1
|
Brown DW, Kim HS, Proctor RH, Wicklow DT. Low molecular weight acids differentially impact Fusarium verticillioides transcription. Fungal Biol 2024; 128:2094-2101. [PMID: 39384279 DOI: 10.1016/j.funbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Fusarium verticillioides is both an endophyte and pathogen of maize. During growth on maize, the fungus often synthesizes the mycotoxins fumonisins, which have been linked to a variety of diseases, including cancer in some animals. How F. verticillioides responds to other fungi, such as Fusarium proliferatum, Aspergillus flavus, Aspergillus niger, and Penicillium oxalicum, that coinfect maize, has potential to impact mycotoxin synthesis and disease. We hypothesize that low molecular weight acids produced by these fungi play a role in communication between the fungi in planta/nature. To address this hypothesis, we exposed 48-h maize kernel cultures of F. verticillioides to oxalic acid, citric acid, fusaric acid, or kojic acid and then compared transcriptomes after 30 min and 6 h. Transcription of some genes were affected by multiple chemicals and others were affected by only one chemical. The most significant positive response was observed after exposure to fusaric acid which resulted in >2-fold upregulation of 225 genes, including genes involved in fusaric acid synthesis. Exposure of cultures to the other three chemicals increased expression of only 3-15 genes. The predicted function and frequent co-localization of three sets of genes support a role in protecting the fungus from the chemical or a role in catabolism. These unique transcriptional responses support our hypothesis that these chemicals can act as signaling molecules. Studies with gene deletion mutants will further indicate if the initial transcriptional response to the chemicals benefit F. verticillioides.
Collapse
Affiliation(s)
- Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| | - Donald T Wicklow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
2
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
3
|
Álvarez M, Delgado J, Núñez F, Roncero E, Andrade MJ. Proteomic approach to unveil the ochratoxin A repression by Debaryomyces hansenii and rosemary on Penicillium nordicum during dry-cured fermented sausages ripening. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Li H, Wang D, Zhang DD, Geng Q, Li JJ, Sheng RC, Xue HS, Zhu H, Kong ZQ, Dai XF, Klosterman SJ, Subbarao KV, Chen FM, Chen JY. A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence. BMC Biol 2022; 20:125. [PMID: 35637443 PMCID: PMC9153097 DOI: 10.1186/s12915-022-01330-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background During the disease cycle, plant pathogenic fungi exhibit a morphological transition between hyphal growth (the phase of active infection) and the production of long-term survival structures that remain dormant during “overwintering.” Verticillium dahliae is a major plant pathogen that produces heavily melanized microsclerotia (MS) that survive in the soil for 14 or more years. These MS are multicellular structures produced during the necrotrophic phase of the disease cycle. Polyketide synthases (PKSs) are responsible for catalyzing production of many secondary metabolites including melanin. While MS contribute to long-term survival, hyphal growth is key for infection and virulence, but the signaling mechanisms by which the pathogen maintains hyphal growth are unclear. Results We analyzed the VdPKSs that contain at least one conserved domain potentially involved in secondary metabolism (SM), and screened the effect of VdPKS deletions in the virulent strain AT13. Among the five VdPKSs whose deletion affected virulence on cotton, we found that VdPKS9 acted epistatically to the VdPKS1-associated melanin pathway to promote hyphal growth. The decreased hyphal growth in VdPKS9 mutants was accompanied by the up-regulation of melanin biosynthesis and MS formation. Overexpression of VdPKS9 transformed melanized hyphal-type (MH-type) into the albinistic hyaline hyphal-type (AH-type), and VdPKS9 was upregulated in the AH-type population, which also exhibited higher virulence than the MH-type. Conclusions We show that VdPKS9 is a powerful negative regulator of both melanin biosynthesis and MS formation in V. dahliae. These findings provide insight into the mechanism of how plant pathogens promote their virulence by the maintenance of vegetative hyphal growth during infection and colonization of plant hosts, and may provide novel targets for the control of melanin-producing filamentous fungi. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01330-2.
Collapse
|
5
|
Brown DW, Kim HS, McGovern A, Probyn C, Proctor RH. Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genet Biol 2022; 160:103696. [DOI: 10.1016/j.fgb.2022.103696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
|
6
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
8
|
Nielsen MR, Holzwarth AKR, Brew E, Chrapkova N, Kaniki SEK, Kastaniegaard K, Sørensen T, Westphal KR, Wimmer R, Sondergaard TE, Sørensen JL. A new vector system for targeted integration and overexpression of genes in the crop pathogen Fusarium solani. Fungal Biol Biotechnol 2019; 6:25. [PMID: 31890232 PMCID: PMC6905090 DOI: 10.1186/s40694-019-0089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Besides their ability to produce several interesting bioactive secondary metabolites, members of the Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation. Results To remove this obstacle we here report the development of a reliable system where the vectors are generated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transformants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming from bostrycoidin and javanicin. Conclusion By creating streamlined plasmid construction and fungal transformation systems, we are now able to express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species complex, and is obtainable from Addgene catalog #133094. Graphic abstract
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Emmett Brew
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Natalia Chrapkova
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Kenneth Kastaniegaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Trine Sørensen
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Klaus Ringsborg Westphal
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Reinhard Wimmer
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Teis Esben Sondergaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| |
Collapse
|
9
|
Lebeau J, Petit T, Dufossé L, Caro Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019; 9:186. [PMID: 31748828 PMCID: PMC6868082 DOI: 10.1186/s13568-019-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC–DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).
Collapse
|
10
|
Adpressa DA, Connolly LR, Konkel ZM, Neuhaus GF, Chang XL, Pierce BR, Smith KM, Freitag M, Loesgen S. A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genet Biol 2019; 132:103256. [PMID: 31344458 DOI: 10.1016/j.fgb.2019.103256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
Many secondary metabolites are produced by biosynthetic gene clusters (BGCs) that are repressed during standard growth conditions, which complicates the discovery of novel bioactive compounds. In the genus Fusarium, many BGCs reside in chromatin enriched for trimethylated histone 3 lysine 27 (H3K27me3), a modification correlated with transcriptional gene silencing. Here we report on our progress in assigning metabolites to genes by using a strain lacking the H3K27 methyltransferase, Kmt6. To guide isolation efforts, we coupled genetics to multivariate analysis of liquid chromatography-mass spectrometry (LCMS) data from both wild type and kmt6, which allowed identification of compounds previously unknown from F. graminearum. We found low molecular weight, amino acid-derived metabolites (N-ethyl anthranilic acid, N-phenethylacetamide, N-acetyltryptamine). We identified one new compound, protofusarin, as derived from fusarin biosynthesis. Similarly, we isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones A and B, simply by using the kmt6 mutant, instead of having to optimize growth media. To increase the abundance of metabolites underrepresented in wild type, we generated kmt6 fus1 double mutants and discovered tricinolone and tricinolonoic acid, two new sesquiterpenes belonging to the tricindiol class. Our approach allows rapid visualization and analyses of the genetically induced changes in metabolite production, and discovery of new molecules by a combination of chemical and genetic dereplication. Of 22 fungal metabolites identified here, 10 compounds had not been reported from F. graminearum before. We show that activating silent metabolic pathways by mutation of a repressive chromatin modification enzyme can result in the discovery of new chemistry even in a well-studied organism, and helps to connect new or known small molecules to the BGCs responsible for their production.
Collapse
Affiliation(s)
| | - Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Zachary M Konkel
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - George F Neuhaus
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Xiao L Chang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Brett R Pierce
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kristina M Smith
- Department of Biology, Oregon State University - Cascades, Bend, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Bleackley MR, Samuel M, Garcia-Ceron D, McKenna JA, Lowe RGT, Pathan M, Zhao K, Ang CS, Mathivanan S, Anderson MA. Extracellular Vesicles From the Cotton Pathogen Fusarium oxysporum f. sp. vasinfectum Induce a Phytotoxic Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1610. [PMID: 31998330 PMCID: PMC6965325 DOI: 10.3389/fpls.2019.01610] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EVs) represent a system for the coordinated secretion of a variety of molecular cargo including proteins, lipids, nucleic acids, and metabolites. They have an essential role in intercellular communication in multicellular organisms and have more recently been implicated in host-pathogen interactions. Study of the role for EVs in fungal biology has focused on pathogenic yeasts that are major pathogens in humans. In this study we have expanded the investigation of fungal EVs to plant pathogens, specifically the major cotton pathogen Fusarium oxysporum f. sp. vasinfectum. EVs isolated from F. oxysporum f. sp. vasinfectum culture medium have a morphology and size distribution similar to EVs from yeasts such as Candida albicans and Cryptococcus neoformans. A unique feature of the EVs from F. oxysporum f. sp. vasinfectum is their purple color, which is predicted to arise from a napthoquinone pigment being packaged into the EVs. Proteomic analysis of F. oxysporum f. sp. vasinfectum EVs revealed that they are enriched in proteins that function in synthesis of polyketides as well as proteases and proteins that function in basic cellular processes. Infiltration of F. oxysporum f. sp. vasinfectum EVs into the leaves of cotton or N. benthamiana plants led to a phytotoxic response. These observations lead to the hypothesis that F. oxysporum f. sp. vasinfectum EVs are likely to play a crucial role in the infection process.
Collapse
Affiliation(s)
- Mark R. Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Monisha Samuel
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - James A. McKenna
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Rohan G. T. Lowe
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Mohashin Pathan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Kening Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- *Correspondence: Marilyn A. Anderson,
| |
Collapse
|
12
|
Diversity and evolution of polyketide biosynthesis gene clusters in the Ceratocystidaceae. Fungal Biol 2018; 122:856-866. [PMID: 30115319 DOI: 10.1016/j.funbio.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/30/2018] [Accepted: 04/25/2018] [Indexed: 01/26/2023]
Abstract
Polyketides are secondary metabolites with diverse biological activities. Polyketide synthases (PKS) are often encoded from genes clustered in the same genomic region. Functional analyses and genomic studies show that most fungi are capable of producing a repertoire of polyketides. We considered the potential of Ceratocystidaceae for producing polyketides using a comparative genomics approach. Our aims were to identify the putative polyketide biosynthesis gene clusters, to characterize them and predict the types of polyketide compounds they might produce. We used sequences from nineteen species in the genera, Ceratocystis, Endoconidiophora, Davidsoniella, Huntiella, Thielaviopsis and Bretziella, to identify and characterize PKS gene clusters, by employing a range of bioinformatics and phylogenetic tools. We showed that the genomes contained putative clusters containing a non-reducing type I PKS and a type III PKS. Phylogenetic analyses suggested that these genes were already present in the ancestor of the Ceratocystidaceae. By contrast, the various reducing type I PKS-containing clusters identified in these genomes appeared to have distinct evolutionary origins. Although one of the identified clusters potentially allows for the production of melanin, their functional characterization will undoubtedly reveal many novel and important compounds implicated in the biology of the Ceratocystidaceae.
Collapse
|
13
|
Zhang Y, Ma LJ. Deciphering Pathogenicity of Fusarium oxysporum From a Phylogenomics Perspective. ADVANCES IN GENETICS 2017; 100:179-209. [PMID: 29153400 DOI: 10.1016/bs.adgen.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium oxysporum is a large species complex of both plant and human pathogens that attack a diverse array of species in a host-specific manner. Comparative genomic studies have revealed that the host-specific pathogenicity of the F. oxysporum species complex (FOSC) was determined by distinct sets of supernumerary (SP) chromosomes. In contrast to common vertical transfer, where genetic materials are transmitted via cell division, SP chromosomes can be transmitted horizontally between phylogenetic lineages, explaining the polyphyletic nature of the host-specific pathogenicity of the FOSC. The existence of a diverse array of SP chromosomes determines the broad host range of this species complex, while the conserved core genome maintains essential house-keeping functions. Recognition of these SP chromosomes enables the functional and structural compartmentalization of F. oxysporum genomes. In this review, we examine the impact of this group of cross-kingdom pathogens on agricultural productivity and human health. Focusing on the pathogenicity of F. oxysporum in the phylogenomic framework of the genus Fusarium, we elucidate the evolution of pathogenicity within the FOSC. We conclude that a population genomics approach within a clearly defined phylogenomic framework is essential not only for understanding the evolution of the pathogenicity mechanism but also for identifying informative candidates associated with pathogenicity that can be developed as targets in disease management programs.
Collapse
Affiliation(s)
- Yong Zhang
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Li-Jun Ma
- University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
14
|
Health Risks Associated with Exposure to Filamentous Fungi. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070719. [PMID: 28677641 PMCID: PMC5551157 DOI: 10.3390/ijerph14070719] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties.
Collapse
|
15
|
Niehaus EM, Münsterkötter M, Proctor RH, Brown DW, Sharon A, Idan Y, Oren-Young L, Sieber CM, Novák O, Pěnčík A, Tarkowská D, Hromadová K, Freeman S, Maymon M, Elazar M, Youssef SA, El-Shabrawy ESM, Shalaby ABA, Houterman P, Brock NL, Burkhardt I, Tsavkelova EA, Dickschat JS, Galuszka P, Güldener U, Tudzynski B. Comparative "Omics" of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biol Evol 2016; 8:3574-3599. [PMID: 28040774 PMCID: PMC5203792 DOI: 10.1093/gbe/evw259] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 11/14/2022] Open
Abstract
Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Robert H Proctor
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, Illinois
| | - Daren W Brown
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, Illinois
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Idan
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Liat Oren-Young
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Christian M Sieber
- Department of Energy Joint Genome Institute, University of California, Walnut Creek, Berkeley, California
| | - Ondřej Novák
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Kristýna Hromadová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Marcel Maymon
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Meirav Elazar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Sahar A Youssef
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | | | | | - Petra Houterman
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Pathology, Amsterdam, The Netherlands
| | - Nelson L Brock
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Germany
| | - Immo Burkhardt
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Germany
| | - Elena A Tsavkelova
- Department of Microbiology Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jeroen S Dickschat
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Germany
| | - Petr Galuszka
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Ulrich Güldener
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, Freising, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
16
|
Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J Antibiot (Tokyo) 2016; 69:541-8. [PMID: 27072286 DOI: 10.1038/ja.2016.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/04/2016] [Accepted: 03/13/2016] [Indexed: 01/24/2023]
Abstract
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Collapse
|
17
|
Alvin A, Kalaitzis J, Sasia B, Neilan B. Combined genetic and bioactivity‐based prioritization leads to the isolation of an endophyte‐derived antimycobacterial compound. J Appl Microbiol 2016; 120:1229-39. [DOI: 10.1111/jam.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- A. Alvin
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW Australia
| | - J.A. Kalaitzis
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW Australia
| | - B. Sasia
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW Australia
| | - B.A. Neilan
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
18
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
19
|
Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 2016; 89:37-51. [PMID: 26826610 DOI: 10.1016/j.fgb.2016.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi.
Collapse
|
20
|
Wang H, Sivonen K, Fewer DP. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Curr Opin Genet Dev 2015; 35:79-85. [PMID: 26605685 DOI: 10.1016/j.gde.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022]
Abstract
Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes.
Collapse
Affiliation(s)
- Hao Wang
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
21
|
Koczyk G, Dawidziuk A, Popiel D. The Distant Siblings-A Phylogenomic Roadmap Illuminates the Origins of Extant Diversity in Fungal Aromatic Polyketide Biosynthesis. Genome Biol Evol 2015; 7:3132-54. [PMID: 26537223 PMCID: PMC5635595 DOI: 10.1093/gbe/evv204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years, the influx of newly sequenced fungal genomes has enabled sampling of secondary metabolite biosynthesis on an unprecedented scale. However, explanations of extant diversity which take into account both large-scale phylogeny reconstructions and knowledge gained from multiple genome projects are still lacking. We analyzed the evolutionary sources of genetic diversity in aromatic polyketide biosynthesis in over 100 model fungal genomes. By reconciling the history of over 400 nonreducing polyketide synthases (NR-PKSs) with corresponding species history, we demonstrate that extant fungal NR-PKSs are clades of distant siblings, originating from a burst of duplications in early Pezizomycotina and thinned by extensive losses. The capability of higher fungi to biosynthesize the simplest precursor molecule (orsellinic acid) is highlighted as an ancestral trait underlying biosynthesis of aromatic compounds. This base activity was modified during early evolution of filamentous fungi, toward divergent reaction schemes associated with biosynthesis of, for example, aflatoxins and fusarubins (C4–C9 cyclization) or various anthraquinone derivatives (C6–C11 cyclization). The functional plasticity is further shown to have been supplemented by modularization of domain architecture into discrete pieces (conserved splice junctions within product template domain), as well as tight linkage of key accessory enzyme families and divergence in employed transcriptional factors. Although the majority of discord between species and gene history is explained by ancient duplications, this landscape has been altered by more recent duplications, as well as multiple horizontal gene transfers. The 25 detected transfers include previously undescribed events leading to emergence of, for example, fusarubin biosynthesis in Fusarium genus. Both the underlying data and the results of present analysis (including alternative scenarios revealed by sampling multiple reconciliation optima) are maintained as a freely available web-based resource: http://cropnet.pl/metasites/sekmet/nrpks_2014.
Collapse
Affiliation(s)
| | - Adam Dawidziuk
- Department of Pathogen Genetics and Plant Resistance and Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Delfina Popiel
- Department of Pathogen Genetics and Plant Resistance and Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
22
|
Throckmorton K, Wiemann P, Keller NP. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins (Basel) 2015; 7:3572-607. [PMID: 26378577 PMCID: PMC4591646 DOI: 10.3390/toxins7093572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706-1580, USA.
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| |
Collapse
|
23
|
Spatafora JW, Bushley KE. Phylogenomics and evolution of secondary metabolism in plant-associated fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:37-44. [PMID: 26116974 DOI: 10.1016/j.pbi.2015.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Fungi produce a myriad of secondary metabolites, compounds that are not required for basic cellular processes, but are thought to be central to ecological functions. Genomic sequencing of fungi has revealed a greater diversity of secondary metabolism than previously realized, including novel taxonomic distributions of known compounds and uncharacterized gene clusters in well-studied organisms. Here we provide an overview of the major groups of metabolites, their ecological functions, the genetic systems that produce them, and the patterns and processes associated with evolutionary diversification of secondary metabolism in plant-associated filamentous ascomycetes.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
24
|
An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 2015; 75:20-9. [DOI: 10.1016/j.fgb.2014.12.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022]
|
25
|
Hemalatha RG, Naik HR, Mariappa V, Pradeep T. Rapid detection of Fusarium wilt in basil (Ocimum sp.) leaves by desorption electrospray ionization mass spectrometry (DESI MS) imaging. RSC Adv 2015. [DOI: 10.1039/c4ra16706f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rapid method to unravel the spatial distribution ofFusarium/other pathogen-contamination in asymptomatic leaves under ambient conditions.
Collapse
Affiliation(s)
- R. G. Hemalatha
- DST Unit on Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | - Hemanta R. Naik
- DST Unit on Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | - Vasundhara Mariappa
- Medicinal and Aromatic Section
- Department of Horticulture
- University of Agricultural Sciences
- Bangalore
- India
| | - T. Pradeep
- DST Unit on Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| |
Collapse
|
26
|
The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 2014; 9:e110311. [PMID: 25333987 PMCID: PMC4198257 DOI: 10.1371/journal.pone.0110311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.
Collapse
|
27
|
Schindler D, Nowrousian M. The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora. Fungal Genet Biol 2014; 68:48-59. [PMID: 24792494 DOI: 10.1016/j.fgb.2014.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 01/02/2023]
Abstract
Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology.
Collapse
Affiliation(s)
- Daniel Schindler
- Lehrstuhl für Allgemeine und Molekulare Botanik, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
28
|
Smith KM, Gautschi JT, Freitag M. Decoding the cryptic genomes of fungi: the promise of novel antibiotics. Future Microbiol 2014; 9:265-8. [DOI: 10.2217/fmb.14.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kristina M Smith
- Programs in Biology & Chemistry, Oregon State University-Cascades, 2600 Northwest College Way, Bend, OR 97701, USA
- Department of Biochemistry & Biophysics, 2011 ALS Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Jeffrey T Gautschi
- Programs in Biology & Chemistry, Oregon State University-Cascades, 2600 Northwest College Way, Bend, OR 97701, USA
- Department of Chemistry, Gilbert Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Michael Freitag
- Department of Biochemistry & Biophysics, 2011 ALS Bldg., Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
29
|
Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJGM. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 2014; 9:e85877. [PMID: 24465762 PMCID: PMC3895014 DOI: 10.1371/journal.pone.0085877] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023] Open
Abstract
Cladosporium fulvum is a biotrophic fungal pathogen that causes leaf mould of tomato. Analysis of its genome suggested a high potential for production of secondary metabolites (SM), which might be harmful to plants and animals. Here, we have analysed in detail the predicted SM gene clusters of C. fulvum employing phylogenetic and comparative genomic approaches. Expression of the SM core genes was measured by RT-qrtPCR and produced SMs were determined by LC-MS and NMR analyses. The genome of C. fulvum contains six gene clusters that are conserved in other fungal species, which have undergone rearrangements and gene losses associated with the presence of transposable elements. Although being a biotroph, C. fulvum has the potential to produce elsinochrome and cercosporin toxins. However, the corresponding core genes are not expressed during infection of tomato. Only two core genes, PKS6 and NPS9, show high expression in planta, but both are significantly down regulated during colonization of the mesophyll tissue. In vitro SM profiling detected only one major compound that was identified as cladofulvin. PKS6 is likely involved in the production of this pigment because it is the only core gene significantly expressed under these conditions. Cladofulvin does not cause necrosis on Solanaceae plants and does not show any antimicrobial activity. In contrast to other biotrophic fungi that have a reduced SM production capacity, our studies on C. fulvum suggest that down-regulation of SM biosynthetic pathways might represent another mechanism associated with a biotrophic lifestyle.
Collapse
Affiliation(s)
- Jérôme Collemare
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen, The Netherlands
- * E-mail:
| | - Scott Griffiths
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yuichiro Iida
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- National Institute of Vegetable and Tea Science, Tsu, Japan
| | - Mansoor Karimi Jashni
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - Evy Battaglia
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Russell J. Cox
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Pierre J. G. M. de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
30
|
|
31
|
Connolly LR, Smith KM, Freitag M. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 2013; 9:e1003916. [PMID: 24204317 PMCID: PMC3814326 DOI: 10.1371/journal.pgen.1003916] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022] Open
Abstract
The cereal pathogen Fusarium graminearum produces secondary metabolites toxic to humans and animals, yet coordinated transcriptional regulation of gene clusters remains largely a mystery. By chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq) we found that regions with secondary metabolite clusters are enriched for trimethylated histone H3 lysine 27 (H3K27me3), a histone modification associated with gene silencing. H3K27me3 was found predominantly in regions that lack synteny with other Fusarium species, generally subtelomeric regions. Di- or trimethylated H3K4 (H3K4me2/3), two modifications associated with gene activity, and H3K27me3 are predominantly found in mutually exclusive regions of the genome. To find functions for H3K27me3, we deleted the gene for the putative H3K27 methyltransferase, KMT6, a homolog of Drosophila Enhancer of zeste, E(z). The kmt6 mutant lacks H3K27me3, as shown by western blot and ChIP-seq, displays growth defects, is sterile, and constitutively expresses genes for mycotoxins, pigments and other secondary metabolites. Transcriptome analyses showed that 75% of 4,449 silent genes are enriched for H3K27me3. A subset of genes that were enriched for H3K27me3 in WT gained H3K4me2/3 in kmt6. A largely overlapping set of genes showed increased expression in kmt6. Almost 95% of the remaining 2,720 annotated silent genes showed no enrichment for either H3K27me3 or H3K4me2/3 in kmt6. In these cases mere absence of H3K27me3 was insufficient for expression, which suggests that additional changes are required to activate genes. Taken together, we show that absence of H3K27me3 allowed expression of an additional 14% of the genome, resulting in derepression of genes predominantly involved in secondary metabolite pathways and other species-specific functions, including putative secreted pathogenicity factors. Results from this study provide the framework for novel targeted strategies to control the “cryptic genome”, specifically secondary metabolite expression. Changes in chromatin structure are required for time- and tissue-specific gene regulation. How exactly these changes are mediated is under intense scrutiny. The interplay between activating histone modifications, e.g. H3K4me, and the silencing H3K27me3 mark has been recognized as critical to orchestrate differentiation and development in plants and animals. Here we show that filamentous fungi, exemplified by the cereal pathogen Fusarium graminearum, can use H3K27 methylation to generate silenced, facultative heterochromatin, covering more than a third of the genome, much more than the 5–8% of Neurospora or metazoan genomes. Removal of the silencing mark by mutation of the methyltransferase subunit of the PRC2 silencing complex resulted in activation of more than 1,500 genes, 14% of the genome. We show that generation of facultative heterochromatin by H3K27 methylation is an ancestral process that has been lost in certain lineages (e.g. at least some hemiascomycetes, the genus Aspergillus and some basidiomycetes). Our studies will open the door to future precise “epigenetic engineering” of gene clusters that generate bioactive compounds, e.g. putative mycotoxins, antibiotics and industrial feedstocks. Availability of tractable fungal model systems for studies of the control and function of H3K27 methylation may accelerate mechanistic research.
Collapse
Affiliation(s)
- Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
32
|
Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 2013; 90:290-306. [PMID: 23937442 DOI: 10.1111/mmi.12362] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 01/15/2023]
Abstract
Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary-metabolism (PM) gene genealogies, and FUM cluster types are not trans-specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.
Collapse
Affiliation(s)
- Robert H Proctor
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf HU. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. ACTA ACUST UNITED AC 2013; 20:1055-66. [PMID: 23932525 DOI: 10.1016/j.chembiol.2013.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster 48143, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 2013; 9:e1003475. [PMID: 23825955 PMCID: PMC3694855 DOI: 10.1371/journal.ppat.1003475] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022] Open
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Katharina W. von Bargen
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jose J. Espino
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kathleen Huß
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caroline B. Michielse
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja V. Bergner
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Andreas Fischer
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gunter Reuter
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Karin Kleigrewe
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Till Bald
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Brenda D. Wingfield
- Department of Genetics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Ron Ophir
- Institute of Plant Sciences, Genomics, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Stanley Freeman
- Department of Plant Pathology, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daren W. Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
35
|
Elliott CE, Callahan DL, Schwenk D, Nett M, Hoffmeister D, Howlett BJ. A gene cluster responsible for biosynthesis of phomenoic acid in the plant pathogenic fungus, Leptosphaeria maculans. Fungal Genet Biol 2013; 53:50-8. [PMID: 23396262 DOI: 10.1016/j.fgb.2013.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/20/2012] [Accepted: 01/23/2013] [Indexed: 01/08/2023]
Abstract
Phomenoic acid, a long chain aliphatic carboxylic acid is a major metabolite produced by Leptosphaeria maculans, a fungal pathogen of Brassica napus (canola). This fungus has 15 predicted polyketide synthases (PKS) and seven of them have the appropriate domains for the biosynthesis of phomenoic acid. The most highly expressed PKS gene after 7 days growth in 10% V8 juice, PKS2, was silenced and the resultant mutant produced very low levels of phomenoic acid, indicating that this PKS is involved in phomenoic acid biosynthesis. This gene is part of a co-regulated cluster of genes. Reduced expression of an adjacent gene encoding the transcriptional regulator C6TF, led to reduced expression of genes for PKS2, P450, a cytochrome P450 monoxygenase, YogA, an alcohol dehydrogenase/quinone reductase, RTA1, a lipid transport exporter superfamily member and MFS, a Major Facilitator Superfamily transporter, as well as a marked reduction in phomenoic acid production. Phomenoic acid is toxic towards another canola pathogen Leptosphaeria biglobosa 'canadensis', but not towards L. maculans and only moderately toxic towards the wheat pathogen Stagonospora nodorum. This molecule is detected in infected stems and stubble of B. napus, but biosynthesis of it does not appear to be essential for pathogenicity of L. maculans. Phomenoic acid may play a role in allowing L. maculans to outcompete other fungi in its environmental niche.
Collapse
Affiliation(s)
- Candace E Elliott
- School of Botany, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Boettger D, Hertweck C. Molecular Diversity Sculpted by Fungal PKS-NRPS Hybrids. Chembiochem 2012; 14:28-42. [DOI: 10.1002/cbic.201200624] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 12/22/2022]
|
37
|
Lin SH, Yoshimoto M, Lyu PC, Tang CY, Arita M. Phylogenomic and domain analysis of iterative polyketide synthases in Aspergillus species. Evol Bioinform Online 2012; 8:373-87. [PMID: 22844193 PMCID: PMC3399418 DOI: 10.4137/ebo.s9796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK.
Collapse
Affiliation(s)
- Shu-Hsi Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 2012; 49:602-12. [PMID: 22713715 DOI: 10.1016/j.fgb.2012.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 06/01/2012] [Accepted: 06/10/2012] [Indexed: 11/18/2022]
Abstract
The filamentous fungus Fusarium verticillioides can cause disease of maize and is capable of producing fumonisins, a family of toxic secondary metabolites linked to esophageal cancer and neural tube defects in humans and lung edema in swine and leukoencephalomalacia in equines. The expression of fumonisin biosynthetic genes is influenced by broad-domain transcription factors (global regulators) and Fum21, a pathway-specific transcription factor. LaeA is a global regulator that in Aspergillus nidulans, affects the expression of multiple secondary metabolite gene clusters by modifying heterochromatin structure. Here, we employed gene deletion analysis to assess the effect of loss of a F. verticillioides laeA orthologue, LAE1, on genome-wide gene expression and secondary metabolite production. Loss of Lae1 resulted in reduced expression of gene clusters responsible for synthesis of the secondary metabolites bikaverin, fumonisins, fusaric acid and fusarins as well as two clusters for which the corresponding secondary metabolite is unknown. Analysis of secondary metabolites revealed that, in contrast to a previously described Fusarium fujikuroi lae1 mutant, bikaverin production is reduced. Fumonisin production is unchanged in the F. verticillioides lae1 mutant. Complementation of the F. verticillioides mutant resulted in increased fumonisin production.
Collapse
Affiliation(s)
- Robert A E Butchko
- National Center for Agricultural Utilization Research, Peoria, IL, United States.
| | | | | | | | | |
Collapse
|
39
|
Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol 2012; 78:3656-67. [PMID: 22407693 DOI: 10.1128/aem.07841-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for 7 days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcriptomic profiles. When grown together, decreased biomass accumulation occurs for both fungi after an initial acceleration of growth compared to the biomass changes that occur when grown alone. The biomass of U. maydis declined most severely over time and may be attributed to the action of F. verticillioides, which secretes toxic secondary metabolites and expresses genes encoding adhesive and cell wall-degrading proteins at higher levels than when grown alone. U. maydis responds to cocultivation by expressing siderophore biosynthetic genes and more highly expresses genes potentially involved in toxin biosynthesis. Also, higher expression was noted for clustered genes encoding secreted proteins that are unique to U. maydis and that may play a role during colonization of maize. Conversely, decreased gene expression was seen for U. maydis genes encoding the synthesis of ustilagic acid, mannosylerythritol D, and another uncharacterized metabolite. Ultimately, U. maydis is unable to react efficiently to the toxic response of F. verticillioides and proportionally loses more biomass. This in vitro study clarifies potential mechanisms of antagonism between these two fungi that also may occur in the soil or in maize, niches for both fungi where they likely interact in nature.
Collapse
|