1
|
Nagani A, Shah M, Patel S, Patel H, Parikh V, Patel A, Patel S, Patel K, Parmar H, Bhimani B, Yadav MR. Unveiling piperazine-quinoline hybrids as potential multi-target directed anti-Alzheimer's agents: design, synthesis and biological evaluation. Mol Divers 2025; 29:1453-1478. [PMID: 38990393 DOI: 10.1007/s11030-024-10927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Moksh Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Salman Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, India
| | - Sagar Patel
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Kirti Patel
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | - Hardik Parmar
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | | | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
2
|
de Almeida NR, Ikehara BRM, Calácio CC, Oliveira TF, Pinto FG. Metabolomic analysis to study the effect of foliar copper supplementation on sulfur-containing compounds of garlic bulb by LC-MS. Metabolomics 2025; 21:36. [PMID: 40042663 DOI: 10.1007/s11306-025-02237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/11/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Garlic (Allium sativum L.) is renowned for its health-promoting properties, largely due to its sulfur-rich compounds. While copper is essential for plant growth and metabolism, excessive levels can disrupt cellular processes and lead to oxidative stress. OBJECTIVES This study aims to investigate the impact of copper supplementation on the metabolic profile of garlic, with a particular focus on changes in sulfur metabolism. METHODS Ito garlic cloves were harvested in 2020 on Red-Yellow Latosol soil. Copper chelate fertilizer was applied foliarly at 300 mL/ha, 30, 20, and 10 days before harvest. After harvesting, cloves were refrigerated and analyzed. Using LC-MS metabolomics, the metabolic profile of garlic was analyzed after copper supplementation to assess changes, specifically in sulfur-containing compounds. RESULTS Copper supplementation led to a significant reduction in key sulfur-containing metabolites critical for the health-promoting properties of garlic, including allicin (FC = 0.0947), alliin (FC = 0.0147), and γ-glutamyl-S-allylcysteine (FC = 0.0076). Enrichment analysis identified alterations in pathways related to glutamine, glutamate, alanine, and aspartate metabolism. Additionally, precursors of glutathione (GSH) were depleted, likely as a result of GSH sparing efforts to counteract copper-induced oxidative stress. This redirection may increase susceptibility to ferroptosis, a form of cell death linked to oxidative damage. CONCLUSION The metabolomic analysis of copper-supplemented Ito garlic cloves showed a significant reduction in sulfur compounds allicin, alliin, and γ-glutamyl-S-allylcysteine, important for organoleptic and medicinal properties. This decrease indicates a metabolic shift towards antioxidant defenses, with glutathione being redirected to defense pathways rather than secondary metabolites. Future studies should explore oxidative stress and ferroptosis markers, and lipidomics for a deeper understanding of garlic response to copper exposure.
Collapse
Affiliation(s)
- Natália Reis de Almeida
- Institute of Biological and Health Sciences, Federal University of Viçosa, Rod. MG 230 Km 08, Rio Paranaíba, 38.810-000, MG, Brazil.
| | - Brena Rodrigues Mota Ikehara
- Institute of Exact Sciences, Federal University of Viçosa, Rod. MG 230 Km 08, Rio Paranaíba, 38.810-000, MG, Brazil
| | - Camila Cristina Calácio
- Institute of Exact Sciences, Federal University of Viçosa, Rod. MG 230 Km 08, Rio Paranaíba, 38.810-000, MG, Brazil
| | - Thaísa Fernanda Oliveira
- Institute of Agricultural Sciences, Federal University of Viçosa, Rod. MG 230 Km 08, Rio Paranaíba, 38.810-000, MG, Brazil
| | - Frederico Garcia Pinto
- Institute of Exact Sciences, Federal University of Viçosa, Rod. MG 230 Km 08, Rio Paranaíba, 38.810-000, MG, Brazil
| |
Collapse
|
3
|
Alatawi AD, Venkatesan K, Asseri K, Paulsamy P, Alqifari SF, Ahmed R, Nagoor Thangam MM, Sirag N, Qureshi AA, Elsayes HA, Faried Bahgat Z, Bahnsawy NSM, Prabahar K, Dawood BMAE. Targeting Ferroptosis in Rare Neurological Disorders Including Pediatric Conditions: Innovations and Therapeutic Challenges. Biomedicines 2025; 13:265. [PMID: 40002678 PMCID: PMC11853599 DOI: 10.3390/biomedicines13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, characterized by iron dependency and lipid peroxidation, has emerged as a key mechanism underlying neurodegeneration in rare neurological disorders. These conditions, often marked by significant therapeutic gaps and high unmet medical needs, present unique challenges for intervention development. This review examines the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its role in oxidative damage and neuronal dysfunction. We explore recent pharmacological advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based strategies, designed to target ferroptosis. While these approaches show promise, challenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts hinder progress. Furthermore, we discuss the translational and regulatory barriers to implementing ferroptosis-based therapies in clinical practice. By addressing these obstacles and fostering innovative solutions, this review underscores the potential of ferroptosis-targeting strategies to revolutionize treatment paradigms for rare neurological disorders.
Collapse
Affiliation(s)
- Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Khalid Asseri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saleh F. Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | | | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | - Absar A. Qureshi
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Hala Ahmed Elsayes
- Department of Psychiatric and Mental Health Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Psychiatric and Mental Health, Faculty of Nursing, Tanta University, Tanta 31527, Egypt
| | - Zeinab Faried Bahgat
- Department of Medical-Surgical Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Medical-Surgical Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Nesren S. M. Bahnsawy
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- Department of Pediatric Nursing, Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Basma Mahmoud Abd Elhamid Dawood
- Department of Pediatric Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1225-1246. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
5
|
Li H, Li Y, Yu Y, Ren X, Yang C, Jin W, Li K, Zhou Y, Wu C, Shen Y, Hu W, Liu Y, Yu L, Tong X, Du J, Wang Y. GSH exhaustion via inhibition of xCT-GSH-GPX4 pathway synergistically enhanced DSF/Cu-induced cuproptosis in myelodysplastic syndromes. Free Radic Biol Med 2024; 222:130-148. [PMID: 38866192 DOI: 10.1016/j.freeradbiomed.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The clinical application of the therapeutic approach in myelodysplastic syndromes (MDS) remains an insurmountable challenge for the high propensity for progressing to acute myeloid leukemia and predominantly affecting elderly individuals. Thus, the discovery of molecular mechanisms underlying the regulatory network of different programmed cell death holds great promise for the identification of therapeutic targets and provides insights into new therapeutic avenues. Herein, we found that disulfiram/copper (DSF/Cu) significantly repressed the cell viability, increased reactive oxygen species (ROS) accumulation, destroyed mitochondrial morphology, and altered oxygen consumption rate. Further studies verified that DSF/Cu induces cuproptosis, as evidenced by the depletion of glutathione (GSH), aggregation of lipoylated DLAT, and induced loss of Fe-S cluster-containing proteins, which could be rescued by tetrathiomolybdate and knockdown of ferredoxin 1 (FDX1). Additionally, GSH contributed to the tolerance of DSF/Cu-mediated cuproptosis, while pharmacological chelation of GSH triggered ROS accumulation and sensitized cell death. The xCT-GSH-GPX4 axis is the ideal downstream component of ferroptosis that exerts a powerful protective mechanism. Notably, classical xCT inhibitors were capable of leading to the catastrophic accumulation of ROS and exerting synergistic cell death, while xCT overexpression restored these phenomena. Simvastatin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, has beneficial effects in repurposing for inhibiting GPX4. Similarly, the combination treatment of DSF/Cu and simvastatin dramatically decreased the expression of GPX4 and Fe-S proteins, ultimately accelerating cell death. Moreover, we identified that the combination treatment of DSF/Cu and simvastatin also had a synergistic antitumor effect in the MDS mouse model, with the reduced GPX4, increased COX-2 and accumulated lipid peroxides. Overall, our study provided insight into developing a novel synergistic strategy to sensitize MDS therapy by targeting ferroptosis and cuproptosis.
Collapse
Affiliation(s)
- Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Keyi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Cuiyun Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
6
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
7
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
8
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
12
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Gong L, Sun J, Cong S. Levels of iron and iron-related proteins in Alzheimer's disease: A systematic review and meta-analysis. J Trace Elem Med Biol 2023; 80:127304. [PMID: 37734209 DOI: 10.1016/j.jtemb.2023.127304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND PURPOSE Iron homeostasis disturbance has been suggested to play a role in the pathology of Alzheimer's disease (AD). Systemic iron levels are regulated by iron-related proteins, such as ferritin and transferrin. This meta-analysis was established to evaluate iron and iron-related proteins (ferritin, transferrin, lactoferrin, haptoglobin, hepcidin) in cerebrospinal fluid (CSF) and blood samples of AD patients compared with those in healthy controls (HCs). METHODS Iron and iron-related proteins in Alzheimer's disease was systematically searched within five databases (PubMed, EMBASE, Web of Science, Cochrane, Scopus) up to October 23, 2022. Fifty-four studies (with data for 5105 participants: 2174 AD patients and 2931 HCs) were included in this meta-analysis. This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), applying Stata 14.0 software. RESULTS Decreased iron in blood and increased ferritin in CSF were found in AD patients compared with the levels in HCs. AD patients also exhibited lower lactoferrin in serum. Other variables (iron in CSF, ferritin in blood, transferrin in CSF/blood, haptoglobin in CSF/blood, and hepcidin in blood) did not differ between the groups. CONCLUSION This meta-analysis indicated that iron and iron-related proteins were associated with the risk of AD, suggesting the value of further exploration of iron imbalance in AD using biofluids.
Collapse
Affiliation(s)
- Lin Gong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Jiahui Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
14
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023; 43:2627-2642. [PMID: 36988772 PMCID: PMC11410137 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
15
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Ge S, Ma W, Qu Z, Zhu X, Chen Z, Lin X, Fu Z. Urinary tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and cognitive functioning in older adults: The National Health and Nutrition Examination Survey 2013-2014. Tob Induc Dis 2023; 21:68. [PMID: 37252031 PMCID: PMC10210584 DOI: 10.18332/tid/162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 03/18/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Tobacco contains carcinogens called tobacco-specific nitrosamines. Among the tobacco-specific nitrosamines, is nicotine-derived nitrosamine ketone (NNK) which produces the metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). We aimed to examine the association between urinary tobacco-specific NNAL and cognitive functioning among older adults. METHODS A total of 1673 older adults aged ≥60 years from the National Health and Nutrition Examination Survey 2013-2014 were included. Urinary tobacco-specific NNAL was analyzed in the laboratory. Cognitive functioning was measured using the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL) immediate and delayed memory tests, the Animal Fluency test (AFT), and the Digit Symbol Substitution Test (DSST). Test-specific and global cognition z-scores were calculated based on means and standard deviations of the cognitive test scores. Multivariable linear regression models were constructed to examine the independent association between quartiles of urinary tobacco-specific NNAL and cognitive test-specific and global cognition z-scores controlling for age, sex, race/ethnicity, education level, depressive symptoms, body mass index, systolic blood pressure, urinary creatinine, hypertension, diabetes, alcohol use, and smoking status. RESULTS About half of the participants (mean age 69.8 years) were female (52.1%), non-Hispanic White (48.3%), and completed some college and above (49.7%). Multivariable linear regression results showed that participants in the 4th quartile (highest quartile) of urinary NNAL, compared with those in the 1st quartile (lowest quartile), had lower DSST z-scores (β= -0.19; 95% CI: -0.34 - -0.04). CONCLUSIONS Tobacco-specific NNAL was negatively associated with processing speed, sustained attention, and working memory in older adults.
Collapse
Affiliation(s)
- Song Ge
- Department of Natural Sciences, College of Sciences and Technology, University of Houston-Downtown, Houston, United States
| | - Weixia Ma
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Qu
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Xingmei Zhu
- Yaxin School of Nursing, Wuhan Institute of Design and Science, Wuhan, China
| | | | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenmei Fu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Xu C, Liu Q, Chu S, Li P, Wang F, Si Y, Mao G, Wu C, Wang H. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Anal Chim Acta 2023; 1254:341045. [PMID: 37005014 DOI: 10.1016/j.aca.2023.341045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
A microdots array-based fluoremetric method with superwettability profile has been developed for the simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples. A wettable micropores array was initially designed with high density by using polyacrylic acid (PAA) and hexadecyltrimethoxysilane (HDS), followed by the NaOH etching route. Zinc metal organic frameworks (Zn-MOFs) were fabricated as the fluorescent probes to be immobilized into the micropores array to obtain the fluoremetric microdots array platform. It was found that the fluorescence of Zn-MOFs probes could decrease significantly in the presence of Fe3+ and/or Cu2+ ions towards their simultaneous analysis. Yet, the specific responses to Fe3+ ions could be expected if using histidine to chelate Cu2+ ions. Moreover, the developed Zn-MOFs-based microdots array with superwettability profile can enable the accumulation of targeting ions from the complicated samples without any tedious pre-processing. Also, the cross-contamination of different samples droplets can be largely avoided so as to facilitate the analysis of multiple samples. Subsequently, the feasibility of simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples was demonstrated. Such a design of microdots array-based detection platform may promise the wide applications in analyzing Fe3+ and/or Cu2+ ions in the fields of food safety, environmental monitoring, and medical diseases diagnostics.
Collapse
|
19
|
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: adding new paradigms to the links with diseases. Apoptosis 2023; 28:277-292. [PMID: 36611106 DOI: 10.1007/s10495-022-01806-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a new type of iron-dependent cell death induced by a failure of the lipid repair protein GPX4 or the Xc- antiporter, which is essential for glutathione production. Some heavy metals such as arsenic (As), cobalt (Co), cadmium (Cd), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), mercury (Hg) as well as zinc (Zn) are shown to induce ferroptotic cell death involving the generation of oxidative stress, mitochondrial dysfunctioning, lipid peroxidation, and several other cellular etiologies. However, selenium (Se) treatment has been shown to enhance adaptive transcription responses to protect cells from ferroptosis. Heavy metals like Cadmium exposure activated ALK4/5 signaling via Smad3 and Akt signaling which leads to cell death mechanism. Continuous exposure to a small dose of mercury can damage tissues, and methylmercury bind to sulfhydryl proteins and GSH, this elevates oxidative stress, free radical accumulation, glutathione depletion, mitochondrial damage, and inhibited the nuclear factor-κB pathway which leads to ferroptotic cell death. Animals exposed to nickel and cobalt may have increased lipid peroxidation which can induce ferroptosis. Glutathione depletion is caused by Zn intoxication and exposure to manganese. These metals are systemic toxins that have been shown adverse effects on humans. Ferroptosis has recently been related to several pathological disorders, including, Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as cardiovascular disease, and any type of cancer. For these disorders and some heavy metal toxicity, ferroptosis suppression needs to be looked upon as a promising therapeutic choice.
Collapse
Affiliation(s)
- Kumudini Sahoo
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.,School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| |
Collapse
|
20
|
Liang Z, Maher P. Structural Requirements for the Neuroprotective and Anti-Inflammatory Activities of the Flavanone Sterubin. Antioxidants (Basel) 2022; 11:2197. [PMID: 36358569 PMCID: PMC9686938 DOI: 10.3390/antiox11112197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-associated disease with no treatments that can prevent, delay, slow, or stop its progression. Thus, new approaches to drug development are needed. One promising approach is the use of phenotypic screening assays that can identify compounds that have therapeutic efficacy in target pathways relevant to aging and cognition, as well as AD pathology. Using this approach, we identified the flavanone sterubin, from Yerba santa (Eriodictyon californicum), as a potential drug candidate for the treatment of AD. Sterubin is highly protective against multiple initiators of cell death that activate distinct death pathways, potently induces the antioxidant transcription factor Nrf2, and has strong anti-inflammatory activity. Moreover, in a short-term model of AD, it was able to prevent decreases in short- and long-term memory. In order to better understand which key chemical functional groups are essential to the beneficial effects of sterubin, we compared the activity of sterubin to that of seven closely related flavonoids in our phenotypic screening assays. Surprisingly, only sterubin showed both potent neuroprotective activity against multiple insults as well as strong anti-inflammatory activity against several distinct inducers of inflammation. These effects correlated directly with the ability of sterubin to strongly induce Nrf2 in both nerve and microglial cells. Together, these results define the structural requirements underlying the neuroprotective and anti-inflammatory effects of sterubin and they provide the basis for future studies on new compounds based on sterubin.
Collapse
Affiliation(s)
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| |
Collapse
|
21
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
22
|
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5418376. [PMID: 36238639 PMCID: PMC9553361 DOI: 10.1155/2022/5418376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
Collapse
|
23
|
Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 2022; 51:7752-7778. [PMID: 36052828 DOI: 10.1039/d1cs01167g] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ya-Lin Qi
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Sheng-Yu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Sobolewski M, Conrad K, Marvin E, Eckard M, Goeke CM, Merrill AK, Welle K, Jackson BP, Gelein R, Chalupa D, Oberdörster G, Cory-Slechta DA. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part Fibre Toxicol 2022; 19:56. [PMID: 35945578 PMCID: PMC9364598 DOI: 10.1186/s12989-022-00496-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.
Collapse
Affiliation(s)
- Marissa Sobolewski
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Katherine Conrad
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Elena Marvin
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Matthew Eckard
- grid.262333.50000000098205004Department of Psychology, Radford University, Radford, VA 24142 USA
| | - Calla M. Goeke
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Alyssa K. Merrill
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Kevin Welle
- grid.412750.50000 0004 1936 9166Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Brian P. Jackson
- grid.254880.30000 0001 2179 2404Department of Earth Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Robert Gelein
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - David Chalupa
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Günter Oberdörster
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Deborah A. Cory-Slechta
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
25
|
Ferroptosis and Its Multifaceted Role in Cancer: Mechanisms and Therapeutic Approach. Antioxidants (Basel) 2022; 11:antiox11081504. [PMID: 36009223 PMCID: PMC9405274 DOI: 10.3390/antiox11081504] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, a new type of non-apoptotic cell death modality, is different from other modes of cell death and has been primarily found in tumor cells. Previous studies have reported that ferroptosis can be triggered by specific modulators (e.g., drugs, nutrients, and iron chelators), leading to increased intracellular lipid reactive oxygen species (ROS) accumulation and iron overload. Recent reports have shown that ferroptosis at the cellular and organism levels can prevent an inflammatory storm and cancer development. Emerging evidence suggests potential mechanisms (e.g., system Xc-, glutathione peroxidase 4 (GPX4), lipid peroxidation, glutathione (GSH), and iron chelators) are involved in ferroptosis, which may mediate biological processes such as oxidative stress and iron overload to treat cancer. To date, there are at least three pathways that mediate ferroptosis in cancer cells: system Xc-/GSH/GPX4, FSP1/CoQ10/NAD(P)H, and ATG5/ATG7/NCOA4. Here, we summarize recent advances in the occurrence and development of ferroptosis in the context of cancer, the associations between ferroptosis and various modulators, and the potential mechanisms and therapeutic strategies targeting ferroptosis for the treatment of cancer.
Collapse
|
26
|
Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3112388. [PMID: 35941905 PMCID: PMC9356861 DOI: 10.1155/2022/3112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in 2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury, cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.
Collapse
|
27
|
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, Ji J. Emerging Mechanisms and Targeted Therapy of Ferroptosis in Neurological Diseases and Neuro-oncology. Int J Biol Sci 2022; 18:4260-4274. [PMID: 35844784 PMCID: PMC9274504 DOI: 10.7150/ijbs.72251] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a novel type of cell death characterized by iron-dependent lipid peroxidation that involves a variety of biological processes, such as iron metabolism, lipid metabolism, and oxidative stress. A growing body of research suggests that ferroptosis is associated with cancer and neurodegenerative diseases, such as glioblastoma, Alzheimer's disease, Parkinson's disease, and stroke. Building on these findings, we can selectively induce ferroptosis for the treatment of certain cancers, or we can treat neurodegenerative diseases by inhibiting ferroptosis. This review summarizes the relevant advances in ferroptosis, the regulatory mechanisms of ferroptosis, the participation of ferroptosis in brain tumors and neurodegenerative diseases, and the corresponding drug therapies to provide new potential targets for its treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Junguo Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
28
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
29
|
Hosseini MJ, Mahmoodi N, Eskandari J, Bijani S, Yazdinezhad AR, Anoush M. Protective effects of Vinca herbaceous extract against scopolamine-induced behavioral disturbances and brain oxidative stress in rats. Heliyon 2022; 8:e09295. [PMID: 35520614 PMCID: PMC9061637 DOI: 10.1016/j.heliyon.2022.e09295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ethnopharmacological relevance Alzheimer's disease (AD) as the most common type of dementia, is affecting the life of many senior individuals around the world. Vinca herbacea Waldst. & Kit. (V. herbacea) as a middle east originated plant demonstrated antioxidant and antitumor effects. This plant traditionally used to treat diabetes and hypertension, but its mechanism remains unclear. Aim of the study In the present study, post-treatment effects of V. herbacea on learning and memory functions, antioxidant cellular defense and oxidative stress were investigated using the scopolamine rat model of AD. Materials and methods Wistar male rats (170-190 g) were administered Scopolamine, an anti-muscarinic drug, (2 mg/kg) for 10 days followed by V. herbacea extract (200, 300 and 400 mg/kg) and/or donepezil (DON; 1 mg/kg, which were administered before behavioral studies for 10 consecutive days. All the rats were then subjected to Morris water maze (MWM) task. Biochemical parameters of oxidative stress were quantified using the whole brain. Results Our data showed significant decrease performance in target quadrant in water maze task following administration of scopolamine (SCOP). Also, V. herbacea and DON, did not induce any neurotoxicity and hepatotoxic effects at the highest utilized doses in healthy rats. Treatment with V. herbacea extract (200&400 mg/kg) and DON improved memory performance significantly in comparison with AD rats. In addition, V. herbacea extract in AD rats exhibited a decrease in malondialdehyde (MDA) and protein carbonyl (PCO) levels and an increase in total antioxidant capacity (FRAP) and glutathione (GSH) amounts in brain and liver. Conclusion It seems that cholinergic deficits and oxidative stress are consistently associated with Alzheimer's disease (AD). The richness of V. herbacea in case of indole alkaloids and flavonoids confirms the potentials of this herb in management of oxidative stress, resorting synaptic acetylcholine level and improving cellular antioxidant resources.
Collapse
Affiliation(s)
- Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Mahmoodi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Reza Yazdinezhad
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdieh Anoush
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
30
|
Wang F, Wang J, Shen Y, Li H, Rausch WD, Huang X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front Aging Neurosci 2022; 14:830569. [PMID: 35391749 PMCID: PMC8981915 DOI: 10.3389/fnagi.2022.830569] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Iron plays a crucial role in many physiological processes of the human body, but iron is continuously deposited in the brain as we age. Early studies found iron overload is directly proportional to cognitive decline in Alzheimer’s disease (AD). Amyloid precursor protein (APP) and tau protein, both of which are related to the AD pathogenesis, are associated with brain iron metabolism. A variety of iron metabolism-related proteins have been found to be abnormally expressed in the brains of AD patients and mouse models, resulting in iron deposition and promoting AD progression. Amyloid β (Aβ) and hyperphosphorylated tau, two pathological hallmarks of AD, can also promote iron deposition in the brain, forming a vicious cycle of AD development-iron deposition. Iron deposition and the subsequent ferroptosis has been found to be a potential mechanism underlying neuronal loss in many neurodegenerative diseases. Iron chelators, antioxidants and hepcidin were found useful for treating AD, which represents an important direction for AD treatment research and drug development in the future. The review explored the deep connection between iron dysregulation and AD pathogenesis, discussed the potential of new hypothesis related to iron dyshomeostasis and ferroptosis, and summarized the therapeutics capable of targeting iron, with the expectation to draw more attention of iron dysregulation and corresponding drug development.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Jiandong Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Ying Shen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Hao Li
- Department of General Diseases, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf-Dieter Rausch
- Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
- *Correspondence: Xiaobo Huang,
| |
Collapse
|
31
|
Liu F, Zhang Z, Zhang L, Meng R, Gao J, Jin M, Li M, Wang X. Effect of metal ions on Alzheimer's disease. Brain Behav 2022; 12:e2527. [PMID: 35212185 PMCID: PMC8933773 DOI: 10.1002/brb3.2527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 11/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. The typical pathological changes of AD are Aβ deposition, neurofibrillary tangles, neuron loss, and chronic inflammation. The balance of metal ions is essential for numerous physiological functions, especially in the central nervous system. More studies showed that metal ions participate in the development of AD. However, the involvement of metal ions in AD is controversial. Thus, we reviewed articles about the relationship between metal ions and AD and discussed some contradictory reports in order to better understand the role of metal ions in AD.
Collapse
Affiliation(s)
- Fan Liu
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhuo Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lin Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ruo‐Ni Meng
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jia Gao
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Jin
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Li
- Department of Orthopaedic SurgeryThird Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiao‐Peng Wang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
32
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
33
|
Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, Li M, Sun X. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered 2022; 13:3724-3738. [PMID: 35105283 PMCID: PMC8974118 DOI: 10.1080/21655979.2022.2029066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging has become an irreversible trend in the world, the health problems caused by aging cannot be ignored. The physiological functions of human body begin to decline with aging, the decline of gastrointestinal function caused by aging is an important problem that needs to be resolved. In this work, we evaluated the anti-aging effect of uridine in the senescent gastric epithelial cell model, and found that the aging level of gastric epithelial cell was significantly down-regulated by uridine treatment, uridine could obviously down-regulate the ratio of the SA-β-gal-positive senescent cells. Furthermore, aging-related marker molecules (such as p16 and p21) were also significantly down-regulated under uridine treatment. Additionally, the levels of inflammation and oxidative stress were also significantly reduced by uridine treatment. Next, our further studies the effect of aging on FGF activity on gastric epithelial cell, and found that FGF/FGFR-mediated signaling pathways were significantly down-regulated. However, uridine treatment can not only alleviate the senescence of gastric epithelial cell, but also can partially restore the sensitivity of FGF signaling. Taken together, the current work indicates that uridine shows a good anti-aging effect, which lays a solid foundation for the related research in this filed.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Jingli Gong
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Junyu Hou
- School of Pharmacy, Beihua University, Jilin City, China
| | - Minghui Li
- School of Pharmacy, Beihua University, Jilin City, China
| | - Xin Sun
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| |
Collapse
|
34
|
Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J, Liu S. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis 2022; 13:40. [PMID: 35013137 PMCID: PMC8748693 DOI: 10.1038/s41419-021-04490-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity, and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs mitochondrial function and energy metabolism, is a key inducer of ferroptosis.
Collapse
Affiliation(s)
- Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Ruibin Li
- School for Radiological and Interdisciplinary Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
35
|
Wang T, Wu L, Chen Q, Chen K, Tan F, Liu J, Liu X, Han H. Copper deposition in Wilson's disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front Endocrinol (Lausanne) 2022; 13:961748. [PMID: 35992126 PMCID: PMC9389053 DOI: 10.3389/fendo.2022.961748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism characterized by liver and central nervous system dysfunction. Considerable evidence suggests that infertility is also very common in male patients with WD, but the exact molecular mechanisms involved remain unknown. In order to further investigate the pathological changes in the hypothalamic-pituitary-testicular (HPT) axis and its mechanisms, mice were divided into the normal control group (NC), WD model TX mice group (WD), dimercaptosuccinic acid-treated TX mice group (DMSA), and pregnant horse serum gonadotropin-treated TX mice group (PMSG). The copper content and morphology of hypothalamus and pituitary tissues, the ultrastructure and apoptosis of hypothalamus neurons and pituitary gonadotropin cells, the serum levels of reproductive hormones, and the pregnancy rate and litter size of the female mice were studied. The expression of apoptosis-related proteins and the phosphorylation of extracellular regulatory protein kinase (ERK) 1/2 in the hypothalamus and pituitary were detected. The results showed that the copper content was significantly increased in the WD group, and the histopathological morphology and ultrastructure of the hypothalamus and pituitary were damaged. The levels of the gonadotropin-releasing hormone, the follicle-stimulating hormone, the luteinizing hormone, and testosterone were significantly decreased. The apoptosis rate in the hypothalamus and pituitary was significantly increased. The expressions of proapoptotic proteins Bax and Caspase-3 were significantly increased, the expression of the anti-apoptotic protein Bcl-2 was significantly decreased, and the phosphorylation level of ERK1/2 was significantly decreased. Fertility is significantly reduced. After DMSA intervention, the hypothalamus tissue copper content decreased, the hypothalamus and pituitary tissue morphology and ultrastructure were improved, cell apoptosis was alleviated, the expression of Bax and Caspase-3 was significantly decreased, the expression of Bcl-2 was significantly increased, and the reproductive hormone level, phosphorylation level, and fertility were increased. Fertility was preserved after treatment with PMSG in male TX mice. These results suggest that copper deposition in WD causes male fertility decline by impairing reproductive neuroendocrine hormone release through inducing apoptosis and inhibiting the ERK signal in the hypothalamic-pituitary region. This study can also provide reference for the damage of copper pollution to the male reproductive system.
Collapse
Affiliation(s)
- Tingting Wang
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Limin Wu
- Reproductive and Genetic Branch, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| | - Qiuying Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kuiyu Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Fang Tan
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jiabo Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Hui Han
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| |
Collapse
|
36
|
da Silva Fonseca J, de Barros Marangoni LF, Marques JA, Bianchini A. Elevated Temperature and Exposure to Copper Leads to Changes in the Antioxidant Defense System of the Reef-Building Coral Mussismilia harttii. Front Physiol 2021; 12:804678. [PMID: 35002777 PMCID: PMC8734030 DOI: 10.3389/fphys.2021.804678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The frequency and severity of coral bleaching events have increased in recent years. Global warming and contamination are primarily responsible for triggering these responses in corals. Thus, the objective of this study was to evaluate the isolated and combined effects of elevated temperature and exposure to copper (Cu) on responses of the antioxidant defense system of coral Mussismilia harttii. In a marine mesocosm, fragments of the coral were exposed to three temperatures (25.0, 26.6, and 27.3°C) and three concentrations of Cu (2.9, 5.4, and 8.6 μg/L) for up to 12 days. Levels of reduced glutathione (GSH) and the activity of enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutamate cysteine ligase (GCL), were evaluated on the corals and symbionts. The short exposure to isolated and combined stressors caused a reduction in GSH levels and inhibition of the activity of antioxidant enzymes. After prolonged exposure, the combination of stressors continued to reduce GSH levels and SOD, CAT, and GCL activity in symbionts and GST activity in host corals. GCL activity was the parameter most affected by stressors, remaining inhibited after 12-days exposure. Interesting that long-term exposure to stressors stimulated antioxidant defense proteins in M. harttii, demonstrating a counteracting response that may beneficiate the oxidative state. These results, combined with other studies already published suggest that the antioxidant system should be further studied in order to understand the mechanisms of tolerance of South Atlantic reefs.
Collapse
Affiliation(s)
- Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Laura Fernandes de Barros Marangoni
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto Coral Vivo, Santa Cruz Cabrália, Brazil
- Smithsonian Tropical Research Institute, Ciudad de Panamá, Panama
| | - Joseane Aparecida Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto Coral Vivo, Santa Cruz Cabrália, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Santa Cruz Cabrália, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
37
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
38
|
Soriano-Castell D, Liang Z, Maher P, Currais A. Profiling the chemical nature of anti-oxytotic/ferroptotic compounds with phenotypic screening. Free Radic Biol Med 2021; 177:313-325. [PMID: 34748909 PMCID: PMC8639737 DOI: 10.1016/j.freeradbiomed.2021.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Because old age is the greatest risk factor for Alzheimer's disease (AD), it is critical to target the pathological events that link aging to AD in order to develop an efficient treatment that acts upon the primary causes of the disease. One such event might be the activation of oxytosis/ferroptosis, a unique cell death mechanism characterized by mitochondrial dysfunction and lethal lipid peroxidation. Here, a comprehensive library of >900 natural compounds was screened for protection against oxytosis/ferroptosis in nerve cells with the goal of better understanding the chemical nature of inhibitors of oxytosis/ferroptosis. Although the compounds tested spanned structurally diverse chemical classes from animal, microbial, plant and synthetic origins, a small set of very potent anti-oxytotic/ferroptotic compounds was identified that was highly enriched in plant quinones. The ability of these compounds to protect against oxytosis/ferroptosis strongly correlated with their ability to protect against in vitro ischemia and intracellular amyloid-beta toxicity in nerve cells, indicating that aspects of oxytosis/ferroptosis also underly other toxicities that are relevant to AD. Importantly, the anti-oxytotic/ferroptotic character of the quinone compounds relied on their capacity to target and directly prevent lipid peroxidation in a manner that required the reducing activity of cellular redox enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1). Because some of the compounds increased the production of total reactive oxygen species while decreasing lipid peroxidation, it appears that the pro-oxidant character of a compound can coexist with an inhibitory effect on lipid peroxidation and, consequently, still prevent oxytosis/ferroptosis. These findings have significant implications for the understanding of oxytosis/ferroptosis and open new approaches to the development of future neurotherapies.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Chen Z, Yan Y, Qi C, Liu J, Li L, Wang J. The Role of Ferroptosis in Cardiovascular Disease and Its Therapeutic Significance. Front Cardiovasc Med 2021; 8:733229. [PMID: 34765653 PMCID: PMC8576275 DOI: 10.3389/fcvm.2021.733229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide with regulated cell death playing an important role in cardiac pathophysiology. However, the classical mode of cell death cannot fully explain the occurrence and development of heart disease. In recent years, much research has been performed on ferroptosis, a new type of cell death that causes cell damage and contributes to the development of atherosclerosis, myocardial infarction, heart failure, and other diseases. In this review, we discuss the role of different organelles in ferroptosis and also focus on the relationship between autophagy and ferroptosis. Additionally, we describe the specific mechanism by which ferroptosis contributes to the development of CVD. Finally, we summarize the current research on ferroptosis-related pathway inhibitors and the applications of clinically beneficial cardiovascular drugs.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Chao Qi
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Lu Q, Zhang Y, Zhao C, Zhang H, Pu Y, Yin L. Copper induces oxidative stress and apoptosis of hippocampal neuron via pCREB/BDNF/ and Nrf2/HO-1/NQO1 pathway. J Appl Toxicol 2021; 42:694-705. [PMID: 34676557 DOI: 10.1002/jat.4252] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023]
Abstract
Disordered copper metabolism has been suggested to occur to several neurological conditions, including Alzheimer's disease and Parkinson's disease. However, the underlying mechanism was still unclear. This might link to copper-induced hippocampal neuronal apoptosis and decrease in neurons viability. Our vitro experiment showed copper exposure induced oxidative stress and promoted apoptosis of HT22 murine hippocampal neuronal cell. Mechanistically, we found copper, on the one hand, prevented phosphorylation of cAMP response element binding protein (CREB) to decrease expression its downstream target protein Brain-derived neurotrophic factor (BDNF), and to decrease mitochondrial membrane potential and Bcl-2/Bax ratio; on the other hand, copper-induced reactive oxygen species (ROS), promoted lipid peroxidation, reduced antioxidant enzyme activity of GSH-Px. Copper-induced oxidative damage further decreased the phosphorylation of CREB, decreased expression of Bcl-2, enhanced expression of Bax, and accelerated the dissociation of keap1-Nrf2 complex, promoted the nuclear translocation of Nrf2, stimulate the expression of antioxidant molecules HO-1 and NQO1. In conclusion, we found copper inhibited pCREB/BDNF signaling pathway by prevent CREB from phosphorylation, further found that oxidative damage not only inhibited neuroprotective signaling pathways and induced apoptosis, but activated antioxidant protection signals Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Abstract
Significance: Iron is an essential element required for growth and proper functioning of the body. However, an excess of labile ferrous iron increases the risk of oxidative stress-induced injury due to the high reactivity of the unpaired reactive electrons of both ferrous iron and oxygen. This high reactivity can be exemplified in the outside world by one of its consequences, rust formation. In cells, this redox-active iron is involved in the formation of lipid radicals. Recent Advances: Defect or insufficient membrane-protective mechanisms can result in iron-catalyzed excessive lipid peroxidation and subsequent cell death, now conceptualized as ferroptosis. Growing reports propose the detrimental role of iron and ferroptosis in many experimental disease models such as ischemia-reperfusion, acute and chronic organ injuries. Critical Issues: This review first provides a snapshot of iron metabolism, followed by a brief introduction of the molecular mechanisms of ferroptosis, as an iron-dependent lipid peroxidation-driven mode of cell death. Upon describing how iron dysbiosis affects ferroptosis induction, we elaborate on the detrimental role of the iron-ferroptosis axis in several diseases. Future Directions: Despite compelling findings suggesting a role of ferroptosis in experimental animal models, the exact contribution of ferroptosis in human contexts still needs further investigation. Development of reliable ferroptosis biomarkers will be an important step in characterizing ferroptosis in human disease. This can provide therapeutic opportunities aiming at targeting ferroptosis in human diseases. Antioxid. Redox Signal. 35, 487-509.
Collapse
Affiliation(s)
- Behrouz Hassannia
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
43
|
Abstract
Tremendous progress has been made in the field of ferroptosis since this regulated cell death process was first named in 2012. Ferroptosis is initiated upon redox imbalance and driven by excessive phospholipid peroxidation. Levels of multiple intracellular nutrients (iron, selenium, vitamin E and coenzyme Q10) are intimately related to the cellular antioxidant system and participate in the regulation of ferroptosis. Dietary intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) regulates ferroptosis by directly modifying the fatty acid composition in cell membranes. In addition, amino acids and glucose (energy stress) manipulate the ferroptosis pathway through the nutrient-sensitive kinases mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Understanding the molecular interaction between nutrient signals and ferroptosis sensors might help in the identification of the roles of ferroptosis in normal physiology and in the development of novel pharmacological targets for the treatment of ferroptosis-related diseases.
Collapse
|
44
|
Smoking and Neuropsychiatric Disease-Associations and Underlying Mechanisms. Int J Mol Sci 2021; 22:ijms22147272. [PMID: 34298890 PMCID: PMC8304236 DOI: 10.3390/ijms22147272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Despite extensive efforts to combat cigarette smoking/tobacco use, it still remains a leading cause of global morbidity and mortality, killing more than eight million people each year. While tobacco smoking is a major risk factor for non-communicable diseases related to the four main groups—cardiovascular disease, cancer, chronic lung disease, and diabetes—its impact on neuropsychiatric risk is rather elusive. The aim of this review article is to emphasize the importance of smoking as a potential risk factor for neuropsychiatric disease and to identify central pathophysiological mechanisms that may contribute to this relationship. There is strong evidence from epidemiological and experimental studies indicating that smoking may increase the risk of various neuropsychiatric diseases, such as dementia/cognitive decline, schizophrenia/psychosis, depression, anxiety disorder, and suicidal behavior induced by structural and functional alterations of the central nervous system, mainly centered on inflammatory and oxidative stress pathways. From a public health perspective, preventive measures and policies designed to counteract the global epidemic of smoking should necessarily include warnings and actions that address the risk of neuropsychiatric disease.
Collapse
|
45
|
Soriano-Castell D, Liang Z, Maher P, Currais A. The search for anti-oxytotic/ferroptotic compounds in the plant world. Br J Pharmacol 2021; 178:3611-3626. [PMID: 33931859 DOI: 10.1111/bph.15517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by glutathione (GSH) depletion and dysregulated production of mitochondrial ROS that results in lethal lipid peroxidation. As the significance of oxytosis/ferroptosis to age-associated human diseases is now beginning to be appreciated, the development of innovative approaches to identify novel therapeutics that target the oxytosis/ferroptosis pathway could not be more timely. Due to their sessile nature, plants are exposed to a variety of stresses that trigger physiological changes similar to those found in oxytosis/ferroptosis. As such, they have evolved a rich array of chemical strategies to deal with those challenging conditions. This review details a drug discovery approach for identifying potent inhibitors of oxytosis/ferroptosis from plants for the treatment of Alzheimer's disease and related dementias, thereby highlighting the tremendous potential of plant-based research for developing new medicines while simultaneously being a catalyst for sustainability.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
46
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
47
|
Vitalakumar D, Sharma A, Flora SJS. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol 2021; 35:e22830. [PMID: 34047408 DOI: 10.1002/jbt.22830] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a newly identified regulated form of cell death, which is thought to play a major role in neurodegenerative diseases. In this review, we discuss recent studies elucidating the molecular mechanisms involved in the regulation and execution of ferroptotic cell death and also its role in the brain. Ferroptosis is regulated mainly via iron homeostasis, glutathione metabolism, and lipid peroxidation. Ferroptotic cell death and pro-ferroptotic factors are correlated with the etiopathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD). Ferroptosis and etiological factors act synergistically in PD and AD pathogenesis. Furthermore, several preclinical and clinical studies targeting ferroptosis in PD and AD have also shown positive results. Evidence of ferroptosis in the brain thus gives new insights into understanding neurodegenerative diseases. Ferroptosis studies in the brain are still in their infancy, but the existing pieces of evidence suggest a strong correlation between ferroptotic cell death and neurodegenerative diseases. Thus, ferroptosis might be a promising target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- D Vitalakumar
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ankita Sharma
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Swaran J S Flora
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
48
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
49
|
Maher P, Currais A, Schubert D. Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chem Biol 2020; 27:1456-1471. [PMID: 33176157 PMCID: PMC7749085 DOI: 10.1016/j.chembiol.2020.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oxytosis was first described over 30 years ago in nerve cells as a non-excitotoxic pathway for glutamate-induced cell death. The key steps of oxytosis, including glutathione depletion, lipoxygenase activation, reactive oxygen species accumulation, and calcium influx, were identified using a combination of chemical and genetic tools. A pathway with the same characteristics as oxytosis was identified in transformed fibroblasts in 2012 and named ferroptosis. Importantly, the pathophysiological changes seen in oxytosis and ferroptosis are also observed in multiple neurodegenerative diseases as well as in the aging brain. This led to the hypothesis that this pathway could be used as a screening tool to identify novel drug candidates for the treatment of multiple age-associated neurological disorders, including Alzheimer's disease (AD). Using this approach, we have identified several AD drug candidates, one of which is now in clinical trials, as well as new target pathways for AD.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Schubert
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis 2020; 11:1537-1566. [PMID: 33269106 PMCID: PMC7673857 DOI: 10.14336/ad.2020.0225] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have shown that in the aging society, a person dies from stroke every 3 minutes and 42 seconds, and vast numbers of people experience depression around the globe. The high prevalence and disability rates of stroke and depression introduce enormous challenges to public health. Accumulating evidence reveals that stroke is tightly associated with depression, and both diseases are linked to oxidative stress (OS). This review summarizes the mechanisms of OS and OS-mediated pathological processes, such as inflammation, apoptosis, and the microbial-gut-brain axis in stroke and depression. Pathological changes can lead to neuronal cell death, neurological deficits, and brain injury through DNA damage and the oxidation of lipids and proteins, which exacerbate the development of these two disorders. Additionally, aging accelerates the progression of stroke and depression by overactive OS and reduced antioxidant defenses. This review also discusses the efficacy and safety of several antioxidants and antidepressants in stroke and depression. Herein, we propose a crosstalk between OS, aging, stroke, and depression, and provide potential therapeutic strategies for the treatment of stroke and depression.
Collapse
Affiliation(s)
- Anwen Shao
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Danfeng Lin
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Lingling Wang
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Sheng Tu
- 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Cameron Lenahan
- 4Burrell College of Osteopathic Medicine, Las Cruces, USA.,5Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.,6Brain Research Institute, Zhejiang University, Zhejiang, China.,7Collaborative Innovation Center for Brain Science, Zhejiang University, Zhejiang, China
| |
Collapse
|