1
|
Yang J, Yue G, Fan Z, Zhang N, Nie S, Li J, Ji Y. FOXA1 Targets NEK2 to Mediate Cisplatin Resistance in Lung Adenocarcinoma Cells by Activating DNA Damage Repair. Drug Dev Res 2025; 86:e70087. [PMID: 40233258 DOI: 10.1002/ddr.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of death in cancer patients, as its hidden course is difficult to uncover, resulting in many patients being diagnosed as advanced. Late-stage LUAD patients are prone to develop resistance to cisplatin. This study aims to explore the potential molecular regulatory mechanism of NEK2 on cisplatin resistance in LUAD cells. The expression levels of NEK2 and FOXA1 in LUAD tissues were analyzed based on bioinformatics methods. qRT-PCR analysis was carried out to measure the mRNA expression levels of NEK2 and FOXA1 in LUAD cells. CCK8 detected and calculated cell viability and IC50 values for each group of cells. Gene set enrichment analysis (GSEA) analyzed signaling pathways enriched by the NEK2 gene in LUAD. Dual luciferase and CHIP experiments were conducted to verify the binding relationship between NEK2 and FOXA1. Comet assay was utilized to analyze the level of DNA damage in LUAD cells. Western blot (WB) measured the expression levels of DNA damage-related proteins (γ-H2AX, p-ATM). The experimental results showed that FOXA1 and NEK2 were highly expressed in LUAD tissues and cells. GSEA analysis showed that NEK2 was enriched in DNA damage-related pathways, and silencing NEK2 could reduce the vitality of LUAD cisplatin-resistant cells, lower the IC50 value of cells to cisplatin, and increase their DNA damage levels. FOXA1 can target the promoter region that binds to NEK2, and it can activate NEK2 through transcription to promote DNA damage repair and cisplatin resistance in cisplatin-resistant LUAD cells. This study confirms that FOXA1 can target NEK2 to promote DNA damage repair and cisplatin resistance in LUAD cells, providing a new valuable therapeutic target for the treatment of LUAD and the control of chemotherapy drug resistance.
Collapse
Affiliation(s)
- Junhong Yang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Guangcheng Yue
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Zhiguo Fan
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Ning Zhang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Shiwei Nie
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Jing Li
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Yuanyuan Ji
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| |
Collapse
|
2
|
Goglia AG, Alshalalfa M, Khan A, Isakov DR, Hougen HY, Swami N, Kannikal J, Mcbride SM, Gomez DR, Punnen S, Nguyen PL, Iyengar P, Antonarakis ES, Mahal BA, Dee EC. Pan-cancer genomic analysis reveals FOXA1 amplification is associated with adverse outcomes in non-small cell lung, prostate, and breast cancers. J Natl Cancer Inst 2025; 117:188-197. [PMID: 39254651 PMCID: PMC11717412 DOI: 10.1093/jnci/djae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Alterations in forkhead box A1 (FOXA1), a pioneer transcription factor, are associated with poor prognosis in breast cancer and prostate cancer. We characterized FOXA1 genomic alterations and their clinical impacts in a large pan-cancer cohort from the American Association for Cancer Research Genomics, Evidence, Neoplasia, Information, Exchange database. METHODS FOXA1 alterations were characterized across more than 87 000 samples from more than 30 cancer types for primary and metastatic tumors alongside patient characteristics and clinical outcomes. FOXA1 alterations were queried in the Memorial Sloan Kettering - Metastatic Events and Tropisms (MSK-MET) cohort (a GENIE subset), allowing definition of hazard ratios (HRs) and survival estimates based on Cox proportional hazard models. RESULTS FOXA1 was altered in 1869 (2.1%) samples, with distinct patterns across different cancers: prostate cancer enriched with indel-inframe alterations, breast cancer with missense mutations, and lung cancers with copy number amplifications. Of 74 715 samples with FOXA1 copy number profiles, amplification was detected in 834 (1.1%). Amplification was most common in non-small cell lung cancer (NSCLC; 3% in primary; 6% in metastatic) and small cell lung cancer (4.1% primary; 3.5% metastatic), followed by breast cancer (2% primary; 1.6% metastatic) and prostate cancer (2.2% primary; 1.6% metastatic). Copy number amplifications were associated with decreased overall survival in NSCLC (HR = 1.45, 95% confidence interval [CI] = 1.06 to 1.99; P = .02), breast cancer (HR = 3.04, 95% CI = 1.89 to 4.89; P = 4e-6), and prostate cancer (HR = 1.94, 95% CI = 1.03 to 3.68; P = .04). Amplifications were associated with widespread metastases in NSCLC, breast cancer, and prostate cancer. CONCLUSIONS FOXA1 demonstrates distinct alteration profiles across cancer sites. Our findings suggest an association between FOXA1 amplification and enhanced metastatic potential and decreased survival, highlighting prognostic and therapeutic potential in breast cancer, prostate cancer, and NSCLC.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Anwar Khan
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Danielle R Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen Y Hougen
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Nishwant Swami
- Division of Internal Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Jasmine Kannikal
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sean M Mcbride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanoj Punnen
- Desai and Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Sun L, Chen J, Li LJ, Li L. Similarity-based metric analysis approach for predicting osteogenic differentiation correlation coefficients and discovering the novel osteogenic-related gene FOXA1 in BMSCs. PeerJ 2024; 12:e18068. [PMID: 39308804 PMCID: PMC11416762 DOI: 10.7717/peerj.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background As a powerful tool, bioinformatics analysis is playing an increasingly important role in many fields. Osteogenic differentiation is a complex biological process involving the fine regulation of numerous genes and signaling pathways. Method Osteogenic differentiation-related genes are collected from the online databases. Then, we proposed two indexes Jaccard similarity and Sorensen-Dice similarity to measure the topological relevance of genes in the human PPI network. Furthermore, we selected three pathways involving osteoblast-related transcription factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation for investigation. Subsequently, we performed functional a enrichment analysis of these top-ranked genes to check whether these candidate genes identified by similarity-based metrics are enriched in some specific biological functions and states. we performed a permutation test to investigate the similarity score with four well-known osteogenic differentiation-related pathways including hedgehog signaling pathway, BMP signaling, ERK pathway, and Wnt signaling pathway to check whether these osteogenic differentiation-related pathways can be regulated by FOXA1. Lentiviral transfection was used to knockdown and overexpress gene FOXA1 in human bone mesenchymal stem cells (hBMSCs). Alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS) were employed to investigate osteogenic differentiation of hBMSCs. Result After data collection, human PPI network involving 19,344 genes is included in our analysis. After simplifying, we used Jaccard and Sorensen-Dice similarity to identify osteogenic differentiation-related genes and integrated into a final similarity matrix. Furthermore, we calculated the sum of similarity scores with these osteogenic differentiation-related genes for each gene and found 337 osteogenic differentiation-related genes are involved in our analysis. We selected three pathways involving osteoblast-related transcription factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation for investigation and performed functional enrichment analysis of these top-ranked 50 genes. The results collectively demonstrate that these candidate genes can indeed capture osteogenic differentiation-related features of hBSMCs. According to the novel analyzing method, we found that these four pathways have significantly higher similarity with FOXA1 than random noise. Moreover, knockdown FOXA1 significantly increased the ALP activity and mineral deposits. Furthermore, overexpression of FOXA1 dramatically decreased the ALP activity and mineral deposits. Conclusion In summary, this study showed that FOXA1 is a novel significant osteogenic differentiation-related transcription factor. Moreover, our study has tightly integrated bioinformatics analysis with biological knowledge, and developed a novel method for analyzing the osteogenic differentiation regulatory network.
Collapse
Affiliation(s)
- Lingtong Sun
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Juan Chen
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Jun Li
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingdi Li
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
5
|
Janaththani P, Tevz G, Fernando A, Malik A, Rockstroh A, Kryza T, Walpole C, Moya L, Lehman M, Nelson C, Srinivasan S, Clements J, Batra J. Unravelling the Role of Iroquois Homeobox 4 and its Interplay with Androgen Receptor in Prostate Cancer. RESEARCH SQUARE 2023:rs.3.rs-3295914. [PMID: 38076926 PMCID: PMC10705702 DOI: 10.21203/rs.3.rs-3295914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.
Collapse
Affiliation(s)
- Panchadsaram Janaththani
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Victoria
| | - Gregor Tevz
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adil Malik
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Anja Rockstroh
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Carina Walpole
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Melanie Lehman
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Colleen Nelson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - The Australian Prostate Cancer BioResource
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | | | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Ahire D, Heyward S, Prasad B. Intestinal Metabolism of Diclofenac by Polymorphic UGT2B17 Correlates with its Highly Variable Pharmacokinetics and Safety across Populations. Clin Pharmacol Ther 2023; 114:161-172. [PMID: 37042794 PMCID: PMC10330245 DOI: 10.1002/cpt.2907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Although the United States and Europe have shifted to the prescription use of oral diclofenac due to several serious incidences of cardiotoxicity, it is one of the most commonly used over-the-counter (OTC) pain medicines in major parts of the world. We elucidated the quantitative and tissue-specific contribution of uridine diphosphate-glucuronosyltransferases 17 (UGT2B17) in diclofenac metabolism and pharmacokinetics (PK). UGT2B17 is one of most deleted genes in humans with the gene deletion frequency ranging from ~ 20% in White population to 90% in Japanese population. The human intestinal and liver microsomes isolated from the high-UGT2B17 expressing individuals showed 21- and 4-fold greater rate of diclofenac glucuronide (DG) formation than in the null-UGT2B17 carriers, respectively. The greater contribution of intestinal UGT2B17 was confirmed by a strong correlation (R = 0.78, P < 0.001) between UGT2B17 abundance and DG formation in individual intestinal microsomes (n = 14). However, because UGT2B17 is a minor UGT isoform in the liver, DG formation rate correlated better with the expression of UGT2B7. The proteomics-informed physiologically-based pharmacokinetic (PBPK) model explains the reported higher exposure of diclofenac in women consistent with ~ 3-fold lower expression of UGT2B17. Similarly, our in silico predictions also corroborate with the reported higher exposure and lower standard clinical dose of diclofenac in Japanese population. Therefore, variable UGT2B17 mediated metabolism of oral diclofenac is a cause of concern, especially in the developing countries where it is still used as an OTC drug. The ontogeny data of UGTs in human hepatocytes can be utilized in developing PBPK models for predicting PK in the pediatric population.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
7
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
8
|
Barker R, Biernacka K, Kingshott G, Sewell A, Gwiti P, Martin RM, Lane JA, McGeagh L, Koupparis A, Rowe E, Oxley J, Perks CM, Holly JMP. Associations of CTCF and FOXA1 with androgen and IGF pathways in men with localized prostate cancer. Growth Horm IGF Res 2023; 69-70:101533. [PMID: 37086646 DOI: 10.1016/j.ghir.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
AIMS To examine associations between the transcription factors CCCTC-binding factor (CTCF) and forkhead box protein A1 (FOXA1) and the androgen receptor (AR) and their association with components of the insulin-like growth factor (IGF)-pathway in a cohort of men with localized prostate cancer. METHODS Using prostate tissue samples collected during the Prostate cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) trial (N = 70 to 92, depending on section availability), we assessed the abundance of CTCF, FOXA1, AR, IGFIR, p-mTOR, PTEN and IGFBP-2 proteins using a modified version of the Allred scoring system. Validation studies were performed using large, publicly available datasets (TCGA) (N = 489). RESULTS We identified a strong correlation between CTCF and AR staining with benign prostate tissue. CTCF also strongly associated with the IGFIR, with PTEN and with phospho-mTOR. FOXA1 was also correlated with staining for the IGF-IR, with IGFBP-2 and with staining for activated phosphor-mTOR. The staining for the IGF-IR was strongly correlated with the AR. CONCLUSION Our findings emphasise the close and complex links between the endocrine controls, well known to play an important role in prostate cancer, and the transcription factors implicated by the recent genetic evidence.
Collapse
Affiliation(s)
- Rachel Barker
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Kalina Biernacka
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Georgina Kingshott
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Alex Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Paida Gwiti
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; Department of Pathology, North West Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK; National Institute for Health Research, Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Biomedical Research Unit Offices, University Hospitals Bristol Education Centre, Dental Hospital, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - J Athene Lane
- Bristol Trials Centre, Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Lucy McGeagh
- Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Jack Straws Lane, Marston, Oxford OX3 0FL, UK
| | - Anthony Koupparis
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Claire M Perks
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Jeff M P Holly
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
9
|
Yang G, Chen X, Quan Z, Liu M, Guo Y, Tang Y, Peng L, Wang L, Wu Y, Wu X, Liu J, Zheng Y. Comprehensive analysis of the FOXA1-related ceRNA network and identification of the MAGI2-AS3/DUSP2 axis as a prognostic biomarker in prostate cancer. Front Oncol 2023; 13:1048521. [PMID: 36998469 PMCID: PMC10043306 DOI: 10.3389/fonc.2023.1048521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundProstate cancer (PCa) is the second most common cause of cancer-related deaths in American men. Even though increasing evidence has disclosed the competitive endogenous RNA (ceRNA) regulatory networks among cancers, the complexity and behavior characteristics of the ceRNA network in PCa remain unclear. Our study aimed to investigate the forkhead box A1 (FOXA1)-related ceRNA regulatory network and ascertain potential prognostic markers associated with PCa.MethodsRNA sequence profiles downloaded from The Cancer Genome Atlas (TCGA) were analyzed to recognize differentially expressed genes (DEGs) derived from tumor and non-tumor adjacent samples as well as FOXA1low and FOXA1high tumor samples. The enrichment analysis was conducted for the dysregulated mRNAs. The network for the differentially expressed long non-coding RNA (lncRNA)-associated ceRNAs was then established. Survival analysis and univariate Cox regression analysis were executed to determine independent prognostic RNAs associated with PCa. The correlation between DUSP2 and immune cell infiltration level was analyzed. Tissue and blood samples were collected to verify our network. Molecular experiments were performed to explore whether DUSP2 is involved in the development of PCa.ResultsA ceRNA network related to FOXA1 was constructed and comprised 18 lncRNAs, 5 miRNAs, and 44 mRNAs. The MAGI2-AS3~has-mir-106a/has-mir-204~DUSP2 ceRNA regulatory network relevant to the prognosis of PCa was obtained by analysis. We markedly distinguished the MAGI2-AS3/DUSP2 axis in the ceRNA. It will most likely become a clinical prognostic model and impact the changes in the tumor immune microenvironment of PCa. The abnormal MAGI2-AS3 expression level from the patients’ blood manifested that it would be a novel potential diagnostic biomarker for PCa. Moreover, down-expressed DUSP2 suppressed the proliferation and migration of PCa cells.ConclusionsOur findings provide pivotal clues to understanding the role of the FOXA1-concerned ceRNA network in PCa. Simultaneously, this MAGI2-AS3/DUSP2 axis might be a new significant prognostic factor associated with the diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Chen
- Department of Urology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangbin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| |
Collapse
|
10
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
11
|
Lou T, Liu C, Qu H, Zhang Z, Wang S, Zhuang H. FOXA1 can be modulated by HDAC3 in the progression of epithelial ovarian carcinoma. J Transl Med 2022; 20:19. [PMID: 34991620 PMCID: PMC8740004 DOI: 10.1186/s12967-021-03224-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
FOXA1 is associated with malignant tumors, but the function of FOXA1 in EOC is unclear. HDAC3 can influence the proliferation, migration and invasion ability of EOC. In this study, we wanted to explore the function of FOXA1 in ovarian cancer and the relationship between HDAC3 and FOXA1.The expression of HDAC3 and FOXA1 was detected by immunohistochemical staining of primary lesions from 127 epithelial ovarian carcinoma patients. A proliferation assay, a Transwell assay, an apoptosis assay and animal experiments were used to assess the proliferation, invasion and apoptosis abilities of ovarian cancer cells before and after transfection with FOXA1. The relevance of the in vitro findings was confirmed in xenografts. The H-scores for FOXA1 and HDAC3 staining in FIGO stage III-IV were noticeably higher and predicted adverse clinical outcomes in patients with ovarian cancer. The expression level of HDAC3 was significantly correlated with the expression level of FOXA1. Invasion, proliferation and apoptosis capacity and tumor formation were decreased in the FOXA1-knockdown cells. Experiments in xenografts confirmed that HDAC3 mediated tumor formation. In conclusion, FOXA1 can be modulated by HDAC3 through the Wnt/β-catenin signaling pathway, and FOXA1 plays essential roles in the proliferation, apoptosis and invasion of EOC cell lines and xenograft experiments.
Collapse
Affiliation(s)
- Tong Lou
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China
| | - Hong Qu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China
| | - Zhiqiang Zhang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China
| | - Huiyu Zhuang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, No.8, North Road of Workers Stadium, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
12
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
13
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
14
|
Sheta H, Abd El Hafez A, Saif M, Elsergany AR, Al Emam D, Abdelrazik MM. High FOXA1 immunohistochemical expression level associates with mucinous histology, favorable clinico-pathological prognostic parameters and survival advantage in epithelial ovarian cancer. Pathologica 2021; 113:102-114. [PMID: 34042091 PMCID: PMC8167402 DOI: 10.32074/1591-951x-217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Forkhead box (FOX) A1 is a potential therapeutic biomarker that has been investigated in various human cancers. Limited data exist about FOXA1 biologic role in epithelial ovarian cancer (EOC). Aim This study assessed FOXA1 immunohistochemical (IHC) expression and evaluated its association with clinico-pathological parameters in EOC including overall and disease-free survivals (OS, DFS) and patient’s outcome. Methods Patient’s socio-epidemiologic, clinical, radiological, laboratory, surgical, and follow-up data were collected. After histopathologic typing, grading and staging, FOXA1 IHC expression was scored in 98 EOC specimens. Clinico-pathological associations were investigated in high-and low-FOXA1 expression groups using appropriate statistical methods. Kaplan-Meier method was used for survival analysis. Results FOXA1 tumor cell nuclear staining was detected in 63.3% of EOC with weak, moderate and strong scores (28.6%, 12.2% and 22.5% respectively). Comparing high- and low-expression groups (34.7% and 65.3% respectively), high FOXA1 was associated with larger tumors, low mean serum CA-125, tumor histopathology (mucinous and low-grade serous), type I EOC, limited tumor’s anatomical extent, absence of nodal or distant metastases and omental nodules, earlier FIGO stages, non-recurrent tumors and survival advantage with longer and OS and DFS (all p ≤ 0.05). Independent predictors of high FOXA1 expression included: omental nodules, tumor’s anatomical extent and tumor’s size (p ≤ 0.001, = 0.046 and = 0.023 respectively). Conclusion FOXA1 is frequently expressed in EOC notably mucinous and low-grade serous carcinomas in association with favorable prognostic clinico-pathological parameters and longer OS and DFS. It likely has a suppressor function in EOC and could be recommended as a prognostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Heba Sheta
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal Abd El Hafez
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Saif
- Internal Medicine Department, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alyaa R Elsergany
- Internal Medicine Department, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Al Emam
- Public Health and Community Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
15
|
MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen. PLoS Genet 2021; 17:e1008540. [PMID: 33513133 PMCID: PMC7875385 DOI: 10.1371/journal.pgen.1008540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19-overexpressing LNCaP cells. We also examined genome-wide H3K27 acetylation. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 correspond to genes regulated by ELK1, a transcription factor that binds the AR N-terminus to induce select AR target gene expression and proliferation, and genomic sites occupied by MED19 and AR are enriched for motifs associated with ELK1. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.
Collapse
|
16
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
17
|
Lehrer S, Rheinstein PH. The ADRB1 (Adrenoceptor Beta 1) and ADRB2 genes significantly co-express with commonly mutated genes in prostate cancer. DISCOVERY MEDICINE 2020; 30:163-171. [PMID: 33593484 PMCID: PMC7894950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Beta blockers act on the beta-adrenergic receptors ADRB1 and ADRB2 to reduce heart rate and blood pressure. Observational studies have revealed strong risk reductions in metastasis and cancer-specific mortality with the use of beta-blockers in patients with some cancers. But observational studies of prostate cancer have reported conflicting results. OBJECTIVES We examined the relationship of ADRB1 (Adrenoceptor beta 1) gene expression and ADRB2 (Adrenoceptor beta 2) gene expression with Forkhead box protein A1 (FOXA1) gene expression in prostate cancer. We also analyzed survival data of solid tumor patients with respect to beta 1 (ADRB1) and beta 2 (ADRB2) adrenergic receptor gene expression. METHODS We examined the genomics of prostate cancer and other solid primary tumors in the GDC TCGA Prostate Cancer (PRAD) data set. The Cancer Genome Atlas (TCGA) contains the analysis of over 11,000 tumors from 33 of the most prevalent forms of cancer. RESULTS The presence of somatic mutations [Single nucleotide polymorphisms (SNPs) and small insertion/deletion polymorphism (INDELS)] in FOXA1 alters ADRB1 and ADRB2 gene expression. The correlation of FOXA1 gene expression with ADRB1 and ADRB2 gene expression is highly significant. Alterations in FOXA1 genes, ADRB1 genes, and ADRB2 genes are significantly co-occurrent, indicating that they may work in tandem to drive tumor formation and development. Increased ADRB1 and ADRB2 expressions reduce the overall survival of solid tumor patients in the GDC Pan Cancer set. CONCLUSIONS FOXA1 signaling may regulate ADRB1 and ADRB2 expression, as well as androgen receptor expression. Analysis of these tumor mutations might indicate whether an individual prostate cancer patient will respond to beta blockers.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
18
|
Gao S, Chen S, Han D, Wang Z, Li M, Han W, Besschetnova A, Liu M, Zhou F, Barrett D, Luong MP, Owiredu J, Liang Y, Ahmed M, Petricca J, Patalano S, Macoska JA, Corey E, Chen S, Balk SP, He HH, Cai C. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet 2020; 52:1011-1017. [PMID: 32868907 PMCID: PMC7541538 DOI: 10.1038/s41588-020-0681-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/24/2020] [Indexed: 11/09/2022]
Abstract
FOXA1 functions as a pioneer transcription factor by facilitating the access to chromatin for steroid hormone receptors, such as androgen receptor and estrogen receptor1-4, but mechanisms regulating its binding to chromatin remain elusive. LSD1 (KDM1A) acts as a transcriptional repressor by demethylating mono/dimethylated histone H3 lysine 4 (H3K4me1/2)5,6, but also acts as a steroid hormone receptor coactivator through mechanisms that are unclear. Here we show, in prostate cancer cells, that LSD1 associates with FOXA1 and active enhancer markers, and that LSD1 inhibition globally disrupts FOXA1 chromatin binding. Mechanistically, we demonstrate that LSD1 positively regulates FOXA1 binding by demethylating lysine 270, adjacent to the wing2 region of the FOXA1 DNA-binding domain. Acting through FOXA1, LSD1 inhibition broadly disrupted androgen-receptor binding and its transcriptional output, and dramatically decreased prostate cancer growth alone and in synergy with androgen-receptor antagonist treatment in vivo. These mechanistic insights suggest new therapeutic strategies in steroid-driven cancers.
Collapse
Affiliation(s)
- Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Anna Besschetnova
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Feng Zhou
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.,Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - David Barrett
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - My Phu Luong
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Jude Owiredu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.,Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yi Liang
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
| | - Jessica Petricca
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada.
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
19
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dan-Lan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Hai-Yan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Le-Hang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Li-Min Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Yong-Sheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Kai-Shun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
20
|
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, Capaldo BJ, Ye H, Sowalsky AG. MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene 2020; 39:5663-5674. [PMID: 32681068 PMCID: PMC7441006 DOI: 10.1038/s41388-020-01389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally, we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1 expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1. Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicholas T Terrigino
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - S Thomas Hennigan
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicole V Carrabba
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rayann Atway
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth D Walton
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Pathology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Al-Bedairy I, Shamsa M, Salim SA, Mahdi M, Dawood K, Al Faisal AH. FOXA1 expression in Iraqi women with ER+ breast cancer. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2020. [DOI: 10.47419/bjbabs.v2i02.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is a heterogeneous disease that can be classified into many subtypes according to histopathological and molecular characteristics. Forkhead box protein A1 (FOXA1) is a transcriptional pioneer factor that opens chromatin allowing estrogen receptor (α-ER) access to its genomic targets. FOXA1 expression is related to luminal BC with a good prognosis.
Objectives: The present study is sought to determine the FOXA1 expression in Iraqi women with ER+ BC.
Methods: Forty-eight fresh malignant breast tissues were analyzed by immunohistochemistry assay to choose ER+ samples, and then by RT-qPCR to evaluate FOXA1 gene expression.
Results: The ER-positive samples were (72.91%) of the total samples, and the molecular subtype of luminal A was the most common with a percentage of 56.25%. It was also noted that the high expression of the FOXA1 gene is highly significant (p<0.05) in Iraqi women with BC when compared with healthy controls.
Conclusions: Highly significant FOXA1 expression was found in Iraqi women with BC makes it eligible to be a good predictor or a biomarker for BC.
Collapse
|
22
|
Zhou S, Hawley JR, Soares F, Grillo G, Teng M, Madani Tonekaboni SA, Hua JT, Kron KJ, Mazrooei P, Ahmed M, Arlidge C, Yun HY, Livingstone J, Huang V, Yamaguchi TN, Espiritu SMG, Zhu Y, Severson TM, Murison A, Cameron S, Zwart W, van der Kwast T, Pugh TJ, Fraser M, Boutros PC, Bristow RG, He HH, Lupien M. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat Commun 2020; 11:441. [PMID: 31974375 PMCID: PMC6978390 DOI: 10.1038/s41467-020-14318-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention. FOXA1 pioneer transcription factor is recurrently mutated in primary and metastatic prostate tumors. Here, authors identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic SNVs in primary prostate tumors and characterize their role in regulating FOXA1 expression and prostate cancer cell growth.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie Tony Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hwa Young Yun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarina Cameron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, CA, Canada.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.,CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK.,Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
23
|
Yuan F, Hankey W, Wu D, Wang H, Somarelli J, Armstrong AJ, Huang J, Chen Z, Wang Q. Molecular determinants for enzalutamide-induced transcription in prostate cancer. Nucleic Acids Res 2019; 47:10104-10114. [PMID: 31501863 PMCID: PMC6821169 DOI: 10.1093/nar/gkz790] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Enzalutamide, a second-generation androgen receptor (AR) antagonist, has demonstrated clinical benefit in men with prostate cancer. However, it only provides a temporary response and modest increase in survival, indicating a rapid evolution of resistance. Previous studies suggest that enzalutamide may function as a partial transcriptional agonist, but the underlying mechanisms for enzalutamide-induced transcription remain poorly understood. Here, we show that enzalutamide stimulates expression of a novel subset of genes distinct from androgen-responsive genes. Treatment of prostate cancer cells with enzalutamide enhances recruitment of pioneer factor GATA2, AR, Mediator subunits MED1 and MED14, and RNA Pol II to regulatory elements of enzalutamide-responsive genes. Mechanistically, GATA2 globally directs enzalutamide-induced transcription by facilitating AR, Mediator and Pol II loading to enzalutamide-responsive gene loci. Importantly, the GATA2 inhibitor K7174 inhibits enzalutamide-induced transcription by decreasing binding of the GATA2/AR/Mediator/Pol II transcriptional complex, contributing to sensitization of prostate cancer cells to enzalutamide treatment. Our findings provide mechanistic insight into the future combination of GATA2 inhibitors and enzalutamide for improved AR-targeted therapy.
Collapse
Affiliation(s)
- Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dayong Wu
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason Somarelli
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA.,Departments of Surgery, Pharmacology, and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhong Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, Haidari S, van Hoeck A, Onstenk W, Roepman P, Voda M, Bloemendal HJ, Tjan-Heijnen VCG, van Herpen CML, Labots M, Witteveen PO, Smit EF, Sleijfer S, Voest EE, Cuppen E. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019; 575:210-216. [PMID: 31645765 PMCID: PMC6872491 DOI: 10.1038/s41586-019-1689-y] [Citation(s) in RCA: 677] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022]
Abstract
Metastatic cancer is a major cause of death and is associated with poor treatment efficacy. A better understanding of the characteristics of late-stage cancer is required to help adapt personalized treatments, reduce overtreatment and improve outcomes. Here we describe the largest, to our knowledge, pan-cancer study of metastatic solid tumour genomes, including whole-genome sequencing data for 2,520 pairs of tumour and normal tissue, analysed at median depths of 106× and 38×, respectively, and surveying more than 70 million somatic variants. The characteristic mutations of metastatic lesions varied widely, with mutations that reflect those of the primary tumour types, and with high rates of whole-genome duplication events (56%). Individual metastatic lesions were relatively homogeneous, with the vast majority (96%) of driver mutations being clonal and up to 80% of tumour-suppressor genes being inactivated bi-allelically by different mutational mechanisms. Although metastatic tumour genomes showed similar mutational landscape and driver genes to primary tumours, we find characteristics that could contribute to responsiveness to therapy or resistance in individual patients. We implement an approach for the review of clinically relevant associations and their potential for actionability. For 62% of patients, we identify genetic variants that may be used to stratify patients towards therapies that either have been approved or are in clinical trials. This demonstrates the importance of comprehensive genomic tumour profiling for precision medicine in cancer.
Collapse
Affiliation(s)
- Peter Priestley
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Martijn P Lolkema
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis, Amsterdam, The Netherlands
| | | | - Charles Shale
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | | | - Susan Haidari
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Arne van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy Onstenk
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Mircea Voda
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Haiko J Bloemendal
- Meander Medisch Centrum, Amersfoort, The Netherlands
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | - Egbert F Smit
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis, Amsterdam, The Netherlands
| | - Stefan Sleijfer
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Emile E Voest
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands.
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Copeland BT, Du J, Pal SK, Jones JO. Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol 2019; 13:2616-2632. [PMID: 31520575 PMCID: PMC6887583 DOI: 10.1002/1878-0261.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023] Open
Abstract
The androgen receptor (AR) plays key roles in the development of prostate tissue and the development and progression of prostate cancer (PC). AR guides cytodifferentiation and homeostasis in benign luminal epithelial cells; however, in PC, AR instead drives the uncontrolled proliferation of these cells. This ‘AR malignancy shift’ (AMS) is a central event in tumorigenesis. Using a ChIP‐seq approach in primary human tissues, cell lines, and mouse models, we demonstrate that the AMS occurs in every sample analyzed, suggesting that it is necessary for PC development. Using molecular and genetic techniques, we demonstrate that forkhead box (FOX)A1, HOXB13, GATA2, and c‐JUN are involved in the regulation of the AMS. AR‐binding sites (ARBS) are enriched for FOX, HOX, and GATA motifs in PC cells but not for c‐JUN motifs in benign cells. We show that the SPOP mutation commonly found in localized PCs can cause the AMS but is not transformative on its own and must be coupled to another mutation to transform cells. We show that the AMS occurs in mouse models of PC as well and that chronic low T, which is associated with increased PC risk and aggressiveness in humans, also causes the AMS in mice. We have discovered a previously unrecognized, fundamental tenet of PC, one which explains how and why AR signaling is different in cancer and benign cells. Our work has the potential to be used to stratify patients with localized PC for specific treatments. Furthermore, our work suggests that the AMS is a novel target for the treatment and/or prevention of PC.
Collapse
Affiliation(s)
- Ben T Copeland
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| | - Juan Du
- Integrative Genomics Core, City of Hope, Duarte, CA, USA
| | - Sumanta K Pal
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| | - Jeremy O Jones
- Deparment of Medical Oncology, City of Hope, Duarte, CA, USA
| |
Collapse
|
26
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
27
|
Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci U S A 2019; 116:14573-14582. [PMID: 31266892 DOI: 10.1073/pnas.1908547116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) is a ligand-activated transcription factor and a key driver of prostate cancer (PCa) growth and progression. Understanding the factors influencing AR-mediated gene expression provides new opportunities for therapeutic intervention. Poly(ADP-ribose) Polymerase (PARP) is a family of enzymes, which posttranslationally modify a range of proteins and regulate many different cellular processes. PARP-1 and PARP-2 are two well-characterized PARP members, whose catalytic activity is induced by DNA-strand breaks and responsible for multiple DNA damage repair pathways. PARP inhibitors are promising therapeutic agents that show synthetic lethality against many types of cancer (including PCa) with homologous recombination (HR) DNA-repair deficiency. Here, we show that, beyond DNA damage repair function, PARP-2, but not PARP-1, is a critical component in AR transcriptional machinery through interacting with the pioneer factor FOXA1 and facilitating AR recruitment to genome-wide prostate-specific enhancer regions. Analyses of PARP-2 expression at both mRNA and protein levels show significantly higher expression of PARP-2 in primary PCa tumors than in benign prostate tissues, and even more so in castration-resistant prostate cancer (CRPC) tumors. Selective targeting of PARP-2 by genetic or pharmacological means blocks interaction between PARP-2 and FOXA1, which in turn attenuates AR-mediated gene expression and inhibits AR-positive PCa growth. Next-generation antiandrogens act through inhibiting androgen synthesis (abiraterone) or blocking ligand binding (enzalutamide). Selective targeting of PARP-2, however, may provide an alternative therapeutic approach for AR inhibition by disruption of FOXA1 function, which may be beneficial to patients, irrespective of their DNA-repair deficiency status.
Collapse
|
28
|
Parolia A, Cieslik M, Chu SC, Xiao L, Ouchi T, Zhang Y, Wang X, Vats P, Cao X, Pitchiaya S, Su F, Wang R, Feng FY, Wu YM, Lonigro RJ, Robinson DR, Chinnaiyan AM. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 2019; 571:413-418. [PMID: 31243372 PMCID: PMC6661908 DOI: 10.1038/s41586-019-1347-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in the hormone-receptor driven prostate, breast, bladder, and salivary gland tumors3–8. However, how FOXA1 alterations affect cancer development is unclear, with FOXA1 previously ascribed both tumor suppressive9–11 and oncogenic12–14 roles. Here we assemble an aggregate cohort of 1546 prostate cancers (PCa) and show that FOXA1 alterations fall into three distinct structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class1 activating mutations originate in early PCa without ETS/SPOP alterations, selectively recur within the Wing2-region of the DNA-binding Forkhead domain (FKHD), enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen receptor (AR) program of prostate oncogenesis. By contrast, class2 activating mutations are acquired in metastatic PCa, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity, and through TLE3 inactivation promote WNT-pathway driven metastasis. Finally, class3 genomic rearrangements are enriched in metastatic PCa, comprise of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element, herein denoted FOXA1 Mastermind (FOXMIND), to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating AR-driven oncogenesis, and provides mechanistic insights into how different classes of FOXA1 alterations uniquely promote PCa initiation and/or metastatic progression. Furthermore, these results have direct implications in understanding the pathobiology of other hormone-receptor driven cancers and rationalize therapeutic co-targeting of FOXA1 activity.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shih-Chun Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Takahiro Ouchi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA.,Department of Urology, University of California at San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the Arcuate Nucleus of Mouse Hypothalamus Regulate Sex-Specific Diet-Induced Obesity. Mol Neurobiol 2019; 56:7508-7521. [DOI: 10.1007/s12035-019-1618-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
30
|
Cao H, Chu X, Wang Z, Guo C, Shao S, Xiao J, Zheng J, Zhang D. High FOXK1 expression correlates with poor outcomes in hepatocellular carcinoma and regulates stemness of hepatocellular carcinoma cells. Life Sci 2019; 228:128-134. [PMID: 31054270 DOI: 10.1016/j.lfs.2019.04.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 11/25/2022]
Abstract
AIMS Forkhead box (FOX) proteins constitute a huge family of transcriptional regulators, which are involved in a wide range of cancers. FOXK1 is a little studied member of FOXK subfamily. This study aimed to investigate the potential prognostic value of FOXK1 in human hepatocellular carcinoma (HCC) and explore potential underlying mechanisms. MAIN METHODS We performed bioinformatic analyses to evaluate the prognostic value of FOXK1 expression in human HCC and to reveal the underlying mechanism by which FOXK1 regulates HCC. RT-PCR, FACS analysis and sphere formation assay were carried out to investigate the role of FOXK1 in regulating liver cancer stem cells. KEY FINDINGS Our results demonstrated that FOXK1 was overexpressed in human HCC and positively correlated with cancer progression. DNA hypomethylation and gene copy number variation contributed to the overexpression of FOXK1. Importantly, high FOXK1 expression was associated with both low overall survival probability (OS) and low relapse free survival probability (RFS) of HCC patients. Intriguingly, we found that high FOXK1 expression was correlated with activation of stem cell-regulating pathways in human HCC. Knockdown of FOXK1 resulted in downregulation of the cancer stem cell marker EpCAM and ALDH1 and decreased sphere-forming ability of hepatocellular carcinoma cells. SIGNIFICANCE Overall, our study identified FOXK1 as a new biomarker for prognosis of HCC patients and revealed its role in regulating stemness of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiaolin Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhongkun Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chuanhui Guo
- Department of Respiratory Medicine, Shanghai Tianyou Hospital Affiliated to Tongji University, China
| | - Simin Shao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jian Xiao
- Department of Respiratory Medicine, Shanghai Tianyou Hospital Affiliated to Tongji University, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Daoyong Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
31
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
32
|
Wang S, Singh SK, Katika MR, Lopez-Aviles S, Hurtado A. High Throughput Chemical Screening Reveals Multiple Regulatory Proteins on FOXA1 in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19124123. [PMID: 30572598 PMCID: PMC6321185 DOI: 10.3390/ijms19124123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Forkhead box A1 (FOXA1) belongs to the forkhead class transcription factor family, playing pioneering function for hormone receptors in breast and prostate cancers, and mediating activation of linage specific enhancers. Interplay between FOXA1 and breast cancer specific signaling pathways has been reported previously, indicating a regulation network on FOXA1 in breast cancer cells. Here in this study, we aimed to identify which are the proteins that could potentially control FOXA1 function in breast cancer cell lines expressing different molecular markers. We first established a luciferase reporter system reflecting FOXA1 binding to DNA. Then, we applied high throughput chemical screening of multiple protein targets and mass spectrometry in breast cancer cell lines expressing different molecular markers: ER positive/HER2 negative (MCF-7), ER positive/HER2 positive (BT474), and ER negative/HER2 positive (MDA-MB-453). Regardless of estrogen receptor status, HER2 (human epidermal growth factor receptor 2) enriched cell lines showed similar response to kinase inhibitors, indicating the control of FOXA1 by cell signaling kinases. Among these kinases, we identified additional receptor tyrosine kinases and cyclin-dependent kinases as regulators of FOXA1. Furthermore, we performed proteomics experiments from FOXA1 inmunoprecipitated protein complex to identify that FOXA1 interacts with several proteins. Among all the targets, we identified cyclin-dependent kinase 1 (CDK1) as a positive factor to interact with FOXA1 in BT474 cell line. In silico analyses confirmed that cyclin-dependent kinases might be the kinases responsible for FOXA1 phosphorylation at the Forkhead domain and the transactivation domain. These results reveal that FOXA1 is potentially regulated by multiple kinases. The cell cycle control kinase CDK1 might control directly FOXA1 by phosphorylation and other kinases indirectly by means of regulating other proteins.
Collapse
Affiliation(s)
- Shixiong Wang
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Sachin Kumar Singh
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Madhumohan R Katika
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Sandra Lopez-Aviles
- Cell Cycle Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Antoni Hurtado
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| |
Collapse
|
33
|
Fucic A, Aghajanyan A, Culig Z, Le Novere N. Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer. Pathol Oncol Res 2018; 25:1269-1277. [PMID: 30220022 DOI: 10.1007/s12253-018-0467-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, 10000, Zagreb, Croatia.
| | - A Aghajanyan
- Institute of Medicine, Peoples' Friendship University of Russia, Moscow, Russian Federation
| | - Z Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
34
|
Angeles AK, Bauer S, Ratz L, Klauck SM, Sültmann H. Genome-Based Classification and Therapy of Prostate Cancer. Diagnostics (Basel) 2018; 8:E62. [PMID: 30200539 PMCID: PMC6164491 DOI: 10.3390/diagnostics8030062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
In the past decade, multi-national and multi-center efforts were launched to sequence prostate cancer genomes, transcriptomes, and epigenomes with the aim of discovering the molecular underpinnings of tumorigenesis, cancer progression, and therapy resistance. Multiple biological markers and pathways have been discovered to be tumor drivers, and a molecular classification of prostate cancer is emerging. Here, we highlight crucial findings of these genome-sequencing projects in localized and advanced disease. We recapitulate the utility and limitations of current clinical practices to diagnosis, prognosis, and therapy, and we provide examples of insights generated by the molecular profiling of tumors. Novel treatment concepts based on these molecular alterations are currently being addressed in clinical trials and will lead to an enhanced implementation of precision medicine strategies.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Leonie Ratz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| |
Collapse
|
35
|
Albayrak G, Konac E, Ugras Dikmen A, Bilen CY. FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells. Exp Biol Med (Maywood) 2018; 243:990-994. [PMID: 30043639 DOI: 10.1177/1535370218791797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common types of cancer in men and the leading cause of death in developed countries. With the aid of molecular and genetic profiling of cancers, cancer molecular subtypes are paving the way for tailored cancer therapy. FOXA1 has been identified as one of the seven molecular subtypes of prostate cancer. FOXA1 is involved in a variety of metabolic process such as glucose homeostasis and deregulation of its expression is crucial in prostate cancer progression. In this study, we investigated the effects of FOXA1 gene knock-out on the expression levels of various cancer cell metabolism and cell cycle-related protein expressions. FOXA1 gene was knocked-out by using CRISPR/Cas9 technique. While FOXA1 gene knock-out significantly altered Casp-9, Bax, CCND1, CDK4, and fibronectin protein expressions (P < 0.05, fold change: ∼40, 4.5, 2.5, 4.5, and 4, respectively), it did not affect the protein expression levels of Casp-3, Bcl-2, survivin, β-catenin, c-Myc, and GSK-3B. Knocking-out FOXA1 gene in androgen-dependent LNCaP prostate cancer cells inhibited CCND1 protein expression. Our pre-clinical results demonstrate the importance of FOXA1 as a drug target in the treatment of prostate cancer. Impact statement Knock-out studies offer a unique way of studying the function of genes especially for developmentally lethal genes. FOXA1 has prominent roles both in breast and prostate cancer pathogenesis due to its role in ER receptor signaling pathway. FOXA1 has also been identified as one of the seven molecular subtypes of primary prostate cancer. In the present study, we used an efficient gene knock-out method, CRISPR/Cas9, in order to investigate FOXA1 function on LNCaP prostate cancer cells in vitro. FOXA1 knock-out altered cell-cycle regulator CCND1 protein expression levels. Therefore, our results suggest that FOXA1 might be a plausible drug target for prostate cancer treatment.
Collapse
Affiliation(s)
- Gulsah Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Ece Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Asiye Ugras Dikmen
- 2 Department of Public Health, Faculty of Medicine, Gazi University, 06510 Ankara, Turkey
| | - Cenk Y Bilen
- 3 Department of Urology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
36
|
Abstract
The prostate is a male exocrine gland that secretes components of the seminal fluid. In men, prostate tumors are one of the most prevalent cancers. Studies on the development of the prostate have given a better understanding of the processes and genes that are important in the formation of this organ and have provided insights into the mechanisms of prostate tumorigenesis. These developmental studies have provided evidence that some of the genes and signaling pathways involved in development are reactivated or deregulated during prostate cancer. The prostate goes through a number of different stages during organogenesis, which include organ specification, epithelial budding, branching morphogenesis, canalization, and cytodifferentiation. During development, these processes are tightly regulated, many of which are controlled by the male hormone androgens. The majority of prostate tumors remain hormone regulated, and antiandrogen therapy is a first-line therapy, highlighting the important link between prostate organogenesis and cancer. In this review, we describe some of the data on genes that have important roles during prostate development that also have strong evidence linking them to prostate cancer.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
37
|
Jia Z, Wan F, Zhu Y, Shi G, Zhang H, Dai B, Ye D. Forkhead-box series expression network is associated with outcome of clear-cell renal cell carcinoma. Oncol Lett 2018; 15:8669-8680. [PMID: 29805604 PMCID: PMC5950509 DOI: 10.3892/ol.2018.8405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that several members of the Forkhead-box (FOX) family of genes are associated with tumor progression and metastasis. The objective of the current study was to screen candidate FOX family genes identified from analysis of molecular networks in clear cell renal cell carcinoma (ccRCC). The expression of FOX family genes as well as FOX family-associated genes was examined, and Kaplan-Meier survival analysis was performed in The Cancer Genome Atlas (TCGA) cohort (n=525). Patient characteristics, including sex, age, tumor diameter, laterality, tumor-node-metastasis, tumor grade, stage, white blood cell count, platelet count, the levels of hemoglobin, overall survival (OS) and disease-free survival (DFS), were collected for univariate and multivariate Cox proportional hazards ratio analyses. A total of seven candidate FOX family genes were selected from the TCGA database subsequent to univariate and multivariate Cox proportional hazards ratio analyses. FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 were associated with poor OS time, while FOXA1, FOXA2, FOXD1 and FOXK2 were associated with poor DFS time (P<0.05). FOXN2 was associated with favorable outcomes for overall and disease-free survival (P<0.05). In the gene cluster network analysis, the expression of FOX family-associated genes, including nuclear receptor coactivator (NCOA)1, NADH-ubiquinone oxidoreductase flavoprotein 3 (NDUFV3), phosphatidylserine decarboxylase (PISD) and pyruvate kinase liver and red blood cell (PKLR), were independent prognostic factors for OS in patients with ccRCC. Results of the present study revealed that the expression of FOX family genes, including FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1, and FOX family-associated genes, including NCOA1, NDUFV3, PISD and PKLR, are independent prognostic factors for patients with ccRCC.
Collapse
Affiliation(s)
- Zhongwei Jia
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, P.R. China
| |
Collapse
|
38
|
Wedge DC, Gundem G, Mitchell T, Woodcock DJ, Martincorena I, Ghori M, Zamora J, Butler A, Whitaker H, Kote-Jarai Z, Alexandrov LB, Van Loo P, Massie CE, Dentro S, Warren AY, Verrill C, Berney DM, Dennis N, Merson S, Hawkins S, Howat W, Lu YJ, Lambert A, Kay J, Kremeyer B, Karaszi K, Luxton H, Camacho N, Marsden L, Edwards S, Matthews L, Bo V, Leongamornlert D, McLaren S, Ng A, Yu Y, Zhang H, Dadaev T, Thomas S, Easton DF, Ahmed M, Bancroft E, Fisher C, Livni N, Nicol D, Tavaré S, Gill P, Greenman C, Khoo V, Van As N, Kumar P, Ogden C, Cahill D, Thompson A, Mayer E, Rowe E, Dudderidge T, Gnanapragasam V, Shah NC, Raine K, Jones D, Menzies A, Stebbings L, Teague J, Hazell S, Corbishley C, de Bono J, Attard G, Isaacs W, Visakorpi T, Fraser M, Boutros PC, Bristow RG, Workman P, Sander C, Hamdy FC, Futreal A, McDermott U, Al-Lazikani B, Lynch AG, Bova GS, Foster CS, Brewer DS, Neal DE, Cooper CS, Eeles RA. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet 2018; 50:682-692. [PMID: 29662167 PMCID: PMC6372064 DOI: 10.1038/s41588-018-0086-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials.
Collapse
Affiliation(s)
- David C Wedge
- Oxford Big Data Institute, University of Oxford, Oxford, UK.
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Thomas Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
- Uro-Oncology Research Group, Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Dan J Woodcock
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | | | - Mohammed Ghori
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jorge Zamora
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Adam Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | | | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Cancer Genomics, The Francis Crick Institute, London, UK
| | - Charlie E Massie
- Uro-Oncology Research Group, Cancer Research UK, Cambridge Institute, Cambridge, UK
- Early Detection Programme, Cancer Research UK Cambridge Centre, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stefan Dentro
- Oxford Big Data Institute, University of Oxford, Oxford, UK
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Cancer Genomics, The Francis Crick Institute, London, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Clare Verrill
- Oxford NIHR Biomedical Research Centre, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan M Berney
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nening Dennis
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Sue Merson
- The Institute of Cancer Research, London, UK
| | - Steve Hawkins
- Uro-Oncology Research Group, Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - William Howat
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jonathan Kay
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Barbara Kremeyer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Katalin Karaszi
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Hayley Luxton
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Niedzica Camacho
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- The Institute of Cancer Research, London, UK
| | - Luke Marsden
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Lucy Matthews
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Valeria Bo
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Daniel Leongamornlert
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- The Institute of Cancer Research, London, UK
| | - Stuart McLaren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Anthony Ng
- The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yongwei Yu
- Second Military Medical University, Shanghai, China
| | | | | | - Sarah Thomas
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Elizabeth Bancroft
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Cyril Fisher
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Naomi Livni
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - David Nicol
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Simon Tavaré
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Pelvender Gill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Vincent Khoo
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | - Pardeep Kumar
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | - Declan Cahill
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Alan Thompson
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Erik Mayer
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Edward Rowe
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Tim Dudderidge
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Vincent Gnanapragasam
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nimish C Shah
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - David Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Lucy Stebbings
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jon Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Steven Hazell
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | | | | | | | - Tapio Visakorpi
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Andrew G Lynch
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
- School of Mathematics and Statistics/School of Medicine, University of St. Andrews, Fife, UK
| | - G Steven Bova
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Daniel S Brewer
- The Institute of Cancer Research, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich, UK
| | - David E Neal
- Uro-Oncology Research Group, Cancer Research UK, Cambridge Institute, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Colin S Cooper
- The Institute of Cancer Research, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK.
- Royal Marsden NHS Foundation Trust, London and Sutton, UK.
| |
Collapse
|
39
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Androgen receptor differentially regulates the proliferation of prostatic epithelial cells in vitro and in vivo. Oncotarget 2018; 7:70404-70419. [PMID: 27611945 PMCID: PMC5342561 DOI: 10.18632/oncotarget.11879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Androgens regulate the proliferation and differentiation of prostatic epithelial cells, including prostate cancer (PCa) cells in a context-dependent manner. Androgens and androgen receptor (AR) do not invariably promote cell proliferation; in the normal adult, endogenous stromal and epithelial AR activation maintains differentiation and inhibits organ growth. In the current study, we report that activation of AR differentially regulates the proliferation of human prostate epithelial progenitor cells, NHPrE1, in vitro and in vivo. Inducing AR signaling in NHPrE1 cells suppressed cell proliferation in vitro, concomitant with a reduction in MYC expression. However, ectopic expression of AR in vivo stimulated cell proliferation and induced development of invasive PCa in tissue recombinants consisting of NHPrE1/AR cells and rat urogenital mesenchymal (UGM) cells, engrafted under renal capsule of adult male athymic mice. Expression of MYC increased in the NHPrE1/AR recombinant tissues, in contrast to the reduction seen in vitro. The inhibitory effect of AR signaling on cell proliferation in vitro were reduced by co-culturing NHPrE1/AR epithelial cells with prostatic stromal cells. In conclusion, these studies revealed that AR signaling differentially regulates proliferation of human prostatic epithelia cells in vitro and in vivo through mechanisms involving stromal/epithelial interactions.
Collapse
|
41
|
MicroRNA-132 suppresses cell proliferation in human breast cancer by directly targeting FOXA1. Acta Pharmacol Sin 2018; 39:124-131. [PMID: 28816236 DOI: 10.1038/aps.2017.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has been implicated in cancer. Recently, miR-132 has been reported to be downregulated in the tissues of patients with breast cancer. In this study, we investigated the functional role of miR-132 and its direct target FOXA1 in breast cancer cells. In 30 human breast cancer tissues, FOXA1 was significantly overexpressed and negatively correlated with miR-132 expression. A bioinformatics analysis suggested that FOXA1 was a potential target of miR-132. Furthermore, dual luciferase reporter assays revealed that miR-132 dose-dependently inhibited the luciferase activity of the wt 3'UTR of FOXA1 rather than the mut 3'UTR of FOXA1 in human MDA-MB-468 and SK-BR3 breast cancer cells. Moreover, ectopic miR-132 expression significantly inhibited FOXA1 protein expression, whereas miR-132 knockdown promoted FOXA1 expression in the breast cancer cells. Ectopic miR-132 expression also suppressed proliferation of the breast cancer cells, whereas miR-132 knockdown promoted proliferation of the breast cancer cells, which was reversed by knockdown of FOXA1 expression. We conclude that MiR-132 suppresses proliferation of breast cancer cells at least partially though inhibition of FOXA1. These results suggest that miR-132 and FOXA1 may be potential biomarkers or therapeutic targets in breast cancer.
Collapse
|
42
|
Tsourlakis MC, Eleftheriadou A, Stender A, Weigand P, Grupp K, Hube-Magg C, Kluth M, Schroeder C, Steurer S, Hinsch A, Luebke A, Angerer A, Wittmer C, Friedrich E, Göbel C, Büscheck F, Heinzer H, Graefen M, Simon R, Sauter G, Wilczak W, Minner S, Schlomm T, Jacobsen F. FOXA1 expression is a strong independent predictor of early PSA recurrence in ERG negative prostate cancers treated by radical prostatectomy. Carcinogenesis 2017; 38:1180-1187. [PMID: 29029032 DOI: 10.1093/carcin/bgx105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
FOXA1 (Fork-head box protein A1, HNF-3a) is a transcription factor involved in androgen signaling with relevance for lineage-specific gene expression of the prostate. The expression was analyzed by immunohistochemistry on a tissue microarray containing 11152 prostate cancer specimens. Results were compared with tumor phenotype, biochemical recurrence, androgen receptor expression, ETS-related gene (ERG) status and other recurrent genomic alterations. FOXA1 expression was detectable in 97.6% of 8227 interpretable cancers and considered strong in 28.5%, moderate in 46.2% and weak in 22.9% of cases. High FOXA1 expression was associated with TMPRSS2:ERG rearrangement and ERG expression (P < 0.0001). High FOXA1 expression was linked to high Gleason grade, advanced pathological tumor (pT) stage and early PSA recurrence in ERG negative cancers (P < 0.0001), while these associations were either weak or absent in ERG positive cancers. In ERG negative cancers, the prognostic role of FOXA1 expression was independent of Gleason grade, pathological tumor stage, lymph node stage, surgical margin status and preoperative PSA. Independent prognostic value became even more evident if the analysis was limited to preoperatively available features such as biopsy Gleason grade, preoperative PSA, cT stage and FOXA1 expression (P < 0.0001). Within ERG negative cancers, FOXA1 expression was also strongly associated with PTEN and 5q21 deletions (P < 0.0001). High expression of FOXA1 is an independent prognostic parameter in ERG negative prostate cancer. Thus, FOXA1 measurement might provide clinically useful information in prostate cancer.
Collapse
Affiliation(s)
| | - Agapi Eleftheriadou
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Annegret Stender
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Grupp
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cornelia Schroeder
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Angerer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Emily Friedrich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center and University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center and University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center and University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany.,Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
43
|
Wang F, Koul HK. Androgen receptor (AR) cistrome in prostate differentiation and cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:18-24. [PMID: 29181434 PMCID: PMC5698595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Despite the progress in development of better AR-targeted therapies for prostate cancer (PCa), there is no curative therapy for castration-resistant prostate cancer (CRPC). Therapeutic resistance in PCa can be characterized in two broad categories of AR therapy resistance: the first and most prevalent one involves restoration of AR activity despite AR targeted therapy, and the second one involves tumor progression despite blockade of AR activity. As such AR remains the most attractive drug target for CRPC. Despite its oncogenic role, AR signaling also contributes to the maturation and differentiation of prostate luminal cells during development. Recent evidence suggests that AR cistrome is altered in advanced PCa. Alteration in AR may result from AR amplification, alternative splicing, mutations, post-translational modification of AR, and altered expression of AR co-factors. We reasoned that such alterations would result in the transcription of disparate AR target genes and as such may contribute to the emergence of castration-resistance. In the present study, we evaluated the expression of genes associated with canonical or non-canonical AR cistrome in relationship with PCa progression and prostate development by analyzing publicly available datasets. We discovered a transcription switch from canonical AR cistrome target genes to the non-canonical AR cistrome target genes during PCa progression. Using Gene Set Enrichment Analysis (GSEA), we discovered that canonical AR cistrome target genes are enriched in indolent PCa patients and the loss of canonical AR cistrome is associated with tumor metastasis and poor clinical outcome. Analysis of the datasets involving prostate development, revealed that canonical AR cistrome target genes are significantly enriched in prostate luminal cells and can distinguish luminal cells from basal cells, suggesting a pivotal role for canonical AR cistrome driven genes in prostate development. These data suggest that the expression of canonical AR cistrome related genes play an important role in maintaining the prostate luminal cell identity and might restrict the lineage plasticity observed in lethal PCa. Understanding the molecular mechanisms that dictate AR cistrome may lead to development of new therapeutic strategies aimed at restoring canonical AR cistrome, rewiring the oncogenic AR signaling and overcome resistance to AR targeted therapies.
Collapse
Affiliation(s)
- Fengtian Wang
- Department of Biochemistry and Molecular BiologyLSUHSC-S, Shreveport, LA, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular BiologyLSUHSC-S, Shreveport, LA, USA
- Overton Brooks VA Medical CenterShrevport, LA, USA
- Feist-Weiller Cancer CenterShreveport, LA, USA
- Louisiana State University Health Sciences CenterShreveport, LA, USA
| |
Collapse
|
44
|
Tong Z, Meng X, Wang J, Wang L. MicroRNA‑212 inhibits the proliferation and invasion of human renal cell carcinoma by targeting FOXA1. Mol Med Rep 2017; 17:1361-1367. [PMID: 29115609 DOI: 10.3892/mmr.2017.7956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑212 (miR‑212) has been observed to be significantly deregulated in various types of human cancer. However, the clinical significance of miR‑212 and the associated molecular signaling pathways involved in the progression of renal cell carcinoma (RCC) remain unclear. In the present study, miR‑212 expression was significantly downregulated in RCC tissues compared with adjacent non‑tumor tissues. Clinical association analysis indicated that low expression of miR‑212 was prominently associated with large tumor size, advanced tumor, nodes, metastasis stage and lymph node metastasis. In vitro studies revealed that upregulation of miR‑212 inhibited cell proliferation, migration and invasion, and induced apoptosis in Caki‑1 cells. Forkhead box protein A1 (FOXA1) was identified as a direct target of miR‑212 in RCC cells via luciferase reporter assays and western blotting. In addition, FOXA1 expression was upregulated in RCC tissues compared with adjacent noncancerous tissues. An inverse correlation between FOXA1 and miR‑212 expression was observed in RCC tissues. Notably, FOXA1 overexpression partially rescued miR‑212‑mediated inhibition of cell proliferation, migration and invasion in RCC cells. These results suggested that miR‑212 suppresses RCC proliferation and invasion by modulating FOXA1, suggesting that miR‑212 may have potential as a therapeutic target in RCC.
Collapse
Affiliation(s)
- Zhigang Tong
- Department of Urinary Surgery, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xianfeng Meng
- Department of Urinary Surgery, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jinsong Wang
- Department of Urinary Surgery, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Lixin Wang
- Department of Medical Insurance, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
45
|
Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, Wessels LFA, van Weerden WM, Altelaar AFM, Bergman AM, Zwart W. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 2017; 37:313-322. [PMID: 28925401 DOI: 10.1038/onc.2017.330] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is a key player in prostate cancer development and progression. Here we applied immunoprecipitation mass spectrometry of endogenous AR in LNCaP cells to identify components of the AR transcriptional complex. In total, 66 known and novel AR interactors were identified in the presence of synthetic androgen, most of which were critical for AR-driven prostate cancer cell proliferation. A subset of AR interactors required for LNCaP proliferation were profiled using chromatin immunoprecipitation assays followed by sequencing, identifying distinct genomic subcomplexes of AR interaction partners. Interestingly, three major subgroups of genomic subcomplexes were identified, where selective gain of function for AR genomic action in tumorigenesis was found, dictated by FOXA1 and HOXB13. In summary, by combining proteomic and genomic approaches we reveal subclasses of AR transcriptional complexes, differentiating normal AR behavior from the oncogenic state. In this process, the expression of AR interactors has key roles by reprogramming the AR cistrome and interactome in a genomic location-specific manner.
Collapse
Affiliation(s)
- S Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y Kim
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L Hoekman
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - O B Bleijerveld
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Mirza
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - W M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F M Altelaar
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - A M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Wang LL, Xiu YL, Chen X, Sun KX, Chen S, Wu DD, Liu BL, Zhao Y. The transcription factor FOXA1 induces epithelial ovarian cancer tumorigenesis and progression. Tumour Biol 2017; 39:1010428317706210. [PMID: 28488543 DOI: 10.1177/1010428317706210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FOXA1 (forkhead box A1), a member of the FOXA transcription factor superfamily, plays an important role in tumor occurrence and development. However, the relationship between FOXA1 and ovarian cancer has not been reported. We examined normal ovarian tissue and ovarian cancer tissue and found increased FOXA1 expression in the cancer tissue. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry assays demonstrated that transfection with small interfering RNA to silence FOXA1 (si-FOXA1) in ovarian cancer cell lines decreased cell proliferation and induced apoptosis and S-phase arrest. In addition, si-FOXA1 transfection inhibited cell migration and invasion. Western blotting showed that si-FOXA1 transfection decreased the levels of YY1-associated protein 1, cyclin-dependent kinase 1, cyclin D1, phosphatidylinositol-3 kinase, E2F transcription factor 1, B-cell lymphoma 2, and vascular endothelial growth factor A protein. Based on these results, we suggest that FOXA1 plays a catalytic role in ovarian cancer pathogenesis and development by affecting the expression of the above-mentioned proteins.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan-Dan Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma. J Cancer 2017; 8:1619-1628. [PMID: 28775781 PMCID: PMC5535717 DOI: 10.7150/jca.18778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Tao Song
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Zhong Li
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
48
|
Chen B, Wang H, Wu Z, Duan B, Bai P, Zhang K, Li W, Zheng J, Xing J. Conformational stabilization of FOX-DNA complex architecture to sensitize prostate cancer chemotherapy. Amino Acids 2017; 49:1247-1254. [PMID: 28474127 DOI: 10.1007/s00726-017-2426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
The forkhead box (FOX) transcription factor is a family of tumor suppressors that negatively regulates the tumorigenesis activity of prostate cancer; stabilization of FOX-DNA complex architecture has been recognized as a new and promising strategy for sensitizing cancer chemotherapy. Here, we described a systematic method that combined in silico analysis and in vitro assay to investigate the intermolecular interaction between FOX DNA-binding domain (DBD) and its cognate DNA partner. The structural and energetic information harvested from the molecular investigation were used to guide high-throughput virtual screening against a structurally diverse, nonredundant library of natural product compounds, aiming at discovery of novel small-molecule medicines that can conformationally stabilize and promote FOX-DNA recognition and interaction. The screening identified a number of theoretically promising hits, which were then examined by using fluorescence anisotropy assay to determine their binding potency for FOX DBD domain. The antitumor activity of identified high-affinity compounds was also tested at cellular level. Structural dynamics analysis found that the small-molecule stabilizers can shift the conformational equilibrium of FOX DBD to DNA-bound state, thus promoting the protein domain to bind tightly with its DNA partner.
Collapse
Affiliation(s)
- Bin Chen
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Huiqiang Wang
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Zhun Wu
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Bo Duan
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Peide Bai
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Kaiyan Zhang
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Wei Li
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Jiaxin Zheng
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Jinchun Xing
- Department of Urology and Center of Urology, Xiamen Urinary Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China.
| |
Collapse
|
49
|
Liao Y, Sassi S, Halvorsen S, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F, Duan Z. Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11. Sci Rep 2017; 7:43941. [PMID: 28262798 PMCID: PMC5338289 DOI: 10.1038/srep43941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in children and adolescents. Previously, we have found that cyclin-dependent kinase 11 (CDK11) signaling was essential for osteosarcoma cell growth and survival. Subsequently, CDK11 siRNA gene targeting, expression profiling, and network reconstruction of differentially expressed genes were performed between CDK11 knock down and wild type osteosarcoma cells. Reconstructed network of the differentially expressed genes pointed to the AR as key to CDK11 signaling in osteosarcoma. CDK11 increased transcriptional activation of AR gene in osteosarcoma cell lines. AR protein was highly expressed in various osteosarcoma cell lines and patient tumor tissues. Tissue microarray analysis showed that the disease-free survival rate for patients with high-expression of AR was significantly shorter than for patients with low-expression of AR. In addition, AR gene expression knockdown via siRNA greatly inhibited cell growth and viability. Similar results were found in osteosarcoma cells treated with AR inhibitor. These findings suggest that CDK11 is involved in the regulation of AR pathway and AR can be a potential novel prognostic marker and therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yunfei Liao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022, China
| | - Slim Sassi
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Center for Computational and Integrative Biology (CCIB), Massachusetts General Hospital, Boston, Massachusetts 02139USA
| | - Stefan Halvorsen
- Center for Computational and Integrative Biology (CCIB), Massachusetts General Hospital, Boston, Massachusetts 02139USA
| | - Yong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Gregory Cote
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - David Harmon
- Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Henry Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114USA
| |
Collapse
|
50
|
Jozwik KM, Chernukhin I, Serandour AA, Nagarajan S, Carroll JS. FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3. Cell Rep 2016; 17:2715-2723. [PMID: 27926873 PMCID: PMC5177601 DOI: 10.1016/j.celrep.2016.11.028] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/05/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022] Open
Abstract
FOXA1 is a pioneer factor that binds to enhancer regions that are enriched in H3K4 mono- and dimethylation (H3K4me1 and H3K4me2). We performed a FOXA1 rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) screen in ERα-positive MCF-7 breast cancer cells and found histone-lysine N-methyltransferase (MLL3) as the top FOXA1-interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition. We performed MLL3 chromatin immunoprecipitation sequencing (ChIP-seq) in breast cancer cells, and MLL3 was shown to occupy regions marked by FOXA1 occupancy and H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. MLL3 silencing decreased H3K4me1 at enhancer elements but had no appreciable impact on H3K4me3 at enhancer elements. We propose a mechanism whereby the pioneer factor FOXA1 recruits the chromatin modifier MLL3 to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.
Collapse
Affiliation(s)
- Kamila M Jozwik
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK
| | - Aurelien A Serandour
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK; Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sankari Nagarajan
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK.
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 ORE, UK.
| |
Collapse
|