1
|
Li H, Guo T, Luo Z, Chen J, Xie X, Ahammed GJ, Liu A, Chen S. Volatile organic compounds from Irpex lacteus inhibit pathogenic fungi and enhance plant resistance to Botrytis cinerea in tomato. Microbiol Res 2025; 297:128188. [PMID: 40262356 DOI: 10.1016/j.micres.2025.128188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Biocontrol fungi may exert antagonistic effects by emitting volatile organic compounds (VOCs), thus identifying fungal VOCs is crucial for understanding biocontrol mechanisms and developing novel biofungicides. In this study, we examined the antagonistic effect of Irpex lacteus LL210 against three major fungal pathogens: Botrytis cinerea (tomato gray mold), Fusarium oxysporum (cucumber wilt), and Alternaria alternata (pepper leaf spots) using in vitro assays. The results of both the dual-culture and dual-petri-dish methods showed that I. lacteus LL210 strongly inhibited the growth of B. cinerea, likely through the release of volatile compounds. SPME-GC-MS analysis of I. lacteus LL210 identified 770 volatile compounds, of which 26 key volatiles were screened on the basis of their relative odor activity values, peak areas and concentrations. Further evaluation using the dual-petri-dish method showed that compounds such as 2-Octen-1-ol, (E)-; Benzeneacetaldehyde; (E)-2-Octenal; Hexanal; (E)-2-Butenal; 5-Heptenal, 2,6-dimethyl-; 1-Octanol; 2,3-dihydro-Benzofuran; Diallyl Sulfur compounds exhibited significant inhibition of B. cinerea, suggesting their potential utility in the development of novel fungicides. We also tested their effects on plant growth and physiology and found that 1-octanol had minimal deleterious effects on tomato plants, as evidenced by growth and oxidative stress markers. This study systematically deciphered the VOCs profile of I. lacteus LL210, revealing critical mechanisms of pathogen inhibition through both direct inhibitory effects of VOCs and plant-mediated enhanced defense. These findings have driven the development of potential biocontrol agents based on VOCs, thereby providing sustainable solutions for crop disease management.
Collapse
Affiliation(s)
- Haolong Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ziyi Luo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Xuewen Xie
- Chinese Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Beijing 100081, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China.
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China.
| |
Collapse
|
2
|
Wang H, Zhao T, Zhuang W. Cystathionine γ-lyase is an essential biocontrol-positive regulator of Trichoderma gamsii strain TC788. Microbiol Res 2025; 298:128218. [PMID: 40398010 DOI: 10.1016/j.micres.2025.128218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/19/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Some Trichoderma strains have been widely used in agriculture due to their biological control functions against plant pathogens. However, only a few intracellular biocontrol-related factors of them were explored. In this study, T. gamsii strain TC788 was discovered possessing comprehensive antagonistic capacity to the fungal phytopathogen Rhizoctonia solani causing damping-off disease of pepper, in which cystathionine γ-lyase is proved to be an essential biocontrol positive regulator as evidenced by combined analyses of transcriptome and proteome, proteins interaction network, and gene homologous recombination. Overexpression of cystathionine γ-lyase significantly up-regulated expression levels of six pathway proteins and enzyme activities of secreted proteins associated with biocontrol. It also increased contents of cysteine and hydrogen sulfide in enriched pathway of cysteine and methionine metabolism, and improved concentration of the main volatile organic compound, 6‑pentyl‑2H‑pyran‑2‑one, by 4.18 times. Pot experiments further confirmed that overexpressed strain of TC788 enhanced inhibiting ability against R. solani, promoted growth indicators, and induced systemic resistance of pepper seedlings compared with wild type strain. This work provides theoretical bases of biocontrol effects performed by strain TC788 against the phytopathogen, and explores preliminarily interaction between the strain and pepper plant.
Collapse
Affiliation(s)
- Hengxu Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyou Zhao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhuang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Zhang Y, Wu L, Lu Y, Li B, Jin Z, Wang J, Bai R, Wu Q, Fan Q, Tang JH, Yin F, He Y. Biocontrol activity and antifungal mechanisms of volatile organic compounds produced by Trichoderma asperellum XY101 against pear Valsa canker. PEST MANAGEMENT SCIENCE 2025. [PMID: 40285468 DOI: 10.1002/ps.8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Synthetic fungicides raise environmental and health concerns, and microorganisms are emerging as promising natural antagonists in plant protection. This study evaluated strain XY101 and its volatile organic compounds (VOCs) as biocontrol agents against pear Valsa canker caused by Vasal pyri, aiming to identify the antifungal mechanisms and key compounds. RESULTS The biocontrol fungus was identified as Trichoderma asperellum. Trichoderma asperellum XY101 strongly suppressed the mycelial growth of Vasal pyri on culture plates. A colonization assay indicated that the VOCs produced by T. asperellum XY101 significantly reduced the pathogenicity of Vasal pyri on detached pear twigs, with an inhibition rate of 78.96%. Scanning electron microscopy (SEM) and laser confocal microscopy revealed that VOCs produced by T. asperellum XY101 caused abnormal changes in mycelial ultrastructure and damaged the integrity of fungal cell membrane. The results of headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis showed the detection of 24 possible VOCs produced by strain XY101, with 3,7-dimethyl-1-octanol and 1-octen-3-ol identified as the primary antagonistic VOCs affecting pear Valsa canker. Transcriptome analysis demonstrated that these VOCs modulated gene expression in pathogenic fungal strains related to metabolism, membrane damage, pathogenicity, and resistance. CONCLUSION Trichoderma asperellum XY101 and its VOCs, 3,7-dimethyl-1-octanol and 1-octen-3-ol, showed effective inhibitory effects against Vasal pyri, providing a basis for the development of VOCs-based biological fumigants to manage pear Valsa canker. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ruxiao Bai
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qifeng Wu
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qinglu Fan
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jian-Hong Tang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feihu Yin
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yujian He
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Efficient Utilization of Water and Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
4
|
Gherlone F, Jojić K, Huang Y, Hoefgen S, Valiante V, Janevska S. The palmitoyl-CoA ligase Fum16 is part of a Fusarium verticillioides fumonisin subcluster involved in self-protection. mBio 2025; 16:e0268124. [PMID: 39704544 PMCID: PMC11796371 DOI: 10.1128/mbio.02681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Fusarium verticillioides produces the mycotoxin fumonisin B1 (FB1), which disrupts sphingolipid biosynthesis by inhibiting ceramide synthase and affects the health of plants, animals, and humans. The means by which F. verticillioides protects itself from its own mycotoxin are not completely understood. Some fumonisin (FUM) cluster genes do not contribute to the biosynthesis of the compound, but their function has remained enigmatic. Recently, we showed that FUM17, FUM18, and FUM19 encode two ceramide synthases and an ATP-binding cassette transporter, respectively, which play a role in antagonizing the toxicity mediated by FB1. In the present work, we uncovered functions of two adjacent genes, FUM15 and FUM16. Using homologous and heterologous expression systems, in F. verticillioides and Saccharomyces cerevisiae, respectively, we provide evidence that both contribute to protection against FB1. Our data indicate a potential role for the P450 monooxygenase Fum15 in the modification and detoxification of FB1 since the deletion and overexpression of the respective gene affected extracellular FB1 levels in both hosts. Furthermore, relative quantification of ceramide intermediates and an in vitro enzyme assay revealed that Fum16 is a functional palmitoyl-CoA ligase. It co-localizes together with the ceramide synthase Fum18 to the endoplasmic reticulum, where they contribute to sphingolipid biosynthesis. Thereby, FUM15-19 constitute a subcluster within the FUM biosynthetic gene cluster dedicated to the fungal self-protection against FB1.IMPORTANCEThe study identifies a five-gene FUM subcluster (FUM15-19) in Fusarium verticillioides involved in self-protection against FB1. FUM16 (palmitoyl-CoA ligase), FUM17, and FUM18 (ceramide synthases) enzymatically supplement ceramide biosynthesis, while FUM19 (ATP-binding cassette transporter) acts as a repressor of the FUM cluster. The evolutionary conservation of FUM15 (P450 monooxygenase) in Fusarium and Aspergillus FUM clusters is discussed, and its effect on extracellular FB1 levels in both native (F. verticillioides) and heterologous (Saccharomyces cerevisiae) hosts is highlighted. These findings enhance our understanding of mycotoxin self-protection mechanisms and could inform strategies for predicting biological activity of unknown secondary metabolites, managing mycotoxin contamination, and developing resistant crop cultivars.
Collapse
Affiliation(s)
- Fabio Gherlone
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Katarina Jojić
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| |
Collapse
|
5
|
Kamran M, Burdiak P, Karpiński S. Crosstalk Between Abiotic and Biotic Stresses Responses and the Role of Chloroplast Retrograde Signaling in the Cross-Tolerance Phenomena in Plants. Cells 2025; 14:176. [PMID: 39936968 PMCID: PMC11817488 DOI: 10.3390/cells14030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
In the natural environment, plants are simultaneously exposed to multivariable abiotic and biotic stresses. Typical abiotic stresses are changes in temperature, light intensity and quality, water stress (drought, flood), microelements availability, salinity, air pollutants, and others. Biotic stresses are caused by other organisms, such as pathogenic bacteria and viruses or parasites. This review presents the current state-of-the-art knowledge on programmed cell death in the cross-tolerance phenomena and its conditional molecular and physiological regulators, which simultaneously regulate plant acclimation, defense, and developmental responses. It highlights the role of the absorbed energy in excess and its dissipation as heat in the induction of the chloroplast retrograde phytohormonal, electrical, and reactive oxygen species signaling. It also discusses how systemic- and network-acquired acclimation and acquired systemic resistance are mutually regulated and demonstrates the role of non-photochemical quenching and the dissipation of absorbed energy in excess as heat in the cross-tolerance phenomenon. Finally, new evidence that plants evolved one molecular system to regulate cell death, acclimation, and cross-tolerance are presented and discussed.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.K.); (P.B.)
| |
Collapse
|
6
|
Fan QS, Lin HJ, Hu YJ, Jin J, Yan HH, Zhang RQ. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp. Biotechnol Lett 2024; 46:751-766. [PMID: 38811460 DOI: 10.1007/s10529-024-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates (Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9-63.0% reduction) and conidial germination (17.6-96.3% reduction) of B. cinerea, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B. cinerea, completely protected the leaves from B. cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B. cinerea, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T. asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B. cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen's plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.
Collapse
Affiliation(s)
- Q S Fan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - H J Lin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Y J Hu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Jin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - H H Yan
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - R Q Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Stange P, Kersting J, Sivaprakasam Padmanaban PB, Schnitzler JP, Rosenkranz M, Karl T, Benz JP. The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Fungal Biol Biotechnol 2024; 11:14. [PMID: 39252125 PMCID: PMC11384713 DOI: 10.1186/s40694-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization. RESULTS We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens. CONCLUSION The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.
Collapse
Affiliation(s)
- Pia Stange
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Tanja Karl
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
8
|
González-Pérez E, Jiménez-Bremont JF. Cladosporium psychrotolerans strain T01 enhances plant biomass and also exhibits antifungal activity against pathogens. Braz J Microbiol 2024; 55:2855-2867. [PMID: 38825649 PMCID: PMC11405581 DOI: 10.1007/s42770-024-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
9
|
Ling L, Feng L, Li Y, Yue R, Wang Y, Zhou Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J Fungi (Basel) 2024; 10:332. [PMID: 38786687 PMCID: PMC11122075 DOI: 10.3390/jof10050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Fruits and vegetables are an important part of the human diet, but during transportation and storage, microbial pathogens attack and spoil fruits and vegetables, causing huge economic losses to agriculture. Traditionally used chemical fungicides leave chemical residues, leading to environmental pollution and health risks. With the emphasis on food safety, biocontrol agents are attracting more and more attention due to their environmental friendliness. Endophytic fungi are present in plant tissues and do not cause host disease. The volatile organic compounds (VOCs) they produce are used to control postharvest diseases due to their significant antifungal activity, as well as their volatility, safety and environmental protection characteristics. This review provides the concept and characterization of endophytic fungal VOCs, concludes the types of endophytic fungi that release antifungal VOCs and their biological control mechanisms, as well as focuses on the practical applications and the challenges of applying VOCs as fumigants. Endophytic fungal VOCs can be used as emerging biocontrol resources to control postharvest diseases that affect fruits and vegetables.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou 730070, China
| | - Lijun Feng
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yao Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Rui Yue
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yongpeng Zhou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
10
|
Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, Yang Z, He M. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108619. [PMID: 38604013 DOI: 10.1016/j.plaphy.2024.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.
Collapse
Affiliation(s)
- Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| | - Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Han Qin
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - ZhiJuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| |
Collapse
|
11
|
Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, Larsen J. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol Res 2024; 281:127621. [PMID: 38295679 DOI: 10.1016/j.micres.2024.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/26/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake. Generally, plant growth promotion by Trichoderma is a consequence of the activity of potent fungal signaling metabolites diffused in soil with hormone-like activity, including indolic compounds as indole-3-acetic acid (IAA) produced at concentrations ranging from 14 to 234 μg l-1, and volatile organic compounds such as sesquiterpene isoprenoids (C15), 6-pentyl-2H-pyran-2-one (6-PP) and ethylene (ET) produced at levels from 10 to 120 ng over a period of six days, which in turn, might impact plant endogenous signaling mechanisms orchestrated by plant hormones. Plant growth stimulation occurs without the need of physical contact between both organisms and/or during root colonization. When associated with plants Trichoderma may cause significant biochemical changes in plant content of carbohydrates, amino acids, organic acids and lipids, as detected in Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum) and barley (Hordeum vulgare), which may improve the plant health status during the complete life cycle. Trichoderma-induced plant beneficial effects such as mechanisms of defense and growth are likely to be inherited to the next generations. Depending on the environmental conditions perceived by the fungus during its interaction with plants, Trichoderma can reprogram and/or activate molecular mechanisms commonly modulated by IAA, ET and abscisic acid (ABA) to induce an adaptative physiological response to abiotic stress, including drought, salinity, or environmental pollution. This review, provides a state of the art overview focused on the canonical mechanisms of these beneficial fungi involved in plant growth promotion traits under different environmental scenarios and shows new insights on Trichoderma metabolites from different chemical classes that can modulate specific plant growth aspects. Also, we suggest new research directions on Trichoderma spp. and their secondary metabolites with biological activity on plant growth.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| | - Monika Schmoll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Blanca Alicia Esquivel-Ayala
- Laboratorio de Entomología, Facultad de Biología, Edificio B4, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| | - Carlos E González-Esquivel
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Victor Rocha-Ramírez
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - John Larsen
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| |
Collapse
|
12
|
Fukada F. Mitigating the Trade-Off between Growth and Stress Resistance in Plants by Fungal Volatile Compounds. PLANT & CELL PHYSIOLOGY 2024; 65:175-178. [PMID: 38288618 DOI: 10.1093/pcp/pcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
13
|
Maruri-López I, Romero-Contreras YJ, Napsucialy-Mendivil S, González-Pérez E, Aviles-Baltazar NY, Chávez-Martínez AI, Flores-Cuevas EJ, Schwan-Estrada KRF, Dubrovsky JG, Jiménez-Bremont JF, Serrano M. A biostimulant yeast, Hanseniaspora opuntiae, modifies Arabidopsis thaliana root architecture and improves the plant defense response against Botrytis cinerea. PLANTA 2024; 259:53. [PMID: 38294549 PMCID: PMC10830669 DOI: 10.1007/s00425-023-04326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Enrique González-Pérez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico
| | | | - Ana Isabel Chávez-Martínez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | - Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
14
|
Xing M, Zhao J, Zhang J, Wu Y, Khan RAA, Li X, Wang R, Li T, Liu T. 6-Pentyl-2 H-pyran-2-one from Trichoderma erinaceum Is Fungicidal against Litchi Downy Blight Pathogen Peronophythora litchii and Preservation of Litchi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19488-19500. [PMID: 37938053 DOI: 10.1021/acs.jafc.3c03872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The postharvest losses of litchi caused by litchi downy blight are considerably high. We identified a natural antifungal volatile pyrone, 6-pentyl-2H-pyran-2-one (6PP), synthesized by Trichoderma erinaceum LS019-2 and investigated as biocontrol for litchi downy blight and preservation. 6PP significantly inhibited the growth and sporangial germination of Peronophythora litchii, the causal agent of litchi downy blight, and caused severe cellular and intracellular destructions, as evidenced by electron microscopic analysis. Furthermore, in the treatment, the fruit kept better color, higher weight, and antioxidant activity, so it can maintain freshness and prolong shelf life. Metabolome analysis confirmed the decline of lipids and the accumulation of organic acids in litchi fruits in response to 6PP treatment. These effects from 6PP could alleviate disease effects and prolong the shelf life of litchi fruits. These findings suggested that 6PP could be a useful natural product to control downy blight disease and a new preservative of litchi fruits.
Collapse
Affiliation(s)
- Mengyu Xing
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
| | - Jing Zhao
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Jingya Zhang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
| | - Yinggu Wu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Raja Asad Ali Khan
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
| | - Xinyu Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Rui Wang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Tingting Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| |
Collapse
|
15
|
Lian H, Li R, Ma G, Zhao Z, Zhang T, Li M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Sci Rep 2023; 13:17606. [PMID: 37848461 PMCID: PMC10582011 DOI: 10.1038/s41598-023-44296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
At the seedling and adult plant phases, pot experiments were carried out to enhance the physiological-biochemical characteristics of cucumber, guarantee its high yield, and ensure its cultivation of quality. Trichoderma harzianum conidia agents at 104, 105, 106, and 107 cfu g-1 were applied in accordance with the application of Fusarium oxysporum powder at concentrations of 104 cfu/g on the protective enzyme activity, physiological and biochemical indices, seedling quality, resilience to Fusarium wilt, quality, and yield traits. Fusarium oxysporum powder at 104 cfu g-1 was used to treat CK1, while Fusarium oxysporum powder and T. harzianum conidia agents were not used to treat CK2. The results show that different T. harzianum agents improved the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD) in cucumber seedlings, improved chlorophyll content, root activity, root-shoot ratio, and seedling strength index, and decreased malondialdehyde (MAD) content (P < 0.05). T3, a combination of 104 cfu g-1 Fusarium oxysporum powder and 106 cfu g-1 T. harzianum conidia agents, had the greatest promoting effect. The effects of different T. harzianum conidia agents and their application amounts on the control of cucumber Fusarium wilt were explored. T3 had the best promotion impact, and the control effect of cucumber Fusarium wilt at seedling stage and adult stage reached 83.98% and 70.08%, respectively. The quality index and yield formation of cucumber were also increased by several T. harzianum agents, with T3 having the strongest promotion effects. In comparison to CK1, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 120.75%, 39.14%, 42.26%, and 11.64% higher (P < 0.05), respectively. In comparison to CK2, the soluble sugar, Vc, soluble protein, and soluble solid contents of T3 cucumber fruit were 66.06%, 24.28%, 36.15%, and 7.95% higher (P < 0.05), respectively. In comparison to CK1 and CK2, the yields of T3 cucumber were 50.19% and 35.86% higher, respectively. As a result, T. harzianum agents can enhance the physiological and biochemical traits of cucumber seedlings, raise the quality of cucumber seedlings, have a controlling impact on Fusarium wilt, and increase the yield and quality of cucumber fruit. The greatest effectiveness of T3 comes from its use. In this study, Trichoderma harzianum conidia agents demonstrated good impacts on cucumber yield formation and plant disease prevention, demonstrating their high potential as biocontrol agents.
Collapse
Affiliation(s)
- Hua Lian
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Runzhe Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Guangshu Ma
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| | - Zhenghan Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ting Zhang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Key Laboratory of Intergrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
16
|
Razo-Belmán R, Ángeles-López YI, García-Ortega LF, León-Ramírez CG, Ortiz-Castellanos L, Yu H, Martínez-Soto D. Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1257098. [PMID: 37810383 PMCID: PMC10559904 DOI: 10.3389/fpls.2023.1257098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.
Collapse
Affiliation(s)
- Rosario Razo-Belmán
- Departamento de Alimentos, División de Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
17
|
Sheikh TMM, Zhou D, Ali H, Hussain S, Wang N, Chen S, Zhao Y, Wen X, Wang X, Zhang J, Wang L, Deng S, Feng H, Raza W, Fu P, Peng H, Wei L, Daly P. Volatile Organic Compounds Emitted by the Biocontrol Agent Pythium oligandrum Contribute to Ginger Plant Growth and Disease Resistance. Microbiol Spectr 2023; 11:e0151023. [PMID: 37534988 PMCID: PMC10433877 DOI: 10.1128/spectrum.01510-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.
Collapse
Affiliation(s)
- Taha Majid Mahmood Sheikh
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haider Ali
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Nan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yishen Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xian Wen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoyu Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Feng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Pengxiao Fu
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing, China
| | - Hao Peng
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing, China
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
18
|
Yao S, Zhou B, Duan M, Cao T, Wen Z, Chen X, Wang H, Wang M, Cheng W, Zhu H, Yang Q, Li Y. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2939. [PMID: 37631151 PMCID: PMC10458205 DOI: 10.3390/plants12162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Phytoremediation is an environment-friendly method for toxic elements remediation. The aim of this study was to improve the phytoremediation efficiency of Brassica juncea and the rhizosphere soil micro-ecology in cadmium (Cd) and arsenic (As) contaminated soil. A field experiment was conducted with six treatments, including a control treatment (CK), two treatments with two contents of Trichoderma harzianum (T1: 4.5 g m-2; T2: 9 g m-2), one biochar treatment (B: 750 g m-2), and two combined treatments of T1B and T2B. The results showed Trichoderma harzianum promoted the total chlorophyll and translocation factor of Brassica juncea, while biochar promoted plant biomass compared to CK. T2B treatment showed the best results, which significantly increased Cd accumulation by 187.49-308.92%, and As accumulation by 125.74-221.43%. As a result, the soil's total Cd content was reduced by 19.04% to 49.64% and total As contents by 38.76% to 53.77%. The combined amendment increased the contents of soil available potassium, phosphorus, nitrogen, and organic matter. Meanwhile, both the activity of glutathione and peroxidase enzymes in plants, together with urease and sucrase enzymes in soil, were increased. Firmicutes (dominant bacterial phylum) and Ascomycota (dominant fungal phylum) showed positive and close correlation with soil nutrients and plant potentially toxic elements contents. This study demonstrated that phytoremediation assisted by biochar and Trichoderma harzianum is an effective method of soil remediation and provides a new strategy for enhancing plant remediation efficiency.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Manli Duan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Tao Cao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Zhaoquan Wen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Xiaopeng Chen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Qiang Yang
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| | - Yujin Li
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| |
Collapse
|
19
|
Kaewsuksaeng S, Wonglom P, Sunpapao A. Electrostatic Atomized Water Particles Induce Disease Resistance in Muskmelon ( Cucumis melo L.) against Postharvest Fruit Rot Caused by Fusarium incarnatum. J Fungi (Basel) 2023; 9:745. [PMID: 37504733 PMCID: PMC10381922 DOI: 10.3390/jof9070745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The postharvest quality of muskmelon can be affected by fruit rot caused by the fungus Fusarium incarnatum, resulting in loss of quality. The utilization of electrostatic atomized water particles (EAWPs) in agriculture applications has been shown to induce disease resistance in plants. Therefore, in this study, we determined the effect of electrostatic atomized water particles (EAWPs) on the disease resistance of muskmelon fruits against postharvest fruit rot caused by F. incarnatum. EAWPs were applied to muskmelon fruits for 0, 30, 60, and 90 min. EAWP-treated muskmelon fruits were inoculated with F. incarnatum, and disease progress was measured. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of the chitinase (CmCHI) and β-1,3-glucanase (CmGLU) genes of Cucumis melo (muskmelon) was performed for EAWP-treated and -untreated muskmelon fruits. The activities of cell-wall-degrading enzymes (CWDEs), chitinase, and β-1,3-glucanase were also assayed in EAWP-treated and -untreated muskmelon fruits. The results showed that disease progress was limited by EAWP treatment for 30 min prior to pathogen inoculation. Muskmelon fruits treated with EAWPs for 30 min showed an upregulation of CWDE genes, CmCHI and CmGLU, as observed by qRT-PCR, leading to high chitinase and β-1,3-glucanase activities, as observed through enzyme assays. The results of SEM microscopy revealed that the effect of the crude enzymes of EAWP-treated muskmelon caused morphological changes in F. incarnatum mycelia. Furthermore, treatment with EAWPs preserved postharvest quality in muskmelon, including with regard to texture stiffness and total chlorophyll contents, compared to untreated muskmelon. These results demonstrate that the pretreatment of muskmelon with EAWPs suppresses the development of F. incarnatum in the early stage of infection by regulating gene expression of CWDEs and elevating the activities of CWDEs, while also maintaining postharvest muskmelon quality.
Collapse
Affiliation(s)
- Samak Kaewsuksaeng
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Prisana Wonglom
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
20
|
Sun T, Yang Y, Duan K, Liao Y, Zhang Z, Guan Z, Chen S, Fang W, Chen F, Zhao S. Biodiversity of Endophytic Microbes in Diverse Tea Chrysanthemum Cultivars and Their Potential Promoting Effects on Plant Growth and Quality. BIOLOGY 2023; 12:986. [PMID: 37508417 PMCID: PMC10376344 DOI: 10.3390/biology12070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
The endophytic microbiomes significantly differed across tea chrysanthemum cultivars and organs (stems and leaves). The most abundant endophytic bacterial genera were Pseudomonas, Masillia, and Enterobacter in the leaves and Sphingomonas and Curtobacterium in the stems of the five cultivars. Meanwhile, the most abundant endophytic fungal genera in the leaves and stems of the five tea chrysanthemums were Alternaria, Cladosporium, and Sporobolomyces. Specifically, Rhodotorula was dominant in the leaves of 'Jinsi huangjv' and Paraphoma was dominant in the stems of 'Jinsi huangjv'. In all cultivars, the diversity and richness of endophytic bacteria were higher in leaves than in stems (p < 0.05). The highest diversity and richness of endophytic bacteria were recorded in 'Chujv', followed by 'Jinsi huangjv', 'Fubai jv', 'Nannong jinjv', and 'Hangbai jv'. Meanwhile, endophytic fungi were less pronounced. Twenty-seven and 15 cultivable endophytic bacteria and fungi were isolated, four isolated endophytic bacteria, namely, CJY1 (Bacillus oryzaecorticis), CY2 (Pseudomonas psychrotolerans), JSJ7, and JSJ17 (Enterobacter cloacae) showed higher indole acetic acid production ability. Further field studies indicated that inoculation of these four endophytic bacteria not only promoted plant growth and yield but also increased total flavonoids, chlorogenic acid, luteolin, and 3,5-dicoffeylquinic acid levels in the dry flowers of tea chrysanthemums.
Collapse
Affiliation(s)
- Tong Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Kuolin Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Zhi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
21
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
22
|
Ravelo-Ortega G, Raya-González J, López-Bucio J. Compounds from rhizosphere microbes that promote plant growth. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102336. [PMID: 36716513 DOI: 10.1016/j.pbi.2023.102336] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 06/10/2023]
Abstract
The rhizosphere is the soil-plant interface colonized by bacterial and fungal species that exert growth-promoting and adaptive benefits. The plant-bacteria relationships rely upon the perception of volatile organic compounds (VOCs), canonical phytohormones such as auxins and cytokinins, and the bacterial quorum sensing-related N-acyl-L-homoserine lactones and cyclodipeptides. On the other hand, plant-beneficial Trichoderma fungi emit highly active VOCs, including 6-pentyl-2H-pyran-2-one (6-PP), and β-caryophyllene, which contribute to plant morphogenesis, but also into how these microbes spread over roots or live as endophytes. Here, we describe recent findings concerning how compounds from beneficial bacteria and fungi affect root architecture and advance into the signaling events that mediate microbial recognition.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, C. P. 58240, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
23
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
24
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
25
|
Xing S, Gao Y, Li X, Ren H, Gao Y, Yang H, Liu Y, He S, Huang Q. Antifungal Activity of Volatile Components from Ceratocystis fimbriata and Its Potential Biocontrol Mechanism on Alternaria alternata in Postharvest Cherry Tomato Fruit. Microbiol Spectr 2023; 11:e0271322. [PMID: 36625661 PMCID: PMC9927153 DOI: 10.1128/spectrum.02713-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection by fungal pathogens is the main factor leading to postharvest rot and quality deterioration of fruit and vegetables. Rotting caused by Alternaria alternata is a concerning disease for numerous crops in both production and postharvest stages, especially tomato black spots. In this study, the double Petri dish assay showed that the VOCs of Ceratocystis fimbriata WJSK-1 and Mby inhibited the mycelial growth of fungal pathogen A. alternata, with a percentage inhibition of 52.2% and 42.9%. Then, HS-SPME-GC-MS technology was used to analyze the volatiles produced by two strains of C. fimbriata (WJSK-1, Mby), a total of 42 volatile single components were obtained, the main volatiles compounds identified include nine esters, 10 ketones, five alcohols, four aldehydes, three aromatic hydrocarbons, three heterocycles, four alkenes, three alkanes, and one acid. After that, the antifungal activity of a single volatile component was evaluated both in vitro and in vivo, four single components with antifungal effects were screened out, namely, benzaldehyde, nonanal, 2-Phenylethanol and isoamyl acetate, with IC50 values show the smallest values for benzaldehyde and nonanal at 0.11 μL mL-1, 0.04 μL mL-1. A. alternata exposed to VOCs had abnormal morphology for hyphae, delayed sporulation, and inhibited spore germination. In vivo experiment shows that the four volatile components can effectively suppress disease incidence on fungal-inoculated fruit; the two aldehydes (benzaldehyde and nonanal) have more prominent effect on delaying fruit onset of disease. The results showed that VOCs produced by C. fimbriata have potential as a fumigant for controlling black rot in cherry tomatoes. IMPORTANCE In this research, the volatile organic compounds (VOCs) produced based on C. fimbriata exhibited strong antifungal activity against the fungal pathogen A. alternata. Our aim is to explore their bacteriostatic components. HS-SPME-GC-MS technology was used to analyze the volatiles produced by the C. fimbriata strain (WJSK-1, Mby). Postharvest cherry tomato fruit black rot caused by A. alternata was treated both in vitro and in vivo, with pure individual components produced by C. fimbriata. The benzaldehyde, nonanal, 2-Phenylethanol, and isoamyl acetate from C. fimbriata can effectively inhibit growth of A. alternata, and delay disease. It has the potential to be developed as a new type of fumigant, a potential replacement for fungicides in the future.
Collapse
Affiliation(s)
- Shijun Xing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yating Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Huan Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yang Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yanmei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shuqi He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qiong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
26
|
da Silva LR, de Barros Rodrigues LL, Botelho AS, de Castro BS, Muniz PHPC, Moraes MCB, de Mello SCM. Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:39-51. [PMID: 36760048 PMCID: PMC9929164 DOI: 10.5423/ppj.oa.08.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important crops in human food production. The occurrence of diseases, such as white mold, caused by Sclerotinia sclerotiorum can limit the production of this legume. The use of Trichoderma has become an important strategy in the suppression of this disease. The aim of the present study was to evaluate the effect of volatile organic compounds (VOCs) emitted by Trichoderma azevedoi CEN1241 in five different growth periods on the severity of white mold in common bean. The in vitro assays were carried out in double-plate and split-plate, and the in vivo assays, through the exposure of the mycelia of S. sclerotiorum to the VOCs of T. azevedoi CEN1241 and subsequent inoculation in bean plants. Chemical analysis by gas chromatography coupled to mass spectrometry detected 37 VOCs produced by T. azevedoi CEN1241, covering six major chemical classes. The profile of VOCs produced by T. azevedoi CEN1241 varied according to colony age and was shown to be related to the ability of the biocontrol agent to suppress S. sclerotiorum. T. azevedoi CEN1241 VOCs reduced the size of S. sclerotiorum lesions on bean fragments in vitro and reduced disease severity in a greenhouse. This study demonstrated in a more applied way that the mechanism of antibiosis through the production of volatile compounds exerted by Trichoderma can complement other mechanisms, such as parasitism and competition, thus contributing to a better efficiency in the control of white mold in bean plants.
Collapse
Affiliation(s)
- Lincon Rafael da Silva
- Embrapa Genetic Resources and Biotechnology, Brasília/Federal District 70770-917,
Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Domiciliation of Trichoderma asperellum Suppresses Globiosporangium ultimum and Promotes Pea Growth, Ultrastructure, and Metabolic Features. Microorganisms 2023; 11:microorganisms11010198. [PMID: 36677490 PMCID: PMC9866897 DOI: 10.3390/microorganisms11010198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The beneficial microorganisms represent a new and hopeful solution for a sustainable environment and development. In this investigation, Trichoderma asperellum ZNW, isolated from seeds, was domiciliated within the pea plant for improving growth, disease management, and enhancement of productivity. Globisporangium ultimum NZW was isolated from deformed pea seeds, representing the first record of the pathogen caused by pea damping-off. Both fungi were molecularly identified. T. asperellum ZNW produced several lytic enzymes and bioactive metabolites as detected by GC-MC. The SEM illustrated the mycoparasitic behavior of T. asperellum ZNW on G. ultimum NZW mycelia. In the pot experiment, T. asperellum domiciliated the root and grew as an endophytic fungus, leading to root vessel lignification. Under soil infection, T. asperellum reduced damping-off, by enhancing peroxidase, polyphenol, total phenols, and photosynthetic pigments content. The vegetative growth, yield, and soil dehydrogenase activity were improved, with an enhancement in the numerical diversity of the microbial rhizosphere. This work may enable more understanding of the plant-fungal interaction, yet, working on domiciliation is recommended as a new approach to plant protection and growth promotion under various ecological setups.
Collapse
|
28
|
Ling L, Luo H, Zhao Y, Yang C, Cheng W, Pang M. Fungal pathogens causing postharvest fruit rot of wolfberry and inhibitory effect of 2,3-butanedione. Front Microbiol 2023; 13:1068144. [PMID: 36704548 PMCID: PMC9871540 DOI: 10.3389/fmicb.2022.1068144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Fungal pathogen contamination is one of the most important factors affecting the postharvest quality and shelf life of wolfberry fruits. Therefore, the prevention and control of fungal pathogens that cause fruit rot has become particularly important. Volatile antifungal agents of biological origin have broad application prospects. They may be safer and more efficient than traditional physical and chemical methods. Four pathogenic fungi were isolated and purified from rotting wolfberry. These pathogenic fungi were determined to be Mucor circinelloides LB1, Fusarium arcuatisporum LB5, Alternaria iridiaustralis LB7, and Colletotrichum fioriniae LB8. In vitro fumigation experiments showed that 2,3-butanedione can effectively inhibit the mycelial growth, spore germination, and sporulation ability of pathogenic fungi. The scanning electron microscope (SEM) showed morphological changes in hyphae. Propidium iodide (PI) Staining and leakage of 260 and 280 nm-absorbing increased, suggesting damage to cell membranes. Furthermore, 2,3-butanedione was found to significantly improve fruit firmness, soluble solid, total phenol, flavonoid, and soluble sugar content, as well as higher SOD enzyme activity and lower PPO and POD enzyme activity in the treated fruit, indicating that 2,3-butanedione can effectively reduce the adverse effects of pathogenic fungi in wolfberry. Based on these results, we conclude that 2,3-butanedione is effective against infection by pathogenic fungi in post-harvest wolfberry. 2,3-butanedione should be considered a viable substitute for conventional fungicides that are currently used to control rot in wolfberry.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China.,New Rural Development Research Institute, Northwest Normal University, Lanzhou, China
| | - Hong Luo
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Yunhua Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Caiyun Yang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Wenting Cheng
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Mingmei Pang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| |
Collapse
|
29
|
Chandrasekaran M, Paramasivan M, Sahayarayan JJ. Microbial Volatile Organic Compounds: An Alternative for Chemical Fertilizers in Sustainable Agriculture Development. Microorganisms 2022; 11:microorganisms11010042. [PMID: 36677334 PMCID: PMC9861404 DOI: 10.3390/microorganisms11010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Microorganisms are exceptional at producing several volatile substances called microbial volatile organic compounds (mVOCs). The mVOCs allow the microorganism to communicate with other organisms via both inter and intracellular signaling pathways. Recent investigation has revealed that mVOCs are chemically very diverse and play vital roles in plant interactions and microbial communication. The mVOCs can also modify the plant's physiological and hormonal pathways to augment plant growth and production. Moreover, mVOCs have been affirmed for effective alleviation of stresses, and also act as an elicitor of plant immunity. Thus, mVOCs act as an effective alternative to various chemical fertilizers and pesticides. The present review summarizes the recent findings about mVOCs and their roles in inter and intra-kingdoms interactions. Prospects for improving soil fertility, food safety, and security are affirmed for mVOCs application for sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Republic of Korea
- Correspondence: ; Tel.: +82-2-3408-4026
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | | |
Collapse
|
30
|
Wang Y, Zeng L, Wu J, Jiang H, Mei L. Diversity and effects of competitive Trichoderma species in Ganoderma lucidum-cultivated soils. Front Microbiol 2022; 13:1067822. [PMID: 36569077 PMCID: PMC9772278 DOI: 10.3389/fmicb.2022.1067822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum (GL) is a well-known medicinal mushroom that has been extensively cultivated. Our previous study has shown that abundant Trichoderma colonies grow on the casing soil surface, posing cultivation obstacles for GL. However, an understanding of species-level characteristics of Trichoderma strains and their adverse effects on GL growth is limited. This study aimed to investigate the diversity and potential effects of Trichoderma from GL-cultivated soils. Over 700 Trichoderma isolates were collected from two trails in Longquan Country, southeast China. Eight Trichoderma species, including T. atrioviride, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. pleuroticola, T. sp. irale, and T. virens, were identified based on the combination alignment of tef-1α and rpb2 sequences. The number of Trichoderma colonies increased dramatically during GL cultivation, with an increase of 9.2-fold in the Lanju trail. T. virens accounted for the most colonies (33.33 and 32.50% in Lanju and Chengbei, respectively) at the end of GL cultivation. The Trichoderma species growth varied but was satisfactory under different temperature or pH conditions. Moreover, Trichoderma species showed different adverse effects on GL growth. The non-volatile metabolites from T. virens and volatile metabolites from T. atroviride displayed the strongest antagonistic activity. Furthermore, the volatile 6-pentyl-2H-pyran-2-one (6-PP) showed a significant inhibitory effect on GL growth with an 8.79 μl mL-1 headspace of 50% effective concentration. The different Trichoderma spp. produced different amounts of 6-PP. The most efficient 6-PP producer was T. atroviride. To the best of our knowledge, this study is the first to demonstrate the abundance of competitive Trichoderma species associated with GL cultivation. Our results would contribute to.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Linzhou Zeng
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiayi Wu
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hong Jiang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Li Mei
- Department of Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
31
|
Gao Y, Ren H, He S, Duan S, Xing S, Li X, Huang Q. Antifungal activity of the volatile organic compounds produced by Ceratocystis fimbriata strains WSJK-1 and Mby. Front Microbiol 2022; 13:1034939. [PMID: 36338050 PMCID: PMC9631480 DOI: 10.3389/fmicb.2022.1034939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Microorganism-produced volatile organic compounds (VOCs) are considered promising environmental-safety fumigants in food preservation. In this study, the VOCs from fungal Ceratocystis fimbriata strains (WSJK-1, Mby) were tested against postharvest fungi Monilinia laxa, Fusarium oxysporum, Monilinia fructicola, Botrytis cinerea, Alternaria solani, and Aspergillus flavus in vitro. The mycelial growth was significantly inhibited, in particular M. fructicola and B. cinerea (76.95, 76.00%), respectively. VOCs were identified by headspace solid-phase microextraction coupled with Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS); 40 compounds were identified. The antifungal activity of 21 compounds was tested by the minimum inhibitory concentrations (MIC) value. Benzaldehyde, 2-Phenylethanol, and 1-Octen-3-ol showed strong antifungal activity with the MIC in vitro ranging from 0.094 to 0.284 ml L-1 depending on the pathogen tested. The optical microscope showed serious morphological damage, including cell deformation, curling, collapse, and deficiency in mycelial or conidia cell structures treated with C. fimbriata VOCs and pure compounds. In vivo tests, C. fimbriata VOCs decreased brown rot severity in peaches, and compounds Benzaldehyde and 2-Phenylethanol could reduce peach brown rot in peaches at 60 μl L-1. The VOCs produced by C. fimbriata strain have good antifungal effects; low concentration fumigation could control peach brown rot. Its fragrance is fresh, safe, and harmless, and it is possible to replace chemical fumigants. It could be used as a potential biofumigant to control fruit postharvest transportation, storage, and food preservation. To the best of our knowledge, this is the first report on the antifungal activity and biocontrol mechanism of VOCs produced by C. fimbriata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
32
|
Panchalingam H, Powell D, Adra C, Foster K, Tomlin R, Quigley BL, Nyari S, Hayes RA, Shapcott A, Kurtböke Dİ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J Fungi (Basel) 2022; 8:jof8101105. [PMID: 36294670 PMCID: PMC9605450 DOI: 10.3390/jof8101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.
Collapse
Affiliation(s)
- Harrchun Panchalingam
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Cherrihan Adra
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Bonnie L. Quigley
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Sharon Nyari
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Alison Shapcott
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
33
|
Silva PV, Pereira LM, Mundim GDSM, Maciel GM, de Araújo Gallis RB, Mendes GDO. Field evaluation of the effect of Aspergillus niger on lettuce growth using conventional measurements and a high-throughput phenotyping method based on aerial images. PLoS One 2022; 17:e0274731. [PMID: 36121857 PMCID: PMC9484672 DOI: 10.1371/journal.pone.0274731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Plant microbiome engineering is a promising tool to unlock crop productivity potential and exceed the yield obtained with conventional chemical inputs. We studied the effect of Aspergillus niger inoculation on in-field lettuce (Lactuca sativa) growth in soils with limiting and non-limiting P concentrations. Lettuce plants originating from inoculated seeds showed increased plant diameter (6.9%), number of leaves (8.1%), fresh weight (23.9%), and chlorophyll content (3.8%) as compared to non-inoculated ones. Inoculation of the seedling substrate just before transplanting was equally efficient to seed inoculation, while application of a granular formulation at transplanting did not perform well. Plant response to P addition was observed only up to 150 kg P2O5 ha-1, but A. niger inoculation allowed further increments in all vegetative parameters. We also employed a high-throughput phenotyping method based on aerial images, which allowed us to detect changes in plants due to A. niger inoculation. The visible atmospherically resistant index (VARI) produced an accurate prediction model for chlorophyll content, suggesting this method might be used to large-scale surveys of croplands inoculated with beneficial microorganisms. Our findings demonstrate that A. niger inoculation surpasses the yield obtained with conventional chemical inputs, allowing productivity gains not reached by just increasing P doses.
Collapse
Affiliation(s)
- Patrick Vieira Silva
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo, Minas Gerais, Brazil
| | - Lucas Medeiros Pereira
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
34
|
Tiwari PK, Yadav J, Singh AK, Srivastava R, Srivastava AK, Sahu PK, Srivastava AK, Saxena AK. Architectural analysis of root system and phytohormone biosynthetic genes expression in wheat (Triticum aestivum L.) inoculated with Penicillium oxalicum. Lett Appl Microbiol 2022; 75:1596-1606. [PMID: 36086890 DOI: 10.1111/lam.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
In this study, a fungal plant growth promoter Penicillium oxalicum T4 isolated from non-rhizosphere soil of Arunachal Pradesh, India, was screened for different plant growth promoting traits in a gnotobiotic study. Though inoculation improved the overall growth of the plants, critical differences were observed in root architecture. Confocal Laser Scanning Microscope, Scanning electron microscope and stereo microscopic study showed that inoculated wheat plants could develop profuse root hairs as compared to control. Root scanning indicated improvement in cumulative root length, root area, root volume, number of forks, links, crossings, and other parameters. Confocal scanning laser microscope indicated signs of endophytic colonization in wheat roots. Gene expression studies revealed that inoculation of T4 modulated the genes affecting root hair development. Significant differences were marked in the expression levels of TaRSL4, TaEXPB1, TaEXPB23, PIN-FORMED protein, kaurene oxidase, lipoxygenase, ACC synthase, ACC oxidase, 9-cis-epoxycarotenoid dioxygenase, and ABA 8'-hydroxylase genes. These genes contribute to early plant development and ultimately to biomass accumulation and yield. The results suggested that P. oxalicum T4 has potential for growth promotion in wheat and perhaps also in other cereals.
Collapse
Affiliation(s)
- Praveen K Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Jagriti Yadav
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Alok K Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Ruchi Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Anchal K Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Alok K Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| | - Anil K Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, Uttar Pradesh, India
| |
Collapse
|
35
|
Ling L, Luo H, Yang C, Wang Y, Cheng W, Pang M, Jiang K. Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry. Front Microbiol 2022; 13:987844. [PMID: 36090114 PMCID: PMC9449519 DOI: 10.3389/fmicb.2022.987844] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by antagonistic microorganisms have good biocontrol prospects against postharvest diseases. Infection caused by Alternaria iridiaustralis and 10 other significant fungal diseases can be successfully inhibited by VOCs produced by an identified and screened endophytic strain L1 (Bacillus velezensis). This study revealed the in vivo and in vitro biocontrol effects of VOCs released by B. velezensis L1 on A. iridiaustralis, a pathogenic fungus responsible for rot of wolfberry fruit. The inhibition rates of VOCs of B. velezensis L1 on the mycelial growth of A. iridiaustralis in vitro were 92.86 and 90.30%, respectively, when the initial inoculum concentration on the plate was 1 × 109 colony forming unit (CFU)/ml. Spore germination and sporulation were 66.89 and 87.96%, respectively. VOCs considerably decreased the wolfberry’s disease index and decay incidence in vivo. Scanning electron microscopy revealed that the morphological and structural characteristics of A. iridiaustralis could be altered by VOCs. Ten VOCs were identified through headspace-gas chromatography-ion mobility spectrometry. Pure chemical tests revealed that 2.3-butanedione had the strongest antifungal effects, totally inhibiting A. iridiaustralis in wolfberry fruit at a 60 μl/L concentration. The theory underpinning the potential application of VOCs from B. velezensis is provided herein. This is also the first study to document the antifungal capabilities of the B. velezensis strain on postharvest wolfberry fruit. ![]()
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, China
- *Correspondence: Lijun Ling,
| | - Hong Luo
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Caiyun Yang
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Yuanyuan Wang
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Wenting Cheng
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Mingmei Pang
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Kunling Jiang
- College of Life Science, Northwest Normal University, Lanzhou, China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| |
Collapse
|
36
|
Endophytic Trichoderma spp. can protect strawberry and privet plants from infection by the fungus Armillaria mellea. PLoS One 2022; 17:e0271622. [PMID: 35913938 PMCID: PMC9342734 DOI: 10.1371/journal.pone.0271622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Armillaria mellea is an important fungal pathogen worldwide, affecting a large number of hosts in the horticulture and forestry industries. Controlling A. mellea infection is expensive, labour intensive and time-consuming, so a new, environmentally friendly management solution is required. To this effect, endophytic Trichoderma species were studied as a potential protective agent for Armillaria root rot (ARR) in strawberry and privet plants. A collection of forty endophytic Trichoderma isolates were inoculated into strawberry (Fragaria × ananassa) plants and plant growth was monitored for two months, during which time Trichoderma treatment had no apparent effect. Trichoderma-colonised strawberry plants were then inoculated with A. mellea and after three months plants were assessed for A. mellea infection. There was considerable variation in ARR disease levels between plants inoculated with different Trichoderma spp. isolates, but seven isolates reduced ARR below the level of positive controls. These isolates were further tested for protective potential in Trichoderma-colonized privet (Ligustrum vulgare) plants where five Trichoderma spp. isolates, including two highly effective Trichoderma atrobrunneum isolates, were able to significantly reduce levels of disease. This study highlights the potential of plants pre-colonised with T. atrobrunneum for effective protection against A. mellea in two hosts from different plant families.
Collapse
|
37
|
Endophytic Diaporthe Associated with Morinda officinalis in China. J Fungi (Basel) 2022; 8:jof8080806. [PMID: 36012794 PMCID: PMC9410054 DOI: 10.3390/jof8080806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Diaporthe species are endophytes, pathogens, and saprobes with a wide host range worldwide. However, little is known about endophytic Diaporthe species associated with Morinda officinalis. In the present study, 48 endophytic Diaporthe isolates were obtained from cultivated M. officinalis in Deqing, Guangdong Province, China. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1-α), partial calmodulin (cal), histone H3 (his), and Beta-tubulin (β-tubulin) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, 12 Diaporthe species were identified, including five new species of Diaporthe longiconidialis, D. megabiguttulata, D. morindendophytica, D. morindae, and D. zhaoqingensis. This is the first report of Diaporthe chongqingensis, D. guangxiensis, D. heliconiae, D. siamensis, D. unshiuensis, and D. xishuangbanica on M. officinalis. This study provides the first intensive study of endophytic Diaporthe species on M. officinalis in China. These results will improve the current knowledge of Diaporthe species associated with this traditional medicinal plant. Furthermore, results from this study will help to understand the potential pathogens and biocontrol agents from M. officinalis and to develop a disease management platform.
Collapse
|
38
|
Biocontrol of Phytophthora xcambivora on Castanea sativa: Selection of Local Trichoderma spp. Isolates for the Management of Ink Disease. FORESTS 2022. [DOI: 10.3390/f13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Ink disease is a devastating disease of chestnut (Castanea sativa) worldwide, caused by Phytophthora species. The only management measures of this disease are chemical and agronomic interventions. This work focuses on the evaluation of the in vitro antagonistic capacity of 20 isolates of Trichoderma spp. selected in a diseased chestnut orchard in Tuscan Apennines (San Godenzo, Italy) for the biocontrol of Phytophthora xcambivora. Each Trichoderma isolate was tested to investigate pathogen inhibition capability by antagonism in dual cultures and antibiosis by secondary metabolites production (diffusible and Volatile Organic Compounds). The six most performing isolates of Trichoderma spp. were further assessed for their aptitude to synthesize chitinase, glucanase and cellulase, and to act as mycoparasite. All six selected isolates displayed the capability to control the pathogen in vitro by synergistically coupling antibiosis and mycoparasitism at different levels regardless of the species they belong to, but rather, in relation to specific features of the single genotypes. In particular, T. hamatum SG18 and T. koningiopsis SG6 displayed the most promising results in pathogen inhibition, thus further investigations are needed to confirm their in vivo efficacy.
Collapse
|
39
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
40
|
Transcriptomic analysis reveals the mechanism of host growth promotion by endophytic fungus of Rumex gmelinii Turcz. Arch Microbiol 2022; 204:443. [PMID: 35776209 DOI: 10.1007/s00203-022-03072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Rumex gmelinii Turcz. (RGT) is a medicinal plant of the genus Rumex, family Polygonaceae. Our research group isolated an endophytic fungus, Plectosphaerella cucumerina (Strain J-G) from RGT, which could significantly promote host growth when co-cultured with host seedlings. In this study, we used transcriptome analysis and verification experiments to explore the molecular mechanisms underlying this growth-promoting effect. We found that, during co-culture with Strain J-G, the expression of genes encoding key enzymes in amino acid metabolism and carbohydrate synthesis and metabolism were up-regulated in RGT tissue culture seedlings, providing additional substrate and energy for plant growth. In addition, the expression of genes encoding the responser of RGT seedlings to hormones, including auxin and cytokinin, were significantly enhanced, promoting plant growth and development. Furthermore, RGT seedling defense systems were mobilized by Strain J-G; therefore, more secondary metabolites and substances involved in stress resistance were produced, ensuring normal plant growth and metabolism. The research showed Strain J-G significantly promote the accumulation of biomass and effective components of RGT, which provide basis for its application. This research also provides a reference method for the study of growth-promoting mechanism of endophytic fungi.
Collapse
|
41
|
Gao Y, Feng J, Wu J, Wang K, Wu S, Liu H, Jiang M. Transcriptome analysis of the growth-promoting effect of volatile organic compounds produced by Microbacterium aurantiacum GX14001 on tobacco (Nicotiana benthamiana). BMC PLANT BIOLOGY 2022; 22:208. [PMID: 35448945 PMCID: PMC9028074 DOI: 10.1186/s12870-022-03591-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/11/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) release volatile organic compounds (VOCs), which promote plant growth. RESULTS A potential PGPR strain GX14001 was isolated from marine samples, and the VOCs produced by GX14001 significantly promoted tobacco (Nicotiana benthamiana) growth in a plate experiment. Based on 16S rRNA sequence alignment and physiological and biochemical characterization, GX14001 was identified as Microbacterium aurantiacum. Comparative transcriptome analysis was conducted between GX14001 VOCs-treated tobacco and the control; it was found that 1286 genes were upregulated and 1088 genes were downregulated. Gene ontology (GO) analysis showed that upregulated genes were involved in three biological processes: polysaccharide metabolic, polysaccharide catabolic and carbohydrate metabolic. The downregulated genes were involved in six biological processes, namely cell redox homeostasis, cellular homeostasis, carbohydrate metabolic process, homeostatic process, obsolete electron transport, and regulation of biological quality. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that 190 upregulated differentially expressed genes were mainly involved in plant hormone signal transduction, phenylpropyl biosynthesis, plant-pathogen interaction, and flavonoid biosynthesis. The 148 downregulated differentially expressed genes were mainly involved in plant hormone signal transduction and the metabolism of ascorbic, aldehyde, and pyruvate acids. Further analysis revealed that many genes were differentially expressed in the metabolic pathways of plant hormone signals, which were speculated to be the main reason why GX14001 VOCs promoted tobacco growth. To further study its regulatory mechanism, we found that GX14001 promoted plant growth through auxin, salicylic acid, and gibberellin in Arabidopsis mutant experiments. CONCLUSION The VOCs produced by Microbacterium aurantiacum GX14001 may promote the growth of tobacco through the auxin, salicylic acid and gibberellin pathways.
Collapse
Affiliation(s)
- Yahui Gao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Jiafa Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Kun Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Shuang Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Hongcun Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China.
| |
Collapse
|
42
|
Rao Y, Zeng L, Jiang H, Mei L, Wang Y. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC Microbiol 2022; 22:88. [PMID: 35382732 PMCID: PMC8981656 DOI: 10.1186/s12866-022-02511-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. Results A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME–GC–MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC50) of 5.76 μL mL−1 headspace. Conclusions Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02511-3.
Collapse
Affiliation(s)
- Yuxin Rao
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Linzhou Zeng
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Li Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
43
|
Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol 2022; 106:104040. [DOI: 10.1016/j.fm.2022.104040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
|
44
|
Pérez-Corral DA, Ornelas-Paz JDJ, Olivas GI, Acosta-Muñiz CH, Salas-Marina MÁ, Berlanga-Reyes DI, Sepulveda DR, Mares-Ponce de León Y, Rios-Velasco C. Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:875. [PMID: 35406854 PMCID: PMC9002626 DOI: 10.3390/plants11070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.
Collapse
Affiliation(s)
- Daniel Alonso Pérez-Corral
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Guadalupe Isela Olivas
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Miguel Ángel Salas-Marina
- División de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Carretera Villacorzo-Ejido Monterrey Km 3.0., Tuxtla Gutiérrez C.P. 30520, Chiapas, Mexico;
| | - David Ignacio Berlanga-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - David Roberto Sepulveda
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Yericka Mares-Ponce de León
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| |
Collapse
|
45
|
Mundim GDSM, Maciel GM, Mendes GDO. Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production. Microorganisms 2022; 10:microorganisms10040674. [PMID: 35456725 PMCID: PMC9028576 DOI: 10.3390/microorganisms10040674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the potential of Aspergillus niger as an inoculant for growth promotion of vegetable seedlings. Seven vegetable species were evaluated in independent experiments carried out in 22 + 1 factorial schemes, with two doses of conidia (102 and 106 per plant) applied in two inoculation methods (seed treatment and in-furrow granular application), plus an uninoculated control. Experiments were carried out in a greenhouse. Growth parameters evaluated were shoot length, stem diameter, root volume, total root length, shoot and root fresh mass, shoot and root dry mass, and total dry mass. Regardless of the dose and inoculation method, seedlings inoculated with A. niger showed higher growth than uninoculated ones for all crops. The highest relative increase promoted by the fungus was observed for aboveground parts, increasing the production of shoot fresh mass of lettuce (61%), kale (40%), scarlet eggplant (101%), watermelon (38%), melon (16%), pepper (92%), and tomato (42%). Aspergillus niger inoculation also increased seedling root growth of lettuce, pepper, scarlet eggplant, watermelon, and tomato. This research shows that A. niger boosts the growth of all analyzed vegetables, appearing as a promising bio-input for vegetable seedling production.
Collapse
|
46
|
Al-Askar AA, Rashad EM, Moussa Z, Ghoneem KM, Mostafa AA, Al-Otibi FO, Arishi AA, Saber WIA. A Novel Endophytic Trichoderma longibrachiatum WKA55 With Biologically Active Metabolites for Promoting Germination and Reducing Mycotoxinogenic Fungi of Peanut. Front Microbiol 2022; 13:772417. [PMID: 35401430 PMCID: PMC8993229 DOI: 10.3389/fmicb.2022.772417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plant residuals comprise the natural habitat of the plant pathogen; therefore, attention is currently focusing on biological-based bioprocessing of biomass residuals into benefit substances. The current study focused on the biodegradation of peanut plant residual (PNR) into citric acid (CA) through a mathematical modeling strategy. Novel endophytic Trichoderma longibrachiatum WKA55 (GenBank accession number: MZ014020.1), having lytic (cellulase, protease, and polygalacturonase) activity, and tricalcium phosphate (TCP) solubilization ability were isolated from peanut seeds and used during the fermentation process. As reported by HPLC, the maximum CA (5505.1 μg/g PNR) was obtained after 9 days in the presence of 15.49 mg TCP, and 15.68 mg glucose. GC–MS analysis showed other bioactive metabolites in the filtrate of the fermented PNR. Practically, the crude product (40%) fully inhibited (100%) the growth and spore germination of three mycotoxinogenic fungi. On peanuts, it improved the seed germination (91%), seedling features, and vigor index (70.45%) with a reduction of abnormal seedlings (9.33%). The current study presents the fundamentals for large-scale production in the industry for the sustainable development of PNR biomass as a natural source of bioactive metabolites, and safe consumption of lignocellulosic-proteinaceous biomass, as well. T. longibrachiatum WKA55 was also introduced as a novel CA producer specified on PNR. Application of the resulting metabolite is encouraged on a large scale.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Abdulaziz A. Al-Askar,
| | - Ehsan M. Rashad
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ashraf A. Mostafa
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah O. Al-Otibi
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
- WesamEldin I. A. Saber,
| |
Collapse
|
47
|
Trichoderma asperelloides PSU-P1 Induced Expression of Pathogenesis-Related Protein Genes against Gummy Stem Blight of Muskmelon (Cucumis melo) in Field Evaluation. J Fungi (Basel) 2022; 8:jof8020156. [PMID: 35205910 PMCID: PMC8878962 DOI: 10.3390/jof8020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two crops. Spore suspension at a concentration of 1 × 106 spores/mL of T. asperelloides PSU-P1 was applied to muskmelon to investigate gene expression. The expression of PR genes including chitinase (chi) and β-1,3-glucanase (glu) were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme activity was assayed by the DNS method. The effects of T. asperelloides PSU-P1 on growth, yield, and postharvest quality of muskmelon fruit were measured. A spore suspension at a concentration of 1 × 106 spore/mL of T. asperelloides PSU-P1 and S. cucurbitacearum was applied to muskmelons to determine the reduction in disease severity. The results showed that the expression of chi and glu genes in T. asperelloides PSU-P1-treated muskmelon plants was 7–10-fold higher than that of the control. The enzyme activities of chitinase and β-1,3-glucanase were 0.15–0.284 and 0.343–0.681 U/mL, respectively, which were higher than those of the control (pathogen alone). Scanning electron microscopy revealed crude metabolites extracted from T. asperelloides PSU-P1-treated muskmelon plants caused wilting and lysis of S. cucurbitacearum hyphae, confirming the activity of cell-wall-degrading enzymes (CWDEs). Application of T. asperelloides PSU-P1 increased fruit weight and fruit width; sweetness and fruit texture were not significantly different among treated muskmelons. Application of T. asperelloides PSU-P1 reduced the disease severity scale of gummy stem blight to 1.10 in both crops, which was significantly lower than that of the control (2.90 and 3.40, respectively). These results revealed that application of T. asperelloides PSU-P1 reduced disease severity against gummy stem blight by overexpressed PR genes and elevated enzyme activity in muskmelon plants.
Collapse
|
48
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Screening and Identification of Trichoderma Strains isolated from Natural Habitats in China with Potential Agricultural Applications. BIOMED RESEARCH INTERNATIONAL 2022; 2021:7913950. [PMID: 34970627 PMCID: PMC8714372 DOI: 10.1155/2021/7913950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
Trichoderma spp. are widely distributed in natural habitats and have been evaluated as a potential biocontrol agent (BCA) for disease control and plant growth promotion. In this study, 1308 Trichoderma strains were obtained from the plant rhizosphere soil, above-ground plants, and decaying wood from natural habitats in China. Among them, 49 Trichoderma strains showed a good inhibitory effect, especially against Botrytis cinerea, Fusarium oxysporum, and Colletotrichum gloeosporioides with inhibition rate above 85% in the dual culture test. Among these 49 strains, the 13 strains with broad-spectrum inhibitory effects also significantly promoted the seed germination of five crops (rice, cucumber, tomato, melon, and pakchoi) and root growth of four crop seedlings (watermelon, tomato, eggplant, and chili). Furthermore, these strains showed effective colonization in the rhizosphere and root of cucumber. Trichoderma strains SC012 and NX043 showed the highest chitinase and β-1,3-glucanase activity among all strains. Based on the morphological characterization and phylogenetic analysis of the nuclear ribosomal internal transcribed spacer (ITS) and translation elongation factor 1 (tef1), twelve Trichoderma strains were identified as Trichoderma asperellum and one as Trichoderma afroharzianum. This study suggests that the 13 Trichoderma strains are promising BCAs and could be developed as biofertilizers and biological pesticides for agricultural applications.
Collapse
|
50
|
de Souza RR, Moraes MP, Paraginski JA, Moreira TF, Bittencourt KC, Toebe M. Effects of Trichoderma asperellum on Germination Indexes and Seedling Parameters of Lettuce Cultivars. Curr Microbiol 2021; 79:5. [PMID: 34902081 DOI: 10.1007/s00284-021-02713-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to analyze the effects of Trichoderma asperellum on germination indexes and seedling parameters of lettuce cultivars. The trial was arranged in a completely randomized design with three cultivars (Cerbiata, Crespa Grand Rapids, and Mimosa), and two seed-treatment products (quality and organic) containing strain URM 5911 of Trichoderma asperellum plus a control group (untreated), with four repetitions. After seven days, six seedling characters were measured (shoot length, radicle length, total length, shoot diameter, radicle diameter, and seedling dry matter) and eight germination indexes were calculated (germination, first count, mean germination time, germination speed index, coefficient of velocity of germination, mean germination rate, Timson's germination index, and germination rate index). In general, regarding the germination indexes, the effect of the genotype factor predominated over the Trichoderma factor. The seedling characters showed significance for genotype × Trichoderma interaction for shoot length, shoot diameter, radicle diameter, and seedling dry matter. Such results demonstrate that the effects of Trichoderma asperellum on lettuce seedlings variate according to the cultivar used.
Collapse
Affiliation(s)
- Rafael Rodrigues de Souza
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria (UFSM), Frederico Westphalen, RS, Brazil.
| | - Mariana Poll Moraes
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria (UFSM), Frederico Westphalen, RS, Brazil
| | - João Antônio Paraginski
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria (UFSM), Frederico Westphalen, RS, Brazil
| | - Thainá Fogliatto Moreira
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria (UFSM), Frederico Westphalen, RS, Brazil
| | | | - Marcos Toebe
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria (UFSM), Frederico Westphalen, RS, Brazil
| |
Collapse
|