1
|
Lien JY, Hii LA, Su PH, Chen LY, Wen KC, Lai HC, Wang YC. Exploring potential methylation markers for ovarian cancer from cervical scraping samples. Hum Genomics 2025; 19:56. [PMID: 40382585 PMCID: PMC12085859 DOI: 10.1186/s40246-025-00763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality rate among gynecological cancers, making early detection crucial, as the five-year survival rate drops from 92% with early-stage diagnosis compared to 31% with late-stage diagnosis. Current diagnostic methods such as histopathological examination and detection of cancer antigen 125 and human epididymis protein 4 biomarkers are either invasive or lack specificity and sensitivity. However, the Papanicolaou (Pap) test, which is widely used for cervical cancer screening, shows the potential for detecting ovarian cancer by identifying tumor DNA in cervical scrapings. Since aberrant DNA methylation patterns are linked to cancer progression, DNA methylation offers a promising avenue for early diagnosis. Therefore, this study aimed to develop a methylation-based machine-learning model to stratify patients with ovarian cancer from the cervical scraping samples collected via Pap test. RESULTS Cervical scrapings were collected by gynecologists using conventional Pap smears. In total, 160 samples were collected: 95 normal, 37 benign, and 28 malignant. Methylation data were generated using the Illumina Infinium MethylationEPIC BeadChip array, which contains approximately 850,000 CpG loci. Methylation data were initially divided into training and testing sets in a 3:1 ratio comprising 120 and 40 samples, respectively. A two-step methylation-based model was trained using the training data for classification: a principal component analysis (PCA) model, consisting of 30 features, to classify samples as normal or tumor; then a gradient boosting model, containing 16 features, to further stratify tumor samples as benign or malignant. The two-step model achieved an accuracy of 0.88 and an F1-score of 0.86 on the testing data. Furthermore, an over-representation analysis was conducted to explore the functions associated with genes mapped from differentially methylated positions (DMPs) in comparisons between normal and tumor samples, as well as between benign and malignant samples. These results suggest that DMPs may be associated with olfactory transduction when comparing normal versus tumor samples, and immune regulation when comparing benign and malignant samples. CONCLUSIONS Our two-step model shows promise for predicting ovarian cancer and suggests that cervical scrapings may be a viable alternative for sample collection during screening.
Collapse
Affiliation(s)
- Ju-Yin Lien
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lu Ann Hii
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsuan Su
- College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Lin-Yu Chen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Kuznetsov DV, Liu Y, Schowe AM, Czamara D, Instinske J, Pahnke CKL, Nöthen MM, Spinath FM, Binder EB, Diewald M, Forstner AJ, Kandler C, Mönkediek B. Genetic and environmental contributions to epigenetic aging across adolescence and young adulthood. Clin Epigenetics 2025; 17:78. [PMID: 40336042 PMCID: PMC12060359 DOI: 10.1186/s13148-025-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Epigenetic aging estimators commonly track chronological and biological aging, quantifying its accumulation (i.e., epigenetic age acceleration) or speed (i.e., epigenetic aging pace). Their scores reflect a combination of inherent biological programming and the impact of environmental factors, which are suggested to vary at different life stages. The transition from adolescence to adulthood is an important period in this regard, marked by an increasing and, then, stabilizing epigenetic aging variance. Whether this pattern arises from environmental influences or genetic factors is still uncertain. This study delves into understanding the genetic and environmental contributions to variance in epigenetic aging across these developmental stages. Using twin modeling, we analyzed four estimators of epigenetic aging, namely Horvath Acceleration, PedBE Acceleration, GrimAge Acceleration, and DunedinPACE, based on saliva samples collected at two timepoints approximately 2.5 years apart from 976 twins of four birth cohorts (aged about 9.5, 15.5, 21.5, and 27.5 years at first and 12, 18, 24, and 30 years at second measurement occasion). RESULTS Half to two-thirds (50-68%) of the differences in epigenetic aging were due to unique environmental factors, indicating the role of life experiences and epigenetic drift, besides measurement error. The remaining variance was explained by genetic (Horvath Acceleration: 24%; GrimAge Acceleration: 32%; DunedinPACE: 47%) and shared environmental factors (Horvath Acceleration: 26%; PedBE Acceleration: 47%). The genetic and shared environmental factors represented the primary sources of stable differences in corresponding epigenetic aging estimators over 2.5 years. Age moderation analyses revealed that the variance due to individually unique environmental sources was smaller in younger than in older cohorts in epigenetic aging estimators trained on chronological age (Horvath Acceleration: 47-49%; PedBE Acceleration: 33-68%). The variance due to genetic contributions, in turn, potentially increased across age groups for epigenetic aging estimators trained in adult samples (Horvath Acceleration: 18-39%; GrimAge Acceleration: 24-43%; DunedinPACE: 42-57%). CONCLUSIONS Transition to adulthood is a period of the increasing variance in epigenetic aging. Both environmental and genetic factors contribute to this trend. The degree of environmental and genetic contributions can be partially explained by the design of epigenetic aging estimators.
Collapse
Affiliation(s)
- Dmitry V Kuznetsov
- Bielefeld University, Bielefeld, Germany.
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Yixuan Liu
- Bielefeld University, Bielefeld, Germany
| | - Alicia M Schowe
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Munich, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Charlotte K L Pahnke
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Frank M Spinath
- Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Andreas J Forstner
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Christian Kandler
- Bielefeld University, Bielefeld, Germany
- University of Bremen, Bremen, Germany
| | | |
Collapse
|
3
|
Lamorte D, Calice G, Trino S, Santodirocco M, Caivano A, De Luca L, Laurenzana I. Acute myeloid leukemia-derived extracellular vesicles induced DNA methylation changes responsible for inflammatory program in normal hematopoietic stem progenitor cells. Front Immunol 2025; 16:1569159. [PMID: 40276507 PMCID: PMC12018244 DOI: 10.3389/fimmu.2025.1569159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Acute Myeloid Leukemia (AML) cells communicate with surrounding normal cells, including hematopoietic stem progenitor cells (HSPCs), in the bone marrow, and modify their fate supporting tumor growth. This communication can be mediated by Extracellular Vesicles (EVs), small vectors carrying a range of tumor molecular information. One of the hallmarks of AML is the aberrant DNA methylation. It is not known if and how AML cells can modify the epigenomic profile of healthy HSPCs. Here, we investigated the DNA methylation profile of HSPCs after exposure to AML derived-EVs. Methods Cord blood derived-HSPCs were treated with AML cell line derived-EVs for 20 hours and then their DNA methylation profile was analyzed by methylation array. We cross-referenced differential methylated genes (dmGs) with differential expressed genes (deGs) obtained by gene expression profile of same EV treated-HSPCs. Gene ontology was performed on dmGs and deGs. To confirm the expression of some genes, digital PCR was applied. Results AML-EVs induced DNA methylation changes in HSPCs after short time exposure, showing 110-890 dmGs. In particular, we reported a DNA hypo-methylation in both promoter and body regions. DmGs showed an enrichment in hematopoietic and immunological processes, inflammation, cell movement and AML pathways. The intersection between dmGs and deGs identified 20 common genes, including DSE, SEMA4A, NFKB1 and MTSS1, whose over-expression could be associated with the hypo-methylation of their gene body, and other ones, such as SLA and CUTA whose down-expression could be associated with the hypo-methylated promoter. These deGs were involved in NF-kB pathway, interleukin mediate Toll like receptor signaling and, of note, in tumor. Conclusion This study is the first proof-of-concept that AML-EVs were able to induce changes in DNA methylation of HSPCs modulating the expression of genes involved in inflammatory processes capable of modifying normal hematopoiesis towards leukemic like processes.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia Cord Blood Bank (CBB), Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| |
Collapse
|
4
|
Hallinan C, Ji HJ, Salzberg SL, Fan J. Evidence of off-target probe binding in the 10x Genomics Xenium v1 Human Breast Gene Expression Panel compromises accuracy of spatial transcriptomic profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646342. [PMID: 40236200 PMCID: PMC11996347 DOI: 10.1101/2025.03.31.646342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The accuracy of spatial gene expression profiles generated by probe-based in situ spatially-resolved transcriptomic technologies depends on the specificity with which probes bind to their intended target gene. Off-target binding, defined as a probe binding to something other than the target gene, can distort a gene's true expression profile, making probe specificity essential for reliable transcriptomics. Here, we investigate off-target binding in the 10x Genomics Xenium v1 Human Breast Gene Expression Panel. We developed a software tool, Off-target Probe Tracker (OPT), to identify putative off-target binding via alignment of probe sequences and found at least 21 out of the 280 genes in the panel impacted by off-target binding to protein-coding genes. To substantiate our predictions, we leveraged a previously published Xenium breast cancer dataset generated using this gene panel and compared results to orthogonal spatial and single-cell transcriptomic profiles from Visium CytAssist and 3' single-cell RNA-seq derived from the same tumor block. Our findings indicate that for some genes, the expression patterns detected by Xenium demonstrably reflect the aggregate expression of the target and predicted off-target genes based on Visium and single-cell RNA-seq rather than the target gene alone. Overall, this work enhances the biological interpretability of spatial transcriptomics data and improves reproducibility in spatial transcriptomics research.
Collapse
|
5
|
Bezerra OCL, Rodger M, Munsch G, Kovacs MJ, Le Gal G, Morange PE, Trégouët DA, Greenwood CMT, Gagnon F. Sex-specific DNA methylation marks associated with sex-biased risk of recurrence in unprovoked venous thromboembolism. J Thromb Haemost 2025; 23:1379-1392. [PMID: 39848545 DOI: 10.1016/j.jtha.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Whether to stop oral anticoagulants after a first unprovoked venous thromboembolism (VTE) is challenging, partially due to an intriguingly higher risk of VTE recurrence (rVTE) in men after therapy discontinuation. DNA methylation (DNAm) differences between men and women might underlie this sex-biased rVTE risk difference. OBJECTIVES To investigate sex-specific associations between DNAm at cytosine-phosphate-guanine (CpG) sites and rVTE. METHODS In 417 unprovoked VTE patients, including 101 experiencing recurrences over a 5-year follow-up (REcurrent VEnous thromboembolism Risk Stratification Evaluation [REVERSE] I), we analyzed blood DNAm using the Illumina EPIC array and performed a sex-stratified epigenome-wide association study. We further examined 181 major provoked VTE patients, including 36 recurrences over a 14-year follow-up (the MARseille THrombosis Association [MARTHA]), to investigate whether DNAm is a risk factor for rVTE after anticoagulation therapy. RESULTS Hypomethylated CpGs at genes TBC1D22B-cg01060850 and ZHX2-cg07808424 in men and DIP2B-ch.12.1038646R and DENND3-cg03401656 in women were associated with rVTE at genome-wide level (P < 7x10-8). Though not statistically significant, DENND3-cg03401656 had the same direction of effect in MARTHA women. Sensitivity analysis confirmed the robustness of the estimates, including potential confounders, adaptations of the Cox model, non-Europeans, and proximal methylation quantitative trait loci in the association. The associated CpGs were situated at genes for membrane trafficking, corroborating the participation of Rab regulatory proteins in rVTE and transcription factors. CONCLUSION We identified DNAm marks as potential risk factors for sex-biased recurrence in unprovoked VTE. Further replication and experimental validation could refine our understanding of the regulation of the identified DNAm sites and help optimize personalized decision-making for long-term anticoagulation after a first VTE.
Collapse
Affiliation(s)
- Ohanna C L Bezerra
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. https://twitter.com/ohannaclb
| | - Marc Rodger
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Gaëlle Munsch
- Bordeaux Population Health Research Center, Institut national de la santé et de la recherche médicale (INSERM), Unité Mixte de Recherche (UMR) 1219, F-33000, University of Bordeaux, Bordeaux, France
| | - Michael J Kovacs
- Department of Medicine, Western University, London, Ontario, Canada
| | - Grégoire Le Gal
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, Institut national de la santé et de la recherche médicale (INSERM), Unité Mixte de Recherche (UMR) 1219, F-33000, University of Bordeaux, Bordeaux, France
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Office of the Vice-Principal of Research and Innovation, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
6
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry 2025; 30:1383-1395. [PMID: 39271751 PMCID: PMC11919772 DOI: 10.1038/s41380-024-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Varying combinations of genetic and environmental risk factors are thought to underpin phenotypic heterogeneity between individuals in psychiatric conditions such as schizophrenia. While epigenome-wide association studies in schizophrenia have identified extensive alteration of mean DNA methylation levels, less is known about the location and impact of DNA methylation variance, which could contribute to phenotypic and treatment response heterogeneity. To explore this question, we conducted the largest meta-analysis of blood DNA methylation variance in schizophrenia to date, leveraging three cohorts comprising 1036 individuals with schizophrenia and 954 non-psychiatric controls. Surprisingly, only a small proportion (0.1%) of the 213 variably methylated positions (VMPs) associated with schizophrenia (Benjamini-Hochberg FDR < 0.05) were shared with differentially methylated positions (DMPs; sites with mean changes between cases and controls). These blood-derived VMPs were found to be overrepresented in genes previously associated with schizophrenia and amongst brain-enriched genes, with evidence of concordant changes at VMPs in the cerebellum, hippocampus, prefrontal cortex, or striatum. Epigenetic covariance was also observed with respect to clinically significant metrics including age of onset, cognitive deficits, and symptom severity. We also uncovered a significant VMP in individuals with first-episode psychosis (n = 644) from additional cohorts and a non-psychiatric comparison group (n = 633). Collectively, these findings suggest schizophrenia is associated with significant changes in DNA methylation variance, which may contribute to individual-to-individual heterogeneity.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
7
|
Foco L, De Bortoli M, Fabiola Del Greco M, Frommelt LS, Volani C, Riekschnitz DA, Motta BM, Fuchsberger C, Delerue T, Völker U, Huan T, Gögele M, Winkelmann J, Dörr M, Levy D, Waldenberger M, Teumer A, Pramstaller PP, Rossini A, Pattaro C. Genomic and molecular evidence that the lncRNA DSP-AS1 modulates Desmoplakin expression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.29.25324867. [PMID: 40236443 PMCID: PMC11998815 DOI: 10.1101/2025.03.29.25324867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cardiac desmosomes are specialized cell junctions responsible for cardiomyocytes mechanical coupling. Mutation in desmosomal genes cause autosomal dominant and recessive familial arrhythmogenic cardiomyopathy. Motivated by evidence that Mendelian diseases share genetic architecture with common complex traits, we assessed whether common variants in any desmosomal gene were associated with cardiac conduction traits in the general population. We analysed data of N=4342 Cooperative Health Research in South Tyrol (CHRIS) study participants. We tested associations between genotype imputed variants covering the five desmosomal genes DSP, JUP, PKP2, DSG2, and DSC2, and P-wave, PR, QRS, and QT electrocardiographic intervals, using linear mixed models. Functional annotation and interrogation of publicly available genome-wide association study resources implicated potential connection with antisense lncRNAs, DNA methylation sites, and complex traits. Causality was tested via two-sample Mendelian randomization (MR) analysis and validated with functional in vitro follow-up in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). DSP variant rs2744389 was associated with QRS (P=3.5×10-6), with replication in the Microisolates in South Tyrol (MICROS) study (n=636; P=0.010). Observing that rs2744389 was associated with DSP-AS1 antisense lncRNA but not with DSP expression in multiple GTEx-v8 tissues, we conducted two-sample Mendelian randomization analyses that identified causal effects of DSP-AS1 on DSP expression (P=6.33×10-5; colocalization posterior probability=0.91) and QRS (P=0.015). In hiPSC-CMs, DSP-AS1 expression downregulation through a specific GapmerR matching sequence led to significant DSP upregulation at both mRNA and protein levels. The evidence that DSP-AS1 has a regulatory role on DSP opens the venue for further investigations on DSP-AS1's therapeutic potential for conditions caused by reduced desmoplakin production.
Collapse
Affiliation(s)
- Luisa Foco
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | | | | | - Laura S. Frommelt
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cardiovascular Biology Laboratory, Trieste, Italy
| | - Chiara Volani
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- Università degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | | | | | | | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Germany
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, MA, United States of America
- The Population Studies Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, United States of America
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Germany
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, United States of America
- The Population Studies Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, United States of America
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | | | | | | |
Collapse
|
8
|
Laroche VT, Cavill R, Kouhsar M, Reijnders RA, Harvey J, Smith AR, Imm J, Koetsier J, Weymouth L, MacBean L, Pegoraro G, Eijssen L, Creese B, Kenis G, Tijms BM, van den Hove D, Lunnon K, Pishva E. Epigenomic subtypes of late-onset Alzheimer's disease reveal distinct microglial signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643144. [PMID: 40166175 PMCID: PMC11957029 DOI: 10.1101/2025.03.15.643144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Growing evidence suggests that clinical, pathological, and genetic heterogeneity in late-onset Alzheimer's disease contributes to variable therapeutic outcomes, potentially explaining many trial failures. Advances in molecular subtyping through proteomic and transcriptomic profiling reveal distinct patient subgroups, highlighting disease complexity beyond amyloid-beta plaques and tau tangles. This insight underscores the need to expand molecular subtyping across new molecular layers, to identify novel drug targets for different patient subgroups. In this study, we analyzed genome-wide DNA methylation data from three independent postmortem brain cohorts (n = 831) to identify epigenetic subtypes of late-onset Alzheimer's disease. Unsupervised clustering approaches were employed to identify distinct DNA methylation patterns, with subsequent cross-cohort validation to ensure robustness and reproducibility. To explore the cell-type specificity of the identified epigenomic subtypes, we characterized their methylation signatures utilizing DNA methylation profiles derived from purified brain cells. Transcriptomic data from bulk and single-cell RNA sequencing were integrated to examine the functional impact of epigenetic subtypes on gene expression profiles. Finally, we performed statistical analyses to investigate associations between these DNA methylation-defined subtypes and clinical or neuropathological features, aiming to elucidate their biological significance and clinical implications. We identified two distinct epigenomic subtypes of late-onset Alzheimer's disease, each defined by reproducible DNA methylation patterns across three cohorts. Both subtypes exhibit cell-type-specific DNA methylation profiles. Subtype 1 and subtype 2 show significant microglial methylation enrichment, with odds ratios (OR) of 1.6 and 1.3, respectively. The minimal overlap between them suggests distinct microglial states. Additionally, subtype 2 displays strong neuronal (OR = 1.6) and oligodendrocyte (OR = 3.6) enrichment. Bulk transcriptomic analyses further highlighted divergent biological mechanisms underpinning these subtypes, with subtype 1 enriched for immune-related processes, and subtype 2 characterized predominantly by neuronal and synaptic functional pathways. Single-cell transcriptional profiling of microglia revealed subtype-specific inflammatory states: subtype 1 represented a state of chronic innate immune hyperactivation with impaired resolution, while subtype 2 exhibited a more dynamic inflammatory profile balancing pro-inflammatory signaling with reparative and regulatory mechanisms. This study highlights the molecular heterogeneity of late-onset Alzheimer's disease by identifying two epigenetic subtypes with distinct cell-type-specific DNA methylation patterns. Their alignment with previously defined molecular classifications underscores their relevance in disease pathogenesis. By linking these subtypes to inflammatory microglial activity, our findings provide a foundation for future precision medicine approaches in Alzheimer's research and treatment.
Collapse
Affiliation(s)
- Valentin T. Laroche
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Faculty of Science and Engineering (FSE), Maastricht University, Maastricht, The Netherlands
| | - Morteza Kouhsar
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R. Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Jennifer Imm
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lachlan MacBean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Giulia Pegoraro
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lars Eijssen
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Byron Creese
- Department of Life Sciences, Brunel University, London, UK
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Cilleros-Portet A, Lesseur C, Marí S, Cosin-Tomas M, Lozano M, Irizar A, Burt A, García-Santisteban I, Garrido-Martín D, Escaramís G, Hernangomez-Laderas A, Soler-Blasco R, Breeze CE, Gonzalez-Garcia BP, Santa-Marina L, Chen J, Llop S, Fernández MF, Vrijheid M, Ibarluzea J, Guxens M, Marsit C, Bustamante M, Bilbao JR, Fernandez-Jimenez N. Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders. Nat Commun 2025; 16:2431. [PMID: 40087310 PMCID: PMC11909199 DOI: 10.1038/s41467-025-57760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Increasing evidence supports the role of the placenta in neurodevelopment and in the onset of neuropsychiatric disorders. Recently, mQTL and iQTL maps have proven useful in understanding relationships between SNPs and GWAS that are not captured by eQTL. In this context, we propose that part of the genetic predisposition to complex neuropsychiatric disorders acts through placental DNA methylation. We construct a public placental cis-mQTL database including 214,830 CpG sites calculated in 368 fetal placenta DNA samples from the INMA project, and run cell type-, gestational age- and sex-imQTL models. We combine these data with summary statistics of GWAS on ten neuropsychiatric disorders using summary-based Mendelian randomization and colocalization. We also evaluate the influence of identified DNA methylation sites on placental gene expression in the RICHS cohort. We find that placental cis-mQTLs are enriched in placenta-specific active chromatin regions, and establish that part of the genetic burden for schizophrenia, bipolar disorder, and major depressive disorder confers risk through placental DNA methylation. The potential causality of several of the observed associations is reinforced by secondary association signals identified in conditional analyses, the involvement of cell type-imQTLs, and the correlation of identified DNA methylation sites with the expression levels of relevant genes in the placenta.
Collapse
Affiliation(s)
- Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Geòrgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Soler-Blasco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Department of Nursing, Universitat de València, Valencia, Spain
| | | | - Bárbara P Gonzalez-Garcia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mariana F Fernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Radiology and Physical Medicine, Biomedical Research Center (CIBM), School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- ICREA, Barcelona, Spain
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
10
|
Quarto G, Li Greci A, Bizet M, Penning A, Primac I, Murisier F, Garcia-Martinez L, Borges RL, Gao Q, Cingaram PKR, Calonne E, Hassabi B, Hubert C, Herpoel A, Putmans P, Mies F, Martin J, Van der Linden L, Dube G, Kumar P, Soin R, Kumar A, Misra A, Lan J, Paque M, Gupta YK, Blomme A, Close P, Estève PO, Caine EA, Riching KM, Gueydan C, Daniels DL, Pradhan S, Shiekhattar R, David Y, Morey L, Jeschke J, Deplus R, Collignon E, Fuks F. Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation. Cell 2025; 188:998-1018.e26. [PMID: 39826545 DOI: 10.1016/j.cell.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.
Collapse
Affiliation(s)
- Giuseppe Quarto
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Andrea Li Greci
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Irina Primac
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédéric Murisier
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Pradeep K R Cingaram
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Céline Hubert
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Adèle Herpoel
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédérique Mies
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Jérôme Martin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Louis Van der Linden
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pankaj Kumar
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Romuald Soin
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abhay Kumar
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anurag Misra
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Morgane Paque
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | | | | | | | - Cyril Gueydan
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
11
|
Oatman SR, Reddy JS, Atashgaran A, Wang X, Min Y, Quicksall Z, Vanelderen F, Carrasquillo MM, Liu CC, Yamazaki Y, Nguyen TT, Heckman M, Zhao N, DeTure M, Murray ME, Bu G, Kanekiyo T, Dickson DW, Allen M, Ertekin-Taner N. Integrative Epigenomic Landscape of Alzheimer's Disease Brains Reveals Oligodendrocyte Molecular Perturbations Associated with Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637140. [PMID: 40027794 PMCID: PMC11870448 DOI: 10.1101/2025.02.12.637140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) brains are characterized by neuropathologic and biochemical changes that are highly variable across individuals. Capturing epigenetic factors that associate with this variability can reveal novel biological insights into AD pathophysiology. We conducted an epigenome-wide association study of DNA methylation (DNAm) in 472 AD brains with neuropathologic measures (Braak stage, Thal phase, and cerebral amyloid angiopathy score) and brain biochemical levels of five proteins (APOE, amyloid-β (Aβ)40, Aβ42, tau, and p-tau) core to AD pathogenesis. Using a novel regional methylation (rCpGm) approach, we identified 5,478 significant associations, 99.7% of which were with brain tau biochemical measures. Of the tau-associated rCpGms, 93 had concordant associations in external datasets comprising 1,337 brain samples. Integrative transcriptome-methylome analyses uncovered 535 significant gene expression associations for these 93 rCpGms. Genes with concurrent transcriptome-methylome perturbations were enriched in oligodendrocyte marker genes, including known AD risk genes such as BIN1 , myelination genes MYRF, MBP and MAG previously implicated in AD, as well as novel genes like LDB3 . We further annotated the top oligodendrocyte genes in an additional 6 brain single cell and 2 bulk transcriptome datasets from AD and two other tauopathies, Pick's disease and progressive supranuclear palsy (PSP). Our findings support consistent rCpGm and gene expression associations with these tauopathies and tau-related phenotypes in both bulk brain tissue and oligodendrocyte clusters. In summary, we uncover the integrative epigenomic landscape of AD and demonstrate tau-related oligodendrocyte gene perturbations as a common potential pathomechanism across different tauopathies.
Collapse
|
12
|
Bhattarai P, Yilmaz E, Cakir EÖ, Korkmaz HY, Lee AJ, Ma Y, Celikkaya H, Cosacak MI, Haage V, Wang X, Nelson N, Lin W, Zhang Y, Nuriel T, Jülich D, Iş Ö, Holley SA, de Jager P, Fisher E, Tubbesing K, Teich AF, Bertucci T, Temple S, Ertekin-Taner N, Vardarajan BN, Mayeux R, Kizil C. APOE- ε4-induced Fibronectin at the blood-brain barrier is a conserved pathological mediator of disrupted astrocyte-endothelia interaction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634732. [PMID: 39975303 PMCID: PMC11838230 DOI: 10.1101/2025.01.24.634732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature of Alzheimer's disease (AD), particularly in individuals carrying the APOE-ε4 allele. This dysfunction worsens neuroinflammation and hinders the removal of toxic proteins, such as amyloid-beta (Aβ42), from the brain. In post-mortem brain tissues and in animal models, we previously reported that fibronectin accumulates at the BBB predominantly in APOE-ε4 carriers. Furthermore, we found a loss-of-function variant in the fibronectin 1 ( FN1 ) gene significantly reduces aggregated fibronectin levels and decreases AD risk among APOE-ε4 carriers. Yet, the molecular mechanisms downstream of fibronectin at the BBB remain unclear. The extracellular matrix (ECM) plays a crucial role in maintaining BBB homeostasis and orchestrating the interactions between BBB cell types, including endothelia and astrocytes. Understanding the mechanisms affecting the ECM and BBB cell types will be critical for developing effective therapies against AD, especially among APOE-ε4 carriers. Here, we demonstrate that APOE-ε4 , Aβ42, and inflammation drive the induction of FN1 expression in several models including zebrafish, mice, iPSC-derived human 3D astrocyte and 3D cerebrovascular cell cultures, and in human brains. Fibronectin accumulation disrupts astroglial-endothelial interactions and the signalling cascade between vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor (HBEGF) and Insulin-like growth factor 1 (IGF1). This accumulation of fibronectin in APOE-ε4- associated AD potentiates BBB dysfunction, which strongly implicates reducing fibronectin deposition as a potential therapeutic target for AD. Graphical abstract Accessibility text This image illustrates the effects of different APOE isoforms (ApoE-ε3 and ApoE-ε4) on blood-brain barrier (BBB) integrity, focusing on the molecular interactions between astrocytes and endothelial cells. This figure emphasizes the detrimental effects of ApoE-ε4 on BBB integrity via fibronectin accumulation and altered signaling pathways. The top section provides a schematic overview of the blood-brain barrier, highlighting astrocytes, endothelial cells, and their interface. The left panel represents the ApoE-ε3 condition: Normal fibronectin (FN1) levels support healthy interactions between astrocytes and endothelial cells. Growth factors, including VEGFA, HBEGF, and IGF1, maintain BBB integrity through their respective receptors (VEGFR and EGFR). Green arrows indicate activation of these signaling pathways. The right panel depicts the ApoE-ε4 condition: Elevated fibronectin (FN1) disrupts astrocyte-endothelium interactions. FN1 binds integrins and activates focal adhesion kinase (FAK), inhibiting VEGFA, which is required for endothelial HBEGF that in turn activates IGF1 signaling. Red symbols indicate inhibition of HBEGF, VEGFA, and IGF1 pathways, leading to BBB dysfunction. Highlights APOE-ε4 drives fibronectin deposition in Alzheimer's, disrupting astrocyte-endothelia interactions. APOE-ε4 and fibronectin co-localize, forming aggregates at blood-brain barrier (BBB). Fibronectin alters the signaling between VEGF, IGF1, and HBEGF impairing BBB function. Reducing fibronectin restores BBB integrity and offsets APOE-ε4 pathology.
Collapse
|
13
|
Bernabeu E, Chybowska AD, Kresovich JK, Suderman M, McCartney DL, Hillary RF, Corley J, Valdés-Hernández MDC, Maniega SM, Bastin ME, Wardlaw JM, Xu Z, Sandler DP, Campbell A, Harris SE, McIntosh AM, Taylor JA, Yousefi P, Cox SR, Evans KL, Robinson MR, Vallejos CA, Marioni RE. Blood-based epigenome-wide association study and prediction of alcohol consumption. Clin Epigenetics 2025; 17:14. [PMID: 39863868 PMCID: PMC11762500 DOI: 10.1186/s13148-025-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait. Here, we explore the epigenetic architecture of self-reported weekly units of alcohol consumption in the Generation Scotland study. We first create a blood-based epigenetic score (EpiScore) of alcohol consumption using elastic net penalized linear regression. We explore the effect of pre-filtering for CpG features ahead of elastic net, as well as differential patterns by sex and by units consumed in the last week relative to an average week. The final EpiScore was trained on 16,717 individuals and tested in four external cohorts: the Lothian Birth Cohorts (LBC) of 1921 and 1936, the Sister Study, and the Avon Longitudinal Study of Parents and Children (total N across studies > 10,000). The maximum Pearson correlation between the EpiScore and self-reported alcohol consumption within cohort ranged from 0.41 to 0.53. In LBC1936, higher EpiScore levels had significant associations with poorer global brain imaging metrics, whereas self-reported alcohol consumption did not. Finally, we identified two novel CpG loci via a Bayesian penalized regression epigenome-wide association study of alcohol consumption. Together, these findings show how DNAm can objectively characterize patterns of alcohol consumption that associate with brain health, unlike self-reported estimates.
Collapse
Affiliation(s)
- Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Aleksandra D Chybowska
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacob K Kresovich
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés-Hernández
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susana Muñoz Maniega
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, UK
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Neurovascular Imaging Research Core, UCLA, Los Angeles, CA, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Jack A Taylor
- Neurovascular Imaging Research Core, UCLA, Los Angeles, CA, USA
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Catalina A Vallejos
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- The Alan Turing Institute, London, UK.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Oomatia A, Chervova O, Al-Rashed AM, Smpokou ET, Ecker S, Pearce N, Heggeseth B, Nitsch D, Cardenas A, Beck S, Gonzalez-Quiroz M, Caplin B. Longitudinal leucocyte DNA methylation changes in Mesoamerican nephropathy. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf001. [PMID: 39917055 PMCID: PMC11801219 DOI: 10.1093/eep/dvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Abstract
Mesoamerican nephropathy (MeN) is a leading cause of morbidity and mortality in Central America, yet its aetiology remains unclear. Environmental exposures including heat stress, pesticides, and heavy metals have all been suggested as possible causes or exacerbating factors of the disease, but intermittent and cumulative exposures are difficult to capture using conventional biomonitoring. Locus-specific differential DNA-methylation (DNAm) which is known to occur in association with these environmental exposures can be readily measured in peripheral blood leucocytes, and therefore have the potential to be used as biomarkers of these exposures. In this study, we aimed first to perform a hypothesis-free epigenome-wide association study of MeN to identify disease-specific methylation signatures, and second to explore the association of DNAm changes associated with potentially relevant environmental exposures and MeN onset. Whole-blood epigenome-wide DNAm was analysed from a total of 312 blood samples: 53 incident cases (pre- and post-evidence of disease onset), 61 matched controls and 16 established cases, collected over a 5-year period. Mixed-effect models identified three unique differentially methylated regions that associated with incident kidney injury, two of which lie within the intron of genes (Amphiphysin on chromosome 7, and SLC29A3 chromosome 10), none of which have been previously reported with any other kidney disease. Next, we conducted a hypothesis-driven analysis examining the coefficients of CpG sites reported to be associated with ambient temperature, pesticides, arsenic, cadmium, and chromium. However, none showed an association with MeN disease onset. Therefore, we did not observe previously reported patterns of DNA methylation that might support a role of pesticides, temperature, or the examined metals in causing MeN.
Collapse
Affiliation(s)
- Amin Oomatia
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | - Olga Chervova
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Ali M Al-Rashed
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | | | - Simone Ecker
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Neil Pearce
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Brianna Heggeseth
- Department of Data Sciences, Macalester College, St. Paul, MN 55105-1899, United States
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305-5405, United States
| | - Stephan Beck
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Marvin Gonzalez-Quiroz
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
- Department of Environmental and Occupational Health, UT School of Public Health San Antonio, The University of Texas Health Science Centre at San Antonio, San Antonio, TX 78249, United States
| | - Ben Caplin
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
15
|
Auvinen P, Vehviläinen J, Rämö K, Laukkanen I, Marjonen-Lindblad H, Wallén E, Söderström-Anttila V, Kahila H, Hydén-Granskog C, Tuuri T, Tiitinen A, Kaminen-Ahola N. Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology. COMMUNICATIONS MEDICINE 2024; 4:267. [PMID: 39702541 DOI: 10.1038/s43856-024-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown. METHODS We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas. The separate analyses for placentas from different ART procedures and sexes were performed. To separate the effects of ART procedures and subfertility, 11 placentas from natural conception of subfertile couples and 12 from intrauterine insemination treatments were included. RESULTS Here we show that ART-associated changes in the placenta enriche in the pathways of hormonal regulation, insulin secretion, neuronal development, and vascularization. Observed decreased number of stromal cells as well as downregulated TRIM28 and NOTCH3 expressions in ART placentas indicate impaired angiogenesis and growth. DNA methylation changes in the imprinted regions and downregulation of TRIM28 suggest defective stabilization of the imprinting. Furthermore, downregulated expression of imprinted endocrine signaling molecule DLK1 associates with both ART and subfertility. CONCLUSIONS Decreased expressions of TRIM28, NOTCH3, and DLK1 bring forth potential mechanisms for several phenotypic features associated with ART. Our results support previous procedure specific findings: the changes associated with growth and metabolism link more prominently to the fresh embryo transfer with smaller placentas and newborns, than to the frozen embryo transfer with larger placentas and newborns. Furthermore, since the observed changes associate also with subfertility, they offer a precious insight to the molecular background of infertility.
Collapse
Affiliation(s)
- Pauliina Auvinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jussi Vehviläinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Karita Rämö
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ida Laukkanen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Heidi Marjonen-Lindblad
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Essi Wallén
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Christel Hydén-Granskog
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Horton MK, Nititham J, Taylor KE, Katz P, Ye CJ, Yazdany J, Dall'Era M, Hurabielle C, Barcellos LF, Criswell LA, Lanata CM. Changes in DNA methylation are associated with systemic lupus erythematosus flare remission and clinical subtypes. Clin Epigenetics 2024; 16:181. [PMID: 39696438 PMCID: PMC11656870 DOI: 10.1186/s13148-024-01792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) has numerous symptoms across organs and an unpredictable flare-remittance pattern. This has made it challenging to understand drivers of long-term SLE outcomes. Our objective was to identify whether changes in DNA methylation over time, in an actively flaring SLE cohort, were associated with remission and whether these changes meaningfully subtype SLE patients. METHODS Fifty-nine multi-ethnic SLE patients had clinical visits and DNA methylation profiles at a flare and approximately 3 months later. Methylation was measured using the Illumina EPIC array. We identified sites where methylation change between visits was associated with remission at the follow-up visit using limma package and a time x remission interaction term. Models adjusted for batch, age at diagnosis, time between visits, age at flare, sex, medications, and cell-type proportions. Separately, a paired T-test identified Bonferroni significant methylation sites with ≥ 3% change between visits (n = 546). Methylation changes at these sites were used for unsupervised consensus hierarchical clustering. Associations between clusters and patient features were assessed. RESULTS Nineteen patients fully remitted at the follow-up visit. For 1,953 CpG sites, methylation changed differently for remitters vs. non-remitters (Bonferroni p < 0.05). Nearly half were within genes regulated by interferon. The largest effect was at cg22873177; on average, remitters had 23% decreased methylation between visits while non-remitters had no change. Three SLE patient clusters were identified using methylation differences agnostic of clinical outcomes. All Cluster 1 subjects (n = 12) experienced complete flare remission, despite similar baseline disease activity scores, medications, and demographics as other clusters. Methylation changes at six CpG sites, including within immune-related CD45 and IFI genes, were particularly distinct for each cluster, suggesting these may be good candidates for stratifying patients in the future. CONCLUSIONS Changes in DNA methylation during active SLE were associated with remission status and identified subgroups of SLE patients with several distinct clinical and biological characteristics. DNA methylation patterns might help inform SLE subtypes, leading to targeted therapies based on relevant underlying biological pathways.
Collapse
Affiliation(s)
- Mary K Horton
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Joanne Nititham
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly E Taylor
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patricia Katz
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Dall'Era
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Lindsey A Criswell
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristina M Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Hauser MA, Hayes JP, Hemmings SMJ, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: a meta-analysis of 23 military and civilian cohorts. Genome Med 2024; 16:147. [PMID: 39696436 PMCID: PMC11658418 DOI: 10.1186/s13073-024-01417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. METHODS As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using Illumina HumanMethylation450 or MethylationEPIC (850 K) BeadChips. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. RESULTS We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e - 09 < p < 5.30e - 08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Out of 9 CpGs annotated to a gene expressed in blood, methylation levels at 5 CpGs showed significant correlations with the expression levels of their respective annotated genes. CONCLUSIONS This study identifies 11 PTSD-associated CpGs and leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center of Excellence in Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Anthony S Zannas
- Carolina Stress Initiative, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Xiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Department of Epidemiology, Columbia University, New York, NY, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Diana Avetyan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, UT, NL, Netherlands
| | - Leslie A Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Evelyn Bromet
- Epidemiology Research Group, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Chia-Yen Chen
- Biogen Inc, Translational Sciences, Cambridge, MA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Division of Human Genetics, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Researcg, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Elbert Geuze
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, UT, NL, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, UT, Netherlands
| | - Gerald Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Hauser
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jasmeet P Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Bertrand Russel Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Aarti Jajoo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Stefan Jansen
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
- Mental Health Service Line, Durham VA Health Care System, Durham, NC, USA
| | - Anthony P King
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
- Psychiatry & Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Nastassja Koen
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- UNC Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jurjen J Luykx
- Amsterdam Neuroscience Research Institute Stress & Sleep Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, NH, Netherlands
| | - Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research Education, and Clinical Center (MIRECC), Durham, NC, USA
| | - Samuel A McLean
- Department of Psychiatry, UNC Institute for Trauma Recovery, NC, Chapel Hill, USA
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
| | | | - Mark W Miller
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - Mary S Mufford
- Department of Psychiatry and Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Clarisse Musanabaganwa
- Research Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
- Center of Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Jean Mutabaruka
- Department of Clinical Psychology, University of Rwanda, Huye, RW, Rwanda
| | - Leon Mutesa
- College of Medicine and Health Sciences, University of Rwanda, Kigali, RW, Rwanda
- Center for Human Genetics, University of Rwanda, Kigali, RW, Rwanda
| | - Charles B Nemeroff
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Xue-Jun Qin
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Sheila A M Rauch
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht Universitair Medisch Centrum, Maastricht, Limburg, NL, Netherlands
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Dan J Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- Neuroscience Institute, University of Cape Town, Western Province, Cape Town, ZA, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Western Province, Cape Town, ZA, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, CA, La Jolla, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Robert J Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA
| | - Annette Uwineza
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Mieke H Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, ZH, NL, Netherlands
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Christiaan H Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Department of Psychiatry, Amsterdam, UMC Location Vrije Universiteit Amsterdam, Amsterdam, Holland, Netherlands
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Stress & Sleep Program, MoodPsychosisAmsterdam, Holland, AnxietyNL, Netherlands
| | - Erin B Ware
- Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Derek E Wildman
- College of Public Health, University of South Florida, Tampa, FL, USA
- Genomics Program, University of South Florida, Tampa, FL, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ross McD Young
- School of Clinical Sciences, Queensland University of Technology, Kelvin Grove, QLD, AU, Brisbane, Australia
- University of the Sunshine Coast, The Chancellory Sippy Downs, QLD, AU, Buderim, Australia
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, NC, Chapel Hill, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
- SA MRC Extramural Genomics of Brain Disorders Research Unit, Stellenbosch University, Western Cape, Cape Town, ZA, South Africa
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, San Diego, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Biomedical Genetics & Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
18
|
Reed X, Weller CA, Saez-Atienzar S, Beilina A, Solaiman S, Portley M, Kaileh M, Roy R, Ding J, Zenobia Moore A, Thad Whitaker D, Traynor BJ, Raphael Gibbs J, Scholz SW, Cookson MR. Characterization of DNA methylation in PBMCs and donor-matched iPSCs shows methylation is reset during stem cell reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.627515. [PMID: 39713361 PMCID: PMC11661179 DOI: 10.1101/2024.12.13.627515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
DNA methylation is an important epigenetic mechanism that helps define and maintain cellular functions. It is influenced by many factors, including environmental exposures, genotype, cell type, sex, and aging. Since age is the primary risk factor for developing neurodegenerative diseases, it is important to determine if aging-related DNA methylation is retained when cells are reprogrammed to an induced Pluripotent Stem Cell (iPSC) state. Here, we selected peripheral blood mononuclear cells (PBMCs; n = 99) from a cohort of diverse and healthy individuals enrolled in the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (GESTALT) study to convert to iPSCs. After reprogramming we evaluated the resulting iPSCs for DNA methylation signatures to determine if they reflect the confounding factors of age and environmental factors. We used genome-wide DNA methylation arrays in both cell types to show that the epigenetic clock is largely reset to an early methylation age after conversion of PBMCs to iPSCs. We further examined the epigenetic age of each cell type using an Epigenome-wide Association Study (EWAS). Finally, we identified a set of methylation Quantitative Trait Loci (methQTL) in each cell type. Our results show that age-related DNA methylation is largely reset in iPSCs, and each cell type has a unique set of methylation sites that are genetically influenced.
Collapse
Affiliation(s)
- Xylena Reed
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20037, USA
| | - Sara Saez-Atienzar
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Makayla Portley
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan J. Traynor
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
McDonnell E, Orr SE, Barter MJ, Rux D, Brumwell A, Wrobel N, Murphy L, Overman LM, Sorial AK, Young DA, Soul J, Rice SJ. The methylomic landscape of human articular cartilage development contains epigenetic signatures of osteoarthritis risk. Am J Hum Genet 2024; 111:2756-2772. [PMID: 39579763 PMCID: PMC11639090 DOI: 10.1016/j.ajhg.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
Increasing evidence is emerging to link age-associated complex musculoskeletal diseases, including osteoarthritis (OA), to developmental factors. Multiple studies have shown a functional role for DNA methylation in the genetic mechanisms of OA risk using articular cartilage samples taken from aged individuals, yet knowledge of temporal changes to the methylome during human cartilage development is limited. We quantified DNA methylation at ∼700,000 individual CpGs across the epigenome of developing human chondrocytes in 72 samples ranging from 7 to 21 post-conception weeks. We identified significant changes in 3% of all CpGs and >8,200 developmental differentially methylated regions. We further identified 24 loci at which OA genetic variants colocalize with methylation quantitative trait loci. Through integrating developmental and mature human chondrocyte datasets, we find evidence for functional effects exerted solely in development or throughout the life course. This will have profound impacts on future approaches to translating genetic pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool, UK
| | - Sarah E Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Matthew J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Danielle Rux
- Orthopedic Surgery, UConn Health, Farmington, CT, USA
| | - Abby Brumwell
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Lynne M Overman
- Human Developmental Biology Resource, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Antony K Sorial
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.
| |
Collapse
|
20
|
Diemer EW, Tuhkanen J, Sammallahti S, Heinonen K, Neumann A, Robinson SL, Suderman M, Jin J, Page CM, Fore R, Rifas-Shiman SL, Oken E, Perron P, Bouchard L, Hivert MF, Räikköne K, Lahti J, Yeung EH, Guan W, Mumford SL, Magnus MC, Håberg S, Nystad W, Parr CL, London SJ, Felix JF, Tiemeier H. Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation. Epigenetics 2024; 19:2413815. [PMID: 39418282 PMCID: PMC11487971 DOI: 10.1080/15592294.2024.2413815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D ≤ 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, p > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.
Collapse
Affiliation(s)
- Elizabeth W. Diemer
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Psychology/Welfare Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sonia L. Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Oslo, Oslo, Norway
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Patrice Perron
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katri Räikköne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sunni L. Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Maria C. Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine L. Parr
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Janine F. Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Grützmann K, Kraft T, Meinhardt M, Meier F, Westphal D, Seifert M. Network-based analysis of heterogeneous patient-matched brain and extracranial melanoma metastasis pairs reveals three homogeneous subgroups. Comput Struct Biotechnol J 2024; 23:1036-1050. [PMID: 38464935 PMCID: PMC10920107 DOI: 10.1016/j.csbj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.
Collapse
Affiliation(s)
- Konrad Grützmann
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Theresa Kraft
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| |
Collapse
|
22
|
Jalal D, Ali MY, Elkinaai N, Abdelaziz AS, Zekri W, Sayed AA. Methylation changes and INS-IGF2 expression predict progression in early-stage Wilms tumor. Clin Epigenetics 2024; 16:170. [PMID: 39593106 PMCID: PMC11590261 DOI: 10.1186/s13148-024-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Wilms tumor, the most common pediatric kidney cancer, accounts for 5% of childhood cancers and is classified by stage and histological subtype. Despite high survival rates (80-85%), approximately 15% of patients experience relapse, reducing survival to around 50%. Epigenetic changes, particularly DNA methylation, play a critical role in Wilms tumor pathogenesis. This study investigates the prognostic potential of DNA methylation in stage I and II patients with favorable histology, aiming to identify early relapse biomarkers. Genome-wide methylation was assessed using methylation microarrays in tumor tissues from relapsed patients (n = 9) and those with complete responses (n = 9), alongside normal tissues (n = 3 each). Differentially methylated probes and regions were analyzed, with additional ROC and survival analyses. Real-time PCR was used to measure IGF2 and INS-IGF2 gene expression. The analysis revealed hypomethylation in intergenic regions in remission patients, identifying 14 differentially methylated positions as potential biomarkers. Increased INS-IGF2 expression was associated with relapse, suggesting its role in disease progression. While the study concentrated on stages I and II patients, where relapse rates are lower, this focus inherently led to a smaller sample size. Despite this, the findings provide valuable insights into the potential role of DNA methylation markers for monitoring disease progression and guiding personalized treatment in Wilms tumor patients.
Collapse
Affiliation(s)
- Deena Jalal
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Mohamed Y Ali
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Naglaa Elkinaai
- Department of Pathology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Wael Zekri
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
23
|
Cuvertino S, Garner T, Martirosian E, Walusimbi B, Kimber SJ, Banka S, Stevens A. Higher order interaction analysis quantifies coordination in the epigenome revealing novel biological relationships in Kabuki syndrome. Brief Bioinform 2024; 26:bbae667. [PMID: 39701600 DOI: 10.1093/bib/bbae667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Complex direct and indirect relationships between multiple variables, termed higher order interactions (HOIs), are characteristics of all natural systems. Traditional differential and network analyses fail to account for the omic datasets richness and miss HOIs. We investigated peripheral blood DNA methylation data from Kabuki syndrome type 1 (KS1) and control individuals, identified 2,002 differentially methylated points (DMPs), and inferred 17 differentially methylated regions, which represent only 189 DMPs. We applied hypergraph models to measure HOIs on all the CpGs and revealed differences in the coordination of DMPs with lower entropy and higher coordination of the peripheral epigenome in KS1 implying reduced network complexity. Hypergraphs also capture epigenomic trans-relationships, and identify biologically relevant pathways that escape the standard analyses. These findings construct the basis of a suitable model for the analysis of organization in the epigenome in rare diseases, which can be applied to investigate mechanism in big data.
Collapse
Affiliation(s)
- Sara Cuvertino
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Terence Garner
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Evgenii Martirosian
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Bridgious Walusimbi
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust Health Innovation Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust Health Innovation Manchester, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Petroff RL, Dolinoy DC, Padmanabhan V, Goodrich JM. Characterizing DNA Methylation and Hydroxymethylation in Cord Blood and Identifying Sex-Specific Differences using the Illumina EPIC Array. EPIGENETICS REPORTS 2024; 2:1-7. [PMID: 39610770 PMCID: PMC11600988 DOI: 10.1080/28361512.2024.2427955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
DNA methylation, an epigenetic mark, has become a common outcome in epidemiological studies with the aid of affordable and reliable technologies. Yet the most widespread technique used to assess methylation, bisulfite conversion, does not allow for the differentiation of regular DNA methylation (5-mC) and other cytosine modifications, like that of hydroxymethylation (5-hmC). As both 5-mC and 5-hmC have distinct biological roles, sometimes with opposing effects, it is crucial to understand the difference between these marks. To characterize 5-mC and 5-hmC in cord blood and expand on previously published results in smaller cohorts, 73 samples from infants in the Michigan Mother Infant Pairs cohort were paired bisulfite and oxidative bisulfite converted. 5-mC and 5-hmC were assessed on the Illumina Infinium EPIC array, using maximum likelihood methods, and sex-specific differences of these marks were analyzed. 5-mC and 5-hmC were both broadly distributed across the genome, and 5-hmC was prevalent, with proportions of 0.01-0.55. Sex-specific analysis revealed total methylation was different on 17,000 sites (q<0.05), but only different at 1,866 and 5 sites of 5-mC and 5-hmC specifically. These results add additional support to the literature and demonstrate the importance of differentiating between 5-mC and 5-hmC in epidemiological studies going forward.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
El-Hossary NM, El-Desouky MA, Sabry GM, Omar MF, Ali MY, Elzayat MG, Hassan RE, Mohamed RH, Rashidi FB. A new insight of blood vs. buccal DNA methylation in the forensic identification of monozygotic triplets. Forensic Sci Int 2024; 364:112247. [PMID: 39405818 DOI: 10.1016/j.forsciint.2024.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The case of the monozygotic (MZ) twin as a suspect demonstrates a practical problem in forensic casework. As the MZ twins are genetically identical, they share the same short tandem repeat (STR) profile. Many studies showed that older MZ twins have significant differences in overall content and genomic distribution of methylation between them. However, studies addressing the investigation of epigenetic MZ triplet differentiation in various forensic reference materials are lacking. Here, one triplet set of Egyptian MZ twins was used as an analog to a forensic case. The genome-wide methylation analysis was performed via the new Human Methylation EPIC BeadChip array. Following normalization methods, potential differentially methylated positions (DMPs) were discovered. This resulted in the detection of 24 potential DMPs in reference-type blood DNA and 11 potential DMPs in reference-type buccal DNA. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to show the associated biological functions. Our findings revealed that the 35 potential DMPs were enriched in 283 significant GO terms. These terms are mainly enriched in the immune system. Overall, this study demonstrates the general feasibility of epigenetic MZ triplet differentiation in the forensic context and highlights that some potential DMPs identified in blood DNA were not informative in buccal DNA. This is due to various reasons, including the tissue specificity of DNA methylation.
Collapse
Affiliation(s)
- Nancy M El-Hossary
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt
| | - Mohamed A El-Desouky
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed F Omar
- Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt; Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Y Ali
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt; Clinical pharmacy Department, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt
| | - Mariam G Elzayat
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
26
|
Ruehlmann AK, Cecil KM, Lippert F, Yolton K, Ryan PH, Brunst KJ. Epigenome-wide association study of fluoride exposure during early adolescence and DNA methylation among U.S. children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174916. [PMID: 39038671 PMCID: PMC11514227 DOI: 10.1016/j.scitotenv.2024.174916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Exposure to fluoride in early childhood has been associated with altered cognition, intelligence, attention, and neurobehavior. Fluoride-related neurodevelopment effects have been shown to vary by sex and very little is known about the mechanistic processes involved. There is limited research on how fluoride exposure impacts the epigenome, potentially leading to changes in DNA methylation of specific genes regulating key developmental processes. In the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride adjusted for specific gravity (CUFsg) concentrations. Whole blood DNA methylation was assessed using the Infinium MethylationEPIC BeadChip 850 k Array. In a cross-sectional analysis, we interrogated epigenome-wide DNA methylation at 775,141 CpG loci across the methylome in relation to CUFsg concentrations in 272 early adolescents at age 12 years. Among all participants, higher concentrations of CUF were associated with differential methylation of one CpG (p < 6 × 10-8) located in the gene body of GBF1 (cg25435255). Among females, higher concentrations of CUFsg were associated with differential methylation of 7 CpGs; only three CpGs were differentially methylated among males with no overlap of significant CpGs observed among females. Secondary analyses revealed several differentially methylated regions (DMRs) and CpG loci mapping to genes with key roles in psychiatric outcomes, social interaction, and cognition, as well as immunologic and metabolic phenotypes. While fluoride exposure may impact the epigenome during early adolescence, the functional consequences of these changes are unclear warranting further investigation.
Collapse
Affiliation(s)
- Anna K Ruehlmann
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Kim M Cecil
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Frank Lippert
- Department of Cariology, Operative Dentistry, and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Kimberly Yolton
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly J Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Kristjansson D, Lee Y, Page CM, Gjessing H, Magnus MC, Jugessur A, Lyle R, Håberg SE. Sex differences in DNA methylation variations according to ART conception-evidence from the Norwegian mother, father, and child cohort study. Sci Rep 2024; 14:22904. [PMID: 39358554 PMCID: PMC11447267 DOI: 10.1038/s41598-024-73845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Previous studies have shown cord-blood DNA methylation differences in newborns conceived using assisted reproductive technologies (ART) compared to those conceived naturally. However, whether these ART-related DNA methylation differences vary with children's sex is unknown. We hypothesize that the DNA methylation differences in cord blood between ART-conceived and naturally conceived newborns also varies by the sex of the child, with distinct patterns of differential methylation present in males and females. We investigated sex differences in cord-blood DNA methylation variation according to conception by ART using the Illumina MethylationEPIC platform, comparing 456 ART-conceived versus 507 naturally-conceived girls, and 503 ART-conceived and 473 naturally-conceived boys. We identified 37 differentially methylated CpGs according to ART-conception among girls, and 70 differentially methylated CpGs according to ART-conception among boys, when we used a 1% false discovery rate to account for multiple testing. Ten CpGs were differentially methylated according to conception by ART in both sexes. Among the genes that were associated with these CpGs, we found the BRCA1; NBR2 gene (two CpGs) was hypermethylated in girls while the APC2 (two CpGs) and NECAB3;ACTL10, (four CpGs) related to cellular signaling were hypomethylated in boys. These findings confirm the presence of sex-specific epigenetic differences, illustrating the nuanced impact of ART on the fetal epigenome. There is a need for further explorations into the implications for sex-specific developmental trajectories and health outcomes in ART-conceived children.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway.
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Yunsung Lee
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Gjessing
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Maria C Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Siri E Håberg
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Koetsier J, Cavill R, Reijnders R, Harvey J, Homann J, Kouhsar M, Deckers K, Köhler S, Eijssen LMT, van den Hove DLA, Demuth I, Düzel S, for the Alzheimer's Disease Neuroimaging Initiative, Smith RG, Smith AR, Burrage J, Walker EM, Shireby G, Hannon E, Dempster E, Frayling T, Mill J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser P, Lill CM, Bertram L, Lunnon K, Pishva E. Blood-based multivariate methylation risk score for cognitive impairment and dementia. Alzheimers Dement 2024; 20:6682-6698. [PMID: 39193899 PMCID: PMC11633365 DOI: 10.1002/alz.14061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.
Collapse
Affiliation(s)
- Jarno Koetsier
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences (DACS)Faculty of Science and Engineering (FSE)Maastricht UniversityMaastrichtThe Netherlands
| | - Rick Reijnders
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Joshua Harvey
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jan Homann
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
| | - Morteza Kouhsar
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Kay Deckers
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of Bioinformatics ‐ BiGCaTResearch Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Faculty of HealthMedicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Daniel L. A. van den Hove
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of PsychiatryPsychosomatics and Psychotherapy, University of Wuerzburg, Dr. Manuel NagelWürzburgGermany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism)Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- BCRT ‐ Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | | | - Rebecca G. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Adam R. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Joe Burrage
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma M. Walker
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Gemma Shireby
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Eilis Hannon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma Dempster
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Tim Frayling
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jonathan Mill
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | | | | | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institute of Mental Health; Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Department of NeurologyAlzheimer Center AmsterdamAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory CenterGeneva University and University Hospitals; on behalf of the AMYPAD ConsortiumGenèveSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB)Jette, BrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Alberto Lleó
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Isabel Sala
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry ZürichUniversity of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | - Frans Verhey
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of Medicine`Laboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer Hellas, Macedonia, Balkan CenterThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCL, Maple HouseLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johannes Streffer
- AC Immune SA, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conductLausanneSwitzerland
| | - Stephanie J. B. Vos
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- University of OxfordOxford, United Kingdom; Currently at Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter‐Jelle Visser
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Christina M. Lill
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, South Kensington CampusLondonUK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Katie Lunnon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Ehsan Pishva
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
29
|
Suleri A, Salontaji K, Luo M, Neumann A, Mulder RH, Tiemeier H, Felix JF, Marioni RE, Bergink V, Cecil CAM. Prenatal exposure to common infections and newborn DNA methylation: A prospective, population-based study. Brain Behav Immun 2024; 121:244-256. [PMID: 39084542 PMCID: PMC11784989 DOI: 10.1016/j.bbi.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Infections during pregnancy have been robustly associated with adverse mental and physical health outcomes in offspring, yet the underlying molecular pathways remain largely unknown. Here, we examined whether exposure to common infections in utero associates with DNA methylation (DNAm) patterns at birth and whether this in turn relates to offspring health outcomes in the general population. METHODS Using data from 2,367 children from the Dutch population-based Generation R Study, we first performed an epigenome-wide association study to identify differentially methylated sites and regions at birth associated with prenatal infection exposure. We also examined the influence of infection timing by using self-reported cumulative infection scores for each trimester. Second, we sought to develop an aggregate methylation profile score (MPS) based on cord blood DNAm as an epigenetic proxy of prenatal infection exposure and tested whether this MPS prospectively associates with offspring health outcomes, including psychiatric symptoms, BMI, and asthma at ages 13-16 years. Third, we investigated whether prenatal infection exposure associates with offspring epigenetic age acceleration - a marker of biological aging. Across all analysis steps, we tested whether our findings replicate in 864 participants from an independent population-based cohort (ALSPAC, UK). RESULTS We observed no differentially methylated sites or regions in cord blood in relation to prenatal infection exposure, after multiple testing correction. 33 DNAm sites showed suggestive associations (p < 5e10 - 5; of which one was also nominally associated in ALSPAC), indicating potential links to genes associated with immune, neurodevelopmental, and cardiovascular pathways. While the MPS of prenatal infections associated with maternal reports of infections in the internal hold out sample in the Generation R Study (R2incremental = 0.049), it did not replicate in ALSPAC (R2incremental = 0.001), and it did not prospectively associate with offspring health outcomes in either cohort. Moreover, we observed no association between prenatal exposure to infections and epigenetic age acceleration across cohorts and clocks. CONCLUSION In contrast to prior studies, which reported DNAm differences in offspring exposed to severe infections in utero, we do not find evidence for associations between self-reported clinically evident common infections during pregnancy and DNAm or epigenetic aging in cord blood within the general pediatric population. Future studies are needed to establish whether associations exist but are too subtle to be statistically meaningful with present sample sizes, whether they replicate in a cohort with a more similar infection score as our discovery cohort, whether they occur in different tissues than cord blood, and whether other biological pathways may be more relevant for mediating the effect of prenatal common infection exposure on downstream offspring health outcomes.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
30
|
Zhuang BC, Jude MS, Konwar C, Yusupov N, Ryan CP, Engelbrecht HR, Whitehead J, Halberstam AA, MacIsaac JL, Dever K, Tran TK, Korinek K, Zimmer Z, Lee NR, McDade TW, Kuzawa CW, Huffman KM, Belsky DW, Binder EB, Czamara D, Korthauer K, Kobor MS. Discrepancies in readouts between Infinium MethylationEPIC v2.0 and v1.0 reflected in DNA methylation-based tools: implications and considerations for human population epigenetic studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.600461. [PMID: 39005299 PMCID: PMC11245009 DOI: 10.1101/2024.07.02.600461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background The recently launched DNA methylation profiling platform, Illumina MethylationEPIC BeadChip Infinium microarray v2.0 (EPICv2), is highly correlated with measurements obtained from its predecessor MethylationEPIC BeadChip Infinium microarray v1.0 (EPICv1). However, the concordance between the two versions in the context of DNA methylation-based tools, including cell type deconvolution algorithms, epigenetic clocks, and inflammation and lifestyle biomarkers has not yet been investigated. To address this, we profiled DNA methylation on both EPIC versions using matched venous blood samples from individuals spanning early to late adulthood across four cohorts. Findings Within each cohort, samples primarily clustered by the EPIC version they were measured on. High concordance between EPIC versions at the array level, but variable concordance at the individual probe level was noted. Significant differences between versions in estimates from DNA methylation-based tools were observed, irrespective of the normalization method, with some nuanced differences across cohorts and tools. Adjusting for EPIC version or calculating estimates separately for each version largely mitigated these version-specific discordances. Conclusions Our work illustrates the importance of accounting for EPIC version differences in research scenarios, especially in meta-analyses and longitudinal studies, when samples profiled across different versions are harmonized. Alongside DNA methylation-based tools, our observations also have implications in interpretation of epigenome-wide association studies (EWAS) findings, when results obtained from one version are compared to another, particularly for probes that are poorly concordant between versions.
Collapse
Affiliation(s)
- Beryl C. Zhuang
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marcia Smiti Jude
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, 80804, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, 80804, Germany
| | - Calen P. Ryan
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Hannah-Ruth Engelbrecht
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joanne Whitehead
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Alexandra A. Halberstam
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, 80804, Germany
- Harvard Medical School/ MIT Institute of Technology MD-PhD program, Boston, Massachusetts, MA 02115, USA
| | - Julia L. MacIsaac
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kristy Dever
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Toan Khanh Tran
- Family Medicine Department, Hanoi Medical University, Hanoi, Vietnam
| | - Kim Korinek
- Department of Sociology, University of Utah, Salt Lake City, Utah, UT 84112, USA
| | - Zachary Zimmer
- Department of Family Studies and Gerontology, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
- Canada Research Chair, Global Aging and Community Initiative, Canada
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Thomas W. McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois, IL 60208 USA
- Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Christopher W. Kuzawa
- Department of Anthropology and Institute for Policy Research, Northwestern University, Evanston, Illinois, IL 60208, USA
| | - Kim M. Huffman
- Duke University School of Medicine, Durham, NC, 27701, USA
| | - Daniel W. Belsky
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Keegan Korthauer
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, Faculty of Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
31
|
Gillespie AL, Walker EM, Hannon E, McQueen GA, Sendt KV, Avila A, Lally J, Okhuijsen-Pfeifer C, van der Horst M, Hasan A, Dempster EL, Burrage J, Bogers J, Cohen D, Boks MP, Collier DA, Egerton A, Luykx JJ, Mill J, MacCabe JH. Longitudinal changes in DNA methylation associated with clozapine use in treatment-resistant schizophrenia from two international cohorts. Transl Psychiatry 2024; 14:390. [PMID: 39333502 PMCID: PMC11436797 DOI: 10.1038/s41398-024-03102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
The second-generation antipsychotic clozapine is used as a medication for treatment-resistant schizophrenia. It has previously been associated with epigenetic changes in pre-clinical rodent models and cross-sectional studies of treatment-resistant schizophrenia. Cross-sectional studies are susceptible to confounding, however, and cannot disentangle the effects of diagnosis and medication. We therefore profiled DNA methylation in sequential blood samples (n = 126) from two independent cohorts of patients (n = 38) with treatment-resistant schizophrenia spectrum disorders who commenced clozapine after study enrolment and were followed up for up to six months. We identified significant non-linear changes in cell-type proportion estimates derived from DNA methylation data - specifically B-cells - associated with time on clozapine. Mixed effects regression models were used to identify changes in DNA methylation at specific sites associated with time on clozapine, identifying 37 differentially methylated positions (DMPs) (p < 5 × 10-5) in a linear model and 90 DMPs in a non-linear quadratic model. We compared these results to data from our previous epigenome-wide association study (EWAS) meta-analysis of psychosis, finding evidence that many previously identified DMPs associated with schizophrenia and treatment-resistant schizophrenia might reflect exposure to clozapine. In conclusion, our results indicate that clozapine exposure is associated with changes in DNA methylation and cellular composition. Our study shows that medication effects might confound many case-control studies of neuropsychiatric disorders performed in blood.
Collapse
Affiliation(s)
- Amy L Gillespie
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Emma M Walker
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Eilis Hannon
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Grant A McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessia Avila
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Marte van der Horst
- Department of Psychiatry, University Medical Center, University Utrecht, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Augsburg, Germany
- DZPG (German Center for Mental Health), partner site München/Augsburg, Augsburg, Germany
| | - Emma L Dempster
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Joe Burrage
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Jan Bogers
- Mental health Organization Rivierduinen, Leiden, The Netherlands
| | - Dan Cohen
- Department of Community Mental Health Care, MHO North-Holland North, Heerhugowaard, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, University Medical Center, University Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
- Dimence Institute for Specialized Mental Health Care, Dimence Group, Deventer, The Netherlands
| | - David A Collier
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jurjen J Luykx
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands
- Amsterdam Neuroscience (Mood, Anxiety, Psychosis, Stress & Sleep program) and Amsterdam Public Health (Mental Health program) research institutes, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
32
|
Martino D, Kresoje N, Amenyogbe N, Ben-Othman R, Cai B, Lo M, Idoko O, Odumade OA, Falsafi R, Blimkie TM, An A, Shannon CP, Montante S, Dhillon BK, Diray-Arce J, Ozonoff A, Smolen KK, Brinkman RR, McEnaney K, Angelidou A, Richmond P, Tebbutt SJ, Kampmann B, Levy O, Hancock REW, Lee AHY, Kollmann TR. DNA Methylation signatures underpinning blood neutrophil to lymphocyte ratio during first week of human life. Nat Commun 2024; 15:8167. [PMID: 39289350 PMCID: PMC11408723 DOI: 10.1038/s41467-024-52283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Understanding of newborn immune ontogeny in the first week of life will enable age-appropriate strategies for safeguarding vulnerable newborns against infectious diseases. Here we conducted an observational study exploring the immunological profile of infants longitudinally throughout their first week of life. Our Expanded Program on Immunization - Human Immunology Project Consortium (EPIC-HIPC) studies the epigenetic regulation of systemic immunity using small volumes of peripheral blood samples collected from West African neonates on days of life (DOL) 0, 1, 3, and 7. Genome-wide DNA methylation and single nucleotide polymorphism markers are examined alongside matched transcriptomic and flow cytometric data. Integrative analysis reveals that a core network of transcription factors mediates dynamic shifts in neutrophil-to-lymphocyte ratios (NLR), which are underpinned by cell-type specific methylation patterns in the two cell types. Genetic variants are associated with lower NLRs at birth, and healthy newborns with lower NLRs at birth are more likely to subsequently develop sepsis. These findings provide valuable insights into the early-life determinants of immune system development.
Collapse
Affiliation(s)
- David Martino
- The Kids Research Institute Australia, Perth, WA, Australia.
- University of Western Australia, Crawley, WA, Australia.
| | - Nina Kresoje
- The Kids Research Institute Australia, Perth, WA, Australia
| | - Nelly Amenyogbe
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Bing Cai
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Olubukola Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Reza Falsafi
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Travis M Blimkie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | | | - Bhavjinder K Dhillon
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Asimenia Angelidou
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neonatology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Peter Richmond
- The Kids Research Institute Australia, Perth, WA, Australia
- University of Western Australia, Crawley, WA, Australia
| | - Scott J Tebbutt
- PROOF Centre of Excellence, Providence Research, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, Gambia
- Centre for Global Health and Institute for International Health, Charite Universitatsmedizin, Berlin, Germany
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E W Hancock
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H Y Lee
- Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tobias R Kollmann
- The Kids Research Institute Australia, Perth, WA, Australia
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Jiang Y, Qu M, Jiang M, Jiang X, Fernandez S, Porter T, Laws SM, Masters CL, Guo H, Cheng S, Wang C. MethylGenotyper: Accurate Estimation of SNP Genotypes and Genetic Relatedness from DNA Methylation Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae044. [PMID: 39353864 PMCID: PMC12016561 DOI: 10.1093/gpbjnl/qzae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Epigenome-wide association studies (EWAS) are susceptible to widespread confounding caused by population structure and genetic relatedness. Nevertheless, kinship estimation is challenging in EWAS without genotyping data. Here, we proposed MethylGenotyper, a method that for the first time enables accurate genotyping at thousands of single nucleotide polymorphisms (SNPs) directly from commercial DNA methylation microarrays. We modeled the intensities of methylation probes near SNPs with a mixture of three beta distributions corresponding to different genotypes and estimated parameters with an expectation-maximization algorithm. We conducted extensive simulations to demonstrate the performance of the method. When applying MethylGenotyper to the Infinium EPIC array data of 4662 Chinese samples, we obtained genotypes at 4319 SNPs with a concordance rate of 98.26%, enabling the identification of 255 pairs of close relatedness. Furthermore, we showed that MethylGenotyper allows for the estimation of both population structure and cryptic relatedness among 702 Australians of diverse ancestry. We also implemented MethylGenotyper in a publicly available R package (https://github.com/Yi-Jiang/MethylGenotyper) to facilitate future large-scale EWAS.
Collapse
Affiliation(s)
- Yi Jiang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghan Qu
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghui Jiang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Jiang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shane Fernandez
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
- Curtin Medical School, Bentley, WA 6102, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
- Curtin Medical School, Bentley, WA 6102, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Huan Guo
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shanshan Cheng
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chaolong Wang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Gorla A, Witonsky J, Elhawary JR, Chen ZJ, Mefford J, Perez-Garcia J, Huntsman S, Hu D, Eng C, Woodruff PG, Sankararaman S, Ziv E, Flint J, Zaitlen N, Burchard E, Rahmani E. Epigenetic patient stratification via contrastive machine learning refines hallmark biomarkers in minoritized children with asthma. RESEARCH SQUARE 2024:rs.3.rs-5066762. [PMID: 39315258 PMCID: PMC11419268 DOI: 10.21203/rs.3.rs-5066762/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Identifying and refining clinically significant patient stratification is a critical step toward realizing the promise of precision medicine in asthma. Several peripheral blood hallmarks, including total peripheral blood eosinophil count (BEC) and immunoglobulin E (IgE) levels, are routinely used in asthma clinical practice for endotype classification and predicting response to state-of-the-art targeted biologic drugs. However, these biomarkers appear ineffective in predicting treatment outcomes in some patients, and they differ in distribution between racially and ethnically diverse populations, potentially compromising medical care and hindering health equity due to biases in drug eligibility. Here, we propose constructing an unbiased patient stratification score based on DNA methylation (DNAm) and utilizing it to refine the efficacy of hallmark biomarkers for predicting drug response. We developed Phenotype Aware Component Analysis (PACA), a novel contrastive machine-learning method for learning combinations of DNAm sites reflecting biomedically meaningful patient stratifications. Leveraging whole-blood DNAm from Latino (discovery; n=1,016) and African American (replication; n=756) pediatric asthma case-control cohorts, we applied PACA to refine the prediction of bronchodilator response (BDR) to the short-acting β2-agonist albuterol, the most used drug to treat acute bronchospasm worldwide. While BEC and IgE correlate with BDR in the general patient population, our PACA-derived DNAm score renders these biomarkers predictive of drug response only in patients with high DNAm scores. BEC correlates with BDR in patients with upper-quartile DNAm scores (OR 1.12; 95% CI [1.04, 1.22]; P=7.9 e-4) but not in patients with lower-quartile scores (OR 1.05; 95% CI [0.95, 1.17]; P=0.21); and IgE correlates with BDR in above-median (OR for response 1.42; 95% CI [1.24, 1.63]; P=3.9e-7) but not in below-median patients (OR 1.05; 95% CI [0.92, 1.2]; P=0.57). These results hold within the commonly recognized type 2 (T2)-high asthma endotype but not in T2-low patients, suggesting that our DNAm score primarily represents an unknown variation of T2 asthma. Among T2-high patients with high DNAm scores, elevated BEC or IgE also corresponds to baseline clinical presentation that is known to benefit more from biologic treatment, including higher exacerbation scores, higher allergen sensitization, lower BMI, more recent oral corticosteroids prescription, and lower lung function. Our findings suggest that BEC and IgE, the traditional asthma biomarkers of T2-high asthma, are poor biomarkers for millions worldwide. Revisiting existing drug eligibility criteria relying on these biomarkers in asthma medical care may enhance precision and equity in treatment.
Collapse
Affiliation(s)
- Aditya Gorla
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Witonsky
- Division of Allergy, Immunology, and Bone Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zeyuan Johnson Chen
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Mefford
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, University of La Laguna, La Laguna, Spain
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sriram Sankararaman
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Flint
- Department of Psychiatry and Behavioral Sciences, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Esteban Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Elior Rahmani
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Wang N, Jeong I, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Stenersen JM, Reddy JS, Qiao M, Flaherty D, Gunasekaran TI, Yang Z, Jurisch-Yaksi N, Teich AF, Kanekiyo T, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling. CELL GENOMICS 2024; 4:100642. [PMID: 39216475 PMCID: PMC11480862 DOI: 10.1016/j.xgen.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aβ42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.
Collapse
Affiliation(s)
- Hüseyin Tayran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Elanur Yilmaz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Prabesh Bhattarai
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yiyi Ma
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nastasia Nelson
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Nada Kassara
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Ruya Merve Dogru
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Jakob Mørkved Stenersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph S Reddy
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Min Qiao
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Delaney Flaherty
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Tamil Iniyan Gunasekaran
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Zikun Yang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew F Teich
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Caghan Kizil
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
36
|
Bestry M, Larcombe AN, Kresoje N, Chivers EK, Bakker C, Fitzpatrick JP, Elliott EJ, Craig JM, Muggli E, Halliday J, Hutchinson D, Buckberry S, Lister R, Symons M, Martino D. Early moderate prenatal alcohol exposure and maternal diet impact offspring DNA methylation across species. eLife 2024; 12:RP92135. [PMID: 39239947 PMCID: PMC11379454 DOI: 10.7554/elife.92135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.
Collapse
Affiliation(s)
- Mitchell Bestry
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Australia
| | | | - Emily K Chivers
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Australia
| | - Chloe Bakker
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Australia
| | - James P Fitzpatrick
- School of Psychological Sciences, University of Western Australia, Perth, Australia
| | - Elizabeth J Elliott
- University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Melbourne, Australia
- Sydney Children's Hospitals Network (Westmead) and Kids Research, Geelong, Australia
| | - Jeffrey M Craig
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia
| | - Evelyne Muggli
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, Australia
| | - Delyse Hutchinson
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Royal Children's Hospital, Melbourne, Australia
- University New South Wales, National Drug and Alcohol Research Centre, Sydney, Australia
| | - Sam Buckberry
- Telethon Kids Institute, Nedlands, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Martyn Symons
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
- National Drug Research Institute, enAble Institute, Curtin University, Perth, Australia
| | - David Martino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Australia
| |
Collapse
|
37
|
Kreitmaier P, Swift D, Wilkinson JM, Zeggini E. Epigenomic differences between osteoarthritis grades in primary cartilage. Osteoarthritis Cartilage 2024; 32:1126-1133. [PMID: 39053729 DOI: 10.1016/j.joca.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Osteoarthritis is a common and complex joint disorder that shows higher prevalence and greater disease severity in women. Here, we investigate genome-wide methylation profiles of primary chondrocytes from osteoarthritis patients. DESIGN We compare genome-wide methylation profiles of macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage samples matched from osteoarthritis patients undergoing knee replacement surgery. We perform an epigenome-wide association study for cartilage degeneration across 170 patients and separately in 96 women and 74 men. RESULTS We reveal widespread epigenetic differences with enrichments of nervous system and apoptosis-related processes. We further identify substantial similarities between sexes, but also sex-specific markers and pathways. CONCLUSIONS Together, we provide the largest genome-wide methylation profiles of primary cartilage to date with enhanced and sex-specific insights into epigenetic processes underlying osteoarthritis progression.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Diane Swift
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - J Mark Wilkinson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
38
|
Lieberman-Cribbin W, Domingo-Relloso A, Glabonjat RA, Schilling K, Cole SA, O'Leary M, Best LG, Zhang Y, Fretts AM, Umans JG, Goessler W, Navas-Acien A, Tellez-Plaza M, Kupsco A. An epigenome-wide study of selenium status and DNA methylation in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2024; 191:108955. [PMID: 39154409 PMCID: PMC11909799 DOI: 10.1016/j.envint.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Selenium (Se) is an essential nutrient linked to adverse health endpoints at low and high levels. The mechanisms behind these relationships remain unclear and there is a need to further understand the epigenetic impacts of Se and their relationship to disease. We investigated the association between urinary Se levels and DNA methylation (DNAm) in the Strong Heart Study (SHS), a prospective study of cardiovascular disease (CVD) among American Indians adults. METHODS Selenium concentrations were measured in urine (collected in 1989-1991) using inductively coupled plasma mass spectrometry among 1,357 participants free of CVD and diabetes. DNAm in whole blood was measured cross-sectionally using the Illumina MethylationEPIC BeadChip (850 K) Array. We used epigenome-wide robust linear regressions and elastic net to identify differentially methylated cytosine-guanine dinucleotide (CpG) sites associated with urinary Se levels. RESULTS The mean (standard deviation) urinary Se concentration was 51.8 (25.1) μg/g creatinine. Across 788,368 CpG sites, five differentially methylated positions (DMP) (hypermethylated: cg00163554, cg18212762, cg11270656, and hypomethylated: cg25194720, cg00886293) were significantly associated with Se in linear regressions after accounting for multiple comparisons (false discovery rate p-value: 0.10). The top hypermethylated DMP (cg00163554) was annotated to the Disco Interacting Protein 2 Homolog C (DIP2C) gene, which relates to transcription factor binding. Elastic net models selected 425 hypo- and hyper-methylated DMPs associated with urinary Se, including three sites (cg00163554 [DIP2C], cg18212762 [MAP4K2], cg11270656 [GPIHBP1]) identified in linear regressions. CONCLUSIONS Urinary Se was associated with minimal changes in DNAm in adults from American Indian communities across the Southwest and the Great Plains in the United States, suggesting that other mechanisms may be driving health impacts. Future analyses should explore other mechanistic biomarkers in human populations, determine these relationships prospectively, and investigate the potential role of differentially methylated sites with disease endpoints.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, SD 57625, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
39
|
Ma Y, Reyes-Dumeyer D, Piriz A, Recio P, Mejia DR, Medrano M, Lantigua RA, Vonsattel JPG, Tosto G, Teich AF, Ciener B, Leskinen S, Sivakumar S, DeTure M, Ranjan D, Dickson D, Murray M, Lee E, Wolk DA, Jin LW, Dugger BN, Hiniker A, Rissman RA, Mayeux R, Vardarajan BN. Epigenetic and genetic risk of Alzheimer disease from autopsied brains in two ethnic groups. Acta Neuropathol 2024; 148:27. [PMID: 39177846 PMCID: PMC11343944 DOI: 10.1007/s00401-024-02778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Genetic variants and epigenetic features both contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as a hub of both the genetic and epigenetic effects, in Caribbean Hispanics (CH) and generalized the findings to Non-Hispanic Whites (NHW). First, we conducted a genome-wide, sliding-window-based association with AD, in 7,155 CH and 1,283 NHW participants. Next, using data from the dorsolateral prefrontal cortex in 179 CH brains, we tested the cis- and trans-effects of AD-associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we investigated their enriched pathways. We identified six genetic loci in CH with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score = 55.19, P = 4.06 × 10-8), the intergenic region between VRTN and SYNDIG1L (Score = - 37.67, P = 2.25 × 10-9), SPG7 (16q24.3) (Score = 40.51, P = 2.23 × 10-8), PVRL2 (Score = 125.86, P = 1.64 × 10-9), TOMM40 (Score = - 18.58, P = 4.61 × 10-8), and APOE (Score = 75.12, P = 7.26 × 10-26). CGSes in PVRL2 and APOE were also significant in NHW. Except for ADAM20, CGSes in the other five loci were associated with CH brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L (P = 0.08), brain methylation levels in the other five loci affected downstream mRNA expression in CH (P < 0.05), and methylation at VRTN and TOMM40 were also associated with mRNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and glutamatergic synapse pathways (FDR < 0.05). DNA methylation at all six loci and mRNA expression of SYNDIG1 and TOMM40 were significantly associated with Braak Stage in CH. In summary, we identified six CpG-related genetic loci associated with AD in CH, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.
Collapse
Affiliation(s)
- Yiyi Ma
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
| | - Angel Piriz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Diones Rivera Mejia
- CEDIMAT, Santo Domingo, Dominican Republic
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra (PUCMM), Santiago, Dominican Republic
| | - Rafael A Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, NY, USA
| | - Jean Paul G Vonsattel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Benjamin Ciener
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sandra Leskinen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sharanya Sivakumar
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Duara Ranjan
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Edward Lee
- Department of Neurology and Penn Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology and Penn Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Annie Hiniker
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Robert A Rissman
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA.
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, 630 West 168th street, New York, NY, 10032, USA.
| |
Collapse
|
40
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Michael A Hauser, Hayes JP, Hemmings SM, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: A meta-analysis of 23 military and civilian cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310422. [PMID: 39072012 PMCID: PMC11275670 DOI: 10.1101/2024.07.15.24310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
| | - Agaz H Wani
- University of South Florida, Genomics Program, College of Public Health, Tampa, FL, US
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Andrew Ratanatharathorn
- Columbia University Mailmain School of Public Health, Department of Epidemiology, New York, NY, US
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, US
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Xiang Zhao
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, US
| | | | - Diana Avetyan
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
| | - Jean C Beckham
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht, UT, NL
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, US
| | | | - Chia-Yen Chen
- Biogen Inc., Translational Sciences, Cambridge, MA, US
| | - Shareefa Dalvie
- University of Cape Town, Department of Pathology, Cape Town, Western Province, ZA
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, ZA
| | - Michelle F Dennis
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, TRACTS/GRECC, Boston, MA, US
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, US
| | - Melanie E Garrett
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, US
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, NL
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, NL
| | - Gerald Grant
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, US
| | - Michael A Hauser
- Duke University School of Medicine, Department of Medicine, Durham, NC, US
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, US
| | - Sian Mj Hemmings
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SAMRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Bertrand Russel Huber
- Boston University School of Medicine, Department of Neurology, Boston, MA, US
- VA Boston Healthcare System, Pathology and Laboratory Medicine, Boston, MA, US
| | - Aarti Jajoo
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
| | - Stefan Jansen
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, US
| | - Nathan A Kimbrel
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, US
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, US
- The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, US
| | - Joel E Kleinman
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
- Lieber Institute for Brain Development, Baltimore, MD, US
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, NY, US
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, US
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, UNC Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Adriana Lori
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Benjamin J Luft
- Stony Brook University, Department of Medicine, Stony Brook, NY, US
| | - Jurjen J Luykx
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam, NH, NL
| | - Christine E Marx
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC, US
| | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Psychiatry, Chapel Hill, NC, US
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, AU
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, ZA
| | - Clarisse Musanabaganwa
- Rwanda Biomedical Center, Research Innovation and Data Science Division, Kigali, RW
- University of Rwanda, Center of Human Genetics, Kigali, RW
| | - Jean Mutabaruka
- University of Rwanda, Department of Clinical Psychology, Huye, RW
| | - Leon Mutesa
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
- University of Rwanda, Center for Human Genetics, Kigali, RW
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychology, Austin, TX, US
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Austin, TX, US
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, US
- Alpert Brown Medical School, Department of Pediatrics, Providence, RI, US
- Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, US
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, US
| | - Sheila A M Rauch
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, US
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, US
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | | | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL
| | - Soraya Seedat
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
- University of California San Diego, School of Public Health, La Jolla, CA, US
| | - Sylvanus Toikumo
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Robert J Ursano
- Uniformed Services University, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, Maryland, US
| | - Annette Uwineza
- University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, US
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL
- New York University School of Medicine, Department of Psychiatry, New York, NY, US
| | - Christiaan H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, Holland, NL
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, NL
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, Holland, NL
| | - Erin B Ware
- University of Michigan, Survey Research Center, Ann Arbor, MI, US
| | - Derek E Wildman
- University of South Florida, College of Public Health, Tampa, FL, US
- University of South Florida, Genomics Program, Tampa, FL, US
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, US
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, AU
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, AU
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
| | - Leigh L van den Heuvel
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, US
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
- Emory University, Department of Human Genetics, Atlanta, GA, US
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| |
Collapse
|
41
|
Seo S, Kim YA, Lee Y, Kim YJ, Kim BJ, An JH, Jin H, Do AR, Park K, Won S, Seo JH. Epigenetic link between Agent Orange exposure and type 2 diabetes in Korean veterans. Front Endocrinol (Lausanne) 2024; 15:1375459. [PMID: 39072272 PMCID: PMC11272593 DOI: 10.3389/fendo.2024.1375459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Conflicting findings have been reported regarding the association between Agent Orange (AO) exposure and type 2 diabetes. This study aimed to examine whether AO exposure is associated with the development of type 2 diabetes and to verify the causal relationship between AO exposure and type 2 diabetes by combining DNA methylation with DNA genotype analyses. An epigenome-wide association study and DNA genotype analyses of the blood of AO-exposed and AO-unexposed individuals with type 2 diabetes and that of healthy controls were performed. Methylation quantitative trait locus and Mendelian randomisation analyses were performed to evaluate the causal effect of AO-exposure-identified CpGs on type 2 diabetes. AO-exposed individuals with type 2 diabetes were associated with six hypermethylated CpG sites (cg20075319, cg21757266, cg05203217, cg20102280, cg26081717, and cg21878650) and one hypo-methylated CpG site (cg07553761). Methylation quantitative trait locus analysis showed the methylation levels of some CpG sites (cg20075319, cg20102280, and cg26081717) to be significantly different. Mendelian randomisation analysis showed that CpG sites that were differentially methylated in AO-exposed individuals were causally associated with type 2 diabetes; the reverse causal effect was not significant. These findings reflect the need for further epigenetic studies on the causal relationship between AO exposure and type 2 diabetes.
Collapse
Affiliation(s)
- Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Jae Hoon An
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
42
|
Martino D, Schultz N, Kaur R, van Haren SD, Kresoje N, Hoch A, Diray-Arce J, Su JL, Levy O, Pichichero M. Respiratory infection- and asthma-prone, low vaccine responder children demonstrate distinct mononuclear cell DNA methylation pathways. Clin Epigenetics 2024; 16:85. [PMID: 38961479 PMCID: PMC11223352 DOI: 10.1186/s13148-024-01703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunizations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripheral blood mononuclear cells from respiratory infection allergy/asthma-prone (IAP) infants and non-infection allergy/asthma prone (NIAP) were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fisher's exact p-value = 0.02). RESULTS An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPL), a TLR agonist, partially reversed this signature at a subset of CpGs, suggesting the potential for epigenetic remodeling. CONCLUSIONS This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for future investigation.
Collapse
Affiliation(s)
- David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Nikki Schultz
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ravinder Kaur
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Nina Kresoje
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Jessica Lasky Su
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Michael Pichichero
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| |
Collapse
|
43
|
Lujan C, Tyler EJ, Ecker S, Webster AP, Stead ER, Martinez-Miguel VE, Milligan D, Garbe JC, Stampfer MR, Beck S, Lowe R, Bishop CL, Bjedov I. An expedited screening platform for the discovery of anti-ageing compounds in vitro and in vivo. Genome Med 2024; 16:85. [PMID: 38956711 PMCID: PMC11218148 DOI: 10.1186/s13073-024-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.
Collapse
Affiliation(s)
- Celia Lujan
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK
| | - Eleanor Jane Tyler
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Simone Ecker
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK
| | - Amy Philomena Webster
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK
- University of Exeter Medical School, Exeter, UK
| | - Eleanor Rachel Stead
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK
| | - Victoria Eugenia Martinez-Miguel
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Deborah Milligan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - James Charles Garbe
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martha Ruskin Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephan Beck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK.
| | - Robert Lowe
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Cleo Lucinda Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK.
| |
Collapse
|
44
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Sabaredzovic A, Lyon-Caen S, Bayat S, Slama R, Philippat C, Lepeule J. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. ENVIRONMENT INTERNATIONAL 2024; 189:108763. [PMID: 38824843 DOI: 10.1016/j.envint.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; ISGlobal, Barcelona, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), 59000 Lille, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | | | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
46
|
Patel D, McElroy JP, Weng DY, Sahar K, Reisinger SA, Freudenheim JL, Wewers MD, Shields PG, Song MA. Sex-related DNA methylation is associated with inflammation and gene expression in the lungs of healthy individuals. Sci Rep 2024; 14:14280. [PMID: 38902313 PMCID: PMC11190195 DOI: 10.1038/s41598-024-65027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Lung cancer exhibits sex-biased molecular characteristics and epidemiological trends, suggesting a need for sex-specific approaches to understanding its etiology and treatment. DNA methylation alterations play critical roles in lung carcinogenesis and may serve as valuable biomarkers for precision medicine strategies. We employed the Infinium MethylationEPIC array to identify autosomal sex-related differentially methylated CpG sites (DM-CpGs) in lung epithelium of healthy individuals (32 females and 37 males) while controlling for age, BMI, and tobacco use. We correlated DM-CpGs with gene expression in lung epithelium and immune responses in bronchoalveolar lavage. We validated these DM-CpGs in lung tumors and adjacent normal tissue from The Cancer Genome Atlas (TCGA). Among 522 identified DM-CpGs, 61% were hypermethylated in females, predominantly located in promoter regions. These DM genes were implicated in cell-to-cell signaling, cellular function, transport, and lipid metabolism. Correlation analysis revealed sex-specific patterns between DM-CpGs and gene expression. Additionally, several DM-CpGs were correlated significantly with cytokines (IL-1β, IL-4, IL-12p70, and IFN-γ), macrophage, and lymphocyte counts. Also, some DM-CpGs were observed in TCGA lung adenocarcinoma, squamous cell carcinoma, and adjacent normal tissues. Our findings highlight sex-specific DNA methylation patterns in healthy lung epithelium and their associations with lung gene expression and lung immune biomarkers. These findings underscore the potential role of lung sex-related CpGs as epigenetic predispositions influencing sex disparities in lung cancer risk and outcomes, warranting further investigation for personalized lung cancer management strategies.
Collapse
Affiliation(s)
- Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Kamel Sahar
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
47
|
MacCalman A, De Franco E, Franklin A, Flaxman CS, Richardson SJ, Murrall K, Burrage J, Walker EM, Morgan NG, Hattersley AT, Dempster EL, Hannon E, Jeffries AR, Owens NDL, Mill J. Developmentally dynamic changes in DNA methylation in the human pancreas. BMC Genomics 2024; 25:553. [PMID: 38831310 PMCID: PMC11145889 DOI: 10.1186/s12864-024-10450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.
Collapse
Affiliation(s)
- Ailsa MacCalman
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Kathryn Murrall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Emma M Walker
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Aaron R Jeffries
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
48
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, PTSD Working Group of Psychiatric Genomics Consortium, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
Collaborators
Caroline M Nievergelt, Adam X Maihofer, Elizabeth G Atkinson, Chia-Yen Chen, Karmel W Choi, Jonathan R I Coleman, Nikolaos P Daskalakis, Laramie E Duncan, Renato Polimanti, Cindy Aaronson, Ananda B Amstadter, Soren B Andersen, Ole A Andreassen, Paul A Arbisi, Allison E Ashley-Koch, S Bryn Austin, Esmina Avdibegoviç, Dragan Babić, Silviu-Alin Bacanu, Dewleen G Baker, Anthony Batzler, Jean C Beckham, Sintia Belangero, Corina Benjet, Carisa Bergner, Linda M Bierer, Joanna M Biernacka, Laura J Bierut, Jonathan I Bisson, Marco P Boks, Elizabeth A Bolger, Amber Brandolino, Gerome Breen, Rodrigo Affonseca Bressan, Richard A Bryant, Angela C Bustamante, Jonas Bybjerg-Grauholm, Marie Bækvad-Hansen, Anders D Børglum, Sigrid Børte, Leah Cahn, Joseph R Calabrese, Jose Miguel Caldas-de-Almeida, Chris Chatzinakos, Sheraz Cheema, Sean A P Clouston, Lucía Colodro-Conde, Brandon J Coombes, Carlos S Cruz-Fuentes, Anders M Dale, Shareefa Dalvie, Lea K Davis, Jürgen Deckert, Douglas L Delahanty, Michelle F Dennis, Frank Desarnaud, Christopher P DiPietro, Seth G Disner, Anna R Docherty, Katharina Domschke, Grete Dyb, Alma Džubur Kulenović, Howard J Edenberg, Alexandra Evans, Chiara Fabbri, Negar Fani, Lindsay A Farrer, Adriana Feder, Norah C Feeny, Janine D Flory, David Forbes, Carol E Franz, Sandro Galea, Melanie E Garrett, Bizu Gelaye, Joel Gelernter, Elbert Geuze, Charles F Gillespie, Slavina B Goleva, Scott D Gordon, Aferdita Goçi, Lana Ruvolo Grasser, Camila Guindalini, Magali Haas, Saskia Hagenaars, Michael A Hauser, Andrew C Heath, Sian M J Hemmings, Victor Hesselbrock, Ian B Hickie, Kelleigh Hogan, David Michael Hougaard, Hailiang Huang, Laura M Huckins, Kristian Hveem, Miro Jakovljević, Arash Javanbakht, Gregory D Jenkins, Jessica Johnson, Ian Jones, Tanja Jovanovic, Karen-Inge Karstoft, Milissa L Kaufman, James L Kennedy, Ronald C Kessler, Alaptagin Khan, Nathan A Kimbrel, Anthony P King, Nastassja Koen, Roman Kotov, Henry R Kranzler, Kristi Krebs, William S Kremen, Pei-Fen Kuan, Bruce R Lawford, Lauren A M Lebois, Kelli Lehto, Daniel F Levey, Catrin Lewis, Israel Liberzon, Sarah D Linnstaedt, Mark W Logue, Adriana Lori, Yi Lu, Benjamin J Luft, Michelle K Lupton, Jurjen J Luykx, Iouri Makotkine, Jessica L Maples-Keller, Shelby Marchese, Charles Marmar, Nicholas G Martin, Gabriela A Martínez-Levy, Kerrie McAloney, Alexander McFarlane, Katie A McLaughlin, Samuel A McLean, Sarah E Medland, Divya Mehta, Jacquelyn Meyers, Vasiliki Michopoulos, Elizabeth A Mikita, Lili Milani, William Milberg, Mark W Miller, Rajendra A Morey, Charles Phillip Morris, Ole Mors, Preben Bo Mortensen, Mary S Mufford, Elliot C Nelson, Merete Nordentoft, Sonya B Norman, Nicole R Nugent, Meaghan O'Donnell, Holly K Orcutt, Pedro M Pan, Matthew S Panizzon, Gita A Pathak, Edward S Peters, Alan L Peterson, Matthew Peverill, Robert H Pietrzak, Melissa A Polusny, Bernice Porjesz, Abigail Powers, Xue-Jun Qin, Andrew Ratanatharathorn, Victoria B Risbrough, Andrea L Roberts, Alex O Rothbaum, Barbara O Rothbaum, Peter Roy-Byrne, Kenneth J Ruggiero, Ariane Rung, Heiko Runz, Bart P F Rutten, Stacey Saenz de Viteri, Giovanni Abrahão Salum, Laura Sampson, Sixto E Sanchez, Marcos Santoro, Carina Seah, Soraya Seedat, Julia S Seng, Andrey Shabalin, Christina M Sheerin, Derrick Silove, Alicia K Smith, Jordan W Smoller, Scott R Sponheim, Dan J Stein, Synne Stensland, Jennifer S Stevens, Jennifer A Sumner, Martin H Teicher, Wesley K Thompson, Arun K Tiwari, Edward Trapido, Monica Uddin, Robert J Ursano, Unnur Valdimarsdóttir, Miranda Van Hooff, Eric Vermetten, Christiaan H Vinkers, Joanne Voisey, Yunpeng Wang, Zhewu Wang, Monika Waszczuk, Heike Weber, Frank R Wendt, Thomas Werge, Michelle A Williams, Douglas E Williamson, Bendik S Winsvold, Sherry Winternitz, Christiane Wolf, Erika J Wolf, Yan Xia, Ying Xiong, Rachel Yehuda, Keith A Young, Ross McD Young, Clement C Zai, Gwyneth C Zai, Mark Zervas, Hongyu Zhao, Lori A Zoellner, John-Anker Zwart, Terri deRoon-Cassini, Sanne J H van Rooij, Leigh L van den Heuvel, Murray B Stein, Kerry J Ressler, Karestan C Koenen,
Collapse
|
49
|
Salama OE, Hizon N, Del Vecchio M, Kolsun K, Fonseca MA, Lin DTS, Urtatiz O, MacIsaac JL, Kobor MS, Sellers EAC, Dolinsky VW, Dart AB, Jones MJ, Wicklow BA. DNA methylation signatures of youth-onset type 2 diabetes and exposure to maternal diabetes. Clin Epigenetics 2024; 16:65. [PMID: 38741114 DOI: 10.1186/s13148-024-01675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.
Collapse
Affiliation(s)
- Ola E Salama
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Melissa Del Vecchio
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Kurt Kolsun
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mario A Fonseca
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - David T S Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A C Sellers
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Allison B Dart
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| | - Brandy A Wicklow
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
50
|
McDonnell E, Orr SE, Barter MJ, Rux D, Brumwell A, Wrobel N, Murphy L, Overmann LM, Sorial AK, Young DA, Soul J, Rice SJ. Epigenetic mechanisms of osteoarthritis risk in human skeletal development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.05.24306832. [PMID: 38766055 PMCID: PMC11100852 DOI: 10.1101/2024.05.05.24306832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The epigenome, including the methylation of cytosine bases at CG dinucleotides, is intrinsically linked to transcriptional regulation. The tight regulation of gene expression during skeletal development is essential, with ~1/500 individuals born with skeletal abnormalities. Furthermore, increasing evidence is emerging to link age-associated complex genetic musculoskeletal diseases, including osteoarthritis (OA), to developmental factors including joint shape. Multiple studies have shown a functional role for DNA methylation in the genetic mechanisms of OA risk using articular cartilage samples taken from aged patients. Despite this, our knowledge of temporal changes to the methylome during human cartilage development has been limited. We quantified DNA methylation at ~700,000 individual CpGs across the epigenome of developing human articular cartilage in 72 samples ranging from 7-21 post-conception weeks, a time period that includes cavitation of the developing knee joint. We identified significant changes in 8% of all CpGs, and >9400 developmental differentially methylated regions (dDMRs). The largest hypermethylated dDMRs mapped to transcriptional regulators of early skeletal patterning including MEIS1 and IRX1. Conversely, the largest hypomethylated dDMRs mapped to genes encoding extracellular matrix proteins including SPON2 and TNXB and were enriched in chondrocyte enhancers. Significant correlations were identified between the expression of these genes and methylation within the hypomethylated dDMRs. We further identified 811 CpGs at which significant dimorphism was present between the male and female samples, with the majority (68%) being hypermethylated in female samples. Following imputation, we captured the genotype of these samples at >5 million variants and performed epigenome-wide methylation quantitative trait locus (mQTL) analysis. Colocalization analysis identified 26 loci at which genetic variants exhibited shared impacts upon methylation and OA genetic risk. This included loci which have been previously reported to harbour OA-mQTLs (including GDF5 and ALDH1A2), yet the majority (73%) were novel (including those mapping to CHST3, FGF1 and TEAD1). To our knowledge, this is the first extensive study of DNA methylation across human articular cartilage development. We identify considerable methylomic plasticity within the development of knee cartilage and report active epigenomic mediators of OA risk operating in prenatal joint tissues.
Collapse
Affiliation(s)
- Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, United Kingdom
| | - Sarah E Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Matthew J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Danielle Rux
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Abby Brumwell
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynne M Overmann
- Human Developmental Biology Resource, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Antony K Sorial
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|