1
|
Ma J, Zhou Y, Chen J, Guo S, Zhang W, Yi X, Du P, Wang Y, Chen J, Li S, Gao T, Li C, Jian Z. Exosomes enriched with miR-31-3p from keratinocytes under oxidative stress promote vitiligo progression by destructing melanocytes and activating CD8 + T cells. Int J Biol Macromol 2025; 310:143070. [PMID: 40220810 DOI: 10.1016/j.ijbiomac.2025.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Vitiligo is a skin disease characterized by the destruction of epidermal melanocytes due to oxidative stress. Keratinocytes are the main responder to oxidative stress and facilitate melanocyte loss by inducing melanocyte death and recruiting antigen-specific CD8+ T cell to skin to destroy melanocytes. It has been proved that keratinocytes secrete functional exosomes, but the role of exosomes secreted from keratinocytes under oxidative stress in vitiligo pathogenesis is unknown. The present study investigated the role of exosomes from H2O2-treated human keratinocytes in the vitiligo progression in vitro. and in vivo. The results demonstrated that oxidative stress enhanced the secretion of exosomes from keratinocytes. These exosomes (OS-Exos) suppressed the survival of melanocytes while promoting the proliferation and activation of CD8+ T cells in vitro. Then, we confirmed that OS-Exos administration aggravated melanocyte loss and CD8+ T cell infiltration in the epidermis in the vitiligo mouse model, thereby driving vitiligo progression. Further, we performed Small RNAs-seq to screen miRNAs enriched in OS-Exos. The subsequent results revealed that miR-31-3p, which was enriched in OS-Exos, facilitated melanocyte death and decreased the expression of melanogenesis-related genes through MITF signaling. Meanwhile, it was found that miR-31-3p promoted the activation of CD8+ T cells, which could depend on impaired immunosuppression and activated T-cell growth. Taken together, these data suggest that OS-Exos enriched with miR-31-3p facilitated vitiligo progression through the destruction of melanocytes and activation of CD8+ T cells. Keratinocytes-derived exosomes under oxidative stress could serve as an important mediator for oxidative stress-induced killing of melanocytes in vitiligo.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuqi Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Pengran Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
2
|
Seneschal J, Guyon M, Merhi R, Mazereeuw-Hautier J, Andreu N, Cazenave S, Ezzedine K, Passeron T, Boniface K. Combination of Baricitinib and Phototherapy in Adults With Active Vitiligo: A Randomized Clinical Trial. JAMA Dermatol 2025; 161:375-382. [PMID: 39841460 PMCID: PMC12004207 DOI: 10.1001/jamadermatol.2024.5737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/30/2024] [Indexed: 01/23/2025]
Abstract
Importance Vitiligo is a chronic autoimmune disorder leading to skin depigmentation and reduced quality of life (QOL). Patients with extensive and very active disease are the most difficult to treat. Objective To assess the efficacy and adverse events of baricitinib combined with narrowband UV-B in adults with severe, active, nonsegmental vitiligo. Design, Setting, and Participants This academic, multicenter, double-blind, noncomparative randomized clinical trial was conducted at 4 dermatology departments between July 2021 and April 2023 and included adult patients with extensive and active nonsegmental vitiligo. The study was designed to evaluate the effect of baricitinib plus narrowband UV-B based solely on the results from this experimental group. The placebo group was used as a calibration group. Data were analyzed from August to November 2023. Interventions Participants were randomized 3:1 to baricitinib, 4 mg per day, or placebo for 36 weeks alone for the first 12 weeks and then in combination with narrowband UV-B twice a week from weeks 12 to 36. Main Outcomes and Measures The primary outcome was mean percentage change in total Vitiligo Area Scoring Index (VASI) score from baseline to week 36 (baricitinib group). The prespecified aim of the study was to show that the reduction in the baricitinib plus narrowband UV-B was significantly greater than 42.9%, a repigmented surface threshold previously observed in patients treated with narrowband UV-B alone. Adverse events and secondary outcomes of change in disease activity and QOL were assessed. Post hoc analyses were additionally performed. Results Of 49 included patients, 35 (71%) were female, and the median (IQR) age was 49.9 (38.4-59.8) years. A total of 37 patients were randomized to the baricitinib group and 12 to the placebo group. The mean change in total VASI at week 36 was -44.8% (95% CI, -58.4% to -31.3%) for the baricitinib group and -9.2% (95% CI, -27.7% to 24.7%) for the placebo group. This was not significantly greater than the sufficient repigmented surface threshold of 42.9%. Post hoc analyses showed a significant difference at week 36 for total VASI score in the baricitinib plus narrowband UV-B group compared with placebo plus narrowband UV-B (-44.8% vs -9.2%, respectively; P = .02). There was a greater improvement in disease activity and QOL in the baricitinib group vs placebo group and no significant difference in the number of adverse events. Conclusions and Relevance This proof-of-concept randomized clinical trial confirmed the efficacy of baricitinib combined with narrowband UV-B in the treatment of patients with extensive and active vitiligo. Trial Registration ClinicalTrials.gov Identifier: NCT04822584.
Collapse
Affiliation(s)
- Julien Seneschal
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| | - Mathilde Guyon
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Ribal Merhi
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| | - Juliette Mazereeuw-Hautier
- CHU Toulouse, National Reference Center for Rare Skin Diseases, Department of Dermatology, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Nicolas Andreu
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Sarah Cazenave
- CHU de Bordeaux, Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Diseases, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Khaled Ezzedine
- Department of Dermatology, AP-HP, Henri Mondor University Hospital, Université Paris-Est Créteil, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics—EA 7379, Université Paris-Est Créteil, INSERM, Clinical Investigation Centre 1430, Créteil, France
| | - Thierry Passeron
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Université Côte d’Azur, Nice, France
| | - Katia Boniface
- CNRS, Immuno ConcEpT, UMR 5164, University Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Kaur H, Thakur K, Parsad D, Kumar R. Therapeutic implications of baricitinib in mouse model of vitiligo. Arch Dermatol Res 2025; 317:353. [PMID: 39918618 DOI: 10.1007/s00403-025-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
INTRODUCTION Vitiligo, an autoimmune disorder marked by skin depigmentation, is closely linked to immune dysregulation, including T cell infiltration and pro-inflammatory cytokines. This study explores the potential of baricitinib, a JAK-STAT inhibitor, in promoting repigmentation in vitiligo lesions by modulating immune responses. METHODS Using a mouse model of vitiligo induced by hydroquinone, we assessed the effects of baricitinib treatment on lesion repigmentation, CD8 + T cell infiltration, T cell populations, and serum TNF-α levels. Immunostaining, flow cytometry, and ELISA were used to analyse these parameters. RESULTS Baricitinib treatment significantly reduced CD8 + T cell infiltration in the skin, lowered serum TNF-α levels, and decreased both CD4 + and CD8 + T cell populations in the blood. Remarkably, these immune modulations correlated with notable repigmentation of the lesions. CONCLUSION Baricitinib effectively reduces inflammation and T cell infiltration, suggesting it as a promising therapeutic for vitiligo. These findings highlight its potential to modulate immune responses and restore skin pigmentation in vitiligo patients.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Kanika Thakur
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Li C, Wang W, Shao J, Zhou S, Ji X, Xi Y, Xu Q, Huang Y, Wang J, Wan Y, Li Z. Biomimetic polydopamine loaded with janus kinase inhibitor for synergistic vitiligo therapy via hydrogel microneedles. J Nanobiotechnology 2025; 23:63. [PMID: 39885576 PMCID: PMC11780829 DOI: 10.1186/s12951-025-03119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Both oxidative stress and autoimmune responses play crucial roles in the development of vitiligo. Under oxidative stress, the apoptotic melanocytes expose self-antigens and release high mobility group box 1 (HMGB1), triggering autoimmune activation and recruiting CD8+ T cells. This process further leads to the destruction of melanocytes, resulting in the lack of melanin granules. Additionally, the accumulated CD8+ T cells release interferon-γ (IFN-γ) to activate janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway in keratinocytes. Both oxidative stress and IFN-γ-JAK-STAT activation induce keratinocytes to express and release T cell chemotactic factors, exacerbating the process of vitiligo. Reducing the accumulation of CD8+ T cells by safeguarding melanocytes and keratinocytes from oxidative stress may be contemplated as a promising approach for vitiligo therapy. RESULTS In this study, we introduce a novel therapeutic agent called PDA-JAKi, which is capable of both eliminating oxidative stress and inhibiting T cell activation. Specifically, we have incorporated the janus kinase inhibitor (JAKi) tofacitinib into antioxidant polydopamine (PDA) nanoparticles, resulting in the formation of uniform PDA-JAKi nanodrug. PDA-JAKi effectively mitigates oxidative stress-induced apoptosis in melanocytes, reducing the antigen presentation and release of HMGB1. In addition, PDA-JAKi simultaneously attenuates oxidative stress and blocks the IFN-γ-JAK-STAT pathway to reduce the expression of C-X-C motif chemokine ligand 9/10/16 (CXCL9/10/16) in keratinocytes. We precisely deliver this therapeutic agent to the dermis using microneedle (MN) patches, aiming to enhance therapeutic efficacy compared to traditional drug administration methods. After PDA-JAKi MN treatment, the symptoms of vitiligo in mice are alleviated, and the affected areas regain pigmentation. Enhancements have been observed in the dermal thickness, the numbers of melanocytes and the content of melanin within the treated skin area. Moreover, there is a notable reduction in reactive oxygen species (ROS) level. Concurrently, substantial decreases were noted in CD8+ T cell infiltration, as well as the levels of IFN-γ and chemotactic factors CXCL9/10/16. CONCLUSIONS In summary, PDA-JAKi MN patches emerge as a promising therapeutic agent for vitiligo treatment.
Collapse
Affiliation(s)
- Chunying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenwen Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Junyi Shao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Sen Zhou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolin Ji
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Youxia Xi
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuyang Xu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuhan Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jingle Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Shanghai University, Wenzhou, 325000, China
| | - Yilin Wan
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
6
|
Lu L, He H, Feng J, Hu Z, Zhang S, Yang L, Liu Y, Wang T. Post-translational modification in the pathogenesis of vitiligo. Immunol Res 2024; 72:1229-1237. [PMID: 39320694 PMCID: PMC11618162 DOI: 10.1007/s12026-024-09545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Vitiligo is a chronic dermatological condition marked by the loss of skin pigmentation. Its complex etiology involves multiple factors and has not been completely elucidated. Protein post-translational modification pathways have been proven to play a significant role in inflammatory skin diseases, yet research in the context of vitiligo remains limited. This review focuses on the role of post-translational modifications in vitiligo pathogenesis, especially their impact on cellular signaling pathways related to immune response and melanocyte survival. Current therapeutic strategies targeting these pathways are discussed, emphasizing the potential for novel treatments in vitiligo management.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| | - Tao Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
7
|
Wang K, Lin Y, Zhou D, Li P, Zhao X, Han Z, Chen H. Unveiling ferroptosis: a new frontier in skin disease research. Front Immunol 2024; 15:1485523. [PMID: 39430757 PMCID: PMC11486644 DOI: 10.3389/fimmu.2024.1485523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Ferroptosis, a form of regulated cell death distinct from apoptosis, necrosis, and autophagy, is increasingly recognized for its role in skin disease pathology. Characterized by iron accumulation and lipid peroxidation, ferroptosis has been implicated in the progression of various skin conditions, including psoriasis, photosensitive dermatitis, and melanoma. This review provides an in-depth analysis of the molecular mechanisms underlying ferroptosis and compares its cellular effects with other forms of cell death in the context of skin health and disease. We systematically examine the role of ferroptosis in five specific skin diseases, including ichthyosis, psoriasis, polymorphous light eruption (PMLE), vitiligo, and melanoma, detailing its influence on disease pathogenesis and progression. Moreover, we explore the current clinical landscape of ferroptosis-targeted therapies, discussing their potential in managing and treating skin diseases. Our aim is to shed light on the therapeutic potential of modulating ferroptosis in skin disease research and practice.
Collapse
Affiliation(s)
- Ke Wang
- Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dan Zhou
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Peipei Li
- Department of Obstetrics and Gynecology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xiaoying Zhao
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhongyu Han
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
8
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
9
|
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J Clin Med 2024; 13:4919. [PMID: 39201060 PMCID: PMC11355229 DOI: 10.3390/jcm13164919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Vitiligo is a persistent autoimmune disease characterized by progressive depigmentation of the skin caused by the selective destruction of melanocytes. Although its etiopathogenesis remains unclear, multiple factors are involved in the development of this disease, from genetic and metabolic factors to cellular oxidative stress, melanocyte adhesion defects, and innate and adaptive immunity. This review presents a comprehensive summary of the existing knowledge on the role of different cellular mechanisms, including cytokines and chemokines interactions, in the pathogenesis of vitiligo. Although there is no definitive cure for vitiligo, notable progress has been made, and several treatments have shown favorable results. A thorough understanding of the basis of the disease uncovers promising drug targets for future research, providing clinical researchers with valuable insights for developing improved treatment options.
Collapse
Affiliation(s)
| | | | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland; (M.K.); (M.K.); (P.K.)
| |
Collapse
|
10
|
Seong SH, Oh SH. Up-and-Coming Drugs for the Treatment of Vitiligo. Ann Dermatol 2024; 36:197-208. [PMID: 39082655 PMCID: PMC11291099 DOI: 10.5021/ad.24.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 08/03/2024] Open
Abstract
Vitiligo is a chronic autoimmune disease that causes depigmented patches on the skin. It affects 0.5%-2.0% of the global population. It goes beyond physical appearance, often leading to stigmatization, low self-esteem, and depression, burdening patients with psychosocial challenges. The pathogenesis of vitiligo involves the loss of melanocytes due to autoreactive CD8+ T cells, triggered by environmental stressors and exacerbated by cellular vulnerabilities and immune responses. The release of danger signals and pro-inflammatory factors initiates an immune cascade perpetuating melanocyte destruction, mainly driven by interferon-γ and the C-X-C motif chemokine ligand 9/10-chemokine receptor 3 axis. Long-lasting tissue-resident memory T cells (Trms) and cytokines contribute to lesion persistence. Current treatments focus on topical steroids and tacrolimus, systemic steroids, and phototherapies, but their efficacy remains suboptimal, necessitating the development of new therapeutic options. Building on recent advancements in understanding the immunological mechanisms in vitiligo pathogenesis, with the initiation of Food and Drug Administration approval of topical ruxolitinib, various potential treatment options such as JAK inhibitors, cytokine blockers, and Trm or regulatory T cell targeting agents are being clinically researched and anticipated for vitiligo based on both preclinical and clinical data. This review aims to categorize and summarize the diverse investigational drugs currently undergoing clinical trials for vitiligo. By examining clinical outcomes, it is anticipated that this review will bring hope to dermatologists and patients regarding vitiligo, a condition that has historically posed challenges and transform it into a realm of potential possibilities.
Collapse
Affiliation(s)
- Seol Hwa Seong
- Department of Dermatology, Kosin University College of Medicine, Busan, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Hlača N, Vičić M, Kaštelan M, Dekanić A, Prpić-Massari L. Analysis of granulysin expression in vitiligo and halo-nevus. Sci Rep 2024; 14:16580. [PMID: 39020008 PMCID: PMC11254913 DOI: 10.1038/s41598-024-67494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Vitiligo and halo nevus are immune-mediated skin diseases that have a similar pathogenesis and involve cellular cytotoxicity mechanisms that are not yet fully understood. In this study, we investigated the expression patterns of the cytolytic molecule granulysin (GNLY) in different cytotoxic cells in skin samples of vitiligo and halo nevus. Skin biopsies were taken from perilesional and lesional skin of ten vitiligo patients, eight patients with halo nevus and ten healthy controls. We analysed the expression of GNLY by immunohistochemistry in CD8+ and CD56+ NK cells. A significantly higher accumulation of GNLY+, CD8+ GNLY+ and fewer CD56+ GNLY+ cells was found in the lesional skin of vitiligo and halo nevus than in the healthy skin. These cells were localised in the basal epidermis and papillary dermis, suggesting that GNLY may be involved in the immune response against melanocytes. Similarly, but to a lesser extent, upregulation of GNLY+ and CD8+ GNLY+ cells was observed in the perilesional skin of vitiligo and halo nevus compared to healthy controls. In this study, we demonstrated for the first time an increased expression of CD8+ GNLY+ T lymphocytes and CD56+ GNLY+ NK cells in lesions of vitiligo and halo nevus, indicating the role of GNLY in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Nika Hlača
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Marijana Vičić
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia.
| | - Marija Kaštelan
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Andrea Dekanić
- Department of Pathology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Larisa Prpić-Massari
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| |
Collapse
|
12
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
13
|
Liu C, Liu X, Xin H, Li X. A Mendelian randomization study on the causal effects of circulating cytokines on the risk of vitiligo. Front Med (Lausanne) 2024; 11:1375339. [PMID: 38695020 PMCID: PMC11061512 DOI: 10.3389/fmed.2024.1375339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
Background Accumulating evidence reveals an association between circulating cytokine levels and vitiligo. However, the causal association between circulating cytokine levels and vitiligo remains unrevealed. Methods We performed a two-sample Mendelian randomization (MR) analysis using a genome-wide association study of the 41 cytokines dataset, which was conducted with 3 Finnish cohorts (n = 8,293). Vitiligo data were acquired from strictly defined vitiligo data collected by FinnGenbiobank analysis, which included 207,613 European ancestors (131 vitiligo patients, 207,482 controls). The inverse-variance weighted (IVW) method, weighted median (WME), simple model, weighted model, and MR-Egger were used to determine the changes in vitiligo pathogenic cytokine taxa, followed by sensitivity analysis, including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association, and the leave-one-out method was used to assess the reliability of the results. The possibility of reverse causality was also investigated using a reverse MR study. Results We observed that rising IL-4 levels generated an enhanced probability of vitiligo in IVW (OR 2.72, 95%CI 1.19-6.22, p = 0.018). According to the results of the MR analysis, there were causal links between IL-4 and vitiligo. Results were steady after sensitivity and heterogeneity analyses. Conclusion Our research reveals that a genetically determined increased level of circulating IL-4 may be linked to a higher risk of developing vitiligo. The development of innovative treatment approaches (such as tofacitinib or dupilumab) that focus on blocking IL-4 as a novel way of preventing and treating vitiligo is significantly impacted by our findings.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
14
|
Hu W, Wang H, Li K, Lei Z, Xiang F, Li J, Kang X. Identification of active compounds in Vernonia anthelmintica (L.) willd by targeted metabolome MRM and kaempferol promotes HaCaT cell proliferation and reduces oxidative stress. Front Pharmacol 2024; 15:1343306. [PMID: 38659590 PMCID: PMC11041372 DOI: 10.3389/fphar.2024.1343306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Vernonia anthelmintica (L.) Willd. is a traditional treatment for vitiligo in Xinjiang. However, its therapeutic mechanism remains unclear owing to its complex composition and limited research on its chemical profile. Methods: We employed a targeted metabolome approach, combining selective reaction monitoring/multiple response monitoring (SRM/MRM) with high-performance liquid chromatography and MRM mass spectrometry to quantitatively analyze the flavonoid constituents of Vernonia anthelmintica. We also used network pharmacology and molecular docking to identify potential vitiligo-linked compounds and targets of V. anthelmintica seeds. Additionally, we assessed HaCaT cell proliferation by AAPH-induced, alongside changes in SOD activity and MDA content, following treatment with V. anthelmintica components. Finally, flow cytometry was used to detect apoptosis and ROS levels. Results and Discussion: We identified 36 flavonoid compounds in V. anthelmintica seeds, with 14 compounds exhibiting druggability. AKT1, VEGFA, ESR1, PTGS2, and IL2 have been identified as key therapeutic target genes, with PI3K/AKT signaling being an important pathway. Notably, kaempferol, one of the identified compounds, exhibited high expression in network pharmacology analysis. Kaempferol exhibited a strong binding affinity to important targets. Further, kaempferol enhanced HaCaT cell viability, inhibited apoptosis, reduced MDA levels, suppressed ROS activity, and upregulated SOD activity, increase the expression of cellular antioxidant genes, including HO-1, GCLC, GCLM, Nrf2, NQO1 and Keap1, providing significant protection against oxidative stress damage in vitro. Here, we present the first comprehensive study integrating SRM/MRM approaches and network analysis to identify active flavonoid compounds within V. anthelmintica (L.) Willd. Moreover, we revealed that its active ingredient, kaempferol, offers protection against AAPH-induced damage in keratinocytes, highlighting its potential as a clinical resource.
Collapse
Affiliation(s)
- Wen Hu
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kaixiao Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Jun Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
15
|
Kang P, Wang Y, Chen J, Chang Y, Zhang W, Cui T, Yi X, Li S, Li C. TRPM2-dependent autophagy inhibition exacerbates oxidative stress-induced CXCL16 secretion by keratinocytes in vitiligo. J Pathol 2024; 262:441-453. [PMID: 38186269 DOI: 10.1002/path.6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
16
|
Hamada R, Funasaka Y, Saeki H, Serizawa N, Hagino T, Yano Y, Mitsui H, Kanda N. Dietary habits in adult Japanese patients with vitiligo. J Dermatol 2024; 51:491-508. [PMID: 38421796 PMCID: PMC11484454 DOI: 10.1111/1346-8138.17163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Vitiligo is an autoimmune skin disease with acquired depigmentation. Dietary habits may modulate the pathogenesis of vitiligo. We evaluated dietary habits in adult Japanese patients with nonsegmental vitiligo, and compared their results with those of age- and sex-matched controls. We also examined the relationship between dietary habits and Vitiligo Area Scoring Index (VASI), or vitiligo on different anatomical sites. The intakes of energy, nutrients, and foods in the participants were analyzed using a brief-type self-administered diet history questionnaire. Patients with vitiligo showed higher body mass index (BMI) and lower intakes of manganese, vitamin D, pulses, and confection, compared with controls. Multivariate logistic regression analysis showed that vitiligo was associated with high BMI. VASI was higher in males than in females, and negatively correlated with age or intakes of potatoes and vegetables other than green/yellow vegetables. Linear multivariate regression analysis showed that high VASI was associated with younger age. Multivariate logistic regression analysis showed that moderate to severe vitiligo (VASI ≥ 4.25) was associated with male sex and longer disease duration. Multivariate logistic regression analyses showed the following association with vitiligo on respective anatomical sites: high intake of eggs and dairy products and high VASI on the head or neck, high intake of oils and fats and high VASI on the trunk, high intake of cereals and high VASI on the upper limbs, male sex and high VASI on the lower limbs, and high BMI and high VASI on the hands or feet. In conclusion, the control of obesity might have prophylactic or therapeutic effects on vitiligo.
Collapse
Affiliation(s)
- Risa Hamada
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Yoko Funasaka
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Hidehisa Saeki
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Naotaka Serizawa
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | - Teppei Hagino
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | | | | | - Naoko Kanda
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| |
Collapse
|
17
|
Inoue S, Suzuki T, Sano S, Katayama I. JAK inhibitors for the treatment of vitiligo. J Dermatol Sci 2024; 113:86-92. [PMID: 38326166 DOI: 10.1016/j.jdermsci.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Vitiligo is an autoimmune disease involving melanocyte-targeting T cells initiated by environmental and genetic factors. Steroids and tacrolimus have been used as topical treatments. Recently, novel topical agents targeting Janus kinase (JAK), a family of tyrosine kinases that regulates cytokine signaling, have emerged. Ruxolitinib is the first approved in vitiligo therapy. Furthermore, ritlecitinib is currently under clinical trials for oral treatment of active vitiligo. In this review, we discuss the possibility of topical JAK inhibitors as promising options for the treatment of vitiligo with regard to their mechanism of action, efficacy and safety.
Collapse
Affiliation(s)
- Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
18
|
Liu LY, He SJ, Chen Z, Ge M, Lyu CY, Gao D, Yu JP, Cai MH, Yuan JX, Zhang JL. The Role of Regulatory Cell Death in Vitiligo. DNA Cell Biol 2024; 43:61-73. [PMID: 38153369 DOI: 10.1089/dna.2023.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Vitiligo is one of the common chronic autoimmune skin diseases in clinic, which is characterized by localized or generalized depigmentation and seriously affects the physical and mental health of patients. At present, the pathogenesis of vitiligo is not clear; mainly, heredity, autoimmunity, oxidative stress, melanocyte (MC) self-destruction, and the destruction, death, or dysfunction of MCs caused by various reasons are always the core of vitiligo. Regulatory cell death (RCD) is an active and orderly death mode of cells regulated by genes, which widely exists in various life activities, plays a pivotal role in maintaining the homeostasis of the organism, and is closely related to the occurrence and development of many diseases. With the deepening of the research and understanding of RCD, people gradually found that there are many different forms of RCD in the lesions and perilesional skin of vitiligo patients, such as apoptosis, autophagy, pyroptosis, ferroptosis, and so on. Different cell death modes have different mechanisms in vitiligo, and different RCDs can interact and regulate each other. In this article, the mechanism related to RCD in the pathogenesis of vitiligo is reviewed, which provides new ideas for exploring the pathogenesis and targeted treatment of vitiligo.
Collapse
Affiliation(s)
- Lyu-Ye Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Si-Jia He
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| | - Zhao Chen
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Man Ge
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chun-Yi Lyu
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dandan Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ji-Peng Yu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meng-Han Cai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin-Xiang Yuan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jun-Ling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Guttman-Yassky E, Del Duca E, Da Rosa JC, Bar J, Ezzedine K, Ye Z, He W, Hyde C, Hassan-Zahraee M, Yamaguchi Y, Peeva E. Improvements in immune/melanocyte biomarkers with JAK3/TEC family kinase inhibitor ritlecitinib in vitiligo. J Allergy Clin Immunol 2024; 153:161-172.e8. [PMID: 37777018 DOI: 10.1016/j.jaci.2023.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Vitiligo is an autoimmune depigmenting disorder with no effective and safe treatments. Its pathogenesis is not fully elucidated. OBJECTIVE This substudy of a randomized, double-blind, placebo-controlled phase 2b trial (NCT03715829) evaluated effects of ritlecitinib, an oral JAK3/TEC family kinase inhibitor, on skin and blood biomarkers in participants with nonsegmental vitiligo (NSV). METHODS Sixty-five adults with NSV participated in the substudy and received daily treatment for 24 weeks with placebo (n = 14) or ritlecitinib with or without a 4-week loading dose: 200 (loading dose)/50 mg (n = 13), 100/50 mg (n = 12), 50 mg (n = 11), 30 mg (n = 8), or 10 mg (n = 6). Skin (lesional and nonlesional) biopsy samples were obtained at baseline and at 4 and 24 weeks. Changes from baseline to weeks 4 and 24 in skin and blood molecular and cellular biomarkers were evaluated by RNA sequencing, quantitative real-time PCR, proteomic analysis, and flow cytometry. RESULTS Ritlecitinib-treated groups showed downregulation of immune biomarkers and upregulation of melanocyte-related markers at weeks 4 and 24 compared to baseline and/or placebo. Significant reductions were seen in CD3+/CD8+ T-cell infiltrates, with significant increases in melanocyte markers (tyrosinase; Melan-A) in NSV lesions in the 50 mg ritlecitinib groups (both P < .05). There was significant, dose-dependent downregulation in T-cell activation, NK, cytotoxic, and regulatory markers in lesional skin (IL-2, IL2-RA, IL-15, CCR7, CD5, CRTAM, NCR1, XCL1, KIR3DL1, FASLG, KLRD; P < .05). TH1 and TH2 markers were also downregulated in lesional skin and blood in a dose-dependent manner (P < .05). Changes in immune biomarkers correlated with clinical response. CONCLUSIONS Ritlecitinib significantly downregulated proinflammatory biomarkers and increased melanocyte products in skin and blood of participants with NSV, suggesting its potential in treatment. Ritlecitinib-mediated changes positively correlated with clinical response.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY.
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY
| | - Jonathan Bar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Khaled Ezzedine
- Hôpital Henri Mondor and Université Paris-Est Créteil, EpiDermE-Epidemiology in Dermatology and Evaluation of Therapeutics, Creteil, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Pham JP, Wark KJL, Woods J, Frew JW. Resident cutaneous memory T cells: a clinical review of their role in chronic inflammatory dermatoses and potential as therapeutic targets. Br J Dermatol 2023; 189:656-663. [PMID: 37603832 DOI: 10.1093/bjd/ljad303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Resident memory T cells (T-RMs) remain in epithelial barrier tissues after antigen exposure and the initial effector phase. These T-RMs provide effective antimicrobial and anticancer immunity; however, pathogenic T-RMs have been shown to mediate various chronic inflammatory disorders in a variety of tissue types. In the skin, T-RMs are referred to as resident cutaneous memory T cells (cT-RMs). Understanding the mechanisms leading to the development and establishment of these cT-RMs populations may allow for targeted treatments that provide durable responses in chronic immune-mediated skin diseases, even after cessation. In this review, we summarize the evidence on cT-RMs as drivers of chronic inflammatory dermatoses, including psoriasis, vitiligo, atopic dermatitis, cutaneous lupus erythematosus and alopecia areata, among others. Data from in vitro, animal model and ex vivo human studies are presented, with a focus on the potential for cT-RMs to trigger acute disease flares, as well as recurrent disease, by establishing an immune 'memory' in the skin. Furthermore, the available data on the potential for existing and novel treatments to affect the development or survival of cT-RMs in the skin are synthesized. The data suggest a dynamic and rapidly growing area in the field of dermatology; however, we also discuss areas in need of greater research to allow for optimal treatment selection for long-term disease control.
Collapse
Affiliation(s)
- James P Pham
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Kirsty J L Wark
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jane Woods
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - John W Frew
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
21
|
Lajevardi V, Hosseini ZSS, Heidari S. Efficacy of using oral methotrexate with phototherapy in the treatment of vitiligo in comparison with single phototherapy treatment: A double-blinded randomized controlled trial. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:657-662. [PMID: 37859524 DOI: 10.1111/phpp.12918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Vitiligo is an acquired skin disease with a worldwide prevalence of 0.5%-2% and a tendency to involve both genders. Although the exact pathologic mechanism is unknown, there is some evidence for the role of autoimmunity in this disease. Based on this theory, various immunosuppressive agents, such as topical or systemic corticosteroids and phototherapy (including narrowband ultraviolet B), are used. Methotrexate is another immunosuppressant that has recently become popular as a single treatment for vitiligo; however, the synergistic effect and its superiority over other treatments are two crucial factors that are still obscure. This study aimed to compare the efficacy of methotrexate+ NB-UVB versus placebo+ NB-UVB in vitiligo patients. METHODS In this double-blinded, randomized controlled trial, 42 patients were randomly allocated into two groups: the first group received three times weekly NB-UVB plus placebo, and the second group was treated with three times weekly NB-UVB in combination with a weekly dose of 12.5 mg MTX. The total duration of treatment was 6 months, patients were followed up every 2 months, and the assessment tools were VASI (repigmentation indicator) and VIDA (disease activity indicator) scores. RESULTS Both treatment groups showed improvement in VASI and VIDA scores during 6-month follow-up, but no statistical significance was found between the two treatment methods. CONCLUSION This study demonstrated that both treatment modalities were equally effective, and further studies are required to evaluate the efficacy of MTX with other medications with longer follow-up and a larger sample size.
Collapse
Affiliation(s)
- Vahide Lajevardi
- Department of Dermatology, RAZI Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sama Heidari
- Department of Dermatology, RAZI Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Białczyk A, Wełniak A, Kamińska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther 2023; 27:723-739. [PMID: 37737953 PMCID: PMC10590312 DOI: 10.1007/s40291-023-00672-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Vitiligo is a chronic skin disorder characterised by the loss of melanocytes and subsequent skin depigmentation. Although many theories have been proposed in the literature, none alone explains the pathogenesis of vitiligo. Oxidative stress has been identified as a potential factor in the pathogenesis of vitiligo. A growing body of evidence suggests that antioxidant therapies may offer a promising approach to managing this condition. This review summarises the potential mechanisms of oxidative stress and the types of melanocyte death in vitiligo. We also provide a brief overview of the most commonly studied antioxidants. Melanocytes in vitiligo are thought to be damaged by an accumulation of reactive oxygen species to destroy the structural and functional integrity of their DNA, lipids, and proteins. Various causes, including exogenous and endogenous stress factors, an imbalance between prooxidants and antioxidants, disruption of antioxidant pathways, and gene polymorphisms, lead to the overproduction of reactive oxygen species. Although necroptosis, pyroptosis, ferroptosis, and oxeiptosis are newer types of cell death that may contribute to the pathophysiology of vitiligo, apoptosis remains the most studied cell death mechanism in vitiligo. According to studies, vitamin E helps to treat lipid peroxidation of the skin caused by psoralen ultra-violet A treatment. In addition, Polypodium leucotomos increased the efficacy of psoralen ultra-violet A or narrow-band ultraviolet B therapy. Our review provides valuable insights into the potential role of oxidative stress in pathogenesis and antioxidant-based supporting therapies in treating vitiligo, offering a promising avenue for further research and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Białczyk
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland.
| | - Adam Wełniak
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Kamińska
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
23
|
Morizane S, Mukai T, Sunagawa K, Tachibana K, Kawakami Y, Ouchida M. "Input/output cytokines" in epidermal keratinocytes and the involvement in inflammatory skin diseases. Front Immunol 2023; 14:1239598. [PMID: 37881433 PMCID: PMC10597658 DOI: 10.3389/fimmu.2023.1239598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Considering the role of epidermal keratinocytes, they occupy more than 90% of the epidermis, form a physical barrier, and also function as innate immune barrier. For example, epidermal keratinocytes are capable of recognizing various cytokines and pathogen-associated molecular pattern, and producing a wide variety of inflammatory cytokines, chemokines, and antimicrobial peptides. Previous basic studies have shown that the immune response of epidermal keratinocytes has a significant impact on inflammatory skin diseases. The purpose of this review is to provide foundation of knowledge on the cytokines which are recognized or produced by epidermal keratinocytes. Since a number of biologics for skin diseases have appeared, it is necessary to fully understand the relationship between epidermal keratinocytes and the cytokines. In this review, the cytokines recognized by epidermal keratinocytes are specifically introduced as "input cytokines", and the produced cytokines as "output cytokines". Furthermore, we also refer to the existence of biologics against those input and output cytokines, and the target skin diseases. These use results demonstrate how important targeted cytokines are in real skin diseases, and enhance our understanding of the cytokines.
Collapse
Affiliation(s)
- Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Tachibana
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshio Kawakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Kassab A, Khalij Y, Ayed Y, Dar-Odeh N, Kokandi AA, Denguezli M, Youssef M. Serum Inflammatory and Oxidative Stress Markers in Patients with Vitiligo. J Clin Med 2023; 12:5861. [PMID: 37762802 PMCID: PMC10532328 DOI: 10.3390/jcm12185861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Vitiligo is a common chronic hypomelanotic skin disorder. An intricate pool of markers associated with a complex combination of biological and environmental factors is thought to be implicated in etiology. This study aims to investigate the most important markers associated with vitiligo pathogenesis, including redox status, inflammation, and immune profile, in patients with vitiligo. MATERIALS AND METHODS The study included a total of 96 subjects: 30 patients with active non-segmental vitiligo, 30 patients with stable non-segmental vitiligo, and 36 controls. The vitiligo area severity index (VASI) and vitiligo disease activity score (VIDA) were determined. The following serum parameters were assessed: antioxidant status (TAS), superoxide dismutase activity (SOD), catalase activity (CAT), glutathione peroxidase activity (GPx), glutathione-S-transferase activity (GST), malondialdehyde (MDA), advanced oxidation protein products (AOPP), C reactive protein (CRP), interleukin-15 (IL-15), and chemokines (CXCL9, CXCL10). RESULTS The VASI score was not significantly different between active and stable vitiligo patients, as it was approximately 0.1. TAS, CAT, GPx, and GST were significantly lower in vitiligo patients compared to controls (p < 0.05). They were also significantly lower in active vitiligo when compared to stable vitiligo (p < 0.05). However, SOD levels were significantly higher in vitiligo patients than in controls and in the active vitiligo group than in the stable vitiligo group (p < 0.05). MDA and AOPP levels were significantly higher in patients with active and stable vitiligo compared to controls (p < 0.05). However, they did not significantly differ between active and stable vitiligo patients (p < 0.05). In both active and stable vitiligo, CRP and IL-15 were significantly higher than controls (p < 0.05). Whereas CRP was significantly higher in active (range = 2.0-7.2, mean = 4.46 ± 1.09) than in stable vitiligo (range = 1.6-6.7, mean = 3.75 ± 1.08) (p < 0.05). There was no significant difference in IL-15 levels between active and stable vitiligo. In both active and stable vitiligo, CXCL9 and CXCL10 were significantly higher than controls (p < 0.05), and they were significantly higher in active than stable vitiligo (p < 0.05). CONCLUSIONS In vitiligo, oxidative damage induces an increase in pro-inflammatory IL-15, which in turn promotes IFN-γ-inducible chemokines such as CXCL9 and CXCL10. Further, there seems to be a link between the VASI score and IL-15 levels. These data imply that inhibiting IL-15 could be a promising method for developing a potentially targeted treatment that suppresses the early interplay between oxidant stress and IL-15 keratinocyte production, as well as between resident and recirculating memory T cells.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Yassine Khalij
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
| | - Yosra Ayed
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Najla Dar-Odeh
- Department of Oral Surgery, Oral Medicine and Periodontics, School of Dentistry, The University of Jordan, Amman 11942, Jordan;
| | - Amal A. Kokandi
- Department of Dermatology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meriam Denguezli
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Monia Youssef
- Department of Dermatology, Hospital of Fattouma Bourguiba, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| |
Collapse
|
25
|
Li X, Miao F, Xin R, Tai Z, Pan H, Huang H, Yu J, Chen Z, Zhu Q. Combining network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification to examine the efficacy and immunoregulation mechanism of FHB granules on vitiligo. Front Immunol 2023; 14:1194823. [PMID: 37575231 PMCID: PMC10414113 DOI: 10.3389/fimmu.2023.1194823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Fufang Honghua Buji (FHB) granules, have proven efficacy against vitiligo in long-term clinical practice. However, its major active chemical components and molecular mechanisms of action remain unknown. The purpose of this study was to confirm the molecular mechanism of FHB's therapeutic effect on vitiligo utilizing network pharmacology, molecular docking, and molecular dynamics simulation prediction, as well as experimental verification. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) and HERB databases were used to obtain the chemical composition and action targets of FHB. Online Mendelian Inheritance in Man (OMIM), DrugBank, DisGeNET, GeneCards, and Therapeutic Target Database (TTD) databases were applied to screen for vitiligo-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed through the Matascape database. Molecular docking and dynamics simulation methods were for the analysis of the binding sites and binding energies between the FHB's active components and the targets. Finally, a vitiligo mouse model was created, and the therapeutic effect and molecular mechanism of action of FHB were validated using enzyme linked immunosorbent assay (ELISA), western blot (WB), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Additionally, hematoxylin-eosin staining (HE) and blood biochemical assays were conducted to assess the biosafety of FHB. Result The screening of chemical composition and targets suggested that 94 genetic targets of FHB were associated with vitiligo. The bioinformatics analysis suggested that luteolin, quercetin, and wogonin may be major active components, and nuclear factor-kappa B p65 subunit (RELA), signal transducer, and activator of transcription (STAT) 3 and RAC-alpha serine/threonine-protein kinase (AKT) 1 may be potential targets of FHB-vitiligo therapy. Molecular docking and dynamics simulation further demonstrated that luteolin, quercetin, and wogonin all bound best to STAT3. Through experimental verification, FHB has been demonstrated to alleviate the pathogenic characteristics of vitiligo mice, suppress the JAK-STAT signaling pathway, reduce inflammation, and increase melanogenesis. The in vivo safety evaluation experiments also demonstrated the non-toxicity of FHB. Conclusions FHB exerts anti-inflammatory and melanogenesis-promoting effects via the effect of multi-component on multi-target, among which the JAK-STAT pathway is a validated FHB-vitiligo target, providing new ideas and clues for the development of vitiligo therapy.
Collapse
Affiliation(s)
- Xiaolong Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Hao Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Chang Y, Kang P, Cui T, Guo W, Zhang W, Du P, Yi X, Guo S, Gao T, Li C, Li S. Pharmacological inhibition of demethylzeylasteral on JAK-STAT signaling ameliorates vitiligo. J Transl Med 2023; 21:434. [PMID: 37403086 DOI: 10.1186/s12967-023-04293-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The activation of CD8+ T cells and their trafficking to the skin through JAK-STAT signaling play a central role in the development of vitiligo. Thus, targeting this key disease pathway with innovative drugs is an effective strategy for treating vitiligo. Natural products isolated from medicinal herbs are a useful source of novel therapeutics. Demethylzeylasteral (T-96), extracted from Tripterygium wilfordii Hook F, possesses immunosuppressive and anti-inflammatory properties. METHODS The efficacy of T-96 was tested in our mouse model of vitiligo, and the numbers of CD8+ T cells infiltration and melanocytes remaining in the epidermis were quantified using whole-mount tail staining. Immune regulation of T-96 in CD8+ T cells was evaluated using flow cytometry. Pull-down assay, mass spectrum analysis, molecular docking, knockdown and overexpression approaches were utilized to identify the target proteins of T-96 in CD8+ T cells and keratinocytes. RESULTS Here, we found that T-96 reduced CD8+ T cell infiltration in the epidermis using whole-mount tail staining and alleviated the extent of depigmentation to a comparable degree of tofacitinib (Tofa) in our vitiligo mouse model. In vitro, T-96 decreased the proliferation, CD69 membrane expression, and IFN-γ, granzyme B, (GzmB), and perforin (PRF) levels in CD8+ T cells isolated from patients with vitiligo. Pull-down assays combined with mass spectrum analysis and molecular docking showed that T-96 interacted with JAK3 in CD8+ T cell lysates. Furthermore, T-96 reduced JAK3 and STAT5 phosphorylation following IL-2 treatment. T-96 could not further reduce IFN-γ, GzmB and PRF expression following JAK3 knockdown or inhibit increased immune effectors expression upon JAK3 overexpression. Additionally, T-96 interacted with JAK2 in IFN-γ-stimulated keratinocytes, inhibiting the activation of JAK2, decreasing the total and phosphorylated protein levels of STAT1, and reducing the production and secretion of CXCL9 and CXCL10. T-96 did not significantly inhibit STAT1 and CXCL9/10 expression following JAK2 knockdown, nor did it suppress upregulated STAT1-CXCL9/10 signaling upon JAK2 overexpression. Finally, T-96 reduced the membrane expression of CXCR3, and the culture supernatants pretreated with T-96 under IFN-γ stressed keratinocytes markedly blocked the migration of CXCR3+CD8+ T cells, similarly to Tofa in vitro. CONCLUSION Our findings demonstrated that T-96 might have positive therapeutic responses to vitiligo by pharmacologically inhibiting the effector functions and skin trafficking of CD8+ T cells through JAK-STAT signaling.
Collapse
Affiliation(s)
- Yuqian Chang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Pengran Du
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
28
|
Luo L, Zhu J, Guo Y, Li C. Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis. Front Immunol 2023; 14:1164124. [PMID: 37287971 PMCID: PMC10242039 DOI: 10.3389/fimmu.2023.1164124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Vitiligo is an acquired, autoimmune, depigmented skin disease with unclear pathogenesis. Mitochondrial dysfunction contributes significantly to vitiligo, and mitophagy is vital for removing damaged mitochondria. Herein, using bioinformatic analysis, we sought to determine the possible role of mitophagy-associated genes in vitiligo and immune infiltration. Methods Microarrays GSE53146 and GSE75819 were used to identify differentially expressed genes (DEGs) in vitiligo. By crossing vitiligo DEGs with mitophagy-related genes, the mitophagy-related DEGs were identified. Functional enrichment and protein-protein intersection (PPI) analyses were conducted. Then, the hub genes were identified using two machine algorithms, and receiver operating characteristic (ROC) curves were generated. Next, the immune infiltration and its connection with hub genes in vitiligo were investigated. Finally, the Regnetwork database and NetworkAnalyst were used to predict the upstream transcriptional factors (TFs), microRNAs (miRNAs), and the protein-compound network. Results A total of 24 mitophagy-related genes were screened. Then, five mitophagy hub genes (GABARAPL2, SP1, USP8, RELA, and TBC1D17) were identified using two machine learning algorithms, and these genes showed high diagnostic specificity for vitiligo. The PPI network showed that hub genes interacted with each other. The mRNA expression levels of five hub genes were validated in vitiligo lesions by qRT-PCR and were compatible with the bioinformatic results. Compared with controls, the abundance of activated CD4+ T cells, CD8+ T cells, immature dendritic cells and B cells, myeloid-derived suppressor cells (MDSCs), gamma delta T cells, mast cells, regulatory T cells (Tregs), and T helper 2 (Th2) cells was higher. However, the abundance of CD56 bright natural killer (NK) cells, monocytes, and NK cells was lower. Correlation analysis revealed a link between hub genes and immune infiltration. Meanwhile, we predicted the upstream TFs and miRNAs and the target compounds of hub genes. Conclusion Five hub mitophagy-related genes were identified and correlated with immune infiltration in vitiligo. These findings suggested that mitophagy may promote the development of vitiligo by activating immune infiltration. Our study might enhance our comprehension of the pathogenic mechanism of vitiligo and offer a treatment option for vitiligo.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
30
|
Hu W, Zhang J, Wang H, Guan M, Dai L, Li J, Kang X. Protective effects of isorhamnetin against H 2O 2-induced oxidative damage in HaCaT cells and comprehensive analysis of key genes. Sci Rep 2023; 13:2498. [PMID: 36781904 PMCID: PMC9925802 DOI: 10.1038/s41598-023-27575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Isorhamnetin (ISO) is a methylated flavonol present in the leaves, flowers, and fruits of many plants with antitumour, anti-inflammatory, antioxidant, and anti-apoptotic properties. ISO has been suggested as the active substance in Vernonia anthelmintica (L.) to treat vitiligo. However, the mechanisms underlying its effects remain unclear. In this study, human keratinocytes (HaCaT cells) were pre-treated with or without ISO and then stimulated with hydrogen peroxide (H2O2) to generate oxidative damage. Pre-treatment with ISO increased HaCaT cell viability, reduced malondialdehyde content, and enhanced superoxide dismutase activity, resulting in a reduction in the loss of mitochondrial membrane potential, improved cell morphological damage, and apoptosis inhibition. Furthermore, we identified 51 significantly dysregulated differentially expressed genes (DEGs) of HaCaT cells treated with ISO using RNA-sequencing. Enrichment analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases indicated that the protective effect of ISO could be related to its effects on the Wnt signalling pathway. Our study provides novel insights into key gene regulation in the progression of oxidative damage and the mechanisms of action of ISO.
Collapse
Affiliation(s)
- Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Mengmeng Guan
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Leheng Dai
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Jun Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
31
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022; 27:193-199. [PMID: 36154894 PMCID: PMC9518600 DOI: 10.1080/13510002.2022.2123864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis. METHODS Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity. DISCUSSION DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Guangmin Wei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Yuanmin He Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
33
|
Miao Y, Su D, Fu Q, Chen T, Ji Y, Zhang F. Identification of CKS2 and RRM2 as potential markers of vitiligo using bioinformatics analysis. Medicine (Baltimore) 2022; 101:e31908. [PMID: 36401415 PMCID: PMC9678625 DOI: 10.1097/md.0000000000031908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Previous studies have attempted to elucidate the molecular mechanism of vitiligo; however, its pathogenesis remains unclear. This study aimed to explore biomarkers related to vitiligo through bioinformatic analysis. The microarray datasets GSE53146 and GSE65127 were downloaded from the Gene Expression Omnibus database. Firstly, differentially expressed genes (DEGs) in GSE53146 were screened, and then an enrichment analysis was performed. Secondly, the protein-protein interaction (PPI) network of DEGs was constructed using the STRING database, and the key genes were screened using the MCODE plugin in Cytoscape and verified using GSE65127. Finally, quantiseq was used to evaluate immune cell infiltration in vitiligo, then to observe the correlation between biomarkers and immune cells. In total, 544 DEGs were identified, including 342 upregulated and 202 downregulated genes. Gene Ontology (GO) enrichment showed that DEGs were related to inflammatory and immune responses, and Kyoto Encyclopedia of Genes and Genomes enrichment showed that DEGs were involved in many autoimmune diseases. In the PPI network, 7 key genes, CENPN, CKS2, PLK4, RRM2, TPX2, CCNA2, and CDC45 were identified by MCODE cluster and verified using the GSE65127 dataset. With an area under the curve (AUC) > 0.8 as the standard, 2 genes were screened, namely CKS2 and RRM2. Further immune infiltration analysis showed that M2 macrophages were involved in the pathogenesis of vitiligo, whereas CKS2 and RRM2 were both related to M2 macrophages. This study shows that CKS2 and RRM2 have potential as biomarkers of vitiligo and provides a theoretical basis for a better understanding of the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yu Miao
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dongqiang Su
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Dermatology, Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qian Fu
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Taoyu Chen
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanqi Ji
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng Zhang
- Department of Dermatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Dermatology, Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * Correspondence: Feng Zhang, Department of Dermatology, Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150023, China (e-mail: )
| |
Collapse
|
34
|
Wei G, Pan Y, Wang J, Xiong X, He Y, Xu J. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives. Clin Cosmet Investig Dermatol 2022; 15:2177-2186. [PMID: 36267690 PMCID: PMC9576603 DOI: 10.2147/ccid.s381432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Vitiligo is a chronic depigmenting disorder of the skin and mucosa caused by the destruction of epidermal melanocytes. Although the exact mechanism has not been elucidated, studies have shown that oxidative stress plays an important role in the pathogenesis of vitiligo. High mobility group box protein B1 (HMGB1) is a major nonhistone protein and an extracellular proinflammatory or chemotactic molecule that is actively secreted or passively released by necrotic cells. Recent data showed that HMGB1 is overexpressed in both blood and lesional specimens from vitiligo patients. Moreover, oxidative stress triggers the release of HMGB1 from keratinocytes and melanocytes, indicating that HMGB1 may participate in the pathological process of vitiligo. Overall, this review mainly focuses on the role of HMGB1 in the potential mechanisms underlying vitiligo depigmentation under oxidative stress. In this review, we hope to provide new insights into vitiligo pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Guangmin Wei
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
35
|
Feng Y, Lu Y. Advances in vitiligo: Update on therapeutic targets. Front Immunol 2022; 13:986918. [PMID: 36119071 PMCID: PMC9471423 DOI: 10.3389/fimmu.2022.986918] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Vitiligo, whose treatment remains a serious concern and challenge, is an autoimmune skin disease characterized by patches of depigmentation. The increasing application of molecular-targeted therapy in skin diseases, such as psoriasis and systemic lupus erythematosus, has dramatically improved their condition. Besides, there is a favorable effect of repigmentation in the treatment of the above diseases combined with vitiligo, implying that molecular-targeted therapy may also have utility in vitiligo treatment. Recently, the role of cytokine and signaling pathways in vitiligo pathogenesis are increasingly recognized. Thus, investigations are underway targeting the molecules described above. In this paper, we present a synopsis of current practices in vitiligo treatment and introduce the improvement in identifying new molecular targets and applying molecular-targeted therapies, including those under development in vitiligo treatment, providing valuable insight into establishing further precision medicine for vitiligo patients.
Collapse
|
36
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
37
|
Chang Y, Zhang S, Zhang W, Li S, Li C. The Efficacy and Psychoneuroimmunology Mechanism of Camouflage Combined With Psychotherapy in Vitiligo Treatment. Front Med (Lausanne) 2022; 9:818543. [PMID: 35721084 PMCID: PMC9198302 DOI: 10.3389/fmed.2022.818543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives The efficacy of camouflage combined with psychotherapy and the underlying mechanisms are poorly understood in vitiligo management. This study aimed to investigate the joint efficacy and further explore psycho-neuro-endocrine-immune-skin interactions. Patients and Methods In a prospective, non-randomized and concurrent controlled trial, patients were divided into two groups. Quality of life (QOL) was evaluated using the Chinese version of the Vitiligo Life Quality Index (VLQI-C). Serum levels of neuropeptides and cytokines were detected by enzyme-linked immunosorbent assay. Results A total of 149 patients were included for final evaluation. After treatment for 4 weeks, total and subcategory quality of life scores in the intervention group were much lower than in the control group. Serum levels of neuropeptide-Y (NPY) and melanin-concentrating hormone (MCH) significantly decreased, and serum level of adrenocorticotropic hormone (ACTH) increased in both active and stable patients of the intervention group, but not in the control group. In addition, the serum levels of interferon-γ (IFN-γ), CXC chemokine ligand 10 (CXCL10), and interleukin-1β (IL-1β) decreased in both the active and stable patients of the intervention group and only in the active patients of the control group. Conclusions The combination of camouflage and psychotherapy provided a clinically meaningful improvement in quality of life and ameliorated the outcome by likely modulating the psycho-neuro-endocrine-immuno-skin system during vitiligo management. Clinical Trial Registration www.clinicaltrials.gov/ct2/show/NCT03540966, identifier: NCT03540966.
Collapse
Affiliation(s)
- Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
Marchioro HZ, Castro CCSD, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol 2022; 97:478-490. [PMID: 35643735 PMCID: PMC9263675 DOI: 10.1016/j.abd.2021.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.
Collapse
|
39
|
The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8498472. [PMID: 35103096 PMCID: PMC8800607 DOI: 10.1155/2022/8498472] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic acquired pigmentation disorder characterized by loss of pigmentation. Among various hypotheses proposed for the pathogenesis of vitiligo, oxidative stress-induced immune response that ultimately leads to melanocyte death remains most widely accepted. Oxidative stress which causes elevated levels of reactive oxygen species (ROS) can lead to dysfunction of molecules and organelles, triggering further immune response, and ultimately melanocyte death. In recent years, a variety of cell death modes have been studied, including apoptosis, autophagy and autophagic cell death, ferroptosis, and other novel modes of death, which will be discussed in this review in detail. Oxidative stress is also strongly linked to these modes of death. Under oxidative stress, ROS could induce autophagy by activating the Nrf2 antioxidant pathway of melanocytes. However, persistent stimulation of ROS might eventually lead to excessive activation of Nrf2 antioxidant pathway, which in turn will inactivate autophagy. Moreover, ferroptosis may be triggered by oxidative-related transcriptional production, including ARE, the positive feedback loop related to p62, and the reduced activity and expression of GPX4. Therefore, it is reasonable to infer that these modes of death are involved in the oxidative stress response, and that oxidative stress also acts as an initiator for various modes of death through some complex mechanisms. In this study, we aim to summarize the role of oxidative stress in vitiligo and discuss the corresponding mechanisms of interaction between various modes of cell death and oxidative stress. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of vitiligo.
Collapse
|
40
|
Qi F, Liu F, Gao L. Janus Kinase Inhibitors in the Treatment of Vitiligo: A Review. Front Immunol 2021; 12:790125. [PMID: 34868078 PMCID: PMC8636851 DOI: 10.3389/fimmu.2021.790125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Vitiligo is a multifactorial reversible skin disorder characterized by distinct white patches that result from melanocyte destruction. Activated CXCR3+ CD8+ T cells promote melanocyte detachment and apoptosis through interferon-gamma (IFN-γ secretion and chemokines secreted by keratinocytes through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT)-1 signaling pathway results in further recruitment of CXCR3+ CD8+ T cells and the formation of a positive-feedback loop. JAK inhibitors target the JAK/STAT pathway and are now approved to treat many immune-related diseases. In the treatment of vitiligo, JAK inhibitors, including ruxolitinib, baricitinib, and tofacitinib, are effective, supporting the implication of the IFN-γ-chemokine signaling axis in the pathogenesis of vitiligo. However, more studies are required to determine the ideal dosage of JAK inhibitors for the treatment of vitiligo, and to identify other inflammatory pathways that may be implicated in the pathogenesis of this condition.
Collapse
Affiliation(s)
- Fei Qi
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, China Centers for Disease Control, Beijing, China
| |
Collapse
|
41
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Rokni GR, Gholami A, Kazeminejad A, Zakariaei Z, Layegh M, Patil A, Goldust M. The relationship between stress and vitiligo during COVID-19 pandemic. J Cosmet Dermatol 2021; 20:3387-3388. [PMID: 34674365 PMCID: PMC8662130 DOI: 10.1111/jocd.14429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Gholami
- Department of Nuclear Medicine, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Armaghan Kazeminejad
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Layegh
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
Lu H, Xu J, Hu Y, Luo H, Chen Y, Xie B, Song X. Differences in the skin microbial community between patients with active and stable vitiligo based on 16S rRNA gene sequencing. Australas J Dermatol 2021; 62:e516-e523. [PMID: 34523726 DOI: 10.1111/ajd.13721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVE Recent studies have described an association between altered skin microbial community and epidemiology of skin diseases, such as vitiligo, atopic dermatitis and psoriasis. In this study, we conducted microbiological analysis on patients at different stages of vitiligo to determine whether the dysbiosis is associated with disease progression. METHODS To characterise the skin microbes in vitiligo patients, we profiled samples collected from 40 patients with active and stable vitiligo using the Novaseq sequencer. Alpha diversity was used to measure richness and uniformity, while Beta diversity (Non-Metric Multi-Dimensional Scaling) analysis was used to show the differences. Moreover, the species differences were evaluated by LEfSe analysis and the flora gene function was predicted using Statistical Analysis of Metagenomic Profiles (STAMP). RESULTS The alpha diversity results showed no significant differences between active vitiligo and stable vitiligo, while beta diversity and LEfSe analysis results showed the differences in community composition. Streptomyces and Streptococcus were enriched in active vitiligo compared to stable vitiligo. In addition, the flora gene function of mixed acid fermentation was more pronounced in active vitiligo, while the function of lipid IVA biosynthesis was more significant in stable vitiligo. CONCLUSION This study has shown the differences in epidermal microbes between active vitiligo and stable vitiligo. Our results suggest that maintaining the flora balance might be a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Xian D, Guo M, Xu J, Yang Y, Zhao Y, Zhong J. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Rep 2021; 26:134-146. [PMID: 34355664 PMCID: PMC8354022 DOI: 10.1080/13510002.2021.1962094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Skin, as a crucial external defense organ, is more vulnerable to oxidative stress (OS) insult, reactive oxygen species (ROS)-mediated OS in particular. OS results from a redox imbalance caused by various extrinsic stimuli and occurs once the oxidants production overwhelming the antioxidants capacity, through mediating in DNA damage, lipid peroxidation (LPO), protein oxidation and a serial of signaling pathways activation/inactivation, thereby offering favorable conditions for the occurrence and development of numerous diseases especially some dermatoses, e.g. psoriasis, vitiligo, skin photodamage, skin cancer, systemic sclerosis (SSc), chloasma, atopic dermatitis (AD), pemphigus, etc. Targeting OS molecular mechanism, a variety of anti-OS agents emerge, in which flavonoids, natural plant extracts, stand out. OBJECTIVES To discuss the possible mechanisms of OS mediating in dermatoses and summarize the properties of flavonoids as well as their applications in OS-related skin disorders. METHODS Published papers on flavonoids and OS-related skin diseases were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS It has been confirmed that flavonoids, belonging to polyphenols, are a class of plant secondary metabolites widely distributed in various plants and possess diverse bioactivities especially their potent antioxidant capacity. Moreover, flavonoids benefit to suppress OS via eliminating free radicals and mediating the corresponding signals, further excellently working in the prevention and management of OS-related skin diseases. CONCLUSION Flavonoids have the potential therapeutic effects on oxidative stress-related dermatoses. However, more studies on specific mechanism as well as the dosage of flavonoids are needed in future.
Collapse
Affiliation(s)
- Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, People's Republic of China
| | - Menglu Guo
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jixiang Xu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yang Yang
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yangmeng Zhao
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jianqiao Zhong
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
45
|
Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clin Rev Allergy Immunol 2021; 61:299-323. [PMID: 34283349 DOI: 10.1007/s12016-021-08868-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Vitiligo is an autoimmune disease of the skin characterized by epidermal melanocyte loss resulting in white patches, with an approximate prevalence of 0.5-2% worldwide. Several precipitating factors by chemical exposure and skin injury present commonly in patients with vitiligo. Although the diagnosis appears to be straightforward for the distinct clinical phenotype and specific histological features, vitiligo provides many challenges including chronicity, treatment resistance, frequent relapse, associated profound psychosocial effect, and negative impact on quality of life. Multiple mechanisms are involved in melanocyte disappearance, including genetics, environmental factors, and immune-mediated inflammation. Compelling evidence supports the melanocyte intrinsic abnormalities with poor adaptation to stressors leading to instability and release of danger signals, which will activate dendritic cells, natural killer cells, and innate lymphoid cells to initiate innate immunity, ultimately resulting in T-cell mediated adaptive immune response and melanocyte destruction. Importantly, the cross- talk between keratinocytes, melanocytes, and immune cells, such as interferon (IFN)-γ signaling pathway, builds inflammatory loops that give rise to the disease deterioration. Improved understanding of the immune pathogenesis of vitiligo has led to the development of new therapeutic options including Janus kinase (JAK) inhibitors targeting IFN-γ signaling pathways, which can effectively reverse depigmentation. Furthermore, definition of treatment goals and integration of comorbid diseases into vitiligo management have revolutionized the way vitiligo is treated. In this review, we highlight recent developments in vitiligo clinical aspects and immune pathogenesis. Our key objective is to raise awareness of the complexity of this disease, the potential of prospective therapy strategies, and the need for early and comprehensive management.
Collapse
|
46
|
Garcia-Melendo C, Cubiró X, Puig L. Janus Kinase Inhibitors in Dermatology: Part 1 — General Considerations and Applications in Vitiligo and Alopecia Areata. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.adengl.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
47
|
Inhibidores de JAK: usos en dermatología. Parte 1: generalidades, aplicaciones en vitíligo y en alopecia areata. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.ad.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
48
|
Ryan GE, Harris JE, Richmond JM. Resident Memory T Cells in Autoimmune Skin Diseases. Front Immunol 2021; 12:652191. [PMID: 34012438 PMCID: PMC8128248 DOI: 10.3389/fimmu.2021.652191] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue resident memory T cells (TRM) are a critical component of the immune system, providing the body with an immediate and highly specific response against pathogens re-infecting peripheral tissues. More recently, however, it has been demonstrated that TRM cells also form during autoimmunity. TRM mediated autoimmune diseases are particularly destructive, because unlike foreign antigens, the self-antigens are never cleared, continuously activating self-reactive TRM T cells. In this article, we will focus on how TRMs mediate disease in autoimmune skin conditions, specifically vitiligo, psoriasis, cutaneous lupus erythematosus, alopecia areata and frontal fibrosing alopecia.
Collapse
Affiliation(s)
- Grace E. Ryan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | | | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
49
|
Li L, Xie Z, Qian X, Wang T, Jiang M, Qin J, Wang C, Wu R, Song C. Identification of a Potentially Functional circRNA-miRNA-mRNA Regulatory Network in Melanocytes for Investigating Pathogenesis of Vitiligo. Front Genet 2021; 12:663091. [PMID: 33968138 PMCID: PMC8098995 DOI: 10.3389/fgene.2021.663091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
CircRNAs have been reported to play essential roles in regulating immunity and inflammation, which may be an important regulatory factor in the development of vitiligo. However, the expression profile of circRNAs and their potential biological functions in vitiligo have not been reported so far. In our study we found there are 64 dysregulated circRNAs and 14 dysregulated miRNAs in the patients with vitiligo. Through the correlation analysis, we obtained 12 dysregulated circRNAs and 5 dysregulated miRNAs, forming 48 relationships in the circRNA-miRNA-mRNA regulatory network. Gene Ontology analysis indicated dysregulated circRNAs in vitiligo is closely related to the disorder of the metabolic pathway. The KEGG pathway of dysregulation of circRNAs mainly enriched in the biological processes such as ubiquitin mediated proteolysis, endocytosis and RNA degradation, and in Jak-STAT signaling pathway. Therefore, we found the circRNA-miRNA-mRNA regulatory network are involved in the regulation of numerous melanocyte functions, and these dysregulated circRNAs may closely related to the melanocyte metabolism. Our study provides a theoretical basis for studying the vitiligo pathogenesis from the perspective of circRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhi Xie
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiliang Qian
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tai Wang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Minmin Jiang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinglin Qin
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chen Wang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rongqun Wu
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Canling Song
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
50
|
Abstract
Vitiligo is a disease of the skin characterized by the appearance of white spots. Significant progress has been made in understanding vitiligo pathogenesis over the past 30 years, but only through perseverance, collaboration, and open-minded discussion. Early hypotheses considered roles for innervation, microvascular anomalies, oxidative stress, defects in melanocyte adhesion, autoimmunity, somatic mosaicism, and genetics. Because theories about pathogenesis drive experimental design, focus, and even therapeutic approach, it is important to consider their impact on our current understanding about vitiligo. Animal models allow researchers to perform mechanistic studies, and the development of improved patient sample collection methods provides a platform for translational studies in vitiligo that can also be applied to understand other autoimmune diseases that are more difficult to study in human samples. Here we discuss the history of vitiligo translational research, recent advances, and their implications for new treatment approaches.
Collapse
Affiliation(s)
| | - John E. Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|