1
|
Figueroa‐González G, Quintas‐Granados LI, Reyes‐Hernández OD, Caballero‐Florán IH, Peña‐Corona SI, Cortés H, Leyva‐Gómez G, Habtemariam S, Sharifi‐Rad J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci Nutr 2024; 12:4513-4533. [PMID: 39055196 PMCID: PMC11266911 DOI: 10.1002/fsn3.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer is a major global health challenge that affects every nation and accounts for a large portion of the worldwide disease burden. Furthermore, cancer cases will rise significantly in the next few decades. The Food and Drug Administration has approved more than 600 drugs for treating diverse types of cancer. However, many conventional anticancer medications cause side effects, and drug resistance develops as the treatment proceeds with a concomitant impact on patients' quality of life. Thus, exploring natural products with antitumor properties and nontoxic action mechanisms is essential. Ginger (Zingiber officinale Roscoe) rhizome has a long history of use in traditional medicine, and it contains biologically active compounds, gingerols and shogaols. The main ginger shogaol is 6-shogaol, whose concentration dramatically increases during the processing of ginger, primarily due to the heat-induced conversion of 6-gingerol. Some studies have demonstrated that 6-shogaol possesses biological and pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. The mechanism of action of 6-shogaol as an anticancer drug includes induction of paraptosis, induction of apoptosis, increase in the production of reactive oxygen species, induction of autophagy, and the inhibition of AKT/mTOR signaling. Despite this knowledge, the mechanism of action of 6-shogaol is not fully understood, and the scientific data on its therapeutic dose, safety, and toxicity are not entirely described. This review article examines the potential of 6-shogaol as an anticancer drug, addressing the limitations of current medications; it covers 6-shogaol's attributes, mechanism of action in cancer cells, and opportunities for future research.
Collapse
Affiliation(s)
- Gabriela Figueroa‐González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Laura Itzel Quintas‐Granados
- Colegio de Ciencias y Humanidades, Plantel CuautepecUniversidad Autónoma de la Ciudad de MéxicoCiudad de MéxicoMexico
| | - Octavio Daniel Reyes‐Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Isaac H. Caballero‐Florán
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de GenómicaInstituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MexicoMexico
| | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKCentral Avenue, Chatham‐MaritimeKentME4 4TBUK
| | | |
Collapse
|
2
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Duarte ABS, Gomes RC, Nunes VRV, Gonçalves JCR, Correia CA, dos Santos AZG, de Sousa DP. The Antitumor Activity of Piplartine: A Review. Pharmaceuticals (Basel) 2023; 16:1246. [PMID: 37765054 PMCID: PMC10535094 DOI: 10.3390/ph16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a worldwide health problem with high mortality in children and adults, making searching for novel bioactive compounds with potential use in cancer treatment essential. Piplartine, also known as piperlongumine, is an alkamide isolated from Piper longum Linn, with relevant therapeutic potential. Therefore, this review covered research on the antitumor activity of piplartine, and the studies reported herein confirm the antitumor properties of piplartine and highlight its possible application as an anticancer agent against various types of tumors. The evidence found serves as a reference for advancing mechanistic research on this metabolite and preparing synthetic derivatives or analogs with better antitumor activity in order to develop new drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Damião P. de Sousa
- Departament of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (A.B.S.D.); (R.C.G.); (V.R.V.N.); (J.C.R.G.); (C.A.C.); (A.Z.G.d.S.)
| |
Collapse
|
4
|
Haridevamuthu B, Raj D, Kesavan D, Muthuraman S, Kumar RS, Mahboob S, Al-Ghanim KA, Almutairi BO, Arokiyaraj S, Gopinath P, Arockiaraj J. Trihydroxy piperlongumine protects aluminium induced neurotoxicity in zebrafish: Behavioral and biochemical approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109600. [PMID: 36889534 DOI: 10.1016/j.cbpc.2023.109600] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Aluminium (Al) is proven to be a potent environmental neurotoxin involved in progressive neurodegeneration. Al primarily induces oxidative stress by free radical generation in the brain, followed by neuronal apoptosis. Antioxidants are promising therapeutic options for Al toxicity. Piperlongumine is traditionally long known for its medicinal properties. Therefore, the present study has been designed to explore the antioxidant role of trihydroxy piperlongumine (THPL) against Al-induced neurotoxicity in the zebrafish model. Zebrafish exposed to AlCl3 exhibited higher oxidative stress and altered locomotion. Adult fish displayed anxiety comorbid with depression phenotype. THPL increases antioxidant enzyme activity by quenching Al-induced free radicals and lipid peroxidation, thus minimizing oxidative damage in the brain. THPL rescues behavior deficits and improves anxiety-like phenotype in adult fish. Histological alterations caused by Al were also attenuated on administration with THPL. Results of the study demonstrate the neuroprotective role of THPL against Al-induced oxidative damage and anxiety, which could be exploited as a psychopharmacological drug.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India. https://twitter.com/haridevamuthub
| | - David Raj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - D Kesavan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Subramani Muthuraman
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai 600 127, Tamil Nadu, India
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai 600 127, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Liu X, Cui H, Li M, Chai Z, Wang H, Jin X, Dai F, Liu Y, Zhou B. Tumor killing by a dietary curcumin mono-carbonyl analog that works as a selective ROS generator via TrxR inhibition. Eur J Med Chem 2023; 250:115191. [PMID: 36758308 DOI: 10.1016/j.ejmech.2023.115191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
In comparison with normal cells, cancer cells feature intrinsic oxidative stress, thereby being more vulnerable to further production of reactive oxygen species (ROS) by pro-oxidative anticancer agents (PAAs). However, PAAs also inevitably generate ROS in normal cells, resulting in their narrow therapeutic window and toxic side effects that greatly limit their clinical application. To develop PAAs that generate ROS selectively in cancer cells over in normal cells, we rationally designed three series of 21 dietary curcumin 5-carbon mono-carbonyl analogs differentiated by either placement of the cyclohexanone, piperidone, and methylpiperidone linkers, or introduction of electron-withdrawing trifluoromethyl and electron-donating methoxyl groups on its two aromatic rings in the ortho, meta, or para position to the linkers. From the designed molecules, 2c, characterized of the presence of the meta-CF3-substituted mode and the piperidone linker, was identified as a potent selective ROS-generating agent, allowing its ability to kill selectively human non-small cell lung cancer NCI-H460 (IC50 = 0.44 μM) over human normal lung MRC-5 cells with a selectivity index of 32.0. Additionally, it was more potent and selective than the conventional chemotherapeutic agents (5-fluorouracil and camptothecin) did. Mechanistical investigation reveals that by means of its Michael acceptor unit and structure characteristics as described above, 2c could covalently modify the Sec-498 residue of intracellular thioredoxin reductase (TrxR) to generate ROS selectively, resulting in ROS-dependent apoptosis and ferroptosis of NCI-H460 cells. Noticeably, 2c inhibited significantly the growth of NCI-H460 cell xenograft tumor in nude mice without obvious toxicity to liver and kidney. Together, this work highlights a practical strategy of targeting TrxR overexpressed in cancer cells to develop PAAs capable of generating ROS selectively, as evidenced by the example of 2c.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Hongmei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Zuohu Chai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Haibo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Zhao M, Wang X, Kumar SA, Yao Y, Sun M. A Pharmacological Insight of Piperlongumine, Bioactive Validating Its Therapeutic Efficacy as a Drug to Treat Inflammatory Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Wang Q, Lin D, Liu XF, Dai F, Jin XJ, Zhou B. Engineering piperlongumine-inspired analogs as Nrf2-dependent neuroprotectors against oxidative damage by an electrophilicity-based strategy. Free Radic Biol Med 2023; 194:298-307. [PMID: 36528122 DOI: 10.1016/j.freeradbiomed.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Oxidative stress contributes significantly to the development of neurodegenerative diseases, thus developing nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent neuroprotectors is highly required for either prevention or treatment of these diseases. This work highlights an electrophilicity-based strategy that allows finding more active Nrf2-dependent neuroprotectors than natural piperlongumine (PL). Electrophilic modification was applied on both the exocylic and endocyclic Michael acceptors of PL, which includes placement of an electron-withdrawing trifluoromethyl group on its aromatic ring in the ortho, meta, or para position to the exocyclic olefin, and further introduction of an electron-withdrawing α-chlorine on its lactam ring. From a panel of PL analogs, we identified PLCl-4CF3, characterized by the presence of p-trifluoromethyl group and α-chlorine, to be significantly superior to the parent PL in protecting PC12 cells from oxidative damage induced by 6-hydroxydopamine hydrochloride. Mechanistic studies reveal that the increased electrophilicity of PLCl-4CF3 in its two Michael acceptors allows its ability to covalently modify Cys-151 at Keap1, facilitating inhibition against Nrf2 ubiquitination, translocation of Nrf2 into the nucleus, induction of phase 2 enzymes and final protection of PC12 cells from oxidative damage.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dong Lin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xue-Feng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Xiao-Jie Jin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
8
|
Li P, Ma Y, Wang K, Shi X, Yang J, Liu G. Design, synthesis and antitumor activity of potent and safe para-quinone methides derivatives in vitro and in vivo. Biomed Pharmacother 2022; 156:113893. [DOI: 10.1016/j.biopha.2022.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
9
|
Liu X, Wang Y, Zheng Y, Duan D, Dai F, Zhou B. Michael acceptor-dependent pro-oxidative intervention against angiogenesis by [6]-dehydroshogaol, a pungent constituent of ginger. Eur J Pharmacol 2022; 925:174990. [PMID: 35500643 DOI: 10.1016/j.ejphar.2022.174990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that ginger and its pungent constituents harbor a wealth of biological activities including cancer chemopreventive activity. However, relatively few researches focus on [6]-dehydroshogaol (6-DHS) compared with other ginger pungent constituents such as [6]-shogaol (6S). In this work, we selected three ginger compounds, 6-DHS, 6S and [6]-paradol (6P) differentiated by the presence and number of the Michael acceptor units, to probe structural basis and mechanism of 6-DHS in inhibiting angiogenesis, a key step for tumor growth and metastasis. It was found that their antiangiogenic activity is significantly dependent on the presence and number of Michael acceptor units. Benefiting from its two Michael acceptor units, 6-DHS is the most potent inhibitor of thioredoxin reductase and depletor of glutathione, thereby being the most active generator of reactive oxygen species, which is responsible for its strongest ability to inhibit angiogenesis. This work highlights 6-DHS being a Michael acceptor-dependent pro-oxidative angiogenesis inhibitor.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Yihua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Yalong Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Dechen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
10
|
Zheng YL, Tu ZS, Cui HM, Yan S, Duan DC, Tang W, Dai F, Zhou B. Redox-Based Strategy for Selectively Inducing Energy Crisis Inside Cancer Cells: An Example of Modifying Dietary Curcumin to Target Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2898-2910. [PMID: 35213152 DOI: 10.1021/acs.jafc.1c07690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reprograming of energy metabolism is a major hallmark of cancer, but its effective intervention is still a challenging task due to metabolic heterogeneity and plasticity of cancer cells. Herein, we report a general redox-based strategy for meeting the challenge. The strategy was exemplified by a dietary curcumin analogue (MitoCur-1) that was designed to target mitochondria (MitoCur-1). By virtue of its electrophilic and mitochondrial-targeting properties, MitoCur-1 generated reactive oxygen species (ROS) more effectively and selectively in HepG2 cells than in L02 cells via the inhibition of mitochondrial antioxidative thioredoxin reductase 2 (TrxR2). The ROS generation preferentially mediated the energy crisis of HepG2 cells in a dual-inhibition fashion against both mitochondrial and glycolytic metabolisms, which could hit the metabolic plasticity of HepG2 cells. The ROS-dependent energy crisis also allowed its preferential killing of HepG2 cells (IC50 = 1.4 μM) over L02 cells (IC50 = 9.1 μM), via induction of cell-cycle arrest, apoptosis and autophagic death, and its high antitumor efficacy in vivo, in nude mice bearing HepG2 tumors (15 mg/kg). These results highlight that inhibiting mitochondrial TrxR2 to produce ROS by electrophiles is a promising redox-based strategy for the effective intervention of cancer cell energy metabolic reprograming.
Collapse
Affiliation(s)
- Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Zhi-Shan Tu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Hong-Mei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
11
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Sun AL, Mu WW, Li YM, Sun YL, Li PX, Liu RM, Yang J, Liu GY. Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS Generation. Molecules 2021; 26:3243. [PMID: 34071298 PMCID: PMC8198376 DOI: 10.3390/molecules26113243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2-C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2-C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.
Collapse
Affiliation(s)
- Ai-Ling Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China;
| | - Wen-Wen Mu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Yan-Mo Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China;
| | - Ya-Lei Sun
- Qingdao Vland Biotech INC, Qingdao 266000, China;
| | - Peng-Xiao Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Ren-Min Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Guo-Yun Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| |
Collapse
|
14
|
Allaman-Pillet N, Schorderet DF. Piperlongumine promotes death of retinoblastoma cancer cells. Oncotarget 2021; 12:907-916. [PMID: 33953844 PMCID: PMC8092346 DOI: 10.18632/oncotarget.27947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
Retinoblastoma is the most common pediatric intraocular malignant tumor. While retinoblastoma initiation is triggered by the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, tumor progression requires additional epigenetic changes, retinoblastoma genomes being quite stable. Although the management of RB has recently improved, new therapeutic agents are necessary to improve the treatment of advanced forms of retinoblastoma. In this report, we analyzed the pro-death effect of piperlongumine (PL), a natural compound isolated from Piper longum L., on two human retinoblastoma cell lines, WERI-Rb and Y79. The effects of PL on cell proliferation, cell death and cell cycle were investigated. PL effectively inhibited cell growth, impacted the cell cycle by decreasing the level of cyclins and CDK1 and increasing CDKN1A and triggered a caspase-3 independant cell death process in which reactive oxygen species (ROS) production is a major player. Indeed, PL toxicity in retinoblastoma cell lines was inhibited by a ROS scavenger N-acetyl-l-cysteine (NAC) treatment. These findings suggest that PL reduces tumor growth and induces cell death by regulating the cell cycle.
Collapse
Affiliation(s)
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
15
|
Mu WW, Li PX, Liu Y, Yang J, Liu GY. The potential role of the 5,6-dihydropyridin-2(1 H)-one unit of piperlongumine on the anticancer activity. RSC Adv 2020; 10:42128-42136. [PMID: 35516728 PMCID: PMC9059148 DOI: 10.1039/d0ra08778e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Piperlongumine (PL), a potent anticancer agent from the plant long pepper (Piper longum), contains the 5,6-dihydropyridin-2(1H)-one heterocyclic scaffold and cinnamoyl unit. In this paper, we synthesized a series of PL analogs and evaluated their cytotoxicity against cancer cells for the sake of exploring which pharmacophore plays a more potent role in enhancing the anticancer activities of PL. These results illustrated that the position effect, not the electronic effect, of substituents plays a certain role in the cytotoxicity of PL and its analogs. More important, the 5,6-dihydropyridin-2(1H)-one unit, a potent pharmacophore in enhancing the antiproliferative activities of PL, could react with cysteamine and lead to ROS generation, and then bring about the occurrence of ROS-induced downstream events, followed by cell cycle arrest and apoptosis. This work suggests that introducing a lactam unit containing Michael acceptors may be a potent strategy to enhancing the anticancer activity of drugs.
Collapse
Affiliation(s)
- Wen-Wen Mu
- School of Pharmacy, Liaocheng University 1 Hunan Street Liaocheng Shandong 252000 China +86 15063505132
| | - Peng-Xiao Li
- School of Pharmacy, Liaocheng University 1 Hunan Street Liaocheng Shandong 252000 China +86 15063505132
| | - Yue Liu
- School of Pharmacy, Liaocheng University 1 Hunan Street Liaocheng Shandong 252000 China +86 15063505132
| | - Jie Yang
- School of Pharmacy, Liaocheng University 1 Hunan Street Liaocheng Shandong 252000 China +86 15063505132
| | - Guo-Yun Liu
- School of Pharmacy, Liaocheng University 1 Hunan Street Liaocheng Shandong 252000 China +86 15063505132
| |
Collapse
|
16
|
Subramani M, Ramamoorthy G, Hemaiswarya S, Waidha K, Brindha J, Balamurali MM, Doble M, Rajendran S. Hydroxy Piperlongumines: Synthesis, Antioxidant, Cytotoxic Effect on Human Cancer Cell Lines, Inhibitory Action and ADMET Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Muthuraman Subramani
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - Gayathri Ramamoorthy
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Shanmugam Hemaiswarya
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Kamran Waidha
- Amity Institute of Biotechnology Amity University Uttar Pradesh, Sector-125 Noida 201303 India
| | - J. Brindha
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - M. M. Balamurali
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - Mukesh Doble
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Saravanakumar Rajendran
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| |
Collapse
|
17
|
Meng C, Qian J, Xu Z, Liu J, Shan W, Zhu P, Zhu W, Miao J, Ling CC, Ling Y. Efficacy of novel methylenecyclohexenone derivatives as TrxR inhibitors in suppressing the proliferation and metastasis of human cancer cells. Bioorg Chem 2020; 105:104360. [PMID: 33074118 DOI: 10.1016/j.bioorg.2020.104360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
A series of mono- and di-methylenecyclohexenone derivatives, 3a-f and 4a-f, respectively, were designed and synthesized from piperlongumine (PL) and their in vitro and in vivo pharmacological properties were evaluated. A majority of the compounds exhibited a potent antiproliferative effect on five human cancer cell lines, especially those causing breast cancer. Compound 4f showed the highest antiproliferative potency among all of the compounds, almost a 10-fold higher inhibitory potency against thioredoxin reductase (TrxR) compared with PL in cells causing breast cancer. In addition, 4f was found to increase the levels of reactive oxygen species (ROS), thus leading to more potent antiproliferative effects. More importantly, the suppression assays of migration and invasion revealed that compound 4f could reverse the epithelial-mesenchymal transition induced by the transforming growth factor β1, and exhibit prominent anti-metastasis effects. Compound 4f also showed strong inhibition potency toward solid tumors of breast cancer in vivo. Our findings show that compound 4f is a promising therapeutic candidate in the treatment of breast cancer, which, however, needs further research to be proved.
Collapse
Affiliation(s)
- Chi Meng
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Jianqiang Qian
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Weizhong Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Jiefei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China
| | - Chang-Chun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China.
| | - Yong Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
18
|
Zheng YL, Zhang HC, Tian DH, Duan DC, Dai F, Zhou B. Rational design of an ESIPT-based fluorescent probe for selectively monitoring glutathione in live cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118429. [PMID: 32408228 DOI: 10.1016/j.saa.2020.118429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Glutathione (GSH), an extremely important antioxidant, is a major participant in maintaining redox homeostasis and tightly associated with various clinical diseases. Thus, accurate and rapid detection of intracellular GSH is imperative to elucidate its role in physiological and pathological processes. Herein, by modifying 2-(2'-hydroxyphenyl) benzothiazole (HBT) scaffold, we developed an excited-state intramolecular proton transfer (ESIPT)-based fluorescent probe BTFMD for tracking GSH, which exhibited good selectivity, excellent water solubility, a large Stokes shift (181 nm) and fast response rate (within 10 min). Furthermore, the probe was successfully applied for imaging of endogenous GSH in live cells and zebrafish, and probing into the role of GSH in the development of cancer and Parkinson's disease.
Collapse
Affiliation(s)
- Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Han-Chen Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Di-Hua Tian
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
19
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
20
|
Firczuk M, Bajor M, Graczyk-Jarzynka A, Fidyt K, Goral A, Zagozdzon R. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett 2020; 471:1-11. [DOI: 10.1016/j.canlet.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
|
21
|
Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8110553. [PMID: 31739520 PMCID: PMC6912225 DOI: 10.3390/antiox8110553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Piperlongumine (PL), a natural product derived from long pepper (Piper longum L.), is known to exhibit anticancer effects. However, the effect of PL on cell cycle-regulatory proteins in estrogen receptor (ER)-positive breast cancer cells is unclear. Therefore, we investigated whether PL can modulate the growth of ER-positive breast cancer cell line, MCF-7. We found that PL decreased MCF-7 cell proliferation and migration. Flow cytometric analysis demonstrated that PL induced G2/M phase cell cycle arrest. Moreover, PL significantly modulated the mRNA levels of cyclins B1 and D1, cyclin-dependent kinases 1, 4, and 6, and proliferating cell nuclear antigen. PL induced intracellular reactive oxygen species (hydrogen peroxide) accumulation and glutathione depletion. PL-mediated inhibition of IKKβ expression decreased nuclear translocation of NF-κB p65. Furthermore, PL significantly increased p21 mRNA levels. In conclusion, our data suggest that PL exerts anticancer effects in ER-positive breast cancer cells by inhibiting cell proliferation and migration via ROS accumulation and IKKβ suppression.
Collapse
|
22
|
Baliza IRS, Silva SLR, Santos LDS, Neto JHA, Dias RB, Sales CBS, Rocha CAG, Soares MBP, Batista AA, Bezerra DP. Ruthenium Complexes With Piplartine Cause Apoptosis Through MAPK Signaling by a p53-Dependent Pathway in Human Colon Carcinoma Cells and Inhibit Tumor Development in a Xenograft Model. Front Oncol 2019; 9:582. [PMID: 31334116 PMCID: PMC6616125 DOI: 10.3389/fonc.2019.00582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 01/22/2023] Open
Abstract
Ruthenium complexes with piplartine, [Ru(piplartine)(dppf)(bipy)](PF6)2 (1) and [Ru(piplartine)(dppb)(bipy)](PF6)2 (2) (dppf = 1,1-bis(diphenylphosphino) ferrocene; dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2′-bipyridine), were recently synthesized and displayed more potent cytotoxicity than piplartine in different cancer cells, regulated RNA transcripts of several apoptosis-related genes, and induced reactive oxygen species (ROS)-mediated apoptosis in human colon carcinoma HCT116 cells. The present work aimed to explore the underlying mechanisms through which these ruthenium complexes induce cell death in HCT116 cells in vitro, as well as their in vivo action in a xenograft model. Both complexes significantly increased the percentage of apoptotic HCT116 cells, and co-treatment with inhibitors of JNK/SAPK, p38 MAPK, and MEK, which inhibits the activation of ERK1/2, significantly reduced the apoptosis rate induced by these complexes. Moreover, significant increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182), and phospho-ERK1 (T202/Y204) expressions were observed in cells treated with these complexes, indicating MAPK-mediated apoptosis. In addition, co-treatment with a p53 inhibitor (cyclic pifithrin-α) and the ruthenium complexes significantly reduced the apoptosis rate in HCT116 cells, and increased phospho-p53 (S15) and phospho-histone H2AX (S139) expressions, indicating induction of DNA damage and p53-dependent apoptosis. Both complexes also reduced HCT116 cell growth in a xenograft model. Tumor mass inhibition rates were 35.06, 29.71, and 32.03% for the complex 1 (15 μmol/kg/day), complex 2 (15 μmol/kg/day), and piplartine (60 μmol/kg/day), respectively. These data indicate these ruthenium complexes as new anti-colon cancer drugs candidates.
Collapse
Affiliation(s)
- Ingrid R S Baliza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - João H Araujo Neto
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| |
Collapse
|
23
|
Sharma AK, Singh H, Chakrapani H. Photocontrolled endogenous reactive oxygen species (ROS) generation. Chem Commun (Camb) 2019; 55:5259-5262. [PMID: 30993280 DOI: 10.1039/c9cc01747j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cell-permeable small molecule for light-triggered generation of endogenous reactive oxygen species (ROS) is reported.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harshit Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
24
|
Bao XZ, Dai F, Wang Q, Jin XL, Zhou B. Developing glutathione-activated catechol-type diphenylpolyenes as small molecule-based and mitochondria-targeted prooxidative anticancer theranostic prodrugs. Free Radic Biol Med 2019; 134:406-418. [PMID: 30707929 DOI: 10.1016/j.freeradbiomed.2019.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/23/2023]
Abstract
Developing concise theranostic prodrugs is highly desirable for personalized and precision cancer therapy. Herein we used the glutathione (GSH)-mediated conversion of 2,4-dinitrobenzenesulfonates to phenols to protect a catechol moiety and developed stable pro-catechol-type diphenylpolyenes as small molecule-based prooxidative anticancer theranostic prodrugs. These molecules were synthesized via a modular route allowing creation of various pro-catechol-type diphenylpolyenes. As a typical representative, PDHH demonstrated three unique advantages: (1) capable of exploiting increased levels of GSH in cancer cells to in situ release a catechol moiety followed by its in situ oxidation to o-quinone, leading to preferential redox imbalance (including generation of H2O2 and depletion of GSH) and final selective killing of cancer cells over normal cells, and is also superior to 5-fluorouracil and doxorubicin, the widely used chemotherapy drugs, in terms of its ability to kill preferentially human colon cancer SW620 cells (IC50 = 4.3 μM) over human normal liver L02 cells (IC50 = 42.3 μM) with a favourable in vitro selectivity index of 9.8; (2) permitting a turn-on fluorescent monitoring for its release, targeting mitochondria and therapeutic efficacy without the need of introducing additional fluorophores after its activation by GSH in cancer cells; (3) efficiently targeting mitochondria without the need of introducing additional mitochondria-directed groups.
Collapse
Affiliation(s)
- Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
25
|
Dai F, Du YT, Zheng YL, Zhou B. A promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as a potent prooxidative anti-melanoma agent. Free Radic Biol Med 2019; 130:489-498. [PMID: 30458279 DOI: 10.1016/j.freeradbiomed.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Developing anti-melanoma agents with increased activity and specificity is highly desirable due to the increasing incidence, highly metastatic malignancy, and high mortality rate of melanoma. Abnormal redox characteristics such as higher levels of tyrosinase, NAD(P)H: quinone oxidoreductase-1 (NQO1) and reactive oxygen species (ROS) observed in melanoma cells than in other cancer cells and normal cells illustrate their redox vulnerability and have opened a window for developing prooxidative anti-melanoma agents (PAAs) to target the vulnerability. However, how to design PAAs which promote selectively the ROS accumulation in melanoma cells remains a challenge. This work describes a promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as such type of PAA. This molecule is capable of constructing an efficient catalytic redox cycle with tyrosinase and NQO1 in melanoma B16F1 cells to induce selectively the ROS (mainly including hydrogen peroxide, H2O2) accumulation in the cells, resulting in highly selective suppression of melanoma B16F1 cells over tyrosinase-deficient HeLa and normal L-02 cells.
Collapse
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
26
|
Dai F, Jin F, Long Y, Jin XL, Zhou B. A 1,8-naphthalimide-based turn-on fluorescent probe for imaging mitochondrial hydrogen peroxide in living cells. Free Radic Res 2018; 52:1288-1295. [DOI: 10.1080/10715762.2018.1446530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Fang Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Ying Long
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Ji Y, Dai F, Zhou B. Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells. Free Radic Biol Med 2018; 129:215-226. [PMID: 30240704 DOI: 10.1016/j.freeradbiomed.2018.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Higher levels of copper, reduced glutathione (GSH) and reactive oxygen species (ROS) observed in cancer cells than in normal cells, favor the idea of developing copper ionophores as prooxidative anticancer agents (PAAs) to hit the altered redox homeostasis (redox Achilles heel) of cancer cells. In this work, we used salicylaldehyde isonicotinoyl hydrazone (SIH-1) as a basic scaffold to design Cu(II) ionophores with tunable chelation and release of Cu(II) by introducing electron-withdrawing nitro and electron-donating methoxyl groups in the para position to phenolic hydroxyl, or by blocking the phenolic hydroxyl site using methyl. These molecules were used to probe how chelation and release of copper influence their ionophoric role and ability to target redox Achilles heel of cancer cells. Among these molecules, SIH-1 was identified as the most potent Cu(II) ionophore to kill preferentially HepG2 cells over HUVEC cells, and also superior to clioquinol, a copper ionophore evaluated in clinical trials, in terms of its relatively higher cytotoxicity and better selectivity. Higher oxidative potential, despite of lower stability constant, of the Cu(II) complex formed by SIH-1 than by the other molecules, is responsible for its stronger ability in releasing copper by GSH, inducing redox imbalance and triggering mitochondria-mediated apoptosis of HepG2 cells. This work gives useful information on how to design copper ionophores as PAAs for selective killing of cancer cells.
Collapse
Affiliation(s)
- Yuan Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
28
|
Designing dichlorobinaphthoquinone as a prooxidative anticancer agent based on hydrogen peroxide-responsive in situ production of hydroxyl radicals. Eur J Med Chem 2018; 159:317-323. [DOI: 10.1016/j.ejmech.2018.09.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
|
29
|
Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur J Med Chem 2018; 157:480-502. [DOI: 10.1016/j.ejmech.2018.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 08/04/2018] [Indexed: 12/23/2022]
|
30
|
Bao XZ, Dai F, Li XR, Zhou B. Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone. Free Radic Biol Med 2018; 124:342-352. [PMID: 29935260 DOI: 10.1016/j.freeradbiomed.2018.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022]
Abstract
Altered redox homeostasis including higher levels of copper, reduced glutathione (GSH) and reactive oxygen species (ROS) in cancer cells than in normal cells illustrates their redox vulnerability, and has opened a window for developing prooxidative anticancer agents (PAAs) to hit this status. However, how to design PAAs with high selectivity in killing cancer cells over normal cells remains a challenge. Herein we designed a 3-hydroxyflavone-inspired copper pro-ionophore (PHF) as a potent PAA based on the GSH-mediated conversion of 2,4-dinitrobenzenesulfonates to enols. Mechanistic investigation reveals that it is capable of exploiting increased levels of GSH in cancer cells to in situ release an active ionophore, 3-hydroxyflavone, inducing redox imbalance (copper accumulation, GSH depletion and ROS generation) and achieving highly selective killing of cancer cells upon specific transport of small amounts of Cu(II). To the best of our knowledge, it is the first example of Cu(II) pro-ionophore type of PAA which hits (changes) the three birds (abnormal copper, GSH and ROS levels in cancer cells) with one stone (PHF) in terms of its ability to induce preferentially redox imbalance of cancer cells by copper accumulation, GSH depletion and ROS generation.
Collapse
Affiliation(s)
- Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Xin-Rong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
31
|
Liu X, Wang Y, Zhang X, Gao Z, Zhang S, Shi P, Zhang X, Song L, Hendrickson H, Zhou D, Zheng G. Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorg Med Chem 2018; 26:3925-3938. [PMID: 29925484 PMCID: PMC6087492 DOI: 10.1016/j.bmc.2018.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Selective clearance of senescent cells (SCs) has emerged as a potential therapeutic approach for age-related diseases, as well as chemotherapy- and radiotherapy-induced adverse effects. Through a cell-based phenotypic screening approach, we recently identified piperlongumine (PL), a dietary natural product, as a novel senolytic agent, referring to small molecules that can selectively kill SCs over normal or non-senescent cells. In an effort to establish the structure-senolytic activity relationships of PL analogues, we performed a series of structural modifications on the trimethoxyphenyl and the α,β-unsaturated δ-valerolactam rings of PL. We show that modifications on the trimethoxyphenyl ring are well tolerated, while the Michael acceptor on the lactam ring is critical for the senolytic activity. Replacing the endocyclic C2-C3 olefin with an exocyclic methylene at C2 render PL analogues 47-49 with increased senolytic activity. These α-methylene containing analogues are also more potent than PL in inducing ROS production in WI-38 SCs. Similar to PL, 47-49 reduce the protein levels of oxidation resistance 1 (OXR1), an important oxidative stress response protein that regulates the expression of a variety of antioxidant enzymes, in cells. This study represents a useful starting point toward the discovery of senolytic agents for therapeutic uses.
Collapse
Affiliation(s)
- Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Yingying Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Zhengya Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Suping Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Peizhong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Lin Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
32
|
Piska K, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Pękala E. Piperlongumine (piplartine) as a lead compound for anticancer agents - Synthesis and properties of analogues: A mini-review. Eur J Med Chem 2018; 156:13-20. [PMID: 30006159 DOI: 10.1016/j.ejmech.2018.06.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
Abstract
Piperlongumine, also known as piplartine, is an amide alkaloid of Piper longum L. (long piper), a medical plant known from Ayurvedic medicine. Although was discovered well over fifty years ago, its pharmacological properties have been uncovered in the past decade. In particular, piperlongumine has been most extensively studied as a potential anticancer agent. Piperlongumine has exhibited cytotoxicity against a broad spectrum of human cancer cell lines, as well as demonstrated antitumor activity in rodents. Piperlongumine has also been found to be a proapoptotic, anti-invasive, antiangiogenic agent and synergize with modern chemotherapeutic agents. Because of its clinical potential, several studies were undertaken to obtain piperlongumine analogues, which have exhibited more potent activity or more appropriate drug-like parameters. In this review, the synthesis of piperlongumine analogues and piperlongumine-based hybrid compounds, as well as their anticancer properties and the molecular basis for their activity are explored. General structure-activity relationship conclusions are drawn and directions for the future research are indicated.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
33
|
Wang YH, Dai F, Zhou B. A Catechol-Type Resveratrol Analog Manifests Antiangiogenic Action by Constructing an Efficient Catalytic Redox Cycle with Intracellular Copper Ions and NQO1. Mol Nutr Food Res 2018; 62:e1700969. [PMID: 29923292 DOI: 10.1002/mnfr.201700969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/25/2018] [Indexed: 01/24/2023]
Abstract
SCOPE As part of our research project to understand why dietary polyphenols with the catechol skeleton tend to exhibit cancer chemopreventive activity, a catechol-type resveratrol analog (3,4-dihydroxy-trans-stilbene [3,4-DHS]) was selected to probe its antiangiogenic effects and mechanisms. METHODS AND RESULTS The antiangiogenic effects of 3,4-DHS on angiogenesis-related endothelial cell functions were examined, including migration, invasion, and tube formation, and in vivo angiogenesis on a chick chorioallantoic membrane assay. The potential molecular mechanisms for the suppression of cell migration by 3,4-DHS were analyzed using various specific inhibitors. 3,4-DHS was identified as a potent angiogenesis inhibitor by constructing an efficient catalytic redox cycle with intracellular copper ions and NAD(P)H quinone oxidoreductase I to generate reactive oxygen species and thereby downregulate matrix metalloproteinase-9. CONCLUSION This work provides further evidence that dietary catechols manifest antiangiogenic activity by virtue of their copper-dependent prooxidative instead of antioxidative role, and useful information for designing polyphenol-inspired angiogenesis inhibitors.
Collapse
Affiliation(s)
- Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| |
Collapse
|
34
|
Du YT, Zheng YL, Ji Y, Dai F, Hu YJ, Zhou B. Applying an Electrophilicity-Based Strategy to Develop a Novel Nrf2 Activator Inspired from Dietary [6]-Shogaol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7983-7994. [PMID: 29987924 DOI: 10.1021/acs.jafc.8b02442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial cellular defense mechanisms against oxidative stress and also an effective means to decrease the risk of oxidative stress-related diseases including cancer. Thus, identifying novel Nrf2 activators is highly anticipated. Inspired from [6]-shogaol (6S), an active component of ginger, herein we developed a novel potent Nrf2 activator, (1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-7-methylocta-1,4,6-trien-3-one (SA) by an electrophilicity-based strategy. Compared with the parent 6S, SA bearing a short but entirely conjugated unsaturated ketone chain manifested the improved electrophilicity and cytoprotection (cell viability for the 10 μM 6S- and SA-treated group being 48.9 ± 5.3% and 76.1 ± 3.2%, respectively) against tert-butylhydroperoxide ( t-BHP)-induced cell death (cell viability for the t-BHP-stimulated group being 42.4 ± 0.4%) of HepG2. Mechanistic study uncovers that SA works as a potent Nrf2 activator by inducing Keap1 modification, inhibiting Nrf2 ubiquitylation and phosphorylating ERK in a Michael acceptor-dependent fashion. Taking 6S as an example, this works illustrates the feasibility and importance of applying an electrophilicity-based strategy to develop Nrf2 activators with dietary molecules as an inspiration due to their low toxicity and extraordinarily diverse chemical scaffolds.
Collapse
Affiliation(s)
- Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Yuan Ji
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Yong-Jing Hu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| |
Collapse
|
35
|
Kim YH, Yoon YJ, Lee YJ, Kim CH, Lee S, Choung DH, Han DC, Kwon BM. Piperlongumine derivative, CG-06, inhibits STAT3 activity by direct binding to STAT3 and regulating the reactive oxygen species in DU145 prostate carcinoma cells. Bioorg Med Chem Lett 2018; 28:2566-2572. [PMID: 29807795 DOI: 10.1016/j.bmcl.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
Abstract
Piperlongumine (PL), isolated from Piper longum L., is receiving intense interest due to its selectively ability to kill cancer cells but not normal cells. We synthesized a number of analogues by replacing the cyclic amide of PL with aliphatic amides to explore structural diversity. Compound CG-06 had the strongest cytotoxic profile of this series, showing potent effects in human prostate cancer DU-145 cells, in which signal transducer and activator of transcription 3 (STAT3) is constitutively active. CG-06 inhibited STAT3 phosphorylation at tyrosine 705 in a dose- and time dependent manner in DU-145 cells and suppressed IL-6-induced STAT3 phosphorylation at Tyr-705 in DU-145 and LNCaP cell lines. CG-06 decreased the expression levels of STAT3 target genes, such as cyclin A, Bcl-2, and survivin. Notably, we used drug affinity responsive target stability (DARTS) to show that CG-06 binds directly to STAT3, and the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC) rescued the CG-06-induced suppression p-STAT3. Our results suggest that CG-06 is a novel inhibitor of STAT3 and may be a useful lead molecule for the development of a therapeutic STAT3 inhibitor.
Collapse
Affiliation(s)
- Young Hwan Kim
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yae Jin Yoon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yu-Jin Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Sangku Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Ho Choung
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Cho Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Dai F, Yuan CH, Ji Y, Du YT, Bao XZ, Wu LX, Jin XL, Zhou B. Keto-enol-based modification on piperlongumine to generate a potent Cu(II) ionophore that triggers redox imbalance and death of HepG2 cells. Free Radic Biol Med 2018; 120:124-132. [PMID: 29555591 DOI: 10.1016/j.freeradbiomed.2018.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/15/2018] [Indexed: 01/17/2023]
Abstract
Altered redox status including higher levels of copper in cancer cells than in normal cells inspired many researchers to develop copper ionophores targeting this status. We have recently found that flavon-3-ol (3-HF) works as a potent Cu(II) ionophore by virtue of its keto-enol moiety. To further emphasize the significance of this moiety for developing Cu(II) ionophores, we herein designed a β-diketo analog of piperlongumine, PL-I, characterized by the presence of high proportion of the keto-enol form in dimethylsulfoxide and chloroform, and identified its keto-enol structure by NMR and theoretical calculations. Benefiting from deprotonation of its enolic hydroxyl group, this molecule is capable of facilitating the transport of Cu(II) through cellular membranes to disrupt redox homeostasis of human hepatoma HepG2 cells and trigger their death.
Collapse
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cui-Hong Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuan Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling-Xi Wu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
37
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
38
|
Li X, Hou Y, Meng X, Ge C, Ma H, Li J, Fang J. Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells. Angew Chem Int Ed Engl 2018; 57:6141-6145. [PMID: 29582524 DOI: 10.1002/anie.201801058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Elevated reactive oxygen species and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. As a major regulator of the cellular redox homeostasis, the selenoprotein thioredoxin reductase (TrxR) is increasingly considered as a promising target for anticancer drug development. The current approach to inhibit TrxR predominantly relies on the modification of the selenocysteine residue in the C-terminal active site of the enzyme, in which it is hard to avoid the off-target effects. By conjugating the anticancer drug gemcitabine with a 1,2-dithiolane scaffold, an unprecedented prodrug strategy is disclosed that achieves a specific release of gemcitabine by TrxR in cells. As overexpression of TrxR is frequently found in different types of tumors, the TrxR-dependent prodrugs are promising for further development as cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Xianke Meng
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Huilong Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, China
| |
Collapse
|
39
|
Li X, Hou Y, Meng X, Ge C, Ma H, Li J, Fang J. Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Xianke Meng
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Huilong Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering Lanzhou University China
| |
Collapse
|
40
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
41
|
Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 2017; 139:222-231. [PMID: 28802122 DOI: 10.1016/j.ejmech.2017.07.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Wiemann
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Julia Karasch
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Heller
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
42
|
Zou Y, Yan C, Zhang H, Xu J, Zhang D, Huang Z, Zhang Y. Synthesis and evaluation of N-heteroaromatic ring-based analogs of piperlongumine as potent anticancer agents. Eur J Med Chem 2017; 138:313-319. [PMID: 28686911 DOI: 10.1016/j.ejmech.2017.06.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
Piperlongumine (PL) selectively targets a wide spectrum of cancer cells and induces their death by triggering various pathways, including apoptosis, necrosis and autophagy. However, the poor solubility is a serious concern for intensive study and clinical application. We synthesized its analogs 1-9 by replacement of the trimethoxyphenyl of PL with an N-heteroaromatic ring and/or not introduction of 2-Cl. These compounds improved aqueous solubility and displayed potent anticancer activity. The most active compound 9 selectively enhanced ROS levels in colon cancer cells and inhibited the cell proliferation but sparing non-tumor colon cells. Importantly, 9 significantly repressed tumor growth in an HCT-116 xenograft mouse model, suggesting that these N-heteroaromatic ring-based analogs of PL warrant further investigation.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chang Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huibin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dayong Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
43
|
Li W, Chen Y, Sheng Y, Xie Z, Tang Y. Synthesis and inhibitory effect of 10-chlorocanthin-6-one on ovarian cancer HO8910PM cells. Biotechnol Lett 2017; 40:23-30. [PMID: 28948407 DOI: 10.1007/s10529-017-2438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/07/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To synthesize and determine the antitumor activity of 10-chlorocanthin-6-one in ovarian cancer HO8910PM cells. RESULTS Among the synthesized canthin-6-one analogs, 10-chlorocanthin-6-one was the most cytotoxic (IC50 = 4.9 μM), as demonstrated by a dose-dependent cytotoxicity assay. Moreover, 10-chlorocanthin-6-one induced apoptosis through the activation of poly(ADP-ribose) polymerase and caspase-3 cleavage, upregulation of Bcl-2, and downregulation of Bim, x-linked inhibitor of apoptosis protein (XIAP), and survivin in HO8910PM cells. Furthermore, Bim RNA, upregulated in a concentration-dependent manner, and knockdown of Bim via short-hairpin RNAs attenuated the inhibitory effects of 10-chlorocanthin-6-one on HO8910PM cell growth. CONCLUSIONS 10-Chlorocanthin-6-one inhibits cell proliferation and induces apoptosis in H08910PM cells. The underlying molecular mechanisms of 10-chlorocanthin-6-one include activation of the Bim-mediated mitochondrial apoptotic pathway via upregulation of Bim and downregulation of Bcl-2, XIAP, and survivin. These data suggest that Bim is a potential target of 10-chlorocanthin-6-one, further demonstrating its potential use in the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wenhua Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuwen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
- School of Life Science and Engineering, Sichuan University, Chengdu, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zeyu Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yaxiong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
45
|
Wang HB, Jin XL, Zheng JF, Wang F, Dai F, Zhou B. Developing piperlongumine-directed glutathione S-transferase inhibitors by an electrophilicity-based strategy. Eur J Med Chem 2017; 126:517-525. [PMID: 27914365 DOI: 10.1016/j.ejmech.2016.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/29/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023]
Abstract
We report a case of successful design of glutathione S-transferase (GST) inhibitors via a natural product-inspired and electrophilicity-based strategy. Based on this strategy, a novel piperlongumine analog (PL-13) bearing a para-trifluoromethyl group and an α-chlorine on its aromatic and lactam rings, respectively, surfaced as a promising GST inhibitor, thereby overcoming cisplatin resistance in lung cancer A549 cells.
Collapse
Affiliation(s)
- Hai-Bo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Jia-Fang Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fu Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
46
|
Zhang Z, Wang HH, Yu HJ, Xiong YZ, Zhang HT, Ji LN, Liu HY. Synthesis, characterization and in vitro and in vivo photodynamic activities of a gallium(iii) tris(ethoxycarbonyl)corrole. Dalton Trans 2017; 46:9481-9490. [DOI: 10.1039/c7dt00992e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A gallium(iii) tris(ethoxycarbonyl)corrole is a highly effective photosensitizer against A549 cancer cells via p38 MAPK signaling cascade pathways.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| | - Hua-Hua Wang
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| | - Hua-Jun Yu
- Guangdong Medical University Laboratory Animal Center
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Yu-Zhen Xiong
- Department of Biochemistry and Molecular Biology
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hai-Yang Liu
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
47
|
Bioassay-guided isolation of dehydrocostus lactone from Saussurea lappa: A new targeted cytosolic thioredoxin reductase anticancer agent. Arch Biochem Biophys 2016; 607:20-6. [DOI: 10.1016/j.abb.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022]
|
48
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
49
|
Xu F, Li J, Zhu TT, Yu SS, Zuo C, Yao RS, Qian HS. A new trick (hydroxyl radical generation) of an old vitamin (B2) for near-infrared-triggered photodynamic therapy. RSC Adv 2016. [DOI: 10.1039/c6ra23440b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new NIR-light-triggered PDT method has been developed using an old vitamin (vitamin B2) integrated with the upconversion nanotechnology.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Jin Li
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Ting-ting Zhu
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
- Department of Chemistry
| | - Sheng-Song Yu
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
| | - Chong Zuo
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Ri-sheng Yao
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Hai-sheng Qian
- Department of Pharmaceutical Engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|