1
|
Zhou Y, Liang H, Ren M, Huang D, Gu J. Impacts of Substituting Fish Meal With Hydrolyzed Feather Meal on the Growth Performance, Immunity, and Antioxidant Capacity of Juvenile Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2025; 2025:6564426. [PMID: 40297279 PMCID: PMC12037244 DOI: 10.1155/anu/6564426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
An 8-week breeding experiment was conducted to study the impacts of adding different levels (0%, 3.1%, 6.2%, 9.3%, 12.4%, and 15.5%) of hydrolyzed feather meal (HFM) in place of fish meal (FM) in the feed on the growth performance, immune function, and antioxidative ability of juvenile largemouth bass (Micropterus salmoides), with fishmeal substitution levels (FSLs) of 0% (control group; FSL0), 10% (FSL10), 20% (FSL20), 30% (FSL30), 40% (FSL40), and 50% (FSL50), respectively. The findings show that there were no notable differences observed among the different treatment groups when contrasted with FSL0. However, as the substitution level increased, final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) declined, while the feedback coefficient rate (FCR), condition factor (CF), hepatosomatic index (HSI), and viscerosomatic index (VSI) increased. With an increase in the FSL, catalase (CAT) activity increased in all the groups and was significantly higher in the FSL20 and FSL50 groups than the control group; SOD activities in FSL40 and FSL50 significantly increased, and the plasma MDA contents in FSL40 and FSL50 significantly decreased. The gene expression levels of IL-10 and IL-8 in the groups FSL20 to FSL50 significantly decreased. When compared with FSL0, the gene expression levels of CHOP and ATF6 were also significantly lower in the FSL10 to FSL50 groups. The overall expression level of ASK1 was significantly reduced in the FSL20 group. Similarly, the expression level of JNK1 was also significantly reduced in the FSL20 group. To sum up, replacing FM with HFM at 50% did not impact the growth of juvenile largemouth bass. An FSL range of 20%-50% can enhance the antioxidant capacity of largemouth bass, reduce inflammation and stress states, and have beneficial effects on the body. It is beneficial for maintaining the healthy growth of largemouth bass.
Collapse
Affiliation(s)
- Yanhong Zhou
- College of Fisheries and Life of Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hualiang Liang
- College of Fisheries and Life of Science, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- College of Fisheries and Life of Science, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
2
|
Zhu T, Song H, Du J, Lei C, Tian J, Wang C, Dong C, Li S. Draft genome assembly of the largemouth bass (Micropterus salmoides). BMC Genom Data 2025; 26:28. [PMID: 40234748 PMCID: PMC12001621 DOI: 10.1186/s12863-025-01318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVE Largemouth bass (Micropterus salmoides, LMB) is an important species in aquaculture, and the annual production is rapidly increasing. Genetic and breeding studies related to LMB have promising applications, and a high-quality genome assembly is essential for interpreting genetic and sequencing data. In this study, we sequenced the genome of a male LMB using the PacBio Sequel platform, high-throughput chromosome conformation capture (Hi-C), and paired-end Illumina sequencing. Additionally, Full-length transcript sequencing was performed using isoform sequencing (Iso-Seq). Following the assembly and annotation, a draft assembly for male LMB was obtained. DATA DESCRIPTION This work generated PacBio data of 164.5 Gb, Hi-C data of 113.4 Gb, Illumina data of 54.7 Gb, and Iso-Seq data of 22.8 Gb. The assembly revealed that the LMB genome has a total length of 877.7 Mb, with an N50 of 37.2 Mb, comprising 23 chromosomes and 202 scaffolds. Annotation results indicated that 32.8% of the genome consists of repetitive sequences, containing 23,952 coding genes with an average gene length of 17,328 bp.
Collapse
Affiliation(s)
- Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chenghui Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang, 453004, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
3
|
Zhang L, Huang D, Gu J, Liang H, Ren M. The Significant Enhancing Effect of Vitamin B 6-Fortified Feed on the Intestinal Digestive Efficiency, Immunity, and Antioxidant Defense Mechanisms of Juvenile Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2025; 14:313. [PMID: 40227288 PMCID: PMC11939574 DOI: 10.3390/antiox14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
A 12-week aquaculture trial was conducted to evaluate the effects of vitamin B6 on the intestinal health of largemouth bass (Micropterus salmoides). Six feeds with a vitamin B6 content of 2.03 (control group), 2.91, 3.30, 6.03, 9.53, and 21.79 mg/kg were prepared. The results were as follows. Regarding digestive efficiency, the 9.53 mg/kg group showed significantly higher activities of AMY, LPS, and TRY compared to the control group; the 6.03 mg/kg group exhibited increased AKP and Na+/K+ ATPase activities. Regarding immunity, the 6.03 mg/kg group had markedly higher relative expressions of zo-1 and occ than the control group; the 9.53 mg/kg group showed significantly higher relative expressions of il-10, tgf-β, igm, and cd83, while il-8 and tnf-α were notably lower, and nf-κb was noticeably decreased in 21.79 mg/kg group. For antioxidant capacity, the 6.03 mg/kg group had markedly higher activities of CAT, SOD, GSH-Px, and T-AOC levels, compared to the control group; the MDA level in the control group was markedly higher than in the other groups. The relative expressions of nrf2, cat, Cu-Zn sod, and gpx were highest in 9.53 mg/kg group and significantly higher than in the control group. In conclusion, an appropriate level of vitamin B6 in the feed is vital for protecting the intestinal health of largemouth bass.
Collapse
Affiliation(s)
- Leimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
4
|
Li L, Wang Y, Zhou X, Wang C. Fishmeal intervention after short-term novel proteins stimulates compensatory growth and affects intestinal health in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:23. [PMID: 39653868 DOI: 10.1007/s10695-024-01436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
This research utilized a compensatory growth phenomenon aimed at reducing the use of fishmeal in aquatic animal feed. However, the compensatory growth triggered by fishmeal restriction with novel protein replacement has yet to be understood. Five isonitrogenous and isolipidic diets containing different proteins were manufactured, with fishmeal serving as the control and diets containing novel proteins, i.e., Chlorella (Chlorella vulgaris), cottonseed protein concentrate, Clostridium autoethanogenum, and yellow mealworm (Tenebrio molitor), serving as the experimental diets. Largemouth bass (Micropterus salmoides) with a starting body weight of 4.73 ± 0.04 g were respectively fed these five diets for the first 29 days (first stage), followed by a fishmeal diet for the remaining 29 days (second stage). The diet of fishmeal, Chlorella vulgaris, cottonseed protein concentrate, Clostridium autoethanogenum, and Tenebrio molitor was referred to as FM, ChM, CSM, CAP, and TM, respectively. All novel protein groups showed a 60-73% higher weight gain compared to the fishmeal group during the second phase; however, they did not reach the weight level seen in the control group. In addition, the second stage of fishmeal intervention resulted in a reduction of approximately 35% in the area of positive Alcian blue (AB) staining of intestinal tissues in the CSM group, and about 40% in the CAP group, compared to the first stage. Furthermore, the area of intestinal apoptosis in TM was enlarged after fishmeal intervention while it was decreased in other experimental groups. At day 58, gene expression analysis of the CAP group fish at the end of the trial revealed increased levels of the anti-apoptotic gene bcl-2, as well as higher expression of intestinal inflammatory cytokines il-1β, tnf-α, nf-κb p65, and il-10, compared to the FM group. In terms of the biochemical indices, the levels of catalase (CAT) and glutathione peroxidase (GSH-Px) were reduced in CSM on day 58. An assessment of potential microbial function at end of trial demonstrated that CAP could reduce the lipid metabolism and amino acid metabolism, and increased carbohydrate metabolism pathways in the largemouth bass intestine. In conclusion, both CAP and ChM groups showed promise to reduce fishmeal with respect to intestinal health rather than growth. This study should be of value to practitioners wishing to use novel proteins to reduce fishmeal via the utilization of the compensatory growth phenomenon.
Collapse
Affiliation(s)
- Lukuan Li
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianjun Zhou
- College of Animal Science, Guizhou University, Guiyang, China.
| | - Chunfang Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Miyata K, Inoue Y, Yamane M, Honda H. Fish environmental RNA sequencing sensitively captures accumulative stress responses through short-term aquarium sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178182. [PMID: 39719761 DOI: 10.1016/j.scitotenv.2024.178182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
The utility of environmental RNA (eRNA) in capturing biological responses to stresses has been discussed previously; however, the limited number of genes detected remains a significant hindrance to its widespread implementation. Here, we investigated the potential of eRNA to assess the health status of Japanese medaka fish exposed to linear alkylbenzene sulfonate. Analyzing eRNA and organismal RNA (oRNA) in aquarium water within 12 h, we achieved high mapping rates and 10 times more differentially expressed genes than previously reported. This advancement has facilitated the previously unattainable capability of gene ontology (GO) analysis. The GO analysis revealed that eRNA can detect nuclear genes associated with cellular components and reflect cumulative gene expression signatures over time, while oRNA provided short-term gene expression signatures in biological process. Moreover, eRNA exhibited high sensitivity in responding to genes associated with sphingolipid and ceramide biosynthesis, which are involved in inflammatory responses possibly originating from impaired cells. This finding aligns with the observations made in oRNA. In conclusion, eRNA-sequencing (eRNA-seq) using aquarium water emerges as a valuable high sensitivity tool for analyzing physiological stress. The findings of this study lay the foundation for further development of eRNA-seq technologies.
Collapse
Affiliation(s)
- Kaede Miyata
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Yasuaki Inoue
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Masayuki Yamane
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
6
|
Wang LJ, Sun JG, Chen SC, Sun YL, Zheng Y, Feng JC. The role of intestinal flora in metabolic dysfunction-associated steatotic liver disease and treatment strategies. Front Med (Lausanne) 2025; 11:1490929. [PMID: 39839647 PMCID: PMC11746088 DOI: 10.3389/fmed.2024.1490929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation. Intervention strategies targeting the intestinal flora along with its metabolites may be new targets for preventing and treating MASLD.
Collapse
Affiliation(s)
- Li Jun Wang
- Department of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jian Guang Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu Cheng Chen
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Li Sun
- Department of Hepatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| | - Jian Chao Feng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| |
Collapse
|
7
|
Huang D, Gu J, Liang H, Ren M, Xue C. Effects of Seaweed Polysaccharide on the Growth and Physiological Health of Largemouth Bass, Micropterus salmoides. Antioxidants (Basel) 2025; 14:52. [PMID: 39857386 PMCID: PMC11763202 DOI: 10.3390/antiox14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
A seven-week trial was designed to evaluate the effects of dietary seaweed polysaccharide (SP) supplementation on the growth performance and physiological health of largemouth bass. The results reveal that the 0.05SP group showed the best growth performance. The mRNA expression levels of tor, 4ebp1, and igf1 genes were remarkably down-regulated in the 0.15SP and 0.2SP groups compared to the control group. The CAT activities were significantly increased in the 0.05SP and 0.1SP groups, and the GSH-Px activity was increased in the 0.15SP group. The expression of the immune response-related gene nfκb was significantly down-regulated in the 0.1SP group, and those of tnfα and il-8 were at the maximum in the control group. Moreover, the expression of il-10 in the 0.15SP and 0.2SP groups was significantly down-regulated. Furthermore, endoplasmic reticulum stress (ERS)-related expression of atf6 was the highest in the control group. Furthermore, the chopα and bax expression levels in the 0.15SP and 0.2SP groups were significantly down-regulated compared with other groups. In addition, the highest expression level of bcl-xl was observed in the 0.15SP group. Finally, the quadratic regression analysis of antioxidant, immune, and ERS core parameters (CAT, nf-κb, and bcl-xl) determined 0.06-0.11% to be the optimal SP supplemental level in largemouth bass diets.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
8
|
Manzoor N, Samad N, Bhatti SA, Irfan A, Ahmad S, Shazly GA, Bin Jardan YA. Neuroprotective effect of niacin in a rat model of obesity induced by high-fat-rich diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03687-3. [PMID: 39680102 DOI: 10.1007/s00210-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the impact of a high-fat-rich diet (HFRD) on behavioral, biochemical, neurochemical, and histopathological studies using the hypothalamus of rats following niacin (NCN) administration. The rats were divided into HFRD and normal diet (ND)-fed groups and administered selected doses of NCN, i.e., 25 mg/mL/kg (low dose) and 50 mg/mL/kg (high dose), for 8 weeks. The grouping of male rats (n = 8) was as follows: (i) Vehicle (Veh) + ND; (ii) ND + NCN (low dose); (iii) ND + NCN (high dose); (iv) Veh + HFRD; (v) HFRD + NCN (low dose); and (vi) HFRD + NCN (high dose). Behavioral tests assessed depression-like symptoms and spatial memory; after that, the hypothalamus was isolated for various analyses of sacrificed animals. NCN at both doses decreased food intake and growth rate in both diet groups and demonstrated antidepressant and memory-enhancing effects. HFRD-induced oxido-neuroinflammation decreased with both doses of NCN. HFRD-induced decreases in serotonergic neurotransmission, 5-HT1A receptor expression, and morphological alterations in the rat's hypothalamus were normalized by both doses of NCN. In conclusion, NCN, as a potential antioxidant and neuromodulator, can normalize feeding behavior and produce antidepressant and memory-improving effects in a rat model of obesity following HFRD intake.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sadaf Ahmad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Yan H, Hu Y, Liang J, He K, Kuang X, Liu Q, Zhao L, Yang S. Yinchenhao Decoction mitigates intestinal impairment induced by high carbohydrate diet in largemouth bass (Micropterus salmoides): insights from inflammation, apoptosis, oxidative stress, tight junctions, and microbiota homeostasis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2207-2223. [PMID: 39066864 DOI: 10.1007/s10695-024-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As a major source of energy, carbohydrates have a protein-saving effect. However, excessive consumption of carbohydrates can lead to the disruption of the intestinal barrier in fish, especially for carnivorous fish. Therefore, traditional Chinese medicine component Yinchenhao Decoction (YD), was used to detect the effect on intestinal barriers and microbial community equilibrium for largemouth bass in current research. In this research, a series of NC (normal carbohydrate diet) and HC (high carbohydrate diet) with graded YD treatments during 10 weeks feeding trial. Results suggested that 2% and 4% YD treatments significantly reduced gut inflammation and mucosal loss caused by HC. Compared with NC, HC significantly decreased the relative expression of intestinal tight junction-related genes (zo1, claudin1, claudin7, and occludin). However, with the application of YD, the expression of tight junction-related genes (zo1, claudin1, and claudin7) increased significantly (p < 0.05). Likewise, administration of YD significantly reduced elevated plasma diamine oxidase (DAO) activity caused by HC (p < 0.05). Additionally, YD significantly downregulated the mRNA expression of endoplasmic reticulum stress (ERS)-related genes (grp78, atf6, chopα, ire1, xbp1, and eifα) and pro-apoptosis genes (casp3, casp8, and bax) (p < 0.05), while upregulating the anti-apoptosis gene bcl2 (p < 0.05). Moreover, YD significantly increased the mRNA expression of antioxidant genes and the enzyme activities of CAT and GPX, while decreased MDA concentration significantly (p < 0.05). Whereas, YD markedly decreased the expression of pro-inflammatory genes (il1β, tnfα, il8, and nf-κB) and the immune enzymes activity (ACP and AKP) (p < 0.05) by up-regulating the expression of anti-inflammatory genes (ikb and il10). Notably, YD modulated the largemouth bass intestinal microbial community, enhanced the diversity and increased the abundance of probiotic microorganisms in the intestinal microbiota. In summary, YD supplementation in HC alleviated inflammation, apoptosis, oxidative stress, tight-junction injury, and microbiota disequilibrium in the intestine, which suggested that YD could be a valuable functional additive in aquaculture.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu Kuang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
10
|
Han M, Liang J, Wang K, Si Q, Zhu C, Zhao Y, Khan NAK, Abdullah ALB, Shau-Hwai AT, Li YM, Zhou Z, Jiang C, Liao J, Tay YJ, Qin W, Jiang Q. Integrin A5B1-mediated endocytosis of polystyrene nanoplastics: Implications for human lung disease and therapeutic targets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176017. [PMID: 39236815 DOI: 10.1016/j.scitotenv.2024.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
Collapse
Affiliation(s)
- Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu 211100, China
| | - Chenxi Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | | | | | | | - Yi Ming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, China
| | - Zihan Zhou
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210017, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
11
|
Wang C, Hu X, Tang H, Ge W, Di L, Zou J, Cui Z, Zhou A. Multiple effects of dietary supplementation with Lactobacillus reuteri and Bacillus subtilis on the growth, immunity, and metabolism of largemouth bass (Micropterus salmoides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105241. [PMID: 39121939 DOI: 10.1016/j.dci.2024.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Probiotics play an essential role in the largemouth bass (Micropterus salmoides) aquaculture sector. They aid the fish in sickness prevention, intestinal structure improvement, food absorption, and immune system strengthening. In this experiment, Bacillus subtilis (BS, 107 CFU/g) and Lactobacillus reuteri (LR, 107 CFU/g) were added to the feed and then fed to M. salmoides for 35 days. The effects of two probiotics on the growth, immunity, and metabolism of M. salmoides organisms were studied. The results revealed that the BS group significantly increased the growth rate and specific growth rate of M. salmoides, while both the BS and LR groups significantly increase the length of villi M. salmoides intestines. The BS group significantly increased the levels of AKP, T-AOC, and CAT in the blood of M. salmoides, as well as AKP levels in the intestine. Furthermore, the BS group significantly increased the expression of intestinal genes Nrf2, SOD1, GPX, and CAT, while significantly decreasing the expression of the keap1 gene. M. salmoides gut microbial analysis showed that the abundance of Planctomycetota was significantly different in both control and experimental groups. Analyzed at the genus level, the abundance of Citrobacter, Paracoccus, Luedemannella, Sphingomonas, Streptomyces and Xanthomonas in the both control and experimental groups were significantly different. The BS group's differentially expressed genes were predominantly enriched in oxidative phosphorylation pathways in the intestine, indicating that they had a good influence on intestinal metabolism and inflammation suppression. In contrast, differentially expressed genes in the LR group were primarily enriched in the insulin signaling and linoleic acid metabolism pathways, indicating improved intestine metabolic performance. In conclusion, B. subtilis and L. reuteri improve the growth and health of M. salmoides, indicating tremendous potential for enhancing intestinal metabolism and providing significant application value.
Collapse
Affiliation(s)
- Chong Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huijuan Tang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Lijun Di
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China.
| | - Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
12
|
Shi B, Qian T, Yin Z, Zhang Y, Feng T, Dong Z, Cai W, Zhang Y. Comparing effects of high starch diet or high lipid diet supplemented with different levels of zinc on intestinal barrier and microbe community in largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109911. [PMID: 39293705 DOI: 10.1016/j.fsi.2024.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Zinc is essential for normal growth and reproduction in all animals and plays a crucial role in many biological processes. The present study aimed to compare the intervention effects of zinc on intestinal health in a high lipid diet or high starch diet. Seven iso-nitrogenous (∼520 g kg-1) diets were formulated containing a positive control diet (115 g kg-1 lipid + 115 g kg-1 starch + 20 mg kg-1 Zn), three high starch diets (HS, 166 g kg-1 starch) and three high lipid diets (HL, 182 g kg-1 lipid), with 0 (HS-LZn, HL-LZn), 20 (HS-MZn, HL-MZn) and 150 (HS-HZn, HL-HZn) mg kg-1 Zn being supplemented. High starch diet and high lipid diet promoted feed efficiency, as evidenced by the lower feed conversion ratio. Three-way factorial ANOVA analysis showed high starch diet (166 g kg-1) significantly decreased final body weight and weight gain compared to the normal starch level (115 g kg-1). Diamine oxidase in serum significantly increased in diets HS-LZn and HL-LZn. In addition, distal intestinal mucosal fold damage and inflammatory infiltration were observed in the HS-LZn, HS-HZn, HL-LZn and HL-HZn groups. Fish fed HL diets (HL-LZn, HL-MZn, HL-HZn) showed lower expressions of claudin 5 and claudin 34, and higher IgD and IgM. Diets HL-LZn and HL-MZn significantly up-regulated C4 and C7. Proinflammatory cytokines including il8, il1β and tnfα significantly up-regulated in diet HL-LZn, even higher than the HS-LZn. Intestinal microbial composition indicated the abundance of Cetobacterium in HL-LZn was significantly higher than the control and HL-MZn diets. Similarly, LEfSe showed that Cetobacterium (P = 0.039) significantly enriched in the HL-LZn group. This study clarified high energy diet induced intestinal damage, which can be alleviated by zinc.
Collapse
Affiliation(s)
- Bo Shi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Tong Qian
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ziyu Yin
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Tianyu Feng
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhiyong Dong
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; Norwegian University of Life Science, Faculty of Bioscience, Department of Animal and Aquaculture Science, NO-1432, Ås, Norway
| | - Wanjie Cai
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - Yuexing Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
13
|
Lin YJ, Li XN, Chen XM, Chen JM, Jin XY, Sun JX, Niu XT, Kong YD, Li M, Wang GQ. γ-Aminobutyric Acid Effectively Modulate Growth Performance, Physiological Response of Largemouth Bass ( Micropterus Salmoides) Under Combined Stress of Flow Velocity and Density. AQUACULTURE NUTRITION 2024; 2024:9180554. [PMID: 39555528 PMCID: PMC11527523 DOI: 10.1155/2024/9180554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/24/2024] [Indexed: 11/19/2024]
Abstract
The circular aquaculture model of largemouth bass pond engineering has the characteristics of high yield and efficiency, but it is prone to stress caused by flow velocity and density, which affects the yield of largemouth bass (Micropterus salmoides). γ-Aminobutyric acid (GABA) is believed to have the effect of improving growth and stress tolerance. We divided the largemouth bass into three groups: a control group, a flow rate and density combined stress group, and a combined stress feed supplemented with GABA (0.9%) group, and conducted a 60-day aquaculture experiment. The results showed that the final weight, weight gain rate (WGR), specific growth rate (SGR), and feed efficiency (FE) of largemouth bass significantly decreased in the combined stress group (P < 0.05). The serum aspartate aminotransferase (AST), alanine transaminase (ALT) activity, and glucose (GLU), malondialdehyde (MDA) level of largemouth bass significantly higher than the control group, and the serum lysozyme (LZM) activity and total antioxidant capacity (T-AOC) were significantly lower than the control group (P < 0.05). After adding GABA, the final weight, WGR, SGR, and FE decreased, and the serum GLU levels, AST, ALT activity, and MDA levels were downregulated, and the serum LZM activity and T-AOC of largemouth bass were upregulated. But most of the above are still at the level of the control group. Under combined stress, the messenger ribonucleic acid (mRNA) expression levels of growth hormone (GH), insulin-like growth factor-Ⅰ (IGF-I), B-cell lymphoma-2 (Blc2), nuclear transcription factor E2-related factor 2 (Nrf2), catalase (CAT), and superoxide dismutase (SOD) genes were significantly reduced (P < 0.05), while the mRNA expression levels of heat stress protein 70 (HSP70), heat stress protein 90 (HSP90), nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), Bax and keap1 genes were significantly increased (P < 0.05). After the exogenous addition of GABA, all the above genes have a certain degree of callback, but GH, HSP70, HSP90, IL-1β, Bax, Nrf2, CAT, and SOD have not yet reached the level of the control group. These results indicate that adding GABA to feed can alleviate the adverse effects of combined stress of flow rate and density to a certain extent and provide insights for solving the problems in the circular aquaculture model of largemouth bass.
Collapse
Affiliation(s)
- Yun-Jie Lin
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Xu-Nan Li
- Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Jian-Ming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China
| | - Xiao-Yan Jin
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Jia-Xin Sun
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Yi-Di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
14
|
Yuan X, Wu H, Gao J, Yang C, Xiong Z, Wu J, Wang C, Liu D, Shen J, Song R. Deltamethrin increased susceptibility to Aeromonas hydrophila in crucian carp through compromising gill barrier. CHEMOSPHERE 2024; 365:143379. [PMID: 39306116 DOI: 10.1016/j.chemosphere.2024.143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Pyrethroids serve as a significant method for managing and preventing parasitic diseases in fish. Among these, deltamethrin (DEL) is used extensively in aquatic environments. Our previous work has been confirmed that DEL exposure can induce oxidative stress and immunosuppression on the gill mucosal barrier of crucian carp (Carassius auratus). However, it is not clear whether DEL affects the susceptibility of farmed fish to bacterial infection. In this study, fish was pre-exposed to different DEL concentration (0, 0.3 and 0.6 μg L-1) and then challenged by immersion with Aeromonas hydrophila (1.0 × 10^8 CFU mL-1). After immersion challenge, fish pre-exposed to DEL developed prominent lipopolysaccharides level in gill and serum and had a significantly lower survival rate compared to the control group. In DEL pre-exposure fish after immersion, the gill apoptosis levels were significantly higher and disrupted the tight junction barrier by downregulating the zo1 and claudin12. Furthermore, fish pre-exposed to DEL exhibited increased activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malonaldehyde (MDA) levels in the early stage after immersion but experiencing decreased activities of glutathione peroxidase (GPx) and lysozyme (LZM) in the later stage after immersion. And this process was regulated by the NRF2 pathway. Additionally, fish pre-exposed to DEL after immersion had significantly lower mRNA levels of immune-related genes tlr4, myd88, tnfα, and il-1β. Overall, these findings indicate that DEL damaged the gill barrier, weakened the immune response, raised LPS levels, and heightened vulnerability to A. hydrophila infection in crucian carp, resulting in mortality. Thus, this work will help social groups and aquaculture workers to understand the potential risk of DEL exposure for bacterial secondary infection in cultured fish.
Collapse
Affiliation(s)
- Xiping Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Can Yang
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Zhenzhen Xiong
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Chongrui Wang
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Dong Liu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| |
Collapse
|
15
|
Grancieri M, de São José VPB, Toledo RCL, Verediano TA, Sant'Ana C, Lúcio HG, Gonzalez de Mejia E, Martino HSD. Effect of digested chia seed protein on the gut microbiota and colon morphology of mice fed a high-saturated-fat diet. Food Funct 2024; 15:9284-9297. [PMID: 39162475 DOI: 10.1039/d4fo02199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The present study aimed to investigate the effect of digested total protein (DTP) from chia seed on the gut microbiota and morphology of mice fed with a high-fat diet. Forty-four male C57BL/6 mice were divided into 4 groups: AIN (standard diet), HF (high-fat diet), AIN + DTP (standard diet supplemented with 400 mg of digested chia seed protein), and HF + DTP (high-fat diet supplemented with 400 mg of digested chia seed protein) during 8 weeks. Colon morphology, tight junction's gene expression, and gut microbiota composition were evaluated. The consumption of digested chia seed protein (DTP) increased the crypts width, longitudinal and circular muscular layer. Furthermore, the AIN + DTP group enhanced the expression of tight junction proteins, including occludin and claudin, while the AIN + DTP and HF + DTP groups increase the zonula occludens expression. The α-diversity analysis showed a reduction in bacterial dominance in the HF + DTP group. All the experimental groups were grouped in different cluster, showing differences in the microbiota community in the β-diversity analyzes. The Firmicutes/Bacteroidetes ratio did not differ among the groups. The genera Olsenella and Dubosiella were increased in the AIN + DTP group, but the Oscillospiraceae_unclassified was increased in the HF + DTP group. The Alistipes was increased, while the Roseburia and Akkermansia were decreased in the AIN + DTP and HF + DTP groups. Then, the consumption of DTP from chia seed improved the gut microbiota composition and mucosal integrity, counteracting the adverse effects of high-fat diet.
Collapse
Affiliation(s)
- Mariana Grancieri
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | | | - Renata Celi Lopes Toledo
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36571-000, Brazil.
| | | | - Cintia Sant'Ana
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Haira Guedes Lúcio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36571-000, Brazil.
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, 61801, USA
| | | |
Collapse
|
16
|
Wang S, Sun D, Ye B, Xu G, Zou J. Dietary kelp meal improves serum antioxidants, intestinal immunity, and lipid metabolism in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7464-7475. [PMID: 38733135 DOI: 10.1002/jsfa.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Dietary kelp possesses a variety of useful biological qualities but does not have a toxic effect on the host. In this study, we examine how kelp dietary supplementation enhances the serum biochemistry, intestinal immunity, and metabolism of hybrid snakehead. A total of 810 juvenile hybrid snakeheads (Channa maculata ♀ × Channa argus ♂), with an initial average weight of 11.4 ± 0.15 g, were allocated randomly to three treatment groups (three replicates per group). The fish were fed for 60 days with isonitrogenous and isolipidic diets. The groups were the control group (C) (20% high-gluten flour), the medium replacement group (MR) (10% high-gluten flour and 10% kelp meal), and the full replacement group (FR) (0% high-gluten flour and 15% kelp meal). RESULTS The results showed that dietary kelp increased the activity of serum antioxidant enzymes significantly and decreased the content of serum malondialdehyde (MDA) in hybrid snakeheads, with significant changes in the FR group (P < 0.05). The intestinal morphology results showed that dietary kelp helped to increase the specific surface area of intestinal villi, which was beneficial for intestinal digestion and absorption. According to transcriptome and quantitative real-time polymerase chain reaction (qRT-PCR) analysis, dietary kelp can improve the expression of intestinal immunity and metabolism-related pathways. Among them, immune-related genes MHC1 and HSPA1 were significantly up-regulated, and IGH, MHC2, and IL-8 were significantly down-regulated (P < 0.05). Lipid metabolism-related genes DGAT2, FABP2, RXRα, and PLPP1 were all significantly up-regulated (P < 0.05). CONCLUSION Dietary kelp can effectively improve the antioxidant function of hybrid snakeheads, improve intestinal morphology, reduce intestinal inflammation, and promote intestinal lipid synthesis and transportation, thereby improving intestinal immunity and metabolic functions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Di Sun
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Bin Ye
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Wang M, Wang Y, Li X, Yin Y, Zhang X, Wu S, Wang H, Zhao Y. Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:2492. [PMID: 39272277 PMCID: PMC11394043 DOI: 10.3390/ani14172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the effects of ursolic acid (UA) on the growth performance and intestinal health of largemouth bass (Micropterus salmoides). Four diets were formulated with UA supplementation at 0, 250, 500, and 1000 mg/kg, defined as the control (CON), UA250, UA500, and UA1000, respectively. After an 8-week feeding experiment, the results showed that, in the UA500 group, the final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) increased, and the feed conversion ratio (FCR) and hepatosomatic index decreased. Total superoxide dismutase (T-SOD) activity exhibited a significant increase, and malondialdehyde (MDA) content decreased. An intestinal histological analysis revealed an improvement in the intestinal structural integrity of the UA500 group. The mRNA relative expression levels of physical barrier-related genes [occludin, claudin-1, and zonula occluden-1 (zo-1)] were upregulated. The mRNA relative expression of interlenkin 10 (il-10) increased, and the mRNA relative expression of interlenkin 1β (il-1β) and tumor necrosis factor-α (tnf-α) significantly decreased. The abundance of Firmicutes and Proteobacteria decreased, and the abundance of Tenericutes increased. The abundance of Mycoplasma, Cyanobium, and Staphylococcus decreased, while the abundance of Clostridium increased. In conclusion, dietary supplementation of UA significantly enhanced the growth performance and antioxidant capacity of largemouth bass while improving intestinal barrier function through its influence on the abundance of intestinal flora, such as Tenericutes, Firmicutes, and Mycoplasma. Optimal dietary UA levels for largemouth bass were determined to be between 498 and 520 mg/kg based on quadratic regression analyses of WGR, SGR, and FCR or T-SOD and MDA content.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongfang Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yue Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Hongquan Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Zhao J, Liu Y, Sun Z, Wang L, Fan Z, Pan Y, Gao J, Lu C, Zheng X. Effects of Different Levels of Carbohydrates on Growth Performance, Hepatic and Intestinal Health, and Intestinal Microflora of Juvenile Pikeperch ( Sander lucioperca). AQUACULTURE NUTRITION 2024; 2024:8450154. [PMID: 39555508 PMCID: PMC11329307 DOI: 10.1155/2024/8450154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 11/19/2024]
Abstract
Pikeperch (Sander lucioperca) is a species with great potential for aquaculture in Eurasian countries, while feed costs limit the scale of pikeperch farming. Adding carbohydrates to the feed as an energy source is a viable approach to reduce costs and to improve the culture status of pikeperch. In this study, in order to determine the optimal carbohydrate requirement of pikeperch, three tapioca starch (8%, 10%, and 12%) added feeds were produced with isonitrogenous (51%) and isolipidic (11%). For 8 weeks, body weight was 1.20 ± 0.01 g, pikeperch were manually fed the trio of experimental diets until they seemed fully satisfied. The finding revealed that pikeperch can utilize dietary carbohydrate, but excessive dietary carbohydrate will adversely affect the growth performance. The growth and survival rate were decreased in pikeperch in S12 (P < 0.05). The α-amylase activity of S12 reduced in the intestine and lipid deposition was observed in the liver compared with the S8. In addition, proinflammatory cytokines, interleukin 1 beta (il1-β), interleukin 8 (il8), and tumor necrosis factor beta (tnf-β), in the liver and intestine elevate and anti-inflammatory cytokines, interleukin 10 (il10) and transforming growth factor beta (tgf-β), decrease with increasing dietary carbohydrate levels. Hepatic and intestinal antioxidant capacity were also adversely affected, with S12 significantly increasing malondialdehyde (MDA) contents and decreasing glutathione (GSH) and total antioxidant capacity (T-AOC) (P < 0.05). The intestinal barrier function is also damaged, the height and width of intestinal villi decreased, and the expression of occludin-a, occludin-b, and zonula occludens-2 (zo-2) genes was decreased. Elevated levels of starch intake led to harm to gut microflora, reducing bacterial populations, simultaneously boosting the presence of detrimental bacteria (Proteobacteria, Actinobacteriota, Achromobacter, and Rhodococcus) and diminishing the beneficial bacteria (Firmicutes). In conclusion, moderate addition of starch as an energy source can reduce feed costs; however, over addition can bring about organism damage and is recommended to be added at less than 10%.
Collapse
Affiliation(s)
- Jie Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fish and Life ScienceShanghai Ocean University, Shanghai 201306, China
| | - Yang Liu
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhipeng Sun
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
| | - Liansheng Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ze Fan
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yadan Pan
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fish and Life ScienceShanghai Ocean University, Shanghai 201306, China
| | - Jiamin Gao
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
- College of FisheriesTianjin Agricultural University, Tianjin 300392, China
| | - Cuiyun Lu
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fish and Life ScienceShanghai Ocean University, Shanghai 201306, China
| | - Xianhu Zheng
- National and Local Joint Engineering Laboratory for Freshwater Fish BreedingHeilongjiang River Fisheries Research InstituteChinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fish and Life ScienceShanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
19
|
Yu H, Geng S, Li S, Wang Y, Ren X, Zhong D, Mo H, Yao M, Yu J, Li Y, Wang L. The AMPK and AKT/GSK3β pathways are involved in recombinant proteins fibroblast growth factor 1 (rFGF1 and rFGF1a) improving glycolipid metabolism in rainbow trout ( Oncorhynchus mykiss) fed a high carbohydrate diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:11-24. [PMID: 38444689 PMCID: PMC10912841 DOI: 10.1016/j.aninu.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 03/07/2024]
Abstract
Fibroblast growth factor 1 (FGF1) regulates vertebrate cell growth, proliferation and differentiation, and energy metabolism. In this study, we cloned rainbow trout (Oncorhynchus mykiss) fgf1 and fgf1a, prepared their recombinant proteins (rFGF1 and rFGF1a), and described the molecular mechanisms by which they improve glycolipid metabolism in carnivorous fish. A 31-d feeding trial was conducted to investigate whether they could enhance glycolipid metabolism in rainbow trout on high-carbohydrate diets (HCD). A total of 720 rainbow trout (8.9 ± 0.5 g) were equally divided into 4 groups: the chow diet (CD) group injected with PBS, the HCD group injected with PBS, the HCD group injected with rFGF1 (400 ng/g body weight), and the HCD group injected with rFGF1a (400 ng/g body weight). The results showed that short-term HCD had a significant positive effect on the specific growth rate (SGR) of rainbow trout (P < 0.05). However, it led to an increase in crude fat, serum triglyceride (TG) and glucose content, as well as serum glutamic pyruvic transaminase (GPT) and glutamic oxalacetic transaminase (GOT) contents (P < 0.05), suggesting a negative health effect of HCD. Nevertheless, rFGF1 and rFGF1a showed beneficial therapeutic effects. They significantly reduced the crude fat content of the liver, serum TG, GOT, and GPT contents caused by HCD (P < 0.05). The upregulation in atgl, hsl, and acc2 mRNAs implied the promotion of TG catabolism. Moreover, rFGF1 and rFGF1a contributed to promoting lipolysis by activating the AMPK pathway and reducing lipid accumulation in the liver caused by HCD. In addition, the rFGF1 and rFGF1a-treated groups significantly reduced serum glucose levels and elevated hepatic glycogen content under HCD, and increased glucose uptake by hepatocytes. We observed a decrease in mRNA levels for pepck, g6pase, and pygl, along with an increase in mRNA levels for gys, glut2, and gk in the liver. Furthermore, these proteins regulated hepatic gluconeogenesis and glycogen synthesis by increasing the phosphorylation level of AKT, ultimately leading to an increase in GSK3β phosphorylation. In conclusion, this study demonstrates that rFGF1 and rFGF1a can enhance lipolysis and glucose utilization in rainbow trout by activating the AMPK pathway and AKT/GSK3β axis.
Collapse
Affiliation(s)
- Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuai Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yingwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Ren
- Meixian Aquaculture Farm of Shitouhe Reservoir Administration, Xianyang, Shaanxi, 712000, China
| | - Debin Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Sun H, Dong W, He G, Long Y, He Y, Chen Y, Lin S. Excessive level of dietary insect protein negatively changed growth metabolomic and transcriptomic profiles of largemouth bass ( Micropterus salmoides). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:397-407. [PMID: 38812498 PMCID: PMC11134530 DOI: 10.1016/j.aninu.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/23/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024]
Abstract
Hermetia illucens (HI) meal is a promising substitute for fish meal (FM) in the feeds of farmed fish. However, the impacts of dietary HI meal on largemouth bass (LMB) remain unknown. In this study, we formulated three isonitrogenous and isolipid diets with 0% (HI0, control), 20% (HI20) and 40% (HI40) of FM substituted by HI meal. A total of 270 juvenile largemouth bass with an initial body weight of 10.02 ± 0.03 g were used (30 fish per tank). After an 80-day feeding trial, the fish fed with the HI40 diet demonstrated decreased growth performance and protein efficiency ratio (PER), and increased liver oxidative indices and lipid accumulation compared to the control (P < 0.05). Transcriptomic analysis revealed the effects of high dietary HI meal on liver gene expression. Consistent with the reduced growth and disturbed liver oxidative status, the upregulated genes were enriched in the biological processes associated with protein catabolism and endoplasmic reticulum (ER) stress; while the downregulated genes were enriched in cellular proliferation, growth, metabolism, immunity and maintenance of tissue homeostasis. Differential metabolites in the liver samples were also identified by untargeted metabolomic assay. The results of joint transcriptomic-metabolomic analyses revealed that the pathways such as one carbon pool by folate, propanoate metabolism and alpha-linolenic acid metabolism were disturbed by high dietary HI meal. In summary, our data revealed the candidate genes, metabolites and biological pathways that account for the adverse effects of high HI meal diet on the growth and health of LMB.
Collapse
Affiliation(s)
- Hao Sun
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Wenjing Dong
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Guanglun He
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuanfa He
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yongjun Chen
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Shimei Lin
- College of Fisheries, Southwest University, Chongqing, 400715, China
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, China
| |
Collapse
|
21
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
22
|
Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). J Anim Sci Biotechnol 2024; 15:50. [PMID: 38566217 PMCID: PMC10988814 DOI: 10.1186/s40104-024-01009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Maozhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
23
|
Zhang BY, Yang HL, Nie QJ, Zhang Y, Cai GH, Sun YZ. High dietary wheat starch negatively regulated growth performance, glucose and lipid metabolisms, liver and intestinal health of juvenile largemouth bass, Micropterus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:635-651. [PMID: 38165563 DOI: 10.1007/s10695-023-01295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/04/2024]
Abstract
Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-β1 (tgf-β1), interleukin-10 (il-10), and interleukin-11β (il-11β); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing-Jie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yu Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
24
|
Zhao L, Cheng L, Hu Y, Li X, Yang Y, Mu J, Shen L, Hu G, He K, Yan H, Liu Q, Yang S. Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass ( Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:443-456. [PMID: 38425445 PMCID: PMC10901750 DOI: 10.1016/j.aninu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
High-carbohydrate (HC) diets decrease the intestinal levels of sodium acetate (SA) and sodium butyrate (SB) and impair the gut health of largemouth bass; however, SA and SB have been shown to enhance immunity and improve intestinal health in farmed animals. Thus, the present study was to investigate the effects of dietary SA and SB on HC diet-induced intestinal injury and the potential mechanisms in juvenile largemouth bass. The experiment set five isonitrogenous and isolipidic diets, including a low-carbohydrate diet (9% starch) (LC), a high carbohydrate diet (18% starch) (HC), and the HC diet supplemented with 2 g/kg SA (HCSA), 2 g/kg SB (HCSB) or a combination of 1 g/kg SA and 1 g/kg SB (HCSASB). The feeding experiment was conducted for 8 weeks. A total of 525 juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were used. The results showed that dietary SA and SB improved the weight gain rate and specific growth rate (P < 0.05) and ameliorated serum parameters (alkaline phosphatase, acid phosphatase, glutamate transaminase, and glutamic oxaloacetic transaminase) (P < 0.05). And, importantly, dietary SA and SB repaired the intestinal barrier by increasing the expression levels of zonula occludens-1, occludin, and claudin-7 (P < 0.05), reduced HC-induced intestinal damage, and alleviated intestinal inflammation and cell apoptosis by attenuating HC-induced intestinal endoplasmic reticulum stress (P < 0.05). Further results revealed that dietary SA and SB reduced HC-induced intestinal fat deposition by inhibiting adipogenesis and promoting lipolysis (P < 0.05). In summary, this study demonstrated that dietary SA and SB attenuated HC-induced intestinal damage and reduced excessive intestinal fat deposition in largemouth bass.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guojun Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
25
|
Wang G, Xin Y, Ping K, Xu X, Sun Y, Li X, Guan X, Dong J. Silybin mitigates chronic Avermectin exposure-induced intestinal damage and growth inhibition in carp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104351. [PMID: 38135203 DOI: 10.1016/j.etap.2023.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Avermectins, as a new type of environmental pollutant, have received significant attention in recent years. Previous research has shown that acute exposure to avermectins can induce oxidative stress and inflammation in non-target fish species, such as carp. Flavonoid lignans, particularly Silybin, have demonstrated promising biological activities, including regulation of non-alcoholic fatty liver and cerebral ischemia-reperfusion injury. This study aims to investigate the impact of dietary supplementation with Silybin on the intestinal damage in carp caused by chronic exposure to avermectins and to improve the health status and production of carp in aquaculture. Silybin was used as a dietary supplement by adding it to the experimental feed, and an animal experimental model was utilized to assess its effects on oxidative stress, inflammation, and cell apoptosis in carp intestine. Additionally, intestinal barrier integrity, digestive capacity, and fish growth were evaluated. The results indicated that dietary supplementation with Silybin effectively alleviated the oxidative stress induced by chronic exposure to avermectins in carp intestine. Furthermore, Silybin improved intestinal barrier integrity and digestive capacity by modulating the Nrf2/Keap1 pathway. This study demonstrates that dietary supplementation with Silybin can effectively mitigate the intestinal damage caused by chronic exposure to avermectins in carp, providing a sustainable solution for the aquaculture industry to enhance the overall health and production of cultured fish. The research expands our understanding of avermectin environmental pollution and offers a potential remediation approach.
Collapse
Affiliation(s)
- Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinying Guan
- Science and Technology Department, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
26
|
Zheng L, Wang Z, Zhang B, Yan L, Wang P, Zhao C, Wang J, Wang Y, Lin H, Qiu L, Zhou C. Rhodiola rosea L. improved intestinal digestive enzyme activities, inflammatory response, barrier and microbiota dysbiosis in Lateolabrax maculatus juveniles fed with high-carbohydrate diets. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109362. [PMID: 38218423 DOI: 10.1016/j.fsi.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
A 56-d feeding trial was conducted to evaluate the influences of Rhodiola rosea L. on digestive enzyme activities, intestinal barrier, inflammatory response, and microbiota dysbiosis in Lateolabrax maculatus juveniles (9.37 ± 0.03 g) fed with high-carbohydrate diets. Six diets were designed: a control diet (20% corn starch, Control), high-carbohydrate diet (30% corn starch, HC1), and four high-carbohydrate diets supplemented with Rhodiola rosea L. at 30, 60, 90 and 120 mg/kg (HC2, HC3, HC4 and HC5, respectively). Compared with the control group, the HC1 diet remarkably increased α-amylase, lipase, and chymotrypsin activities in the intestine (p < 0.05), as well as the mRNA levels of Claudin-15, NF-κB, TNF-α, IL-1β, and IL-8 (p < 0.05) and the relative abundance of Proteobacteria and Photobacterium in the intestine, which belong to the phylum and genus level, respectively. But the opposite trend was found in muscular thickness and villus lengths (p < 0.05), the mRNA levels of Occludin, ZO-1, and TGF-β (p < 0.05), at the level of phylum and genus level in the HC1 group, and the relative abundance of Firmicutes, Bacteroidetes, and Bacillus in the intestine compared with the control group. Intestinal chymotrypsin activity was significantly higher in the HC3 group and intestinal muscular thickness and villus lengths were also significantly higher in the HC2, HC3, HC4, and HC5 groups compared to the HC1 group (p < 0.05). In addition, Occludin mRNA expression in the intestine was significantly increased in the HC2, HC4, and HC5 groups compared to the HC1 group. ZO-1 and TGF-β mRNA expression in the intestine were significantly increased in the HC2, HC3, HC4, and HC5 groups compared to the HC1 group (p < 0.05). At the phylum level, the relative abundance of Firmicutes and Bacteroidetes was higher in the intestine in the HC2, HC3, HC4, and HC5 groups than that in the HC1 group. On the contrary, intestinal lipase and chymotrypsin activities were significantly decreased in the HC2 group compared to the HC1 group, respectively (p < 0.05). The Claudin-15, NF-κB, TNF-α, IL-1β, and IL-8 mRNA expression in the intestine were significantly decreased in the HC2, HC3, HC4, and HC5 groups compared to the HC1 group (p < 0.05). Besides, at the genus level, compared to the HC1 group, the relative abundance of Photobacterium in the intestine and the diversity of the intestinal microbiota in the HC2, HC3, HC4, and HC5 groups were all decreased. In conclusion, these results demonstrated that the addition of Rhodiola rosea L. in high-carbohydrate diets can improve intestinal digestive enzyme activities, inflammatory response and intestinal barrier-related gene expression, and microbiota dysbiosis in L. maculatus. The suitable supplemental level of Rhodiola rosea L. in high-carbohydrate diets of L. maculatus is 60 mg/kg.
Collapse
Affiliation(s)
- Luzhe Zheng
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China; College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Zhanzhan Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya 572426, China
| | - Bo Zhang
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Lulu Yan
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Pengfei Wang
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Chao Zhao
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya 572426, China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya 572426, China
| | - Heizhao Lin
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya 572426, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Lihua Qiu
- Key Laboratory of Fishery Resources Development and Utilization in South China Sea, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China.
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya 572426, China.
| |
Collapse
|
27
|
Mohamed SM, Shalaby MA, El-Shiekh RA, Bakr AF, Kamel S, Emam SR, El-Banna HA. Maca roots: A potential therapeutic in the management of metabolic disorders through the modulation of metabolic biochemical markers in rats fed high-fat high-carbohydrate diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117533. [PMID: 38056538 DOI: 10.1016/j.jep.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maca root (Lepidium meyenii Walp.) is a Peruvian plant of the Brassicaceae family. Maca roots are popular food supplements used to treat a variety of ailments described traditionally as enhancing metabolic and health conditions. AIM OF THE STUDY Metabolic syndrome (MetS) has been the real scourge globally, affecting more than one-fourth of the global population. MetS causes the development of multi-organ illnesses, including altered blood cholesterol and sugar levels, oxidative stress, and hypertension. This study evaluated maca root total methanolic extract (MTE) as a potential nutraceutical to manage the complications of MetS. MATERIALS AND METHODS After the first 4 weeks of a high-fat high-carbohydrate diet (HFCD), streptozotocin (STZ) was injected in Wistar rats to induce the MetS model. Animals were treated orally with MTE at 100 mg/kg and 300 mg/kg for 4 weeks compared to metformin at 200 mg/kg after confirmation of diabetes. RESULTS One month of MTE supplementation in HFCD-fed rats remarkably decreased the elevation of blood glucose and lipids, improved liver function and insulin resistance, additionally it successfully restored the state of inflammatory and oxidative stress. The extract was standardized to contain total phenolics equal to 24.45 ± 0.96 μg Gallic acid/mg extract. CONCLUSIONS Our findings suggest that MTE improves MetS by reducing hyperglycemia, hyperlipidemia, inflammation, and oxidative stress. While also improving beta cell secretory functions, implying that MTE could be used as a balancing drug in the prevention and treatment of metabolic abnormalities linked to type 2 diabetes.
Collapse
Affiliation(s)
- Salma Mostafa Mohamed
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Mostafa Abbas Shalaby
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa R Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Hossny A El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
28
|
Yi C, Liang H, Xu G, Zhu J, Wang Y, Li S, Ren M, Chen X. Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:349-365. [PMID: 36367675 DOI: 10.1007/s10695-022-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was aimed to determine the appropriate level of dietary phenylalanine and explored the influences of phenylalanine on target rapamycin (TOR) signaling and glucose and lipid metabolism in largemouth bass. Six isonitrogenous/isoenergetic diets with graded phenylalanine levels (1.45% (control group), 1.69%, 1.98%, 2.21%, 2.48%, and 2.76%) were designed. Experimental feed was used to feed juvenile largemouth bass (initial body weight 19.5 ± 0.98 g) for 8 weeks. The final body weight, specific growth rate (SGR), feed efficiency ratio (FER), and weight gain (WG) reached their highest values in the 1.98% dietary phenylalanine group and then declined with increasing phenylalanine addition. No significant difference was found in the whole-body composition of largemouth bass between different dietary phenylalanine groups. Compared with the control group, 1.69% dietary phenylalanine significantly reduced the contents of plasma glucose (GLU) and total protein (TP), and total cholesterol (TC) contents increased significantly in the 1.98% dietary phenylalanine group (P < 0.05). The key gene expressions of TOR signaling pathway and lipid metabolism was significantly inhibited by 2.21% dietary phenylalanine (P < 0.05). The 1.98% dietary phenylalanine group showed significantly increased expression of genes related to insulin signaling pathway and factors involved in fatty acid synthesis (P < 0.05). Furthermore, 2.76% dietary phenylalanine group inhibited glucose metabolism by lowering the key gene expressions of glucose metabolism (P < 0.05). According to quadratic regression analyses based on the WG and FER, the appropriate level of dietary phenylalanine for largemouth bass were 2.00% and 2.02% of the diet (4.23% and 4.27% dietary protein), respectively, with a constant amount of tyrosine (1.33%). Hence, the total aromatic amino acid requirements were 3.33% and 3.35% of the diet (equivalent to 7.03% and 7.09% of the protein content), which may provide a theoretical basis for the development of largemouth bass feed formulas. Therefore, the growth and metabolism of largemouth bass could be promoted by controlling the content of phenylalanine in the diet, or the imbalance of phenylalanine can form a specific pathological model.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China.
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China.
| |
Collapse
|
29
|
Chen L, Qi Y, Shi M, Qu K, Liu Y, Tan B, Xie S. A mixed animal and plant protein source replacing fishmeal affects bile acid metabolism and apoptosis in largemouth bass (Micropterus salmoides). J Anim Sci 2024; 102:skae249. [PMID: 39212095 PMCID: PMC11538531 DOI: 10.1093/jas/skae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chicken meal, shrimp meal, blood meal, and soybean protein concentrate are common alternatives to fishmeal. This study used them to prepare three diets with different levels of fishmeal (FM48, FM40, and FM32) for largemouth bass (Micropterus salmoides). The results found no significant difference in the growth performance of largemouth bass fed different diets. Mixed protein increased the total cholesterol (T-CHO) content in plasma, and reduced the total superoxide dismutase (T-SOD) activity in plasma and liver. Targeted metabolomics analysis found that the low fishmeal diets affected the cholesterol and bile acid metabolism of largemouth bass. Mixed protein inhibited cyp7a1 and enhanced hmgcr and pparγ mRNA levels, as well as enhanced the expression levels of FXR in the liver. The fish-fed FM32 diet showed inhibited fxr, rxrα, and cyp7a1 mRNA levels in the intestine. The results of TUNEL fluorescence staining showed that mixed protein induced apoptosis in largemouth bass. The caspase 3 and caspase 9 mRNA levels in the fish-fed FM40 and FM32 diet significantly increased, as well as the expression levels of CASPASE 3. The experiment also found that it could induce oxidative stress and endoplasmic reticulum stress. In conclusion, the replacement of fishmeal with mixed animal and plant protein diets did not affect the growth performance, but the health and bile acid metabolism of largemouth bass was affected when the fishmeal level was reduced to 32%.
Collapse
Affiliation(s)
- Liutong Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Qi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Menglin Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Kangyuan Qu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yucheng Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shiwei Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
30
|
Yan X, Pang P, Qin C, Mi J, Yang L, Yang B, Nie G. Improvement of sea buckthorn (Hippophae rhamnoides L.) flavonoids on the antioxidant and immune performance of Yellow River carp (Cyprinus carpio L.) fed high-carbohydrate diet. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109289. [PMID: 38104699 DOI: 10.1016/j.fsi.2023.109289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
High-carbohydrate (HC) diets may lead to the deterioration of the antioxidant and immune properties of Yellow River carp and the healthy development of the industry. Studies in mammals have found that sea buckthorn flavonoids (SF) improve antioxidant and immune performance. Therefore, this study comprehensively evaluated the effects of SF on Yellow River carp using in vitro and feeding trials with an HC diet. Control (C, 27.23 %), high-carbohydrate (HC, 42.99 %), and HC + SF (0.1 %, 0.2 %, and 0.4 %) groups were studied in a 10-week aquaculture experiment. The main findings were as follows: (1) SF scavenged O2·-, ·OH, and DPPH free radicals in vitro, which gradually increased with the SF concentration. (2) The antioxidant and immune performance of Yellow River carp was enhanced by dietary supplementation with SF, which involved the regulation of activities of antioxidant and immune enzymes, as well as their changes at the transcription and protein levels. In terms of antioxidant properties, compared to the HC group, HC + SF significantly decreased the activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase and the contents of H2O2 and malondialdehyde in the serum and hepatopancreas. The activities of glutathione, glutathione-Px, superoxide dismutase, catalase, and total antioxidant activity in the HC-diet group. In contrast, the addition of SF increased antioxidant enzyme activity. In the hepatopancreas and muscles, SF regulated and activated Nrf2-Keap1, a key signaling pathway for oxidative stress. SF significantly increased the mRNA expression levels of downstream genes (gr, ho-1, cat, and sod) regulated by nrf2. In terms of immune performance, 0.4 % SF markedly increased the activity of immune-related enzymes. SF inhibited the gene expression of pro-inflammatory factors induced by the HC diet and promoted the gene expression of anti-inflammatory factors. In addition, the resistance of Yellow River carp to Aeromonas hydrophila was enhanced by SF. In summary, SF supplementation can reduce oxidative stress and inflammatory harm caused by the HC diet and improve the antioxidant and immune performance of Yellow River carp to varying degrees.
Collapse
Affiliation(s)
- Xiao Yan
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Peng Pang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; College of Life Sciences, Henan Normal University, Xinxiang, 453007, PR China
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jiali Mi
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Liping Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Bowen Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
31
|
Huang D, Gu J, Xue C, Zhang L, Chen X, Wang Y, Liang H, Ren M. Different Starch Sources Affect the Growth Performance and Hepatic Health Status of Largemouth Bass ( Micropterus salmoides) in a High-Temperature Environment. Animals (Basel) 2023; 13:3808. [PMID: 38136845 PMCID: PMC10741064 DOI: 10.3390/ani13243808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The experiment was designed to investigate the effects of different starch types on the growth performance and liver health status of largemouth bass in a high-temperature environment (33-35 °C). In this study, we designed five diets using corn starch (CS), tapioca starch (TS), sweet potato starch (SPS), potato starch (PS), and wheat starch (WS) as the starch sources (10%). We selected 225 healthy and uniformly sized largemouth bass (199.6 ± 0.43 g) and conducted the feeding experiment for 45 days. The results showed that the WS group had the highest WGR, SGR, and SR and the lowest FCR. Among the five groups, the WS group had the highest CAT activity, SOD activity, and GSH content, while the SPS group had the highest MDA content. Furthermore, oil red O staining of liver samples showed that the TS group had the largest positive region, indicating high lipid accumulation. Lastly, the gene expression results revealed that compared with the WS group, the CS, TS, and SPS groups showed suppressed expression of nrf2, keap1, cat, sod, gpx, il-8, and il-10. Therefore, our results demonstrated the effect of different starch sources on largemouth bass growth performance and hepatic health in a high-temperature environment.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
32
|
Yan H, Zhao L, He Q, Hu Y, Li Q, He K, Zhang D, Liu Q, Luo J, Luo W, Chen S, Li L, Yang S. Exposure to Intermittent Environmental Hypoxia Promotes Vascular Remodeling through Angiogenesis in the Liver of Largemouth Bass ( Micropterus salmoides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17796-17807. [PMID: 36802614 DOI: 10.1021/acs.est.2c07329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we explored the effects of 4 weeks of intermittent hypoxic exposure (IHE) on liver angiogenesis and related regulatory mechanisms in largemouth bass (Micropterus salmoides). The results indicated that the O2 tension for loss of equilibrium (LOE) decreased from 1.17 to 0.66 mg/L after 4 weeks of IHE. Meanwhile, the red blood cell (RBC) and hemoglobin concentrations significantly increased during IHE. Our investigation also found that the observed increase in angiogenesis was correlated with a high expression of related regulators, such as Jagged, phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK). After 4 weeks of IHE, the overexpression of factors related to angiogenesis processes mediated by HIF-independent pathways (such as nuclear factor kappa-B (NF-κB), NADPH oxidase 1 (NOX1), and interleukin 8 (IL8)) was correlated with the accumulation of lactic acid (LA) in the liver. The addition of cabozantinib, a specific inhibitor of VEGFR2, blocked the phosphorylation of VEGFR2 and downregulated the expression of downstream angiogenesis regulators in largemouth bass hepatocytes exposed to hypoxia for 4 h. These results suggested that IHE promoted liver vascular remodeling by the regulation of angiogenesis factors, presenting a potential mechanism for the improvement of hypoxia tolerance in largemouth bass.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qishuang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Quanxi Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongmei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lisen Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
33
|
Yin J, Li D, Zheng T, Hu B, Wang P. Gastrointestinal Degradation and Toxicity of Disinfection Byproducts in Drinking Water Using In Vitro Models and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16219-16231. [PMID: 37847491 DOI: 10.1021/acs.est.3c04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.
Collapse
Affiliation(s)
- Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| |
Collapse
|
34
|
Li H, Zeng Y, Zheng X, Wang G, Tian J, Gong W, Xia Y, Zhang K, Li Z, Xie W, Xie J, Yu E. Dietary Betaine Attenuates High-Carbohydrate-Diet-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis in Mandarin Fish ( Siniperca chuatsi). Antioxidants (Basel) 2023; 12:1860. [PMID: 37891939 PMCID: PMC10604392 DOI: 10.3390/antiox12101860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the impact of betaine on high-carbohydrate-diet-induced oxidative stress and endoplasmic reticulum (ER) stress, mandarin fish (Siniperca chuatsi) (23.73 ± 0.05 g) were fed with control (NC), betaine (BET), high carbohydrate (HC), and high carbohydrate + betaine (HC + BET) diets for 8 weeks. The results showed that betaine significantly promoted the growth of mandarin fish irrespective of the dietary carbohydrate levels. The HC diet induced oxidative stress, as evidenced by significantly elevated MDA levels. The HC diet significantly stimulated the mRNA levels of genes involved in ER stress (ire1, perk, atf6, xbp1, eif2α, atf4, chop), autophagy (ulk1, becn1, lc3b), and apoptosis (bax). However, betaine mitigated HC-diet-induced oxidative stress by modulating antioxidant enzymes and alleviated ER stress by regulating the mRNA of genes in the PERK-eIF2a-ATF4 pathway. Additionally, betaine significantly reduced the mRNA levels of becn1 and bax, along with the apoptosis rate, indicating a mitigating effect on autophagy and apoptosis. Overall, dietary betaine improved growth, attenuated HC-diet-induced oxidative stress and ER stress, and ultimately alleviated apoptosis in mandarin fish. These findings provide evidence for the use of betaine in aquafeeds to counter disruptive effects due to diets containing high carbohydrate levels.
Collapse
Affiliation(s)
- Hongyan Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yanzhi Zeng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyu Zheng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wenping Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| |
Collapse
|
35
|
Yi C, Liang H, Huang D, Yu H, Xue C, Gu J, Chen X, Wang Y, Ren M, Zhang L. Phenylalanine Plays Important Roles in Regulating the Capacity of Intestinal Immunity, Antioxidants and Apoptosis in Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2023; 13:2980. [PMID: 37760380 PMCID: PMC10525992 DOI: 10.3390/ani13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This experiment was planned to explore the role of dietary phenylalanine levels in intestinal immunity, antioxidant activity and apoptosis in largemouth bass (Micropterus salmoides). Six iso-nitrogen and iso-energy diets with phenylalanine levels of 1.45% (DPHE1), 1.69% (DPHE2), 1.98% (DPHE3), 2.21% (DPHE4), 2.48% (DPHE5) and 2.76% (DPHE6) were designed. Juvenile largemouth bass were fed the experimental diet for 8 weeks. In this study, the DPHE5 group increased the expression of intestinal antioxidant genes in largemouth bass (p < 0.05), and the increase of antioxidant enzyme activities and content of related substances was most concentrated in the DPHE3 and DPHE4 groups (p < 0.05). The results of plasma biochemistry were similar to that of enzyme activity. The expression of genes related to the TOR signalling pathway mainly increased significantly in the DPHE5 group (p < 0.05). Similarly, the expression of inflammatory factors, as well as apoptotic factors, also showed significant increases in the DPHE5 group (p < 0.05). In conclusion, unbalanced phenylalanine in the diet could lead to a decrease in intestinal immune and antioxidant capacity and also cause a decline in the aggravation of intestinal cell apoptosis.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
36
|
Yi C, Huang D, Yu H, Gu J, Liang H, Ren M. Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass ( Micropterus salmoides) Back Muscle without Compromising Growth. Foods 2023; 12:3485. [PMID: 37761194 PMCID: PMC10529141 DOI: 10.3390/foods12183485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effects of enzymatically hydrolyzed poultry by-products (EHPB) on the growth and muscle quality of largemouth bass. Different concentrations of EHPB (0.00, 3.10, 6.20, 9.30, and 12.40%) were added to replace fishmeal (0.00 (control), 8.89 (EHPB1), 17.78 (EHPB2), 26.67 (EHPB3), and 35.56% (EHPB4)), respectively, in dietary supplementation. The results revealed that the growth performance and muscle amino acid and fatty acid remained unaltered in EHPB1 (p > 0.05). EHPB1 showed significant reduction in muscle hardness, gumminess, chewiness, and muscle fiber count and exhibited a significant increase in muscle fiber volume. The decrease in muscle hardness, gumminess, and chewiness means that the muscle can have a more tender texture. The expression of protein metabolism-related genes reached the highest levels in EHPB1 and EHPB2 (p < 0.05). The mRNA levels of s6k and igf-1 in EHPB2 and EHPB1 were significantly lower than those in the control group. Compared to the control group, the expression of muscle production-associated genes paxbp-1 was higher in EHPB1, and myod-1, myf-5, and syndecan-4 were higher in EHPB2. The mRNA levels of muscle atrophy-related genes, in EHPB4 and EHPB2, were significantly lower than those in the control group. Therefore, the EHPB1 group plays a role in promoting the expression of genes related to muscle formation. In summary, replacing 8.89% of fishmeal with EHPB in feed has no effect on growth and may improve back muscle quality in largemouth bass.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
37
|
Gong Y, Xi L, Liu Y, Lu Q, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Sequential Activations of ChREBP and SREBP1 Signals Regulate the High-Carbohydrate Diet-Induced Hepatic Lipid Deposition in Gibel Carp ( Carassius gibelio). AQUACULTURE NUTRITION 2023; 2023:6672985. [PMID: 37520290 PMCID: PMC10374375 DOI: 10.1155/2023/6672985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The present study investigated the sequential regulation signals of high-carbohydrate diet (HCD)-induced hepatic lipid deposition in gibel carp (Carassius gibelio). Two isonitrogenous and isolipidic diets, containing 25% (normal carbohydrate diet, NCD) and 45% (HCD) corn starch, were formulated to feed gibel carp (14.82 ± 0.04 g) for 8 weeks. The experimental fish were sampled at 2nd, 4th, 6th, and 8th week. In HCD group, the hyperlipidemia and significant hepatic lipid deposition (oil red O area and triglyceride content) was found at 4th, 6th, and 8th week, while the significant hyperglycemia was found at 2nd, 4th, and 8th week, compared to NCD group (P < 0.05). HCD induced hepatic lipid deposition via increased hepatic lipogenesis (acc, fasn, and acly) but not decreased hepatic lipolysis (hsl and cpt1a). When compared with NCD group, HCD significantly elevated the hepatic sterol regulatory element binding proteins 1 (SREBP1) signals (positive hepatocytes and fluorescence intensity) at 4th, 6th, and 8th week (P < 0.05). The hepatic SREBP1 signals increased from 2nd to 6th week, but decreased at 8th week due to substantiated insulin resistance (plasma insulin levels, plasma glucose levels, and P-AKTSer473 levels) in HCD group. Importantly, the hepatic carbohydrate response element binding protein (ChREBP) signals (positive hepatocytes, fluorescence intensity, and expression levels) were all significantly elevated by HCD-induced glucose-6-phosphate (G6P) accumulation at 2nd, 4th, 6th, and 8th week (P < 0.05). Compared to 2nd and 4th week, the hepatic ChREBP signals and G6P contents was significantly increased by HCD at 6th and 8th week (P < 0.05). The HCD-induced G6P accumulation was caused by the significantly increased expression of hepatic gck, pklr, and glut2 (P < 0.05) but not 6pfk at 4th, 6th, and 8th week, compared to NCD group. These results suggested that the HCD-induced hepatic lipid deposition was mainly promoted by SREBP1 in earlier stage and by ChREBP in later stage for gibel carp. This study revealed the sequential regulation pathways of the conversion from feed carbohydrate to body lipid in fish.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
38
|
Liu H, Huang Y, Huang X, Li M, Chen D, Geng Y, Ouyang P, Yang T, Dai J, Yang S, Luo W. Eucommia ulmoides Oliver enhances the antioxidant capacity and protects Micropterus salmoides from liver damage and immune function impairment caused by a high starch diet. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
39
|
Xu Y, Huang X, Huangfu B, Hu Y, Xu J, Gao R, Huang K, He X. Sulforaphane Ameliorates Nonalcoholic Fatty Liver Disease Induced by High-Fat and High-Fructose Diet via LPS/TLR4 in the Gut-Liver Axis. Nutrients 2023; 15:nu15030743. [PMID: 36771448 PMCID: PMC9920698 DOI: 10.3390/nu15030743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The gut-liver axis has emerged as a key player in the progression of non-alcoholic fatty liver disease (NAFLD). Sulforaphane (SFN) is a bioactive compound found in cruciferous vegetables; however, it has not been reported whether SFN improves NAFLD via the gut-liver axis. C57BL/6 mice were fed a high-fat and high-fructose (HFHFr) diet, with or without SFN gavage at doses of 15 and 30 mg·kg-1 body weight for 12 weeks. The results showed that SFN reduced weight gain, hepatic inflammation, and steatosis in HFHFr mice. SFN altered the composition of gut microbes. Moreover, SFN enhanced the intestinal tight junction protein ZO-1, reduced serum LPS, and inhibited LPS/TLR4 and ERS pathways to reduce intestinal inflammation. As a result, SFN protected the intestinal integrity and declined the gut-derived LPS translocations to the liver in HFHFr diet-induced mice. SFN decreased the liver LPS levels and inhibited the LPS/TLR4 pathway activations, thus inhibiting the pro-inflammatory cytokines. Notably, Spearman correlation analysis showed that the protective effect of SFN on intestinal barrier integrity and its anti-inflammatory effect on the liver was associated with improved intestinal dysbiosis. Above all, dietary intervention with SFN attenuates NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xianghui Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Henan Shuanghui Investment and Development Co., Ltd., Luohe 462000, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Correspondence:
| |
Collapse
|
40
|
Zhang Q, Liang H, Xu P, Xu G, Zhang L, Wang Y, Ren M, Chen X. Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass ( Micropterus salmoides). Metabolites 2022; 12:1233. [PMID: 36557271 PMCID: PMC9781596 DOI: 10.3390/metabo12121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
This study appraised the impact of enzymatic cottonseed protein concentrate (ECP) as a fish meal (FM) substitute on the growth and health of largemouth bass (Micropterus salmoides) (initial weight 14.99 ± 0.03 g). Five diets with equal nitrogen, fat, and energy were designed to replace 0%, 7.78%, 15.56%, 23.33%, and 31.11% FM by adding 0%, 3.6%, 7.2%, 10.8%, and 14.4% ECP, named ECP0, ECP3.6, ECP7.2, ECP10.8, and ECP14.4, respectively. We fed 300 fish with five experimental diets for 60 days. The results revealed that weight gain rate (WGR) and specific growth rate (SGR) did not notably reduce until the addition of ECP exceeded 7.2%. The proximate composition of fish was not affected by the amount of ECP added in diets. Plasma total protein (TP), albumin (ALB), and high-density lipoprotein (HDL) concentrations increased with the increase of ECP dosage, while the triglyceride (TG) and low-density lipoprotein (LDL) concentrations and alkaline phosphatase (ALP) activity showed an opposite trend. For hepatic antioxidant capacity, the hepatic total superoxide dismutase (T-SOD) and catalase (CAT) activities, glutathione (GSH) content, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase (SOD), and CAT were increased by ECP, while the hepatic malondialdehyde (MDA) content and the expression of kelch-like-ECH-associated protein 1 (Keap1) were decreased. With regard to inflammation, the expression of nuclear factor-kappa B (NF-κB), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were inhibited by ECP. In summary, the amount of ECP added to diet can reach 7.2% to replace 15.56% FM without hampering the growth of largemouth bass, and ECP can improve the antioxidant and immune capacity.
Collapse
Affiliation(s)
- Qile Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Chengdu 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Chengdu 610093, China
| |
Collapse
|
41
|
Liang H, Xu P, Xu G, Zhang L, Huang D, Ren M, Zhang L. Histidine Deficiency Inhibits Intestinal Antioxidant Capacity and Induces Intestinal Endoplasmic-Reticulum Stress, Inflammatory Response, Apoptosis, and Necroptosis in Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2022; 11:2399. [PMID: 36552607 PMCID: PMC9774248 DOI: 10.3390/antiox11122399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
This 56-day study aimed to evaluate the effects of histidine levels on intestinal antioxidant capacity and endoplasmic-reticulum stress (ERS) in largemouth bass (Micropterus salmoides). The initial weights of the largemouth bass were (12.33 ± 0.01) g. They were fed six graded levels of histidine: 0.71% (deficient group), 0.89%, 1.08%, 1.26%, 1.48%, and 1.67%. The results showed that histidine deficiency significantly suppressed the intestinal antioxidant enzyme activities, including SOD, CAT, GPx, and intestinal level of GSH, which was supported by significantly higher levels of intestinal MDA. Moreover, histidine deficiency significantly lowered the mRNA level of nrf2 and upregulated the mRNA level of keap1, which further lowered the mRNA levels of the downstream genes sod, cat, and gpx. Additionally, histidine-deficiency-induced intestinal ERS, which was characterized by activating the PEPK-signalling pathway and IRE1-signalling pathway, including increased core gene expression of pepk, grp78, eif2α, atf4, chopα, ire1, xbp1, traf2, ask1, and jnk1. Dietary histidine deficiency also induced apoptosis and necroptosis in the intestine by upregulating the expressions of proapoptotic genes, including caspase 3, caspase 8, caspase 9, and bax, and necroptosis-related genes, including mlkl and ripk3, while also lowering the mRNA level of the antiapoptotic gene bcl-2. Furthermore, histidine deficiency activated the NF-κB-signalling pathway to induce an inflammatory response, improving the mRNA levels of the proinflammatory factors tnf-α, hepcidin 1, cox2, cd80, and cd83 and lowering the mRNA levels of the anti-inflammatory factors tgf-β1 and ikbα. Similarly, dietary histidine deficiency significantly lowered the intestinal levels of the anti-inflammatory factors TGF-β and IL-10 and upregulated the intestinal levels of the proinflammatory factor TNF-α, showing a trend similar to the gene expression of inflammatory factors. However, dietary histidine deficiency inhibited only the level of C3, and no significant effects were observed for IgM, IgG, HSP70, or IFN-γ. Based on the MDA and T-SOD results, the appropriate dietary histidine requirements of juvenile largemouth bass were 1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary protein), respectively, as determined by quadratic regression analysis.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lin Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610093, China
| |
Collapse
|
42
|
Zheng X, Xu D, Sun L, Qin X, Zhang Y. Inflammation and apoptosis pathways mediated the stress response of Litopenaeus vannamei to acute cold and air exposure during waterless live transportation: Based on ultrastructure and transcriptome. FISH & SHELLFISH IMMUNOLOGY 2022; 131:391-400. [PMID: 36252695 DOI: 10.1016/j.fsi.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
the combination of acute cold (AC) and waterless duration (WD) constitutes the major environmental stress and induces the damage or even mortality to shrimp L. vannamei during live transport, whereas the responding mechanism to AC + WD at molecular level remains unknown. The present study aims to clarify the responding mechanism of L. vannamei to AC + WD stress by ultrastructural observation and transcriptomic analysis on hepatopancreas tissue. The results showed that the dramatical oxidative stress induced by AC + WD significantly mediated the alteration of amino acids and energy metabolism. Furthermore, KEGG pathway enrichment analysis revealed that the genes including DDO, GOT1, IDH1 and BBOX1 involved in energy metabolism and were significantly down-regulated, while some apoptosis- and inflammation-related genes such as DRONC, AP-1, and COX-2 were significantly up-regulated under AC + WD stress in comparison with those at normal control (all p < 0.05 or 0.01). These findings suggested that metabolic processes mediate the stress-induced damages of L. vannamei during waterless transport. Moreover, the significant overexpression of apoptosis-and inflammation-related proteins, and levels of inflammation cytokines in serum of shrimps strongly demonstrated the implication of inflammation and apoptosis pathways in stress-induced ultrastructural damage. These findings deepen our understanding into the response mechanisms of L. vannamei to AC + WD stress and provide the potential controlling biomarkers for transportation management.
Collapse
Affiliation(s)
- Xiaoxian Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Ying Zhang
- School of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
43
|
Zhou C, Huang Z, Lin H, Ma Z, Wang J, Wang Y, Yu W. Rhizoma curcumae Longae ameliorates high dietary carbohydrate-induced hepatic oxidative stress, inflammation in golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2022; 130:31-42. [PMID: 36038103 DOI: 10.1016/j.fsi.2022.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In general, starch, as a complex carbohydrate, is the most economical energy source in aquaculture for its relatively low cost. However, excessive dietary levels of carbohydrate result in pathological conditions. An 8-week feeding trial with CT (control diet, containing 21% carbohydrate), HC (a high-carbohydrate diet, containing 50% carbohydrate) and HCR (a HC diet supplemented with 0.015% Rhizoma curcumae Longae) was performed to investigate the protective effect of curcumin on high-carbohydrate-induced hepatic oxidative stress and intestine lesion in juvenile Trachinotus ovatus. In the current study, HC group significantly decreased WGR, SGR, plasma CAT activity, intestinal C4 levels, hepatic Nrf2, Keap1, Bach1, HO1, CAT, and GPX mRNA expression as well as ZO-1, Occludin, and Claudin-3, TGF-β mRNA transcription levels, while the opposite was true for plasma AST activity, hepatic MDA contents, intestinal Claudin-15, NF-κB, IL-1β, IL-6, and TNF-α mRNA expression. In contrast with the HC group, the HCR group significantly increased the activities of hepatic CAT, SOD, intestinal C3, C4, IgG and LZM levels, hepatic Nrf2, Bach1, CAT, and GPX mRNA expression as well as intestinal ZO-1, Occludin, Claudin-3, TGF-β and IL-10 mRNA expression levels, but the opposite trend was found in plasma triglyceride content, hepatic lipid deposition, hepatic Keap1 mRNA level as well as intestinal NF-κB, IL-6. In conclusion, high-carbohydrate diet can cause detrimental effect on physiological health status in Trachinotus ovatus, while adding Rhizoma curcumae Longae can improve hepatic and intestinal health status via attenuating the oxidative stress, inflammation, and reducing lipid deposition.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Zhong Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China.
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| |
Collapse
|
44
|
Kong W, Jiang T, Ning Y, Guo Y, Liu H, Lyu X, Li M. Dietary diversity, diet quality, and oxidative stress in older adults. Geriatr Nurs 2022; 48:158-163. [PMID: 36219935 DOI: 10.1016/j.gerinurse.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
This cross-sectional study aimed to explore the relationship between diet quality, dietary diversity, and oxidative stress levels in older adults in parts of the Ningxia Hui Autonomous Region in northwestern China. A total of 335 participants voluntarily participated in the study from April to July 2021. Laboratory tests and questionnaires were used to obtain general characteristics, dietary conditions, and indicators of oxidative stress. The dietary diversity scores of the participants were 5.20±1.39, the diet quality indices were 56.91±11.14, and most had poor diet quality. The levels of the oxidative stress markers malondialdehyde, superoxide dismutase, 8-iso-prostaglandin F2α, and total antioxidant capacity were 4.77±1.77, 40.33±9.85, 763.10±245.41, and 1.02±0.14, respectively. The results showed that the diet quality scores of participants were related to dietary diversity and whether the scores passed or not was significantly related to total antioxidant capacity.
Collapse
Affiliation(s)
- Weijuan Kong
- Department of Nursing of Ningxia Medical University
| | - Ting Jiang
- Department of Nursing of Ningxia Medical University
| | - Yanhua Ning
- Department of Nursing of Ningxia Medical University.
| | - Yahong Guo
- Department of Nursing of Ningxia Medical University
| | - Haiyan Liu
- Department of Nursing of Ningxia Medical University
| | | | - Meiman Li
- Department of Nursing of Ningxia Medical University
| |
Collapse
|
45
|
Gong Y, Lu Q, Liu Y, Xi L, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides). Front Nutr 2022; 9:1010859. [PMID: 36211485 PMCID: PMC9539808 DOI: 10.3389/fnut.2022.1010859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1β, il8, tgfβ, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- *Correspondence: Dong Han,
| |
Collapse
|
46
|
Yin J, Li D, Zheng T, Wang X, Hu B, Wang P. Structural and functional alterations of intestinal flora in mice induced by halonitromethanes exposure. Front Microbiol 2022; 13:991818. [PMID: 36177464 PMCID: PMC9512649 DOI: 10.3389/fmicb.2022.991818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts (DBPs) have been widely found in drinking water and are receiving more and more attentions because of their high cytotoxicity, genotoxicity, and developmental toxicity. However, the effects of HNMs exposure on the intestinal tract and intestinal flora remain unknown. This study comprehensively determined the effects of trichloronitromethane, bromonitromethane, and bromochloronitromethane exposure on the intestinal tract and intestinal flora. Results showed that the three HNMs induced intestinal oxidative stress and inflammatory response. Further, HNMs exposure could change the diversities and community structure of intestinal flora, thereby triggering intestinal flora dysbiosis, which might be associated with the intestinal damage such as oxidative stress and inflammation. The intestinal flora dysbiosis was accompanied with mark alterations in function of intestinal flora, such as carbohydrate, lipid, and amino acid metabolisms. This research provides a new insight into studying the toxicity of HNMs exposure based on intestinal flora, which will further improve the health risk assessment of DBPs in drinking water.
Collapse
Affiliation(s)
- Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
- *Correspondence: Peifang Wang,
| |
Collapse
|
47
|
Zhao L, Liang J, Liu H, Gong C, Huang X, Hu Y, Liu Q, He Z, Zhang X, Yang S, Rahimnejad S. Yinchenhao Decoction ameliorates the high-carbohydrate diet induced suppression of immune response in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 125:141-151. [PMID: 35569775 DOI: 10.1016/j.fsi.2022.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1β, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Chenxin Gong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
48
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|