1
|
Sun QX, Tan Q, Huang XN, Yao CL. A soluble TLR5 is involved in the flagellin-MyD88-mediated immune response via regulation rather than activation in large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111061. [PMID: 39725268 DOI: 10.1016/j.cbpb.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Toll-like receptor 5 (TLR5) plays a crucial role in the immune response through recognizing bacterial flagellin. Some teleosts possess two forms of TLR5, including a canonical membrane TLR5 (TLR5M) ortholog and a piscine soluble TLR5 (TLR5S). In this report, the full-length cDNA sequences of Larimichthys crocea TLR5M (LcTLR5M) and TLR5S (LcTLR5S) were identified. The predicted 885-aa-LcTLR5M protein contained a 20-aa signal peptide, followed by 12 leucine-rich repeats (LRRs), a transmembrane (TM) region, and a cytoplasmic Toll/Interleukin-1 receptor homology (TIR) domain while the predicted 642-aa-LcTLR5S only contained 13 LRRs. The LcTLR5M transcripts were detected in most tissues examined, with the highest expression in heart and the lowest in stomach. The expression of LcTLR5S was high in liver whereas low in other examined tissues. Both LcTLR5M and LcTLR5S transcripts could be induced by immune challenge. Subcellular localization revealed that LcTLR5M existed on the cell membrane while LcTLR5S expressed in the cytoplasm. Furthermore, to investigate the role of LcTLR5S in downstream signaling transduction, a LcTLR5S-TIR chimera was constructed by fusing the ORF of LcTLR5S with TM and TIR domains from LcTLR5M. A dual-luciferase reporter assay revealed that the TIR domain is essential in the flagellin induced MyD88-mediated-TNFα activation but not in -NF-κB activation. However, the flagellin-LcTLR5M-MyD88-mediated NF-κB and TNFα activation was largely suppressed by LcTLR5S. These findings suggested that the flagellin-LcTLR5M/LcTLR5S mediated immune activation was MyD88-dependent, and the role of the TIR-domain might differ between NF-κB and TNFα signaling transduction.
Collapse
Affiliation(s)
- Qing-Xue Sun
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Qing Tan
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xue-Na Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Cui-Luan Yao
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Tammas I, Bitchava K, Gelasakis AI. Advances in Vaccine Adjuvants for Teleost Fish: Implications for Aquatic Welfare and the Potential of Nanoparticle-Based Formulations. Vaccines (Basel) 2024; 12:1347. [PMID: 39772009 PMCID: PMC11679523 DOI: 10.3390/vaccines12121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccine adjuvants are crucial for reinforcing the immunogenicity of vaccines. Therefore, they are widely used in the aquaculture sector as vaccine components, facilitating the efficient prevention of infectious diseases and promoting sustainable teleost fish growth. Despite their benefits, there has been a growing concern about the potential adverse effects of vaccine adjuvants in teleost fish, connoting a valid impact on their overall health and welfare. Among the adjuvants used in aquaculture vaccinology, nanoparticle-based formulations have given rise to a promising new alternative to traditional options, such as oil-based emulsions and aluminum compounds, offering the benefit of minimizing relevant side effects. The aim of this paper was to review the current status of the adjuvants used in aquaculture, provide a description and an evaluation of their mode of action and side effects, and explore the potential use of nanoparticle formulations as adjuvants to improve the efficacy of aquaculture vaccines. By demonstrating and assessing the equilibrium between teleost fish welfare and immunological efficacy, this review presents a collective perspective that will assist in establishing a framework for the utilization of effective species-specific practices around adjuvant use in aquaculture, while also addressing the challenges of welfare-friendly immunization.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
3
|
Gnanagobal H, Chakraborty S, Vasquez I, Chukwu-Osazuwa J, Cao T, Hossain A, Dang M, Valderrama K, Kumar S, Bindea G, Hill S, Boyce D, Hall JR, Santander J. Transcriptome profiling of lumpfish (Cyclopterus lumpus) head kidney to Renibacterium salmoninarum at early and chronic infection stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105165. [PMID: 38499166 DOI: 10.1016/j.dci.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherine Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France; Equipe Labellisée Ligue Contre Le Cancer, 75013, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
4
|
Fuad MMH, Tichopád T, Ondračková M, Civáňová Křížová K, Seifertová M, Voříšková K, Demko M, Vetešník L, Šimková A. Trematode Diplostomum pseudospathaceum inducing differential immune gene expression in sexual and gynogenetic gibel carp ( Carassius gibelio): parasites facilitating the coexistence of two reproductive forms of the invasive species. Front Immunol 2024; 15:1392569. [PMID: 38983863 PMCID: PMC11231671 DOI: 10.3389/fimmu.2024.1392569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Parasite-mediated selection is considered one of the potential mechanisms contributing to the coexistence of asexual-sexual complexes. Gibel carp (Carassius gibelio), an invasive fish species in Europe, often forms populations composed of gynogenetic and sexual specimens. Methods The experimental infection was induced in gynogenetic and sexual gibel carp using eye-fluke Diplostomum pseudospathaceum (Trematoda), and the transcriptome profile of the spleen as a major immune organ in fish was analyzed to reveal the differentially expressed immunity-associated genes related to D. pseudospathaceum infection differing between gynogenetic and sexual gibel carp. Results High parasite infection was found in gynogenetic fish when compared to genetically diverse sexuals. Although metacercariae of D. pseudospathaceum are situated in an immune-privileged organ, our results show that eye trematodes may induce a host immune response. We found differential gene expression induced by eye-fluke infection, with various impacts on gynogenetic and sexual hosts, documenting for the majority of DEGs upregulation in sexuals, and downregulation in asexuals. Differences in gene regulation between gynogenetic and sexual gibel carp were evidenced in many immunity-associated genes. GO analyses revealed the importance of genes assigned to the GO terms: immune function, the Notch signaling pathway, MAP kinase tyrosine/threonine/phosphatase activity, and chemokine receptor activity. KEGG analyses revealed the importance of the genes involved in 12 immunity-associated pathways - specifically, FoxO signaling, adipocytokine signaling, TGF-beta signaling, apoptosis, Notch signaling, C-type lectin receptor signaling, efferocytosis, intestinal immune network for IgA production, insulin signaling, virion - human immunodeficiency virus, Toll-like receptor signaling, and phosphatidylinositol signaling system. Discussion Our study indicates the limited potential of asexual fish to cope with higher parasite infection (likely a loss of capacity to induce an effective immune response) and highlights the important role of molecular mechanisms associated with immunity for the coexistence of gynogenetic and sexual gibel carp, potentially contributing to its invasiveness.
Collapse
Affiliation(s)
- Md Mehedi Hasan Fuad
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the Czech Academy of Science, Liběchov, Czechia
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czechia
| | - Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| | | | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kristýna Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Demko
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lukáš Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Renukdas NN, Kelly AM, Zinta G, Sinha AK. Hepatic transcriptome profiling of largemouth bass (Micropterus salmoides Lacépède) injected with Flavobacterium covae or lipopolysaccharide. JOURNAL OF FISH DISEASES 2024:e13948. [PMID: 38558407 DOI: 10.1111/jfd.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Flavobacterium covae (columnaris) is the most detrimental bacterial disease affecting the largemouth bass (Micropterus salmoides Lacépède) aquaculture industry. In the current study, fish received an intraperitoneal injection of either 1× PBS (100 μL), LPS in PBS (100 μL, 10 μg/mL), or F. covae (100 μL, 2.85 × 1011 CFU/mL) to simulate immunological challenges. After 24 h post-injection, liver tissue from the control and treated groups were then collected for transcriptome analysis. Results of the Gene Ontology (GO) and KEGG pathway analyses for the F. covae and LPS-injected groups found differentially expressed genes (DEGs) enriched primarily in toll-like receptors (TLRs), cytokine-cytokine receptors, complement and coagulation cascades, and the PPAR signalling pathways. This suggests that the liver immune system is enhanced by these five combined pathways. Additionally, the DEGs TLR5, MYD88, and IL-1 were significantly upregulated in F. covae and LPS-injected fish compared to the controls, whereas IL-8 was downregulated. The upregulation of TLR5 was unexpected as F. covae lacks flagellin, the protein that binds to TLR5. Additionally, it is unknown whether the TLR5 is upregulated by LPS. Further research into the upregulation of TLR5 is warranted. These results provide insight into immune responses and associated pathways contributing to the immune system in the liver during columnaris infection and induced response to LPS in largemouth bass.
Collapse
Affiliation(s)
- Nilima N Renukdas
- Aquaculture Laboratory, Arkansas Department of Agriculture, Little Rock, Arkansas, USA
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
- Alabama Fish Farming Center, Auburn University, Greensboro, Alabama, USA
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| |
Collapse
|
6
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Characterization analysis of TLR5a and TLR5b immune response after different bacterial infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108716. [PMID: 37001745 DOI: 10.1016/j.fsi.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
7
|
Galeotti M, Orioles M, Saccà E, Byadgi O, Pesaro S, Di Cerbo A, Magi GE. Understanding the Pathogenesis of Red Mark Syndrome in Rainbow Trout ( Oncorhynchus mykiss) through an Integrated Morphological and Molecular Approach. Animals (Basel) 2023; 13:ani13061103. [PMID: 36978643 PMCID: PMC10044500 DOI: 10.3390/ani13061103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Red mark syndrome (RMS) is a widespread skin disorder of rainbow trout in freshwater aquaculture, believed to be caused by a Midichloria-like organism (MLO). Here, we aimed to study the pathologic mechanisms at the origin of RMS by analyzing field samples from a recent outbreak through gene expression, MLO PCR, quantitative PCR, and a histopathological scoring system proposed for RMS lesions. Statistical analyses included a One-Way Analysis of Variance (ANOVA) with a Dunnett's multiple comparisons test to assess differences among gene expression groups and a nonparametric Spearman correlation between various categories of skin lesions and PCR results. In short, the results confirmed the presence of a high quantity of 16S gene copy numbers of Midichloria-like organisms in diseased skin tissues. However, the number of Midichloria-like organisms detected was not correlated to the degree of severity of skin disease. Midichloria-like organism DNA was found in the spleen and head kidney. The spleen showed pathologic changes mainly of hyperplastic type, reflecting its direct involvement during infection. The most severe skin lesions were characterized by a high level of inflammatory cytokines sustaining and modulating the severe inflammatory process. IL-1 β, IL-6, IL-10, MHC-II, and TCR were upregulated in severe skin lesions, while IL-10 was highly expressed in moderate to severe ones. In the moderate form, the response was driven to produce immunoglobulins, which appeared crucial in controlling the skin disease's severity. Altogether our results illustrated a complex immune interaction between the host and Midichloria-like organism.
Collapse
Affiliation(s)
- Marco Galeotti
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Massimo Orioles
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Elena Saccà
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Omkar Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Stefano Pesaro
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| |
Collapse
|
8
|
Feng JX, Liu L, Wang HY, Zhang J, Li XP. A soluble TLR5 is involved in PBLs activation and antibacterial immunity via TLR5M-MyD88-signaling pathway in tongue sole Cynoglossus semilaevis. Int J Biol Macromol 2023; 230:123208. [PMID: 36634796 DOI: 10.1016/j.ijbiomac.2023.123208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In higher vertebrates, there is only a membranal TLR5 (TLR5M), which is crucial for host defense against microbes via MyD88 signaling pathway. In teleost, both TLR5M and soluble TLR5 (TLR5S) are identified, whereas the antibacterial mechanism of TLR5S is largely unknown. In this study, we studied the immune antibacterial mechanism of Cynoglossus semilaevis TLR5S homologue (named CsTLR5S). CsTLR5S, a 71.1 kDa protein, consists of 649 amino acid residues and shares 41.7 %-57.8 % overall sequence identities with teleost TLR5S homologues. CsTLR5S contains a single extracellular domain (ECD) composed of 12 leucine-rich repeats. CsTLR5S expression was constitutively identified and upregulated by bacterial infection in tissues. In vitro recombinant CsTLR5S (rCsTLR5S) could interact with bacteria and tongue sole rTLR5M (rCsTLR5M). Furthermore, rCsTLR5S could bind to the membranal CsTLR5M of peripheral blood leukocytes (PBLs), which led to enhancing the activity and the antibacterial role of PBLs via Myd88-NF-κB pathway. In vivo rCsTLR5S could activate the Myd88-NF-κB pathway, facilitate the release of proinflammatory cytokines, and enhance the host antibacterial response against Vibrio harveyi. Moreover, the knockdown of CsTLR5M or the Myd88 inhibitor could significantly suppress the antibacterial effect of rCsTLR5S. Collectively, our findings added important insights into the TLR5S immune antibacterial property in a TLR5M-MyD88-dependent manner.
Collapse
Affiliation(s)
- Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| | - Ling Liu
- School of Ocean, Yantai University, Yantai, China
| | - Hong-Ye Wang
- School of Ocean, Yantai University, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
9
|
Differential Expression Genes of the Head Kidney and Spleen in Streptococcus iniae-Infected East Asian Fourfinger Threadfin Fish ( Eleutheronema tetradactylum). Int J Mol Sci 2023; 24:ijms24043832. [PMID: 36835242 PMCID: PMC9958670 DOI: 10.3390/ijms24043832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1β, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.
Collapse
|
10
|
Zhang K, Chen M, He H, Kou H, Lin L, Liang R. Genome-wide identification and characterization of toll-like receptor 5 ( TLR5) in fishes. Front Genet 2023; 13:1083578. [PMID: 36685837 PMCID: PMC9857387 DOI: 10.3389/fgene.2022.1083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors 5 (TLR5), a member of the toll-like receptors (TLRs) family, is a class of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). It responds to vertebrate recognition of bacterial flagellin and participates in innate immune responses. However, genome-wide identification and characterization of TLR5 in fishes have not been investigated. Here, three TLR5M isotypes (TLR5Ma, TLR5Mb1, and TLR5Mb2) and a TLR5S are all extracted from fish genomes on the basis of phylogenetic and synteny analyses. We confirmed that the non-teleost fishes have one TLR5M gene, as well as additional TLR5 genes (TLR5M and TLR5S) in teleost fishes. In addition, some special teleost fishes possess two to three TLR5 genes, which have undergone the fourth whole-genome duplication (WGD). According to our results, we inferred that the diversity of TLR5 genes in fishes seems to be the result of combinations of WGD and gene loss. Furthermore, TLR5 isoforms displayed differences at the flagellin interaction sites and viral binding sites, and showed lineage-specific, which indicated that TLR5 duplicates may generate functional divergence. Bacterial experiments also supported the idea that CiTLR5Ma and CiTLR5Mb are subfunctionalized to sense bacterial flagellin. In summary, our present comparative genomic survey will benefit for further functional investigations of TLR5 genes in fish.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Ming Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Haobin He
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongyan Kou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| |
Collapse
|
11
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
12
|
Li XP, Sun JQ, Sui ZH, Zhang J, Feng JX. Membrane orthologs of TLR5 of tongue sole Cynoglossus semilaevis: Expression patterns, signaling pathway and antibacterial property. FISH & SHELLFISH IMMUNOLOGY 2022; 126:131-140. [PMID: 35618170 DOI: 10.1016/j.fsi.2022.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Mammalian toll-like receptor 5 (TLR5) is crucial for recognizing bacterial flagellin and initiating the inflammatory signaling cascades via myeloid differentiation factor 88 (MyD88) signaling pathway, which plays vital roles in innate immune against pathogenic bacteria. Herein, we reported the signaling pathway and antibacterial property of tongue sole (Cynoglossus semilaevis) membrane forms of TLR5 (i.e. CsTLR5M1and CsTLR5M2). CsTLR5M1/M2 contain 936 and 885 amino acid residues respectively. CsTLR5M1 shares 86.7% overall sequence identities with CsTLR5M2. CsTLR5M1/M2 possess the same extracellular domain (ECD) and transmembrane domain (TMD), but the different toll-interleukin-1 receptor (TIR) domain. CsTLR5M1/M2 expression occurred constitutively in multiple tissues and regulated by bacterial stimulation. Recombinant CsTLR5M1/M2 (rCsTLR5M) could bind to flagellin and Gram-negative/positive bacteria, which could suppress bacterial growth. Stimulation of the CsTLR5M pathway by flagellin resulted in increased expression of MyD88-dependent signaling molecules and inflammatory cytokines. Blocking rCsTLR5M by antibody markedly reduced the phagocytosis and ROS production of peripheral blood leukocytes (PBLs), which in turn in vivo promoted the dissemination of bacteria. Overall, these observations add new insights into the signaling pathway and immune function of teleost TLR5M.
Collapse
Affiliation(s)
- Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Zhi-Hai Sui
- School of Life Science, Linyi University, Linyi, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
13
|
Chen H, Zhao Y, Chen K, Wei Y, Luo H, Li Y, Liu F, Zhu Z, Hu W, Luo D. Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Front Immunol 2022; 13:872896. [PMID: 35844551 PMCID: PMC9279890 DOI: 10.3389/fimmu.2022.872896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Various bacterial diseases have caused great economic losses to the high-density and intensive aquaculture industry; however, the pathogenic mechanism underlying the large-scale challenged to caused by many bacteria remain unclear, making the prevention and treatment of these diseases difficult. In the present study, we isolated a bacterial strain from Cyprinus carpio having a typical bacterial disease and named it Cc2021. Through subsequent morphological observations, a regression challenge, biochemical identification, and 16S rRNA gene sequence analysis, we determined Cc2021 to be Plesiomonas shigelloides. Subsequently, we comprehensively investigated the pathogenicity of P. shigelloides in C. carpio through a regression challenge and assessed the underlying the pathogenic mechanism. Mortality results revealed that P. shigelloides is highly pathogenic and infects various tissues throughout the body, resulting in edema of the liver, spleen, and body and head kidneys. Histopathological analysis revealed obvious inflammation, bleeding, and necrosis in the intestine, spleen, and head kidney. The body’s immune tissues actively produce complement C3, superoxide dismutase, and lysozyme after a challenge to resist bacterial invasion. With regard to the underlying pathogenesis of P. shigelloides, comparative transcriptome analysis revealed 876 upregulated genes and 828 downregulated genes in the intestine of C. carpio after the challenge. Analysis of differentially expressed unigenes revealed the involvement of major immune pathways, particularly the TNF signaling pathway, interleukin (IL)-17 signaling pathway, and Toll-like receptor signaling pathway. The present study provides new valuable information on the immune system and defense mechanisms of P. shigelloides.
Collapse
Affiliation(s)
- Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kuangxin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulai Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daji Luo,
| |
Collapse
|
14
|
Ouyang G, Sun R, Wan X, Yuan L, Shi Z, Wang Q, Wang B, Luo Y, Ji W. Characterization, expression and function analysis of pfTLR5S and pfTLR5M in yellow catfish (Pelteobagrus fulvidraco) responding to bacterial challenge. Int J Biol Macromol 2022; 216:322-335. [PMID: 35777512 DOI: 10.1016/j.ijbiomac.2022.06.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Toll-Like Receptors (TLRs) are important pattern recognition receptors, playing critical roles in the early innate immune response to defensing against pathogen invasion. In this study, we found both soluble form TLR5 (pfTLR5S) and membrane form TLR5 (pfTLR5M) in yellow catfish Pelteobagrus fulvidraco. The open reading frames (ORFs) of pfTLR5M and pfTLR5S genes were 2655 bp and 1947 bp in length, encoding 884 and 648 amino acids, respectively. pfTLR5M was composed of thirteen LRR domains, one TIR domain and one transmembrane domain. However, pfTLR5S have only fifteen LRR domains, without any TIR domain and transmembrane domain. Both pfTLR5M and pfTLR5S genes had the highest expression in liver, especially for pfTLR5S, which showed a noticeable high expression in liver. We also compared the relative mRNA expression levels of pfTLR5M and pfTLR5S in digestive and immune-related tissues after challenge of three different bacteria. In addition, we also found that pfTLR5S can interact with pfTLR5M, and inhibit the expression of pfTLR5M protein, while induced the expression of downstream proinflammatory factors, such as TNFα and IL8. These results revealed that both pfTLR5M and pfTLR5S play important and different roles in defensing against the invasion of flagellated bacteria, and they may function by binding to each other.
Collapse
Affiliation(s)
- Gang Ouyang
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, PR China; Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Wan
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Yuan
- The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, PR China; Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanzhi Luo
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, PR China; Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Genome-wide mining of gpx gene family provides new insights into cadmium stress responses in common carp (Cyprinus carpio). Gene 2022; 821:146291. [PMID: 35176426 DOI: 10.1016/j.gene.2022.146291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
Abstract
Glutathione peroxidase (Gpx) is an important member of antioxidant enzymes, which can play a vital role in metabolizing reactive oxygen species (ROS) and in maintaining cell homeostasis. In order to study the evolutionary dynamics of gpx gene family in allotetraploid fish species, we identified a total of 14 gpx genes in common carp Cyprinus carpio, while 9 gpx genes were discovered in the diploid progenitor-like species Poropuntius huangchuchieni. Comparative genomic analysis and phylogenetic analysis revealed that the common carp gpx genes had significant expansion and were divided into five distinct subclades. Exon-intron distribution patterns and conserved motif analysis revealed highly conserved evolutionary patterns. Transcript profiles suggested that different gpx genes had specific patterns of regulation during early embryonic development. In adult tissues, gpx genes had a relatively broad expression distribution, most of which were highly expressed in the gills, intestines, and gonads. RT-qPCR studies showed that most gpx genes were downregulated during the initial cd2+ treatment stage. Dietary supplementation of Bacillus coagulans at different concentrations (Group 2 of 1.0 × 107 cfu/g, Group 3 of 1.0 × 108 cfu/g, and Group 4 of 1.0 × 109 cfu/g) induced different regulatory responses of gpx subclades. This result suggested that the appropriate concentration of B. coagulans can improve gpx gene expression when exposed to heavy metal cadmium treatment, which may play a vital role in the resistance to oxidative stress and immune responses. This study has expanded our understanding of the functional evolution of the gpx gene family in common carp.
Collapse
|
16
|
Effect of Feed Supplementation with Bacillus coagulans on Nrf Gene Family Expression in Common Carp (Cyprinus carpio) under Long-Term Exposure to Cd2+. FISHES 2022. [DOI: 10.3390/fishes7010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nuclear factor-E2-related factor (Nrf) belongs to the Cap ‘n’ collar basic leucine zipper (CNC-bZIP) family, which plays an important role in the resistance to oxidative stress in the body. In this study, 12 Nrf genes were identified in the common carp genome database. Comparative genomic analysis showed that the Nrf genes of common carp had significant amplification, confirming that the common carp had experienced four genome-wide replication events. Phylogenetic analysis showed that all common carp Nrf clustered with scleractinian fish Nrf, indicating that they were highly conserved during evolution. In addition, tissue distribution results showed that most Nrf genes had a broad tissue distribution but exhibited tissue-specific expression patterns, demonstrating functional differences after WGD events. At 30 and 60 days of Cd2+ stress, most of the Nrf genes showed an increase in expression compared with the control group, indicating that they played a key role in the organism’s response to oxidative stress. To find a suitable concentration of Bacillus coagulans to activate the Nrf genes, we added three different concentrations (2.0 × 107 CFU/g, 2.0 × 108 CFU/g, and 2.0 × 109 CFU/g) of B. coagulans into the feed and defined them as L1, L2, and L3 groups, respectively. We investigated the effect of different concentrations of B. coagulans in the feed on the expression level of Nrf genes in the intestine of common carp under Cd2+ stress at 30 and 60 days. The results showed that, compared with the control/stress group, the expression of different Nrf genes was improved to varying degrees at three concentrations, and the effect of the L2 group (2.0 × 108 CFU/g) was the best. This suggests that the L2 group is the optimum concentration for activating Nrf gene expression when subjected to heavy metal Cd2+ stress and may act as an activation switch with a prominent role in the body’s resistance to oxidative stress and immune response.
Collapse
|
17
|
Peng Y, Shi H, Liu Y, Huang Y, Zheng R, Jiang D, Jiang M, Zhu C, Li G. RNA Sequencing Analysis Reveals Divergent Adaptive Response to Hypo- and Hyper-Salinity in Greater Amberjack ( Seriola dumerili) Juveniles. Animals (Basel) 2022; 12:327. [PMID: 35158652 PMCID: PMC8833429 DOI: 10.3390/ani12030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Salinity significantly affects physiological and metabolic activities, breeding, development, survival, and growth of marine fish. The greater amberjack (Seriola dumerili) is a fast-growing species that has immensely contributed to global aquaculture diversification. However, the tolerance, adaptation, and molecular responses of greater amberjack to salinity are unclear. This study reared greater amberjack juveniles under different salinity stresses (40, 30, 20, and 10 ppt) for 30 days to assess their tolerance, adaptation, and molecular responses to salinity. RNA sequencing analysis of gill tissue was used to identify genes and biological processes involved in greater amberjack response to salinity stress at 40, 30, and 20 ppt. Eighteen differentially expressed genes (DEGs) (nine upregulated and nine downregulated) were identified in the 40 vs. 30 ppt group. Moreover, 417 DEGs (205 up-regulated and 212 down-regulated) were identified in the 20 vs. 30 ppt group. qPCR and transcriptomic analysis indicated that salinity stress affected the expression of genes involved in steroid biosynthesis (ebp, sqle, lss, dhcr7, dhcr24, and cyp51a1), lipid metabolism (msmo1, nsdhl, ogdh, and edar), ion transporters (slc25a48, slc37a4, slc44a4, and apq4), and immune response (wnt4 and tlr5). Furthermore, KEGG pathway enrichment analysis showed that the DEGs were enriched in steroid biosynthesis, lipids metabolism, cytokine-cytokine receptor interaction, tryptophan metabolism, and insulin signaling pathway. Therefore, this study provides insights into the molecular mechanisms of marine fish adaptation to salinity.
Collapse
Affiliation(s)
- Yuhao Peng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yuqi Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Renchi Zheng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Mouyan Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| |
Collapse
|
18
|
Gnanagobal H, Cao T, Hossain A, Dang M, Hall JR, Kumar S, Van Cuong D, Boyce D, Santander J. Lumpfish ( Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Front Immunol 2021; 12:733266. [PMID: 34880856 PMCID: PMC8645940 DOI: 10.3389/fimmu.2021.733266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Bio-systems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Doan Van Cuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic (MCE), Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
19
|
Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, Gao W, Xu Q, Zhang W, Mai K. FoxO3 Modulates LPS-Activated Hepatic Inflammation in Turbot ( Scophthalmus maximus L.). Front Immunol 2021; 12:679704. [PMID: 34276667 PMCID: PMC8281027 DOI: 10.3389/fimmu.2021.679704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1β, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1β, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Weihua Gao
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiaoqing Xu
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
20
|
Yang N, Wang B, Yu Z, Liu X, Fu Q, Cao M, Xue T, Ren Y, Tan F, Li C. Characterization of a novel lncRNA (SETD3-OT) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 102:145-151. [PMID: 32278113 DOI: 10.1016/j.fsi.2020.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
LncRNAs have been demonstrated to play pivotal roles in virous biological processes, especially the gene expression regulation, including transcriptional regulation, posttranscriptional control and epigenetic processes. However, most of the current studies of lncRNAs are still limited in mammalian species, the investigations of functional roles of lncRNAs in teleost species are still lacking. In current study, we identified a novel lncRNA (SETD3-OT) in turbot, with 2,504 bp full-length obtained by 5' and 3' RACE, located in turbot chromosome 17, ranged from 20,933,835 to 20,936,302 bp. In addition, 8 neighboring genes of SETD3-OT were identified within 100 kbp in genome location. From the annotation of the neighboring adjacent genes, SETD3-OT might involve in regulation of cell apoptosis and cycle, the immune cell development, and the immune response against infection, and its expression pattern is similar to majority of the neighboring genes following Aeromonas salmonicida challenge. Intriguingly, SETD3-OT showed significant high expression levels in mucosal surfaces (intestine, gill and skin), and was dramatically down-regulated in these mucosal tissues following Vibrio anguillarum challenge, especially in gill and skin. In addition, SETD3-OT was distributed in nucleus, it might regulate the neighboring genes in cis or in trans. Taken together, our results provide insights for lncRNA in fish innate immunity, further studies should be conduct to explore the detailed molecular mechanism of the gene regulation between SETD3-OT and its neighboring genes.
Collapse
Affiliation(s)
- Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhouxin Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Fu Q, Zhao S, Yang N, Tian M, Cai X, Zhang L, Hu J, Cao M, Xue T, Li C. Genome-wide identification, expression signature and immune functional analysis of two cathepsin S (CTSS) genes in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 102:243-256. [PMID: 32315741 DOI: 10.1016/j.fsi.2020.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Cathepsins, a superfamily of hydrolytic enzymes produced and enclosed within lysosomes, play multiple roles at physiological and pathological states. Cathepsin S is a lysosomal cysteine endopeptidase of the papain family, and exerts critical roles in the regulation of MHC class II immune responses. In the present study, we captured two Cathepsin S genes in turbot (SmCTSS1 and SmCTSS2.1), characterized their expression patterns following V. anguillarum and S. iniae infections, and explored their binding ability and agglutination capability. Firstly, the SmCTSS1 contained a 990 bp ORF encoding 329 amino acids, while SmCTSS2.1 contained a 1,014 bp ORF encoding 337 amino acids. The phylogenetic analysis revealed that both genes showed the closest relationship to their counterparts of Japanese flounder (Paralichthys olivaceus). In addition, both genes were ubiquitously expressed in all examined healthy tissues, with the highest expression level observed in spleen and intestine, respectively, while the lowest expression level both observed in liver. Both SmCTSS1 and SmCTSS2.1 were significantly differentially expressed, and exhibited general down-regulations at most time points in skin and intestine after two bacterial infections. Finally, both rSmCTSS1 and rSmCTSS2.1 showed significant binding ability to three examined microbial ligands (LPS, PGN and LTA), and strong agglutination effect to different bacteria (E. tarda, S. agalactiae, S. aureus and V. anguillarum). Collectively, this study provided valuable data for understanding the roles of CTSS in the host defense against bacterial infections in turbot, and indicated the potential vital roles of CTSS in innate immune responses of teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Mohammadi G, Rafiee G, Abdelrahman HA. Effects of dietary Lactobacillus plantarum (KC426951) in biofloc and stagnant-renewal culture systems on growth performance, mucosal parameters, and serum innate responses of Nile tilapia Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1167-1181. [PMID: 32133574 DOI: 10.1007/s10695-020-00777-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Effects of dietary Lactobacillus plantarum (KC426951) on growth and innate responses of Nile tilapia Oreochromis niloticus were evaluated in biofloc technology system and stagnant-renewal culture system (SRCS). The 90-day-long experiment contained four treatments: SRCS without probiotic (T1), SRCS with probiotic (T2), biofloc without probiotic (T3), and biofloc with probiotic (T4). The administration dose of probiotic was 2 × 108 CFU kg-1 diet. At the end of experiment, the mean final weights, specific growth rates, feed conversion ratios, and total biomass were significantly (P < 0.05) better in BFT treatments, with no significant effect of probiotic on these parameters in both culture systems. Meanwhile, skin mucosal parameters including total protein (TP), lysozyme (LYZ), alkaline phosphatase (ALP), and protease (PRO) activity were significantly enhanced following probiotic supplementation. T4 treatment displayed a significantly higher LYZ and ALP activity in mucus versus other treatments. Also, serum alternative complement activity was significantly heightened in probiotic-supplemented fish. Superoxide dismutase activity in T4 was detected higher than that of SRCS groups. The results of the current study demonstrated the enhancement of some mucosal and serum innate responses of Nile tilapia in both culture systems upon L. plantarum (KC426951) supplementation.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Hisham A Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
23
|
Li C, Ge X, Su B, Fu Q, Wang B, Liu X, Ren Y, Song L, Yang N. Characterization of class B scavenger receptor type 1 (SRB1) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 100:358-367. [PMID: 32169665 DOI: 10.1016/j.fsi.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Class B scavenger receptor type 1 (SRB1) serves as a high-density lipoprotein (HDL) receptor essential for HDL metabolism, and plays vital roles in innate immunity. In this study, the turbot (Scophthalmus maximus) SRB1 was cloned and characterized. The gene structure consists of a coding region of 1,527 bp nucleotides dividing into 13 exons and 12 introns. Such genome structure is highly conserved among teleost fishes. The deduced SRB1 encodes 508 amino acids that mainly has a CD36 transmembrane domain. Tissue distribution of SRB1 showed the lowest expression in liver, while the highest expression was found in intestine. Significantly down-regulation pattern of SmSRB1 expression in intestine was shared after infection with Vibrio anguillarum and Streptococcus iniae. Brach and site models in CODEML program showed that SmSRB1 underwent a conservative evolutionary and three potential positive selected sites 470K, 496E, and 501Y were detected, which requires further investigation and confirmation using base-editing technologies. Subcellular localization demonstrated that turbot SRB1 was distributed in the membrane and cytoplasm. rSmSRB1 showed binding ability in vitro to bacteria, LPS, PGN, LTA and virus. Protein-protein interaction network agrees the function of SRB1 as lipoprotein receptor. Our results indicated SmSRB1 might act as co-receptors to TLRs and NLRs to modulate the immune response to pathogens. Further studies should pay attention to evaluate the specific co-receptor for SRB1 in recognition of different pathogens and selective mechanisms involved.
Collapse
Affiliation(s)
- Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
24
|
Eslamloo K, Kumar S, Caballero-Solares A, Gnanagobal H, Santander J, Rise ML. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. FISH & SHELLFISH IMMUNOLOGY 2020; 98:937-949. [PMID: 31770640 DOI: 10.1016/j.fsi.2019.11.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Hajarooba Gnanagobal
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
25
|
Sharma P, Levy O, Dowling DJ. The TLR5 Agonist Flagellin Shapes Phenotypical and Functional Activation of Lung Mucosal Antigen Presenting Cells in Neonatal Mice. Front Immunol 2020; 11:171. [PMID: 32132997 PMCID: PMC7039933 DOI: 10.3389/fimmu.2020.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Intranasal mucosal vaccines are an attractive approach to induce protective mucosal immune responses. Activation of lung antigen presenting cells (APCs), a phenotypically and functionally heterogeneous cell population located at distinct mucosal sites, may be key to the immunogenicity of such vaccines. Understanding responsiveness of newborn lung APCs to adjuvants may the inform design of efficacious intranasal vaccines for early life, when most infections occur. Here, we characterized and phenotyped APCs from neonatal (7 days of life) and adult (6-8 weeks of age) mice. Neonatal mice demonstrated a relatively high abundance of alveolar macrophages (AMs), with lower percentages of plasmacytoid dendritic cells (pDCs), CD103+ (cDC1), and CD11b+ (cDC2) DCs. Furthermore, neonatal CD103+ and CD11b+ DC subsets demonstrated a significantly lower expression of maturation markers (CD40, CD80, and CD86) as compared to adult mice. Upon stimulation of lung APC subsets with a panel of pattern recognition receptor (PRR) agonists, including those engaging TLRs or STING, CD11c+ enriched cells from neonatal and adult mice lungs demonstrated distinct maturation profiles. Of the agonists tested, the TLR5 ligand, flagellin, was most effective at activating neonatal lung APCs, inducing significantly higher expression of maturation markers on CD103+ (cDC1) and CD11b+ (cDC2) subsets. Intranasal administration of flagellin induced a distinct migration of CD103+ and CD11b+ DC subsets to the mediastinal lymph nodes (mLNs) of neonatal mice. Overall, these findings highlight age-specific differences in the maturation and responsiveness of lung APC subsets to different PRR agonists. The unique efficacy of flagellin in enhancing lung APC activity suggests that it may serve as an effective adjuvant for early life mucosal vaccines.
Collapse
Affiliation(s)
- Pankaj Sharma
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
27
|
Castro R, Coll J, Blanco MDM, Rodriguez-Bertos A, Jouneau L, Fernández-Garayzábal JF, Gibello A. Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas. Vet Res 2019; 50:32. [PMID: 31046823 PMCID: PMC6498643 DOI: 10.1186/s13567-019-0649-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/09/2019] [Indexed: 01/29/2023] Open
Abstract
Lactococcus garvieae is a significant pathogen in aquaculture with a potential zoonotic risk. To begin to characterize the late immune response of trout to lactococcosis, we selected infected individuals showing clinical signs of lactococcosis. At the time lactococcosis clinical signs appeared, infection by L. garvieae induced a robust inflammatory response in the spleen of rainbow trout, which correlated with abundant granulomatous lesions. The response in kidney goes in parallel with that of spleen, and most of the gene regulations are similar in both organs. A correlation existed between the early inflammatory granulomas in spleen (containing macrophages with internalized L. garvieae) and up-regulated gene sets, which defined the presence of macrophages and neutrophils. This is the first analysis of the immune transcriptome of rainbow trout following L. garvieae infection during the initiation of adaptive immune mechanisms and shows a transcriptome induction of antibody response by both IgM (+) and IgT (+) spleen B cells to respond to systemic infection. These results increase our understanding of lactococcosis and pave the way for future research to improve control measures of lactococcosis on fish farms.
Collapse
Affiliation(s)
- Rosario Castro
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional Investigaciones Agrarias y Alimentarias, INIA, Madrid, Spain
| | - María Del Mar Blanco
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Antonio Rodriguez-Bertos
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,VISAVET Animal Health Surveillance Center, Complutense University, Madrid, Spain
| | - Luc Jouneau
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - José Francisco Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,VISAVET Animal Health Surveillance Center, Complutense University, Madrid, Spain
| | - Alicia Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.
| |
Collapse
|
28
|
Morimoto N, Kondo M, Kono T, Sakai M, Hikima JI. Nonconservation of TLR5 activation site in Edwardsiella tarda flagellin decreases expression of interleukin-1β and NF-κB genes in Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2019; 87:765-771. [PMID: 30776541 DOI: 10.1016/j.fsi.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Flagellin is the subunit protein that composes bacterial flagella and is recognized by toll-like receptor 5 (TLR5) as a ligand. Flagellin protein (e.g., FliC and FlaA) contains the D1, D2, and D3 domains; the D1 domain is important for recognition by TLR5 for activation of the innate immune system. In teleosts, there are two types of TLR5, the membrane form (TLR5M) and soluble form (TLR5S), the latter of which is not present in mammals. In this study, the potential of flagellin from Edwardsiella tarda (EtFliC) to induce inflammation-related genes interleukin (IL)-1β and NF-κB-p65 through TLR5S in Japanese flounder (Paralichthys olivaceus) was elucidated. A transient overexpression system was developed in flounder natural embryonic (HINAE) cells using constructs encoding two flagellin genes derived from E. tarda (pEtFliC) and Escherichia coli (pEcoFliC) and the flounder TLR5S gene (pPoTLR5S). Expression of inflammation-related genes in EtFliC- and PoTLR5S-overexpressing HINAE cells was significantly lower than in EcoFliC- and PoTLR5S-overexpressing cells. To clarify the difference between EtFliC and EcoFliC potency, the amino acid sequence of EtFliC was compared with that of other bacterial flagellin. The 91st arginine residue, known as the mammalian TLR5 activation site, was conserved in the flagellin of E. coli and other bacteria but not in EtFliC. To reveal the importance of the 91st arginine residue in FliC, a pEtFliC construct in which the 91st asparagine was mutated to arginine (pEtFliC_N91R) was generated. Expression of the IL-1β and NF-κB-p65 genes in the HINAE cells co-transfected with pEtFliC_N91R and pPoTLR5S was significantly higher than that in cells co-transfected with pEtFliC and pPoTLR5S. The results suggested that the 91st arginine residue of bacterial flagellin is involved in inflammatory response through TLR5S in teleosts. Thus, EtFliC improved by site-directed mutagenesis could be an effective adjuvant against E. tarda infection in Japanese flounder.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
29
|
Fu Q, Yang N, Gao C, Tian M, Zhou S, Mu X, Sun F, Li C. Characterization, expression signatures and microbial binding analysis of cathepsin A in turbot, Scophthalmus maximus L.(SmCTSA). FISH & SHELLFISH IMMUNOLOGY 2018; 81:21-28. [PMID: 29981472 DOI: 10.1016/j.fsi.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Mucosal immune system is one of the most vital components in the innate immunity and constitutes the first line of host defense against bacterial infections, especially for the teleost, which live in the pathogen-rich aquatic environment. Cathepsins, a superfamily of hydrolytic enzymes produced and enclosed within lysosomes, play multiple roles at physiological and pathological states. In this regard, we sought here to identify Cathepsin A in turbot (SmCTSA), characterize its mucosal expression patterns following Vibrio anguillarum and Streptococcus iniae infections in mucosal tissues, and explore its binding ability with three microbial ligands for the first time. The SmCTSA was 2631 bp long containing a 1422 bp open reading frame (ORF) that encoded 473 amino acids. Phylogenetic analysis revealed that SmCTSA showed the closest relationship to half-smooth tongue sole (Cynoglossus semilaevis). In addition, SmCTSA was ubiquitously expressed in all examined healthy tissues, with high expression levels in head kidney (HK) and intestine, while the lowest expression level in blood. Moreover, SmCTSA was significantly differentially expressed at least two timepoints in each mucosal tissue, suggesting its potential important roles in innate immune responses of turbot. Finally, in vitro assays showed that recombinant SmCTSA bound Lipopolysaccharide (LPS) with high affinity, and lipoteichoic acid (LTA) and peptidoglycan (PGN) with relatively low affinity. This study provides valuable data for understanding the roles of ctsa in the host defense against bacterial infections.
Collapse
Affiliation(s)
- Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fanyue Sun
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Gao C, Su B, Zhang D, Yang N, Song L, Fu Q, Zhou S, Tan F, Li C. l-rhamnose-binding lectins (RBLs) in turbot (Scophthalmus maximus L.): Characterization and expression profiling in mucosal tissues. FISH & SHELLFISH IMMUNOLOGY 2018; 80:264-273. [PMID: 29886139 DOI: 10.1016/j.fsi.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Rhamnose-binding lectin (RBL) were mostly identified from egg cortex and ovary cells from vertebrates and invertebrates, with the specific binding activities to l-rhamnose or d-galactose. Previously, we found that a RBL gene was dramatically down-regulated (-11.90 fold at 1 h, -48.95 fold at 4 h, -905.94 fold at 12 h) in the intestine of turbot following Vibrio anguillarum challenge using RNA-seq expression analysis. In this regard, we sought here to identify RBLs in turbot, as well as the analysis of genomic structure, phylogenetic relationships, basal tissue distribution and the expression patterns following different bacteria challenge in mucosal tissues. In this study, two RBLs were captured in turbot with two conserved type 5 CRD5s, which were belong to type IIIc RBL. In phylogenetic tree analysis, turbot RBLs were clustered with tilapia, European sea bass and snakehead. In addition, in comparison of genomic architecture of turbot RBLs with the available published RBL genes revealed a high degree of conservation in the exon/intron organization among the teleost species. Moreover, both RBLs were significantly up-regulated in mucosal tissues following V. anguillarum and Streptococcus iniae challenge, indicated their critical roles in turbot mucosal immunity. Further studies are needed to expand functional characterization of detailed mechanisms of RBLs in fish innate immunity.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
31
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Zhu J, Gan X, Ao Q, Shen X, Tan Y, Chen M, Luo Y, Wang H, Jiang H, Li C. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2018; 75:336-345. [PMID: 29454032 DOI: 10.1016/j.fsi.2018.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
One of the highest priority areas for improvement is the development of effective strategies for decreasing disease mortality levels in aquaculture production, a better understanding of the components of the fish immune system and their functions in the context of pathogen invasion is needed. Tilapia is the most common fish in South China, and Streptococcus agalactiae has become the most serious disease problem for tilapia industry in China. Here, we profiled gene expression differences between tilapia differing in their susceptibility to S. agalactiae both basally (before infection) and at three early timepoints post-infection (5 h, 50 h, and 7 d). Between group comparisons revealed 5756 unique genes differentially expressed greater than 2-fold at one or more timepoints. And the resistant fish showed much more strong ability in pathogen recognition, antigen presentation, immune activation, while the susceptible fish showed fast activation of apoptosis. Taken together, the immune profiles expand our knowledge for molecular mechanisms for disease resistance, as well as provide solid molecular resources for further identification of the candidate markers for disease-resistant selection and evaluation of disease prevention and treatment options for tilapia industry.
Collapse
Affiliation(s)
- Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China; Guangxi University, Nanning, Guangxi 530004, China
| | - Xi Gan
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Xiashuang Shen
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Yun Tan
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Hui Wang
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | | | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|