41418-018-0270-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023] Open
Abstract
In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.
Collapse
Affiliation(s)
- David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - José Antonio Mora-Lorca
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.,Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | | | - Francisco José Naranjo-Galindo
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Fernando Muñoz-Lobato
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Cristina Parrado-Fernández
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Julen Goikolea
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Ángel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), F-75252, Paris, France
| | - María Dolores Sequedo
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Rafael P Vázquez-Manrique
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Elena Fernández-Suárez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Veit Goder
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Roser Pané
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), 26006, Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
17
|
Tolbert CE, Beck MV, Kilmer CE, Srougi MC. Loss of ATM positively regulates Rac1 activity and cellular migration through oxidative stress. Biochem Biophys Res Commun 2018; 508:1155-1161. [PMID: 30553448 DOI: 10.1016/j.bbrc.2018.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is a serine-threonine kinase that is integral in the response to DNA double-stranded breaks (DSBs). Cells and tissues lacking ATM are prone to tumor development and enhanced tumor cell migration and invasion. Interestingly, ATM-deficient cells exhibit high levels of oxidative stress; however, the direct mechanism whereby ATM-associated oxidative stress may contribute to the cancer phenotype remains largely unexplored. Rac1, a member of the Rho family of GTPases, also plays an important regulatory role in cellular growth, motility, and cancer formation. Rac1 can be activated directly by reactive oxygen species (ROS), by a mechanism distinct from canonical guanine nucleotide exchange factor-driven activation. Here we show that loss of ATM kinase activity elevates intracellular ROS, leading to Rac1 activation. Rac1 activity drives cytoskeletal rearrangements resulting in increased cellular spreading and motility. Rac1 siRNA or treatment with the ROS scavenger N-Acetyl-L-cysteine restores wild-type migration. These studies demonstrate a novel mechanism whereby ATM activity and ROS generation regulates Rac1 to modulate pro-migratory cellular behavior.
Collapse
Affiliation(s)
- Caitlin E Tolbert
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Matthew V Beck
- Department of Chemistry, High Point University, High Point, NC, 27268, USA
| | - Claire E Kilmer
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Melissa C Srougi
- Department of Chemistry, High Point University, High Point, NC, 27268, USA.
| |
Collapse
|
18
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
19
|
Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:125. [PMID: 29940987 PMCID: PMC6019308 DOI: 10.1186/s13046-018-0797-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
Oxidative stress is related to ageing and degenerative diseases, including cancer. However, a moderate amount of reactive oxygen species (ROS) is required for the regulation of cellular signalling and gene expression. A low level of ROS is important for maintaining quiescence and the differentiation potential of haematopoietic stem cells (HSCs), whereas the level of ROS increases during haematopoietic differentiation; thus, suggesting the importance of redox signalling in haematopoiesis. Here, we will analyse the importance of ROS for haematopoiesis and include evidence showing that cells from leukaemia patients live under oxidative stress. The potential sources of ROS will be described. Finally, the level of oxidative stress in leukaemic cells can also be harnessed for therapeutic purposes. In this regard, the reliance of front-line anti-leukaemia chemotherapeutics on increased levels of ROS for their mechanism of action, as well as the active search for novel compounds that modulate the redox state of leukaemic cells, will be analysed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Marta Romo-González
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Carla Ijurko
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain. .,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain.
| |
Collapse
|
20
|
Abstract
A well-regulated redox state is essential for normal physiological function and cellular metabolism. In most eukaryotic cells, protein cysteine thiols are most sensitive to fluctuations in the cellular redox state. Under normal physiological conditions, the cytosol has a highly reducing environment, which is due to high levels of reduced glutathione and complex system of redox enzymes that maintain glutathione in the reduced state. The reducing environment of the cytosol maintains most protein thiols in the reduced state; although some non-exposed cysteine could be present as disulfides. Upon physiological increase in cellular oxidants, such as due to growth factors, cytokines and thiol-disulfide exchange reactions, specific proteins could act as redox switches that regulate the conformation and activity of different proteins. This reversible post translational modification enables redox-sensitive dynamic changes in cell signaling and function. Physiological oxidative stress could lead to the formation of sulfenic acids, which are usually intermediate states of thiol oxidation that are converted to higher order oxidation states, intramolecular disulfides or mixed disulfides with glutathione. Such glutathiolation reactions have been found to regulate the function of several proteins involved in intracellular metabolism, signal transduction and cell structure. Excessive oxidative stress results in indiscriminate and irreversible oxidation of protein thiols, depletion of glutathione and cell death. Further elucidation of the relationship between changes in cell redox and thiol reactivity could provide a better understanding of how redox changes regulate cell function and how disruption of these relationships lead to tissue injury and dysfunction and the development of chronic diseases such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| |
Collapse
|
21
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
22
|
Abstract
Rac1 is a member of the family of small Rho GTPases that are molecular switches governing a variety of fundamental cellular processes, such as cell growth and motility. Its subcellular location and activity are regulated by several posttranslational modifications. S-glutathionylation, the adduction of glutathione to cysteine residues in Rac1, is a redox-dependent thiol modification and is generally associated with oxidative/nitrosative stress, representing a novel mechanism of GTPase regulation. Here, we describe the use of biotin-labeled glutathione to monitor intracellular glutathionylated Rac1 in response to exogenous stimuli.
Collapse
Affiliation(s)
- Hannah Edenbaum
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Reijnders MR, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, Clayton-Smith J, Corning K, Jones JR, Lam WW, Mancini GM, Marcelis C, Mohammed S, Pfundt R, Roifman M, Cohn R, Chitayat D, Millard TH, Katsanis N, Brunner HG, Banka S, Banka S. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes. Am J Hum Genet 2017; 101:466-477. [PMID: 28886345 DOI: 10.1016/j.ajhg.2017.08.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
24
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
25
|
Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YMW, Matsui R, Zang M, Hamburg NM, Cohen RA. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biol 2016; 9:306-319. [PMID: 27693992 PMCID: PMC5045950 DOI: 10.1016/j.redox.2016.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.
Collapse
Affiliation(s)
- Jingyan Han
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| | - Robert M Weisbrod
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yosuke Watanabe
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyan Yin
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | | - Reiko Matsui
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mengwei Zang
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Naomi M Hamburg
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cohen
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA. Metabolic rewiring in melanoma. Oncogene 2016; 36:147-157. [PMID: 27270434 PMCID: PMC5140782 DOI: 10.1038/onc.2016.198] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Oncogene-driven metabolic rewiring is an adaptation to low nutrient and oxygen conditions in the tumor microenvironment that enables cancer cells of diverse origin to hyperproliferate. Aerobic glycolysis and enhanced reliance on glutamine utilization are prime examples of such rewiring. However, tissue of origin as well as specific genetic and epigenetic changes determines gene expression profiles underlying these metabolic alterations in specific cancers. In melanoma, activation of the mitogen-activated protein kinase (MAPK) pathway driven by mutant BRAF or NRAS is a primary cause of malignant transformation. Activity of the MAPK pathway, as well as other factors, such as HIF1α, Myc and MITF, are among those that control the balance between non-oxidative and oxidative branches of central carbon metabolism. Here, we discuss the nature of metabolic alterations that underlie melanoma development and affect its response to therapy.
Collapse
Affiliation(s)
- B I Ratnikov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - D A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - A L Osterman
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - J W Smith
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - Z A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| |
Collapse
|
27
|
Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J, Bergo MO. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 2015; 7:308re8. [DOI: 10.1126/scitranslmed.aad3740] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Abstract
Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation.
Collapse
Affiliation(s)
- Christian Schöneich
- a Department of Pharmaceutical Chemistry , The University of Kansas , Lawrence , KS 66047 , USA
| |
Collapse
|
29
|
Cobley JN, Margaritelis NV, Morton JP, Close GL, Nikolaidis MG, Malone JK. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay. Front Physiol 2015; 6:182. [PMID: 26136689 PMCID: PMC4469819 DOI: 10.3389/fphys.2015.00182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.
Collapse
Affiliation(s)
- James N Cobley
- Division of Sport and Exercise Sciences, Abertay University Dundee, UK
| | - Nikos V Margaritelis
- Exercise Physiology and Biochemistry Laboratory, School of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki Serres, Greece
| | - James P Morton
- Muscle Metabolism Research Group, Research Institute for Sport and Exercise Science, Liverpool John Moores University Liverpool, UK
| | - Graeme L Close
- Muscle Metabolism Research Group, Research Institute for Sport and Exercise Science, Liverpool John Moores University Liverpool, UK
| | - Michalis G Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, School of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki Serres, Greece
| | - John K Malone
- Division of Sport and Exercise Sciences, Abertay University Dundee, UK
| |
Collapse
|
30
|
Nauser T, Koppenol WH, Schöneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med 2015; 80:158-63. [PMID: 25499854 PMCID: PMC5118936 DOI: 10.1016/j.freeradbiomed.2014.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Protein thiyl radicals are important intermediates generated in redox processes of thiols and disulfides. Thiyl radicals efficiently react with glutathione and ascorbate, and the common notion is that these reactions serve to eliminate thiyl radicals before they can enter potentially hazardous processes. However, over the past years increasing evidence has been provided for rather efficient intramolecular hydrogen transfer processes of thiyl radicals in proteins and peptides. Based on rate constants published for these processes, we have performed kinetic simulations of protein thiyl radical reactivity. Our simulations suggest that protein thiyl radicals enter intramolecular hydrogen transfer reactions to a significant extent even under physiologic conditions, i.e., in the presence of 30 µM oxygen, 1 mM ascorbate, and 10 mM glutathione. At lower concentrations of ascorbate and glutathione, frequently observed when tissue is exposed to oxidative stress, the extent of irreversible protein thiyl radical-dependent protein modification increases.
Collapse
Affiliation(s)
- Thomas Nauser
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
31
|
Rac1 modification by an electrophilic 15-deoxy Δ(12,14)-prostaglandin J2 analog. Redox Biol 2015; 4:346-54. [PMID: 25677088 PMCID: PMC4326178 DOI: 10.1016/j.redox.2015.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cells (ECs) are important for maintaining vascular homeostasis. Dysfunction of ECs contributes to cardiovascular diseases, including atherosclerosis, and can impair the healing process during vascular injury. An important mediator of EC response to stress is the GTPase Rac1. Rac1 responds to extracellular signals and is involved in cytoskeletal rearrangement, reactive oxygen species generation and cell cycle progression. Rac1 interacts with effector proteins to elicit EC spreading and formation of cell-to-cell junctions. Rac1 activity has recently been shown to be modulated by glutathiolation or S-nitrosation via an active site cysteine residue. However, it is not known whether other redox signaling compounds can modulate Rac1 activity. An important redox signaling mediator is the electrophilic lipid, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). This compound is a downstream product of cyclooxygenase and forms covalent adducts with specific cysteine residues, and induces cellular signaling in a pleiotropic manner. In this study, we demonstrate that a biotin-tagged analog of 15d-PGJ2 (bt-15d-PGJ2) forms an adduct with Rac1 in vitro at the C157 residue, and an additional adduct was detected on the tryptic peptide associated with C178. Rac1 modification in addition to modulation of Rac1 activity by bt-15d-PGJ2 was observed in cultured ECs. In addition, decreased EC migration and cell spreading were observed in response to the electrophile. These results demonstrate for the first time that Rac1 is a target for 15d-PGJ2 in ECs, and suggest that Rac1 modification by electrophiles such as 15d-PGJ2 may alter redox signaling and EC function. • Recombinant Rac1 is modified by bt-15d-PGJ2 at C157 in vitro. • Rac1 is modified by bt-15d-PGJ2 in bovine aortic endothelial cells. • Rac1 activity is transiently stimulated by bt-15d-PGJ2. • 15d-PGJ2 inhibits endothelial cell migration and spreading.
Collapse
|