1
|
Liu Z, Gao Z, Lu J, Zhang X, Ren K, Li X, Sun F, Zhao H, Li Q, Xu Y, Gou M, Han Y. Molecular evolution and functional characterization of PKC-α-like in Lamprey. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110238. [PMID: 40015494 DOI: 10.1016/j.fsi.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Protein kinase C-α (PKC-α) is a serine/threonine protein kinase categorized within the lipid-regulated PKC family. Despite considerable research on PKC-α in various vertebrates, information about its presence and characteristics in lampreys-among the few extant jawed vertebrates and the most primitive-remains limited. In this study, we report the first identification of a PKC-α-like gene in lamprey by successfully cloning its coding region, composed of 1683 base pairs that encode 560 amino acids, from the constructed cDNA library of Lampetrajaponica. Sequence analysis demonstrated a high degree of homology between the PKC-α-like sequence in lamprey and those in other vertebrates. Phylogenetic analysis indicated that lamprey PKC-α-like occupies an intermediate position between vertebrates and invertebrates, supporting the principles of species evolution. Gene structure analysis revealed low conservation throughout evolution, possibly due to events like chromosomal rearrangements or homologous recombination which may have caused significant changes in gene arrangement patterns. Additionally, we generated polyclonal antibody against PKC-α-like and investigated its tissue distribution in Lampetrajaponica. Our results demonstrated widespread expression of PKC-α-like across all tissues with varying mRNA expression levels in response to different pathogenic stimuli. Specifically, PKC-α-like expression was consistently up-regulated in response to polyinosine-polycytidylic acid (Poly (I:C)) stimulation, especially in immune-related tissues. Furthermore, we confirmed that PKC-α-like is primarily localized in the cytoplasm of lamprey cells. Moreover, our findings indicate that PKC-α-like promotes cell proliferation, prompting us to undertake a preliminary investigation of the underlying molecular mechanisms. In summary, this study establishes a theoretical foundation for further exploration of the evolutionary process of PKC-α and its role in cell proliferation mechanisms.
Collapse
Affiliation(s)
- Zhulin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Zhanfeng Gao
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Jiali Lu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingzhu Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Kaixia Ren
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xue Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
2
|
Nualart DP, Dann F, Oyarzún-Salazar R, Morera FJ, Vargas-Chacoff L. Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture. BIOLOGY 2023; 12:924. [PMID: 37508355 PMCID: PMC10376545 DOI: 10.3390/biology12070924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
Fish cell culture is a common in vitro tool for studies in different fields such as virology, toxicology, pathology and immunology of fish. Fish cell cultures are a promising help to study how to diagnose and control relevant viral and intracellular bacterial infections in aquaculture. They can also be used for developing vaccines and immunostimulants, especially with the ethical demand aiming to reduce and replace the number of fish used in research. This study aimed to isolate head kidney primary cell cultures from three Chilean salmonids: Salmo salar, Oncorhynchus kisutch, and Oncorhynchus mykiss, and characterize the response to bacterial and viral stimuli by evaluating various markers of the innate and adaptive immune response. Specifically, the primary cell cultures of the head kidney from the three salmonids studied were cultured and exposed to two substances that mimic molecular patterns of different pathogens, i.e., Lipopolysaccharide (LPS) (bacterial) and Polyinosinic: polycytidylic acid (POLY I:C). Subsequently, we determined the mRNA expression profiles of the TLR-1, TLR-8, IgM, TLR-5, and MHC II genes. Head kidney primary cell cultures from the three species grown in vitro responded differently to POLY I:C and LPS. This is the first study to demonstrate and characterize the expression of immune genes in head kidney primary cell culture isolated from three salmonid species. It also indicates their potential role in developing immune responses as defense response agents and targets of immunoregulatory factors.
Collapse
Affiliation(s)
- Daniela P Nualart
- Fish Physiology Laboratory, Institute of Marine and Limnological Sciences, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Ph.D. Program in Aquaculture Sciences, Universidad Austral de Chile, Puerto Montt 5480000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisco Dann
- Fish Physiology Laboratory, Institute of Marine and Limnological Sciences, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5480000, Chile
| | - Francisco J Morera
- Applied Biochemistry Laboratory, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Vargas-Chacoff
- Fish Physiology Laboratory, Institute of Marine and Limnological Sciences, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
3
|
Holen E, Espe M, Larsen AK, Olsvik PA. Dietary chlorpyrifos-methyl exposure impair transcription of immune-, detoxification- and redox signaling genes in leukocytes isolated from cod (Gadus morhua). FISH & SHELLFISH IMMUNOLOGY 2022; 127:549-560. [PMID: 35803506 DOI: 10.1016/j.fsi.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Inclusion of new environmental toxicants increase with the amount of plant ingredients substituting marine proteins and oils in feed for farmed Atlantic salmon (Salma salar). Agricultural pesticides like chlorpyrifos-methyl, present in commercial salmon feeds, may affect salmon immune and detoxification responses. Atlantic cod (Gadus morhua), surrounding the net pens, grazing on feces and uneaten pellets may be affected accordingly. The aim of this study was to analyze transcription responses in Atlantic cod head kidney tissue and isolated leukocytes following dietary chlorpyrifos-methyl inclusions and possible interactions with proinflammatory signals. Head kidney tissues and leukocytes were isolated from cod fed diets contaminated with chlorpyrifos-methyl (0.5 mg/kg, 2.4 mg/kg, 23.2 mg/kg) for 30 days. The isolated leukocytes were further challenged with bacteria (lipopolysaccharide (LPS), virus (polyinosinic acid:polycytidylic acid (PIC) mimic and l-arginine, an immuno-modulating amino acid, in vitro. The LPS-induced transcription of the interleukin genes il-1β, il-6, il-8 increased in leukocytes isolated from cod fed chlorpyrifos-methyl 23.2 mg/kg, compared to cod fed the control diet, indicating increased inflammation. Transcriptional levels of carnitine palmitoyl transferase (cpt1a), aryl hydrogen receptor (ahr) and catalase (cat) were all reduced by dietary inclusions of chlorpyrifos-methyl in the leukocytes. The findings suggests that dietary chlorpyrifos-methyl exposure impair inflammation, detoxification and redox signaling in cod leukocytes.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research (IMR), Bergen, Norway
| | - Anett K Larsen
- Department of Medical Biology, UiT-The Artic University of Norway, Tromsø, Norway
| | - Pål A Olsvik
- Institute of Marine Research (IMR), Bergen, Norway; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
4
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
5
|
Commensal and Opportunistic Bacteria Present in the Microbiota in Atlantic Cod ( Gadus morhua) Larvae Differentially Alter the Hosts' Innate Immune Responses. Microorganisms 2021; 10:microorganisms10010024. [PMID: 35056473 PMCID: PMC8779962 DOI: 10.3390/microorganisms10010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.
Collapse
|
6
|
Wu C, Deng H, Li D, Fan L, Yao D, Zhi X, Mao H, Hu C. Ctenopharyngodon idella Tollip regulates MyD88-induced NF-κB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104162. [PMID: 34090930 DOI: 10.1016/j.dci.2021.104162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Toll-interacting protein (Tollip) and MyD88 are key components of the TLR/IL-1R signaling pathway in mammals. MyD88 is known as a universal adaptor protein involving in TLR/IL-1R-induced NF-κB activation. Tollip is a crucial negative regulator of TLR-mediated innate immune responses. Previous studies have demonstrated that teleost Tollip served as a negative regulator of MyD88-dependent TLR signaling pathway. However, the mechanism is still unclear. In particular, the effect of TBD, C2, and CUE domains of Tollip on MyD88-NF-κB signaling pathway remains to be elucidated. In this study, we found that the response of grass carp Tollip (CiTollip) to LPS stimulation was faster and stronger than that of poly I:C treatment, and CiTollip diminished the expression of tnf-α induced by LPS. Further assays indicated that except for the truncated mutant of △CUE2 (1-173 aa), wild type CiTollip and other truncated mutants (△N-(52-276 aa), △C2-(173-276 aa) and △CUE1-(1-231 aa)) could associate with MyD88 and negatively regulate MyD88-induced NF-κB activation. It suggested that the C-terminal (173-276 aa), in particular the connection section between C2 and CUE domains (173-231 aa), played a pivotal role in suppressing MyD88-induced activation of NF-κB.
Collapse
Affiliation(s)
- Chuxin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Hang Deng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Lihua Fan
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dong Yao
- Yuzhang Normal University, Nanchang, 330103, China
| | - Xiaoping Zhi
- Yuzhang Normal University, Nanchang, 330103, China
| | - Huiling Mao
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Stenberg OK, Holen E, Piemontese L, Liland NS, Lock EJ, Espe M, Belghit I. Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 91:223-232. [PMID: 31121289 DOI: 10.1016/j.fsi.2019.05.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
With the fast growth of today's aquaculture industry, the demand for aquafeeds is expanding dramatically. Insects, which are part of the natural diet of salmonids, could represent a sustainable ingredient for aquaculture feed. The aim of the current study was to test how a partial or total replacement of dietary fishmeal with insect meal affect gene responses involved in inflammation, the eicosanoid pathway and stress response in Atlantic salmon (Salmo salar L.) in isolated head kidney leukocytes after exposure to bacterial or viral mimic. Insect meal (IM) was produced from black soldier fly (BSF, Hermetia illucens) larvae. Seawater Atlantic salmon were fed three different diets for 8 weeks; a control diet (IM0, protein from fishmeal and plant based ingredients (25:75) and lipid from fish oil and vegetable oil (33:66); and two insect-meal containing diets, IM66 and IM100, where 66 and 100% of the fishmeal protein was replaced with IM, respectively. Leukocytes were isolated from the head kidney of fish (n = 6) from each of the three dietary groups. Isolated leukocytes were seeded into culture wells and added either a bacterial mimic (lipopolysaccharide, LPS) or a viral mimic (polyinosinic acid: polycytidylic acid, poly I: C) to induce an inflammatory response. Controls (Ctl) without LPS and poly I: C were included. The transcription of interleukins IL-1β, IL-8, IL-10 and TNF-α were elevated in LPS treated leukocytes isolated from salmon fed the three dietary groups (IM0, IM66 and IM100). The inflammatory-related gene expression in head kidney cells were, however, not affected by the pre-fed substitution of fish meal with IM in the diet of salmon. Gene transcriptions of PTGDS and PTGES were neither affected by LPS, poly I: C or the experimental diets fed prior to cell isolation, while salmon fed with IM showed a lower expression of LOX5. The gene expression of TLR22 and C/EBP-β were down-regulated by the LPS treatment in the cells isolated from salmon fed insect-based diets (IM66 and IM100) compared to fish fed the IM0. Similarly, the leukocytes challenged with LPS and isolated from fish fed with IM66 and IM100 down-regulated the expression of Mn-SOD, GPx1, HSP27 and HSP70 compared to salmon fed IM0. In general, these results suggested that replacement of fishmeal with IM in the diets of Atlantic salmon had no effect on the transcription of pro-inflammatory genes in the head kidney cells. There was, however, an effect of dietary IM on the transcription of antioxidant and stress related genes in the leukocytes.
Collapse
Affiliation(s)
| | - Elisabeth Holen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Luisa Piemontese
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway; Department of Agriculture, Food, Environment and Forestry, University of Florence, Via delle Cascine 5, 50144, Firenze, Italy
| | - Nina S Liland
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Erik-Jan Lock
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Marit Espe
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Ikram Belghit
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
8
|
Zhang B, Zhang H, Qin G, Liu Y, Han X, Yin J, Lin Q. TLR2 gene in seahorse brood pouch plays key functional roles in LPS-induced antibacterial responses. JOURNAL OF FISH DISEASES 2019; 42:1085-1089. [PMID: 31037728 DOI: 10.1111/jfd.13006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xue Han
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Martins GP, Espe M, Zhang Z, Guimarães IG, Holen E. Surplus arginine reduced lipopolysaccharide induced transcription of proinflammatory genes in Atlantic salmon head kidney cells. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1130-1138. [PMID: 30590162 DOI: 10.1016/j.fsi.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
In aquaculture production, studies of salmon health and interaction between pathogens and nutrition are of high importance. This study aimed to compare genes and pathways involved in salmon head kidney cells and liver cells, isolated from the same fish, towards polyinosinic acid: polycytidylic acid (poly I:C) and lipopolysaccharide (LPS), with and without addition of surplus arginine. Selected transcriptional responses of genes involved in inflammation, polyamine synthesis, oxidation and apoptosis were elucidated. For the genes related to inflammation, viperin, Mx and Toll like receptor 3 (TLR3), transcription were significantly upregulated by poly I:C in head kidney cells, while viperin was upregulated in liver cells. Surplus arginine did not affect poly I:C induced responses with the exception of reducing poly I:C induced Mx transcription in head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8) and cyclooxygenase 2 (Cox2) were elevated during LPS treatment in all liver and head kidney cell cultures. In addition, LPS induced significantly, CD83 transcription in liver cells and TNF-α transcription in head kidney cells. Surplus arginine significantly reduced IL-8, Cox2 and TNF-α transcription in head kidney cells. LPS upregulated arginase in head kidney cells while poly I:C upregulated S-adenosyl methionine decarboxylase (SAMdc) transcription in liver cells. This suggests that LPS and poly I:C modulates genes involved in polyamine synthesis. In addition, in head kidney cells, surplus arginine, when cultured together with LPS, increased the transcription of ornithine decarboxylase (ODC) the limiting enzyme of polyamine synthesis. The genes involved with oxidation and apoptosis were not affect by any of the treatments in liver cells, while LPS decreased caspase 3 transcription in head kidney cells. In liver cells, protein expression of catalase was reduced by surplus arginine alone and when challenged with poly I:C. Both liver cells and head kidney cells isolated from the same individual fish responded to LPS and poly I:C, depending on the gene analyzed. Additionally, arginine could modulate transcription of pro-inflammatory genes induced by LPS in salmon immune cells, thus affecting salmon immunity.
Collapse
Affiliation(s)
- Graciela P Martins
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil; Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Marit Espe
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Zhihao Zhang
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Igo G Guimarães
- Aquaculture Research Laboratory, Goiás Federal University, Jataí, GO, 75801-615, Brazil
| | - Elisabeth Holen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
10
|
Hu Y, Wei X, Liao Z, Gao Y, Liu X, Su J, Yuan G. Transcriptome Analysis Provides Insights into the Markers of Resting and LPS-Activated Macrophages in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2018; 19:ijms19113562. [PMID: 30424518 PMCID: PMC6274997 DOI: 10.3390/ijms19113562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are very versatile immune cells, with the characteristics of a proinflammatory phenotype in response to pathogen-associated molecular patterns. However, the specific activation marker genes of macrophages have not been systematically investigated in teleosts. In this work, leukocytes (WBC) were isolated using the Percoll gradient method. Macrophages were enriched by the adherent culture of WBC, then stimulated with lipopolysaccharide (LPS). Macrophages were identified by morphological features, functional activity and authorized cytokine expression. Subsequently, we collected samples, constructed and sequenced transcriptomic libraries including WBC, resting macrophage (Mø) and activated macrophage (M(LPS)) groups. We gained a total of 20.36 Gb of clean data including 149.24 million reads with an average length of 146 bp. Transcriptome analysis showed 708 differential genes between WBC and Mø, 83 differentially expressed genes between Mø and M(LPS). Combined with RT-qPCR, we proposed that four novel cell surface marker genes (CD22-like, CD63, CD48 and CD276) and two chemokines (CXCL-like and CCL39.3) would be emerging potential marker genes of macrophage in grass carp. Furthermore, CD69, CD180, CD27, XCL32a.2 and CXCL8a genes can be used as marker genes to confirm whether macrophages are activated. Transcriptome profiling reveals novel molecules associated with macrophages in C. Idella, which may represent a potential target for macrophages activation.
Collapse
Affiliation(s)
- Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Xiaolei Wei
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
11
|
Holen E, Araujo P, Sissener NH, Rosenlund G, Waagbø R. A comparative study: Difference in omega-6/omega-3 balance and saturated fat in diets for Atlantic salmon (Salmo salar) affect immune-, fat metabolism-, oxidative and apoptotic-gene expression, and eicosanoid secretion in head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 72:57-68. [PMID: 29080687 DOI: 10.1016/j.fsi.2017.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to compare how different dietary vegetable oil n-6/n-3 ratios affect gene responses involved in inflammation, signaling pathways, fatty acid synthesis and oxidation, oxidation and apoptosis as well as eicosanoid production in salmon head kidney tissues and isolated head kidney leukocytes. Salmon smolts (200 g) were fed four different diets where the main lipid components were palm oil (n-6/n-3 ratio = 0.7), rapeseed oil (n-6/n-3 ratio = 0.9), and soybean oil (n-6/n-3 ratio = 2.4) and a high soybean oil diet with an n-6/n-3 ratio = 4. Both head kidney tissue and leukocytes isolated from head kidneys were sampled from the four diets, but from different fish. Leukocytes isolated from the head kidneys were seeded into culture wells and added lipopolysaccharide (LPS) to induce inflammatory responses. Controls without LPS were included. Head kidney leukocytes and the tissues should have the same phenotype reflecting the different diets. Interleukin 1β (IL-1β) transcription was elevated in head kidney tissue and especially in LPS treated leukocytes isolated from soybean oil (n-6/n-3 = 2.4) fed salmon, which confirmed the suitability of the in vitro model in this experiment. Leukocytes, treated with LPS, and isolated from salmon fed the soybean oil diet (n-6/n-3 = 2.4) also upregulated tumor necrosis factor alpha (tnf-α), cyclooxygenase (cox2), prostaglandin D and E synthase (ptgds, ptges), fatty acyl synthase (fas), 5 and 6 desaturases (5des, 6 des) and a fatty acid translocase protein (cd36) when compared to the other diets. The results suggest that diets with a specific n-6/n-3 ratio influence the transcription of pro-inflammatory genes and may be cross-linked to transcription of selected fatty acid metabolism genes. Salmon fed the palm oil diet (n-6/n-3 = 0.7) showed a lower expression of inflammatory genes. Instead, peroxisome proliferator activated receptor β1 (pparβ1), acyl coenzyme A (aco), apoptosis regulator (bax) and superoxide dismutase (sod) were upregulated in leukocytes in vitro, while head kidney tissue transcription of a dendritic marker (cd83) was lower than measured in tissues from fish fed the other diets. The concentration of LTB4 (10-20 ng/mL) were relatively constant in leukocyte supernatants, all diets. Head kidney leukocytes from soybean oil (n-6/n-3 = 2.4) fed fish produced LPS induced PGE2 (mean 0.5 ng/mL) while leukocytes isolated from palm oil diet (n-6/n-3 = 0.7) secreted very high amounts of LTB5 (50-70 ng/mL). In addition, equal amounts of LPS induced PGE2 and PGE3 (mean 0, 5 ng/mL) were produced, indicating that the n-6/n-3 ratio of this saturated fatty acid may have a specific impact on eicosanoid production in the head kidney of salmon.
Collapse
|
12
|
Azeredo R, Serra CR, Oliva-Teles A, Costas B. Amino acids as modulators of the European seabass, Dicentrarchus labrax, innate immune response: an in vitro approach. Sci Rep 2017; 7:18009. [PMID: 29269876 PMCID: PMC5740149 DOI: 10.1038/s41598-017-18345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Teleost innate immune system is a most developed and powerful system in which fish highly rely throughout their lives. Conditions in aquaculture farms are particularly prone to disease, thus, health and welfare ensuring strategies are an urgent call to which nutrition is gradually becoming a most regarded achievement tool. This study intended to evaluate different amino acids' effect on immune-related mechanisms as well as their potential as enhancers of European seabass, Dicentrarchus labrax, leucocyte functioning. To achieve these goals, primary cultures of head-kidney leucocytes were established and kept in amino acid (glutamine, arginine, tryptophan or methionine) supplemented culture media in two doses. The effects of amino acids treatments were then evaluated after stimulation with either Vibrio anguillarum or Vibrio anguillarum lipopolysaccharides by measuring nitric oxide production, extracellular respiratory burst, ATP and arginase activities, and expression of immune-related genes. Glutamine, arginine and tryptophan showed to be particularly relevant regarding cell energy dynamics; arginine and tryptophan supplementation also resulted in down-regulation of important immune-related genes. Immune responses in cells treated with methionine were generally enhanced but further studies, particularly those of enzymes activity, are essential to complement gene expression results and to better understand this nutrient's immune role in fish.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
| | - Cláudia R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Holth TF, Storset A, Ribeiro AL, Ólafsdóttir Á, Halldórsson HP, Hylland K. Environmentally realistic exposure to weathered North Sea oil: Sublethal effects in Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:895-906. [PMID: 28837403 DOI: 10.1080/15287394.2017.1352195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With increasing oil and gas activities and transport in the Arctic, there is a need to understand how operational or accidental releases of substances affect marine organisms from a pristine environment. The aim of the current study was to describe and compare the responses of two marine fish species, Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus), following exposure to three levels (low, medium, high) of the water-soluble fraction of a North Sea crude oil for 16 days. The exposure system simulated environmental exposure by allowing clean seawater to percolate through gravel covered in weathered oil before being introduced to aquaria. Both polycyclic aromatic hydrocarbon (PAH) metabolite bile concentrations and cytochrome P4501A (CYP1A) levels and activity increased markedly in comparison with controls in both species, but there were no significant differences between the three exposures. Turbot possessed 4-5-fold higher concentrations of two PAH bile metabolites compared to Atlantic cod by day 8. In contrast, hepatic CYP1A activity in cod was consistently 2-6-fold higher than in turbot with increasing differences over the experimental period. Baseline DNA strand breaks in lymphocytes and kidney cells were low in both species, but was elevated for all treatments by day two. There were no marked indications of the treatments affecting immune functions in either species. This investigation demonstrated that there may be significant differences in responses between species receiving identical exposures and that DNA strand breaks in lymphocytes and kidney cells are sensitive to confinement stress. Data also indicate that some species, such as turbot, may adapt to treatments within days and weeks.
Collapse
Affiliation(s)
- Tor Fredrik Holth
- a Department of Biosciences , University of Oslo , Blindern , Oslo , Norway
| | - Audun Storset
- a Department of Biosciences , University of Oslo , Blindern , Oslo , Norway
| | - Anne Luise Ribeiro
- a Department of Biosciences , University of Oslo , Blindern , Oslo , Norway
| | - Ásdís Ólafsdóttir
- b The University of Iceland´s Research Centre in Sudurnes , Gardvegi , Sandgerdi , Iceland
| | | | - Ketil Hylland
- a Department of Biosciences , University of Oslo , Blindern , Oslo , Norway
| |
Collapse
|
14
|
Eslamloo K, Xue X, Booman M, Smith NC, Rise ML. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:187-205. [PMID: 27255218 DOI: 10.1016/j.dci.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/29/2016] [Accepted: 05/29/2016] [Indexed: 06/05/2023]
Abstract
A study was conducted to determine the transcriptome response of Atlantic cod (Gadus morhua) macrophages to the viral mimic, polyriboinosinic polyribocytidylic acid (pIC), using a 20K Atlantic cod microarray platform and qPCR. We identified 285 significantly up-regulated and 161 significantly down-regulated probes in cod macrophages 24 h after pIC stimulation. A subset of 26 microarray-identified transcripts was subjected to qPCR validation using samples treated with pIC or phosphate-buffered saline (control) over time (3, 6, 12, 24, 48 h), and 77% of them showed a significant response to pIC. The microarray and qPCR analyses in this study showed that pIC induced the expression of cod macrophage transcripts involved in RLR- and TLR-dependent pathogen recognition (e.g. tlr3, tlr7, mda5 and lgp2), as well as signal transducers (e.g. stat1 and nfkbia) and transcription activators (e.g. irf7 and irf10) in the MyD88-independent and dependent signalling pathways. Several immune effectors (e.g. isg15s, viperin, herc4, mip2 and ccl13) were significantly up-regulated in pIC-stimulated cod macrophages. The expression of some transcripts (e.g. irf7, irf10, viperin) was significantly up-regulated by pIC as early as 12 h. All pIC-induced transcripts had peak expression at either 24 h (e.g. tlr7, irf7, mip2) or 48 h (e.g. tlr3, lgp2, stat1). This study suggests possible roles of both vertebrate-conserved (e.g. tlr3 as an up-regulated gene) and fish-specific (tlr22g as a down-regulated gene) receptors in dsRNA recognition, and the importance of conserved and potentially fish-specific interferon stimulated genes in cod macrophages.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
15
|
Montero J, Gómez-Abellán V, Arizcun M, Mulero V, Sepulcre MP. Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2016; 55:632-41. [PMID: 27368534 DOI: 10.1016/j.fsi.2016.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
The profile of prostaglandin (PG) production is determined by the differential expression of the enzymes involved in their production and degradation. Although the production of PGE2 by fish leukocytes has been relatively well studied in several fish species, knowledge of how its production is regulated, its biological activities and the signaling pathways activated by this PG is scant or even contradictory. In this work we show that in the teleost fish gilthead seabream (Sparus aurata L.) macrophages regulate PGE2 release mainly by inducing the expression of the genes encoding the enzymes responsible for its synthesis, while acidophilic granulocytes (AGs) not only induce these genes quickly after activation but also inhibit the expression of the genes encoding the enzymes responsible for PGE2 degradation at later time points. In addition, treatment of macrophages with PGE2 promoted their M2 polarization, which is characterized by high expression levels of interleukin-10, mannose-receptor c-type 1 and arginase 2 genes. In sharp contrast, PGE2 promoted the deactivation of AGs, since it decreased the production of reactive oxygen species and the expression of genes encoding pro-inflammatory cytokines. These differences are the result of the alternative signaling pathways used by PGE2 in macrophages and AGs, a cAMP/CREB signaling pathway operating in macrophages, but not in AGs, downstream of PGE2. Our data identify for the first time a role for professional phagocyte-derived-PGE2 in the resolution of inflammation in fish and highlight key differences in the PGE2 signaling pathway in macrophages and granulocytes.
Collapse
Affiliation(s)
- Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Victoria Gómez-Abellán
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Puerto de Mazarrón, Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| | - María P Sepulcre
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
16
|
Holen E, Olsvik PA. β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:128-134. [PMID: 27041667 DOI: 10.1016/j.fsi.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate how β-naphthoflavone interacts with lipopolysaccharide (LPS) and polyinosinic acid: polycytidylic acid (poly I: C) induced innate immune parameters as well as phase I and phase II detoxification enzymes in head kidney cells isolated from Atlantic cod. β-naphthoflavone is a pure agonist of aryl hydrocarbon receptor (AhR) while LPS and poly I: C are not. β-naphthoflavone was added to head kidney leukocytes alone or together with LPS or poly I: C and the responses were evaluated in terms of protein and gene expression. The results showed that β-naphthoflavone (25 nM), with and without LPS, significantly induced cytochrome P450 (cyp1c) transcription in cod head kidney cells. β-naphthoflavone (100 nM) in the presence of the virus mimic, poly I: C, also increased cyp1c1transcription. LPS induced cyp1c1, cyclooxygenase 2 (cox2), interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) transcription, genes that were not affected by the tested β-naphthoflavone concentrations alone. However, β-naphthoflavone (25 and 50 nM) strengthened LPS induced cox2 and IL-8 transcription. Cod head kidney cells exposed to β-naphthoflavone concentrations ranging from 25 to 100 nM, with and without LPS or poly I: C, expressed AhR protein. LPS or β-naphthoflavone (5-50 nM) significantly induced leukotriene B4 (LTB4) secretion compared to control. In conclusion, this study suggests that β-naphthoflavone could interfere with LPS induced immune cell signaling in cod head kidney cells.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway.
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
17
|
Holen E, He J, Araujo P, Seliussen J, Espe M. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2016; 54:22-29. [PMID: 27060506 DOI: 10.1016/j.fsi.2016.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway.
| | - Juyun He
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | | | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| |
Collapse
|
18
|
The role of prostaglandins in the regulation of fish immunity. Mol Immunol 2016; 69:139-45. [DOI: 10.1016/j.molimm.2015.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023]
|
19
|
Yasuike M, Fujiwara A, Nakamura Y, Iwasaki Y, Nishiki I, Sugaya T, Shimizu A, Sano M, Kobayashi T, Ototake M. A functional genomics tool for the Pacific bluefin tuna: Development of a 44K oligonucleotide microarray from whole-genome sequencing data for global transcriptome analysis. Gene 2015; 576:603-9. [PMID: 26477480 DOI: 10.1016/j.gene.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bluefin tunas are one of the most important fishery resources worldwide. Because of high market values, bluefin tuna farming has been rapidly growing during recent years. At present, the most common form of the tuna farming is based on the stocking of wild-caught fish. Therefore, concerns have been raised about the negative impact of the tuna farming on wild stocks. Recently, the Pacific bluefin tuna (PBT), Thunnus orientalis, has succeeded in completing the reproduction cycle under aquaculture conditions, but production bottlenecks remain to be solved because of very little biological information on bluefin tunas. Functional genomics approaches promise to rapidly increase our knowledge on biological processes in the bluefin tuna. Here, we describe the development of the first 44K PBT oligonucleotide microarray (oligo-array), based on whole-genome shotgun (WGS) sequencing and large-scale expressed sequence tags (ESTs) data. In addition, we also introduce an initial 44K PBT oligo-array experiment using in vitro grown peripheral blood leukocytes (PBLs) stimulated with immunostimulants such as lipopolysaccharide (LPS: a cell wall component of Gram-negative bacteria) or polyinosinic:polycytidylic acid (poly I:C: a synthetic mimic of viral infection). This pilot 44K PBT oligo-array analysis successfully addressed distinct immune processes between LPS- and poly I:C- stimulated PBLs. Thus, we expect that this oligo-array will provide an excellent opportunity to analyze global gene expression profiles for a better understanding of diseases and stress, as well as for reproduction, development and influence of nutrition on tuna aquaculture production.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
| | - Atushi Fujiwara
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Yoji Nakamura
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Yuki Iwasaki
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Issei Nishiki
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Takuma Sugaya
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Akio Shimizu
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Motohiko Sano
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Takanori Kobayashi
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Mitsuru Ototake
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| |
Collapse
|
20
|
Holen E, He J, Espe M, Chen L, Araujo P. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. FISH & SHELLFISH IMMUNOLOGY 2015; 45:695-703. [PMID: 26003739 DOI: 10.1016/j.fsi.2015.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817 Bergen, Norway.
| | - Juyun He
- Fish Nutrition Laboratory, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817 Bergen, Norway
| | - Liqiou Chen
- East China Normal University, School of Life Science, Shanghai, China
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
21
|
Mosca F, Ciulli S, Volpatti D, Romano N, Volpe E, Bulfon C, Massimini M, Caccia E, Galeotti M, Tiscar PG. Defensive response of European sea bass (Dicentrarchus labrax) against Listonella anguillarum or Photobacterium damselae subsp. piscicida experimental infection. Vet Immunol Immunopathol 2014; 162:83-95. [DOI: 10.1016/j.vetimm.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|
22
|
Holen E, Olsvik PA. Aryl hydrocarbon receptor protein and Cyp1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells. FISH & SHELLFISH IMMUNOLOGY 2014; 40:384-391. [PMID: 25058847 DOI: 10.1016/j.fsi.2014.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
The objective of this study was to evaluate interactions between environmental toxicants and cod immune cells during inflammation. Phenanthrene is abundant in plant oils (rapeseed, palm, and soya oil) as compared to fish oils, and consequently constitute an undesirable element in plant replacement diets in aquaculture. Phenanthrene was added to head kidney cell cultures, alone or together with LPS (lipopolysaccharide) or poly I: C (polyinosinic acid: polycytidylic acid), and the responses were evaluated in terms of protein and gene expression. The results showed that LPS, poly I: C or phenanthrene, added to the cultures separately, induced aryl hydrocarbon receptor (AhR) protein expression. Phenanthrene treatment in combination with LPS induced AhR protein expression and Cyp1A1 gene transcription, which not was observed combining poly I: C and phenanthrene. Phenanthrene exposure up regulated the transcription of common stress and detoxification enzymes like catalase, caspase 3 and glutathione S-transferase alfa 3 subunit B (GSTAB3), while LPS exposure alone or combined with phenanthrene down regulated GSTAB3 and catalase in cod leukocytes. It seems clear that immune regulation and phenanthrene induced signaling pathways interact; transcriptional down regulation of detoxification and antioxidant enzymes by LPS could indicate that combating bacterial infections is the number one priority in these cells, and that AhR and Cyp1A1 is somehow involved in this signaling cascade. LPS seems to affect the mitogen activated protein kinases (MAPKs) pathways (P-p38 and ERK1/2) thus modulating the AhR protein and Cyp1A1 gene transcription, while phenanthrene possibly activates AhR by ligand binding.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817 Bergen, Norway.
| | - Pål Asgeir Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
23
|
Holen E, Espe M, Andersen SM, Taylor R, Aksnes A, Mengesha Z, Araujo P. A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. FISH & SHELLFISH IMMUNOLOGY 2014; 37:286-298. [PMID: 24565893 DOI: 10.1016/j.fsi.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
This study assess which pathways and molecular processes are affected by exposing salmon head kidney cells or liver cells to arginine supplementation above the established requirements for growth support. In addition to the conventional mono cultures of liver and head kidney cells, co cultures of the two cell types were included in the experimental set up. Responses due to elevated levels of arginine were measured during inflammatory (lipopolysaccharide/LPS) and non -inflammatory conditions. LPS up regulated the genes involved in polyamine turnover; ODC (ornithine decarboxylase), SSAT (spermidine/spermine-N1-acetyltransferase) and SAMdc (S-adenosyl methionine decarboxylase) in head kidney cells when co cultured with liver cells. Regardless of treatment, liver cells in co culture up regulated ODC and down regulated SSAT when compared to liver mono cultures. This suggests that polyamines have anti-inflammatory properties and that both salmon liver cells and immune cells seem to be involved in this process. The transcription of C/EBP β/CCAAT, increased during inflammation in all cultures except for liver mono cultures. The observed up regulation of this gene may be linked to glucose transport due to the highly variable glucose concentrations found in the cell media. PPARα transcription was also increased in liver cells when receiving signals from head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8), cyclooxygenase 2 (COX2) and CD83 were elevated during LPS treatment in all the head kidney cell cultures while arginine supplementation reduced IL-1β and IL-8 transcription in liver cells co cultured with head kidney cells. This is probably connected to p38MAPK signaling as arginine seem to affect p38MAPK signaling contrary to the LPS induced p38MAPK signaling, suggesting anti-inflammatory effects of arginine/arginine metabolites. This paper shows that co culturing these two cell types reveals the connection between metabolism and inflammation, suggesting different pathways and candidate biomarkers to be further explored.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway.
| | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | - Synne M Andersen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| | | | | | - Zebasil Mengesha
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway; Department of Industrial Chemistry, Bahir Dar University, P.B. 79, Bahir Dar, Ethiopia
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
24
|
Hori TS, Gamperl AK, Nash G, Booman M, Barat A, Rise ML. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens. Genome 2013; 56:567-76. [PMID: 24237337 DOI: 10.1139/gen-2013-0090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.
Collapse
Affiliation(s)
- Tiago S Hori
- a Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Liu S, Rajendran KV, Sun L, Zhang Y, Sun F, Kucuktas H, Liu H, Liu Z. Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of Toll-like receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:185-194. [PMID: 23396097 DOI: 10.1016/j.dci.2013.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Toll-like receptors (TLRs) were the earliest characterized and the most extensively studied pathogen recognition receptors (PRRs). The majority of tetrapod TLR orthologs have been found in teleost fish. In addition, a group of "fish-specific" TLRs have been identified. In catfish, a number of TLR-related sequences have been reported, but systematic phylogenetic analyses have not been conducted. In this study, we conducted phylogenetic and comparative analysis of 20 catfish TLR genes against their counterparts from various species. TLR25 and TLR26 are TLRs identified only in channel catfish. Phylogenetic analyses suggested that four catfish TLR genes have duplicated copies in the genome, i.e., TLR4, TLR5, TLR8, and TLR20. Six fish-specific TLRs were identified, and the vast majority of these belong to the TLR11 subfamily. In healthy catfish tissues, most of the tested TLR genes were ubiquitously expressed although expression levels varied among the 11 tested tissues. We tested nine TLRs for their expression in response to Edwardsiella ictaluri infection. They were significantly up-regulated in the spleen and liver, but down-regulated in the head kidney, suggesting their involvement in the immune responses against the intracellular bacterial pathogen in a tissue-specific manner in catfish, perhaps through rapid migration of phagocytes to infection sites.
Collapse
Affiliation(s)
- Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Furne M, Holen E, Araujo P, Lie KK, Moren M. Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. FISH & SHELLFISH IMMUNOLOGY 2013; 34:770-777. [PMID: 23291252 DOI: 10.1016/j.fsi.2012.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/01/2012] [Accepted: 11/30/2012] [Indexed: 05/28/2023]
Abstract
Primary head kidney leukocytes from Atlantic cod were isolated to evaluate the use of arachidonic acid and eicosapentaenoic acid by cyclooxygenases and the production of prostaglandins E₂ and E₃. The expression of cyclooxygenase genes and selected interleukin genes like Interleukin 1β, Interleukin 6, interleukin 8 and interleukin 10 were monitored. Increasing concentrations of eicosapentaenoic acid and arachidonic acid in equal amounts increased cyclooxygenase2 transcription as well as cell secretion of prostaglandin E₂. Even though the ratio of the two fatty acids was 1:1, the ratio between prostaglandin E₂ and E₃ was 50:1. The addition of arachidonic acid alone increased prostaglandin E₂ secretion but did not induce cyclooxygenase2 transcription. However, when the concentration of eicosapentaenoic acid was increased, maintaining arachidonic acid constant, both prostaglandin E₃ and prostaglandin E₂ production was induced and the prostaglandin E₂ production was higher than in cell cultures only added arachidonic acid. An up-regulation of cyclooxygenase2 transcription was also observed. The addition of the two fatty acids also affected the immune response by alteration of leukocytic cytokines gene expression. According to our results the Cyclooxygenase in cod seem to prefer arachidonic acid as substrate. Therefore, we suggest that the shift from marine oils (rich in n-3 fatty acids) to plant oils (higher in n-6 fatty acids) in the diet of commercially reared Atlantic cod could have negative effects on the whole organism through the increase in the production of prostaglandins belonging to those derived from n-6 fatty acids.
Collapse
Affiliation(s)
- Miriam Furne
- National Institute of Nutrition and Seafood Research-NIFES, P.B. 2029 Nordnes, 5817 Bergen, Norway
| | | | | | | | | |
Collapse
|