1
|
Luebbers A, Janicot R, Zhao J, Philibert CE, Garcia-Marcos M. A sensitive biosensor of endogenous Gα i activity enables the accurate characterization of endogenous GPCR agonist responses. Sci Signal 2025; 18:eadp6457. [PMID: 40132053 DOI: 10.1126/scisignal.adp6457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
The activation of heterotrimeric G proteins (Gαβγ) by G protein-coupled receptors (GPCRs) is a mechanism broadly used by eukaryotes to transduce signals across the plasma membrane and a target for many clinical drugs. Many optical biosensors commonly used for measuring GPCR-stimulated G protein activity rely on exogenously expressed GPCRs and/or G proteins, which compromise readout fidelity. Biosensors that measure endogenous signaling may interfere with the signaling process under investigation or have a limited dynamic range of detection, hindering applicability. Here, we developed an optical BRET-based biosensor, Gαi bONE-GO, that detects endogenous GTP-bound (active) Gαi upon stimulation of endogenous GPCRs more robustly than existing sensors of endogenous activity. Its design leverages the Gαi-binding protein GINIP as a high-affinity and specific detector of Gαi-GTP. We optimized this design to prevent interference with downstream Gi-dependent signaling and to enable implementation in different experimental systems having endogenous GPCRs, including adenosine receptors in primary astroglial cells and opioid receptors in cell lines. In a neuronal cell line, Gαi bONE-GO revealed activation profiles indicating that several natural opioid neuropeptides acted as partial agonists, in contrast with their characterization as full agonists using biosensors that depend on exogenously expressed receptors and G proteins. The Gαi bONE-GO biosensor is a direct and sensitive detector of endogenous activation of Gαi proteins by GPCRs in different experimental settings but does not interfere with the subsequent propagation of signaling.
Collapse
Affiliation(s)
- Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine E Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Koduru T, Hantman N, Peters EV, Jaworek MW, Wang J, Zhang S, McCallum SA, Gillilan RE, Fossat MJ, Roumestand C, Sagar A, Winter R, Bernadó P, Cherfils J, Royer CA. A molten globule ensemble primes Arf1-GDP for the nucleotide switch. Proc Natl Acad Sci U S A 2024; 121:e2413100121. [PMID: 39292747 PMCID: PMC11441498 DOI: 10.1073/pnas.2413100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/20/2024] Open
Abstract
The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core β-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.
Collapse
Affiliation(s)
- Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Noam Hantman
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Michel W. Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Scott A. McCallum
- Shirley Ann Jackson, PhD. Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetic, FreiburgD-79108, Germany
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Amin Sagar
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Pau Bernadó
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette91190, France
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
4
|
Wang C, Xiong S, Hu S, Yang L, Huang Y, Chen H, Xu B, Xiao T, Liu Q. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 2024; 25:800. [PMID: 39182029 PMCID: PMC11344465 DOI: 10.1186/s12864-024-10717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The Gα family plays a crucial role in the complex reproductive regulatory network of teleosts. However, the characterization and function of Gα family members, especially Gαq, remain poorly understood in teleosts. To analyze the characterization, expression, and function of grass carp (Ctenopharyngodon idella) Gαq, we identified the Gα family members in grass carp genome, and analyzed the expression, distribution, and signal transduction of Gαq/gnaq. We also explored the role of Gαq in the reproductive regulation of grass carp. RESULTS Our results showed that the grass carp genome contains 27 Gα genes with 46 isoforms, which are divided into four subfamilies: Gαs, Gαi/o, Gαq/11, and Gα12/13. The expression level of Cignaq in the testis was the highest and significantly higher than in other tissues, followed by the hypothalamus and brain. The luteinizing hormone receptor (LHR) was mainly localized to the nucleus in grass carp oocytes, with signals also present in follicular cells. In contrast, Gαq signal was mainly found in the cytoplasm of oocytes, with no signal in follicular cells. In the testis, Gαq and LHR were co-localized in the cytoplasm. Furthermore, the grass carp Gαq recombinant protein significantly promoted Cipgr expression. CONCLUSIONS These results provided preliminary evidence for understanding the role of Gαq in the reproductive regulation of teleosts.
Collapse
Affiliation(s)
- Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Luebbers A, Janicot R, Zhao J, Philibert CE, Garcia-Marcos M. Direct detection of endogenous Gαi activity in cells with a sensitive conformational biosensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609006. [PMID: 39229046 PMCID: PMC11370452 DOI: 10.1101/2024.08.21.609006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is not only a mechanism broadly used by eukaryotes to transduce signals across the plasma membrane, but also the target for a large fraction of clinical drugs. However, approaches typically used to assess this signaling mechanism by directly measuring G-protein activity, like optical biosensors, suffer from limitations. On one hand, many of these biosensors require expression of exogenous GPCRs and/or G-proteins, compromising readout fidelity. On the other hand, biosensors that measure endogenous signaling may still interfere with the signaling process under investigation or suffer from having a small dynamic range of detection, hindering broad applicability. Here, we developed an optical biosensor that detects the endogenous G-protein active species Gαi-GTP upon stimulation of endogenous GPCRs more robustly than current state-of-the-art sensors for the same purpose. Its design is based on the principle of bystander Bioluminescence Resonance Energy Transfer (BRET) and leverages the Gαi-binding protein named GINIP as a high affinity and specific detector module of the GTP-bound conformation of Gαi. We optimized this design to prevent interference with Gi-dependent signaling (cAMP inhibition) and to enable implementation in different experimental systems with endogenous GPCRs, including neurotransmitter receptors in primary astroglial cells or opioid receptors in cell lines, which revealed opioid neuropeptide-mediated activation profiles different from those observed with other biosensors involving exogenous GPCRs and G-proteins. Overall, we introduce a biosensor that directly and sensitively detects endogenous activation of G-proteins by GPCRs across different experimental settings without interfering with the subsequent propagation of signaling.
Collapse
Affiliation(s)
- Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine E. Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Torres-Rodriguez MD, Lee SG, Roy Choudhury S, Paul R, Selvam B, Shukla D, Jez JM, Pandey S. Structure-function analysis of plant G-protein regulatory mechanisms identifies key Gα-RGS protein interactions. J Biol Chem 2024; 300:107252. [PMID: 38569936 PMCID: PMC11061236 DOI: 10.1016/j.jbc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.
Collapse
Affiliation(s)
| | - Soon Goo Lee
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St Louis, Missouri, USA; Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, Missouri, USA.
| |
Collapse
|
7
|
Vithani N, Todd TD, Singh S, Trent T, Blumer KJ, Bowman GR. G Protein Activation Occurs via a Largely Universal Mechanism. J Phys Chem B 2024; 128:3554-3562. [PMID: 38580321 PMCID: PMC11034501 DOI: 10.1021/acs.jpcb.3c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/07/2024]
Abstract
Understanding how signaling proteins like G proteins are allosterically activated is a long-standing challenge with significant biological and medical implications. Because it is difficult to directly observe such dynamic processes, much of our understanding is based on inferences from a limited number of static snapshots of relevant protein structures, mutagenesis data, and patterns of sequence conservation. Here, we use computer simulations to directly interrogate allosteric coupling in six G protein α-subunit isoforms covering all four G protein families. To analyze this data, we introduce automated methods for inferring allosteric networks from simulation data and assessing how allostery is conserved or diverged among related protein isoforms. We find that the allosteric networks in these six G protein α subunits are largely conserved and consist of two pathways, which we call pathway-I and pathway-II. This analysis predicts that pathway-I is generally dominant over pathway-II, which we experimentally corroborate by showing that mutations to pathway-I perturb nucleotide exchange more than mutations to pathway-II. In the future, insights into unique elements of each G protein family could inform the design of isoform-specific drugs. More broadly, our tools should also be useful for studying allostery in other proteins and assessing the extent to which this allostery is conserved in related proteins.
Collapse
Affiliation(s)
- Neha Vithani
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tyson D. Todd
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sukrit Singh
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tony Trent
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kendall J. Blumer
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Sharma B, Ganotra J, Biswal B, Sharma K, Gandhi S, Bhardwaj D, Tuteja N. An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1543-1561. [PMID: 38076761 PMCID: PMC10709287 DOI: 10.1007/s12298-023-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/04/2024]
Abstract
Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Kanishka Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Sumit Gandhi
- Infectious Diseases Division, CSIR – Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001 India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
10
|
Wang C, Yang L, Xiao T, Li J, Liu Q, Xiong S. Identification and expression analysis of zebrafish gnaq in the hypothalamic–Pituitary–Gonadal axis. Front Genet 2022; 13:1015796. [DOI: 10.3389/fgene.2022.1015796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The G proteins have emerged as essential molecular switches in a wide variety of signal transduction pathways. Gαq, encoded by G protein subunit alpha q (gnaq), is a member of the G proteins and participates in regulating important biological activities in mammals; however, its function and regulatory mechanism in teleost remain largely unclear. In the current study, we cloned the cDNA of gnaq from zebrafish (Danio rerio) and investigated the expression characteristics of Gαq/gnaq in reproductive tissues. RT-PCR and WISH analyses showed that gnaq was widely expressed in zebrafish tissues, with high expression in the brain, olfactory brain, and hypothalamus. During the embryonic development stage, the gnaq was mainly distributed in the hypothalamus after 72 h post-fertilization. In addition, immunohistochemistry analysis revealed that the Gαq protein was highly expressed in the diffuse nucleus of the inferior hypothalamic lobe (DIL), ventral zone of the periventricular hypothalamus (Hv), and caudal zone of the periventricular hypothalamus (Hc) in adult zebrafish. Furthermore, in the gonads, the Gαq protein was found in oocytes of all stages, except spermatids. Lastly, the gnaq mRNA exhibited relatively low expression in gonads on Day 4 during the reproductive cycle, while increasing drastically in the hypothalamus and pituitary afterward. Altogether, our results suggest that gnaq/Gαq might be important in fish reproduction.
Collapse
|
11
|
Schultz JE. The evolutionary conservation of eukaryotic membrane-bound adenylyl cyclase isoforms. Front Pharmacol 2022; 13:1009797. [PMID: 36238545 PMCID: PMC9552081 DOI: 10.3389/fphar.2022.1009797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The nine membrane-delimited eukaryotic adenylyl cyclases are pseudoheterodimers with an identical domain order of seven (nine) distinct subdomains. Bioinformatics show that the protein evolved from a monomeric bacterial progenitor by gene duplication and fusion probably in a primordial eukaryotic cell around 1.5 billion years ago. Over a timespan of about 1 billion years, the first fusion product diverged into nine highly distinct pseudoheterodimeric isoforms. The evolutionary diversification ended approximately 0.5 billion years ago because the present isoforms are found in the living fossil coelacanth, a fish. Except for the two catalytic domains, C1 and C2, the mAC isoforms are fully diverged. Yet, within each isoform a high extent of conservation of respective subdomains is found. This applies to the C- and N-termini, a long linker region between the protein halves (C1b), two short cyclase-transducing-elements (CTE) and notably to the two hexahelical membrane domains TM1 and TM2. Except for the membrane anchor all subdomains were previously implicated in regulatory modalities. The bioinformatic results unequivocally indicate that the membrane anchors must possess an important regulatory function specifically tailored for each mAC isoform.
Collapse
|
12
|
Mohanasundaram B, Dodds A, Kukshal V, Jez JM, Pandey S. Distribution and the evolutionary history of G-protein components in plant and algal lineages. PLANT PHYSIOLOGY 2022; 189:1519-1535. [PMID: 35377452 PMCID: PMC9237705 DOI: 10.1093/plphys/kiac153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants-the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins-also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.
Collapse
Affiliation(s)
| | - Audrey Dodds
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Vandna Kukshal
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | | |
Collapse
|
13
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
14
|
Maruta N, Trusov Y, Jones AM, Botella JR. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits. Int J Mol Sci 2021; 22:11841. [PMID: 34769272 PMCID: PMC8584482 DOI: 10.3390/ijms222111841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| |
Collapse
|
15
|
Arabidopsis G-Protein β Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway. Int J Mol Sci 2021; 22:ijms22158270. [PMID: 34361039 PMCID: PMC8347620 DOI: 10.3390/ijms22158270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein β subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.
Collapse
|
16
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
17
|
Cannon AE, Chapman KD. Lipid Signaling through G Proteins. TRENDS IN PLANT SCIENCE 2021; 26:720-728. [PMID: 33468433 DOI: 10.1016/j.tplants.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
N-Acylethanolamine (NAE) signaling has received considerable attention in vertebrates as part of the endocannabinoid signaling system, where anandamide acts as a ligand for G protein-coupled cannabinoid receptors. Recent studies indicate that G proteins also are required for some types of NAE signaling in plants. The genetic ablation of the Gβγ dimer or loss of the full set of extra-large G proteins strongly attenuated NAE-induced chloroplast responses in seedlings. Intriguing parallels and distinct differences have emerged between plants and animals in NAE signaling, despite the conserved use of these lipid mediators to modulate cellular processes. Here we compare similarities and differences and identify open questions in a fundamental lipid signaling pathway in eukaryotes with components that are both conserved and diverged in plants.
Collapse
Affiliation(s)
- Ashley E Cannon
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA; Department of Crop and Soil Science, Washington State University, Pullman, WA 99163, USA.
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
18
|
Agarwal S, Rath PP, Anand G, Gourinath S. Uncovering the Cyclic AMP Signaling Pathway of the Protozoan Parasite Entamoeba histolytica and Understanding Its Role in Phagocytosis. Front Cell Infect Microbiol 2020; 10:566726. [PMID: 33102254 PMCID: PMC7546249 DOI: 10.3389/fcimb.2020.566726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Second messenger signaling controls a surprisingly diverse range of processes in several eukaryotic pathogens. Molecular machinery and pathways involving these messengers thus hold tremendous opportunities for therapeutic interventions. Relative to Ca2+ signaling, the knowledge of a crucial second messenger cyclic AMP (cAMP) and its signaling pathway is very scant in the intestinal parasite Entamoeba histolytica. In the current study, mining the available genomic resources, we have for the first time identified the cAMP signal transduction pathway of E. histolytica. Three heptahelical proteins with variable G-protein-coupled receptor domains, heterotrimeric G-proteins (Gα, Gβ, and Gγ subunits), soluble adenylyl cyclase, cyclase-associated protein, and enzyme carbonic anhydrase were identified in its genome. We could also identify several putative candidate genes for cAMP downstream effectors such as protein kinase A, A-kinase anchoring proteins, and exchange protein directly activated by the cAMP pathway. Using specific inhibitors against key identified targets, we could observe changes in the intracellular cAMP levels as well as defect in the rate of phagocytosis of red blood cells by the parasite E. histolytica. We thus strongly believe that characterization of some of these unexplored crucial signaling determinants will provide a paradigm shift in understanding the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Gaurav Anand
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
19
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|
20
|
Maruta N, Trusov Y, Chakravorty D, Urano D, Assmann SM, Botella JR. Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. Sci Signal 2019; 12:12/606/eaav9526. [PMID: 31690635 DOI: 10.1126/scisignal.aav9526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which are composed of α, β, and γ subunits, are versatile, guanine nucleotide-dependent, molecular on-off switches. In animals and fungi, the exchange of GDP for GTP on Gα controls G protein activation and is crucial for normal cellular responses to diverse extracellular signals. The model plant Arabidopsis thaliana has a single canonical Gα subunit, AtGPA1. We found that, in planta, the constitutively active, GTP-bound AtGPA1(Q222L) mutant and the nucleotide-free AtGPA1(S52C) mutant interacted with Gβγ1 and Gβγ2 dimers with similar affinities, suggesting that G protein heterotrimer formation occurred independently of nucleotide exchange. In contrast, AtGPA1(Q222L) had a greater affinity than that of AtGPA1(S52C) for Gβγ3, suggesting that the GTP-bound conformation of AtGPA1(Q222L) is distinct and tightly associated with Gβγ3. Functional analysis of transgenic lines expressing either AtGPA1(S52C) or AtGPA1(Q222L) in the gpa1-null mutant background revealed various mutant phenotypes that were complemented by either AtGPA1(S52C) or AtGPA1(Q222L). We conclude that, in addition to the canonical GDP-GTP exchange-dependent mechanism, plant G proteins can function independently of nucleotide exchange.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia. .,State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
21
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure-function continuum with intrinsic disorder-based proteoforms. Cell Mol Life Sci 2019; 76:4461-4492. [PMID: 31428838 PMCID: PMC11105632 DOI: 10.1007/s00018-019-03276-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
GPCR-G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signaling cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand-GPCR and GPCR-G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defines an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR-G protein system represents an illustrative example of the protein structure-function continuum, where structures of the involved proteins represent a complex mosaic of differently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fine-tuned by various post-translational modifications and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specific partners. In other words, GPCRs and G proteins exist as sets of conformational/basic, inducible/modified, and functioning proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, St. Petersburg, 195251, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow, Russian Federation.
| |
Collapse
|
22
|
Pandey S. Heterotrimeric G-Protein Signaling in Plants: Conserved and Novel Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:213-238. [PMID: 31035831 DOI: 10.1146/annurev-arplant-050718-100231] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| |
Collapse
|
23
|
Biebermann H, Kleinau G, Schnabel D, Bockenhauer D, Wilson LC, Tully I, Kiff S, Scheerer P, Reyes M, Paisdzior S, Gregory JW, Allgrove J, Krude H, Mannstadt M, Gardella TJ, Dattani M, Jüppner H, Grüters A. A New Multisystem Disorder Caused by the Gαs Mutation p.F376V. J Clin Endocrinol Metab 2019; 104:1079-1089. [PMID: 30312418 PMCID: PMC6380466 DOI: 10.1210/jc.2018-01250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT The α subunit of the stimulatory G protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, whereas somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright syndrome. OBJECTIVE We report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. DESIGN AND SETTING Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant Gαs were determined in the presence of different G protein-coupled receptors (GPCRs) under basal and agonist-stimulated conditions. RESULTS Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele in both patients; this resulted in a clinical phenotype that differed from known Gαs-related diseases and suggested gain of function at the vasopressin 2 receptor (V2R) and lutropin/choriogonadotropin receptor (LHCGR), yet increased serum PTH concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR, and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5 helix of Gαs that are relevant for interaction with GPCRs and signal transduction. CONCLUSIONS The Gαs p.F376V mutation causes a previously unrecognized multisystem disorder.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Schnabel
- Department for Pediatric Endocrinology and Diabetology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Detlef Bockenhauer
- UCL Centre for Nephrology, London, United Kingdom
- Great Ormond Street Hospital for Children, Renal Unit, London, United Kingdom
| | - Louise C Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ian Tully
- Department of Clinical Genetics, University Hospital of Wales, Cardiff, United Kingdom
| | - Sarah Kiff
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John W Gregory
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Allgrove
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehul Dattani
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annette Grüters
- Department for Pediatric Endocrinology and Diabetology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- University Hospital Heidelberg, Heidelberg, Germany
- Correspondence and Reprint Requests: Annette Grüters, PhD, Charité-Universitätsmedizin, Department for Pediatric Endocrinology and Diabetes, Mittelallee 8, 13353 Berlin, Germany. E-mail:
| |
Collapse
|
24
|
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. J Dev Biol 2018; 6:jdb6040028. [PMID: 30477278 PMCID: PMC6316442 DOI: 10.3390/jdb6040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.
Collapse
|
25
|
Pandey S, Vijayakumar A. Emerging themes in heterotrimeric G-protein signaling in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:292-300. [PMID: 29576082 DOI: 10.1016/j.plantsci.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 03/01/2018] [Indexed: 05/28/2023]
Abstract
Heterotrimeric G-proteins are key signaling components involved during the regulation of a multitude of growth and developmental pathways in all eukaryotes. Although the core proteins (Gα, Gβ, Gγ subunits) and their basic biochemistries are conserved between plants and non-plant systems, seemingly different inherent properties of specific components, altered wirings of G-protein network architectures, and the presence of novel receptors and effector proteins make plant G-protein signaling mechanisms somewhat distinct from the well-established animal paradigm. G-protein research in plants is getting a lot of attention recently due to the emerging roles of these proteins in controlling many agronomically important traits. New findings on both canonical and novel G-protein components and their conserved and unique signaling mechanisms are expected to improve our understanding of this important module in affecting critical plant growth and development pathways and eventually their utilization to produce plants for the future needs. In this review, we briefly summarize what is currently known in plant G-protein research, describe new findings and how they are changing our perceptions of the field, and discuss important issues that still need to be addressed.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA.
| | - Anitha Vijayakumar
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
26
|
The G-protein γ subunit of Phytophthora infestans is involved in sporangial development. Fungal Genet Biol 2018; 116:73-82. [PMID: 29704555 DOI: 10.1016/j.fgb.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 11/23/2022]
Abstract
The oomycete Phytophthora infestans is a notorious plant pathogen with potato and tomato as its primary hosts. Previous research showed that the heterotrimeric G-protein subunits Gα and Gβ have a role in zoospore motility and virulence, and sporangial development, respectively. Here, we present analyses of the gene encoding a Gγ subunit in P. infestans, Pigpg1. The overall similarity of PiGPG1 with non-oomycete Gγ subunits is low, with only the most conserved amino acids maintained, but similarity with its homologs in other oomycetes is high. Pigpg1 is expressed in all life stages and shows a similar expression profile as the gene encoding the Gβ subunit, Pigpb1. To elucidate its function, transformants were generated in which Pigpg1 is silenced or overexpressed and their phenotypes were analyzed. Pigpg1-silenced lines produce less sporangia, which are malformed. Altogether, the results show that PiGPG1 is crucial for proper sporangia development and zoosporogenesis. PiGPG1 is a functional Gγ, and likely forms a dimer with PiGPB1 that mediates signaling.
Collapse
|
27
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
28
|
Hackenberg D, McKain MR, Lee SG, Roy Choudhury S, McCann T, Schreier S, Harkess A, Pires JC, Wong GKS, Jez JM, Kellogg EA, Pandey S. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. THE NEW PHYTOLOGIST 2017; 216:562-575. [PMID: 27634188 DOI: 10.1111/nph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Michael R McKain
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Soon Goo Lee
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Tyler McCann
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Spencer Schreier
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Alex Harkess
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - J Chris Pires
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Joseph M Jez
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
29
|
Selectivity determinants of GPCR-G-protein binding. Nature 2017; 545:317-322. [PMID: 28489817 DOI: 10.1038/nature22070] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
The selective coupling of G-protein-coupled receptors (GPCRs) to specific G proteins is critical to trigger the appropriate physiological response. However, the determinants of selective binding have remained elusive. Here we reveal the existence of a selectivity barcode (that is, patterns of amino acids) on each of the 16 human G proteins that is recognized by distinct regions on the approximately 800 human receptors. Although universally conserved positions in the barcode allow the receptors to bind and activate G proteins in a similar manner, different receptors recognize the unique positions of the G-protein barcode through distinct residues, like multiple keys (receptors) opening the same lock (G protein) using non-identical cuts. Considering the evolutionary history of GPCRs allows the identification of these selectivity-determining residues. These findings lay the foundation for understanding the molecular basis of coupling selectivity within individual receptors and G proteins.
Collapse
|
30
|
Rensing SA. (Why) Does Evolution Favour Embryogenesis? TRENDS IN PLANT SCIENCE 2016; 21:562-573. [PMID: 26987708 DOI: 10.1016/j.tplants.2016.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 05/05/2023]
Abstract
Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
31
|
Coleman BD, Marivin A, Parag-Sharma K, DiGiacomo V, Kim S, Pepper JS, Casler J, Nguyen LT, Koelle MR, Garcia-Marcos M. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation. Mol Biol Evol 2015; 33:820-37. [PMID: 26659249 PMCID: PMC4760084 DOI: 10.1093/molbev/msv336] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA–G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans.
Collapse
Affiliation(s)
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine
| | | | | | - Seongseop Kim
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | - Judy S Pepper
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | - Jason Casler
- Department of Biochemistry, Boston University School of Medicine
| | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine
| | | |
Collapse
|
32
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
33
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
34
|
Krishnan A, Mustafa A, Almén MS, Fredriksson R, Williams MJ, Schiöth HB. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families. Mol Phylogenet Evol 2015; 91:27-40. [DOI: 10.1016/j.ympev.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
35
|
Hanlon CD, Andrew DJ. Outside-in signaling--a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci 2015; 128:3533-42. [PMID: 26345366 DOI: 10.1242/jcs.175158] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of receptors in many organisms, including worms, mice and humans. GPCRs are seven-transmembrane pass proteins that are activated by binding a stimulus (or ligand) in the extracellular space and then transduce that information to the inside of the cell through conformational changes. The conformational changes activate heterotrimeric G-proteins, which execute the downstream signaling pathways through the recruitment and activation of cellular enzymes. The highly specific ligand-GPCR interaction prompts an efficient cellular response, which is vital for the health of the cell and organism. In this Commentary, we review general features of GPCR signaling and then focus on the Drosophila GPCRs, which are not as well-characterized as their worm and mammalian counterparts. We discuss findings that the Drosophila odorant and gustatory receptors are not bona fide GPCRs as is the case for their mammalian counterparts. We also present here a phylogenetic analysis of the bona fide Drosophila GPCRs that suggest potential roles for several family members. Finally, we discuss recently discovered roles of GPCRs in Drosophila embryogenesis, a field we expect will uncover many previously unappreciated functions for GPCRs.
Collapse
Affiliation(s)
- Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2196, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2196, USA
| |
Collapse
|
36
|
Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015; 524:173-179. [PMID: 26147082 PMCID: PMC4866443 DOI: 10.1038/nature14663] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ∼800 human GPCRs and 16 different Gα genes, this raises the question of whether a universal allosteric mechanism governs Gα activation. Here we show that different GPCRs interact with and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, while conserving the allosteric activation mechanism.
Collapse
Affiliation(s)
- Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dmitry B. Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
37
|
Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1004-16. [PMID: 25588736 PMCID: PMC4348786 DOI: 10.1104/pp.114.255703] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.
Collapse
|
38
|
Hwang IY, Park C, Harrison K, Boularan C, Galés C, Kehrl JH. An essential role for RGS protein/Gαi2 interactions in B lymphocyte-directed cell migration and trafficking. THE JOURNAL OF IMMUNOLOGY 2015; 194:2128-39. [PMID: 25617475 DOI: 10.4049/jimmunol.1401952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemokines engage B lymphocyte surface receptors, triggering heterotrimeric G protein Gαi subunit guanine nucleotide exchange. RGS proteins limit the duration that Gαi subunits remain GTP bound, and the loss of an individual RGS protein typically enhances chemokine receptor signaling. In this study, we show that B cells carrying a Gαi2 (G184S/G184S) mutation that disables all RGS protein/Gαi2 interactions exhibit an unexpectedly severe reduction in chemokine receptor signaling. The Gαi2 (G184S/G184S) B cells have markedly elevated basal calcium levels, but poor chemokine-induced increases, enhanced nonspecific migration, but extremely poor chemotaxis. In striking contrast, the Gαi2 (G184S/G184S) B cells exhibited enhanced sensitivity to sphingosine 1-phosphate (S1P). S1P elicited heightened intracellular calcium responses and enhanced S1P-triggered cell migration. Mice with the Gαi2 (G184S/G184S) mutation displayed excessive numbers of germinal center-like structures; abnormal serum Ig profiles; and aberrant B lymphocyte trafficking. These findings establish an essential role for RGS proteins in B cell chemoattractant signaling and for the proper position of B lymphocytes in lymphoid organs.
Collapse
Affiliation(s)
- Il-Young Hwang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kathleen Harrison
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Cedric Boularan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, 31432 Toulouse Cedex 4, France
| | - Céline Galés
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, 31432 Toulouse Cedex 4, France
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
39
|
de Mendoza A, Sebé-Pedrós A, Ruiz-Trillo I. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol 2014; 6:606-19. [PMID: 24567306 PMCID: PMC3971589 DOI: 10.1093/gbe/evu038] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities.
Collapse
Affiliation(s)
- Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Hackenberg D, Sakayama H, Nishiyama T, Pandey S. Characterization of the heterotrimeric G-protein complex and its regulator from the green alga Chara braunii expands the evolutionary breadth of plant G-protein signaling. PLANT PHYSIOLOGY 2013; 163:1510-7. [PMID: 24179134 PMCID: PMC3850207 DOI: 10.1104/pp.113.230425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The lack of heterotrimeric G-protein homologs in the sequenced genomes of green algae has led to the hypothesis that, in plants, this signaling mechanism coevolved with the embryophytic life cycle and the acquisition of terrestrial habitat. Given the large evolutionary gap that exists between the chlorophyte green algae and most basal land plants, the bryophytes, we evaluated the presence of this signaling complex in a charophyte green alga, Chara braunii, proposed to be the closest living relative of land plants. The C. braunii genome encodes for the entire G-protein complex, the Gα, Gβ, and Gγ subunits, and the REGULATOR OF G-PROTEIN SIGNALING (RGS) protein. The biochemical properties of these proteins and their cross-species functionality show that they are functional homologs of canonical G-proteins. The subunit-specific interactions between CbGα and CbGβ, CbGβ and CbGγ, and CbGα and CbRGS are also conserved, establishing the existence of functional G-protein complex-based signaling mechanisms in green algae.
Collapse
|
41
|
Bradford W, Buckholz A, Morton J, Price C, Jones AM, Urano D. Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci Signal 2013; 6:ra37. [PMID: 23695163 DOI: 10.1126/scisignal.2003768] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide-binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein-coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase-activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and "self-activating," a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.
Collapse
Affiliation(s)
- William Bradford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Anantharaman V, Iyer LM, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. MOLECULAR BIOSYSTEMS 2013; 8:3142-65. [PMID: 23044854 DOI: 10.1039/c2mb25239b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria, and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. We also show that the TerD and TerB domains and the TerY-associated phosphorylation system are functionally linked to many distinct DNA-processing complexes, which feature proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to be recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
43
|
Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signalling in the plant kingdom. Open Biol 2013. [PMID: 23536550 DOI: 10.1098/rsob.12.0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
44
|
Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signalling in the plant kingdom. Open Biol 2013; 3:120186. [PMID: 23536550 PMCID: PMC3718340 DOI: 10.1098/rsob.120186] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
Abstract
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.
Collapse
|
46
|
Urano D, Jones AM. "Round up the usual suspects": a comment on nonexistent plant G protein-coupled receptors. PLANT PHYSIOLOGY 2013; 161:1097-102. [PMID: 23300167 PMCID: PMC3585582 DOI: 10.1104/pp.112.212324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/06/2013] [Indexed: 05/20/2023]
Abstract
An evolutionary argument supports the conclusion that plants do not have G protein coupled receptors.
Collapse
|
47
|
Tishchenko S, Gabdulkhakov A, Tin U, Kostareva O, Lin C, Katanaev VL. Crystallization and preliminary X-ray diffraction studies of Drosophila melanogaster Gαo-subunit of heterotrimeric G protein in complex with the RGS domain of CG5036. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 69:61-4. [PMID: 23295489 DOI: 10.1107/s174430911204804x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023]
Abstract
Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.
Collapse
Affiliation(s)
- Svetlana Tishchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | |
Collapse
|
48
|
Zhang D, Iyer LM, He F, Aravind L. Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Front Genet 2012; 3:283. [PMID: 23248642 PMCID: PMC3521125 DOI: 10.3389/fgene.2012.00283] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/20/2012] [Indexed: 12/14/2022] Open
Abstract
The tripartite DENN module, comprised of a N-terminal longin domain, followed by DENN, and d-DENN domains, is a GDP-GTP exchange factor (GEFs) for Rab GTPases, which are regulators of practically all membrane trafficking events in eukaryotes. Using sequence and structure analysis we identify multiple novel homologs of the DENN module, many of which can be traced back to the ancestral eukaryote. These findings provide unexpected leads regarding key cellular processes such as autophagy, vesicle-vacuole interactions, chromosome segregation, and human disease. Of these, SMCR8, the folliculin interacting protein-1 and 2 (FNIP1 and FNIP2), nitrogen permease regulator 2 (NPR2), and NPR3 are proposed to function in recruiting Rab GTPases during different steps of autophagy, fusion of autophagosomes with the vacuole and regulation of cellular metabolism. Another novel DENN protein identified in this study is C9ORF72; expansions of the hexanucleotide GGGGCC in its first intron have been recently implicated in amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). While this mutation is proposed to cause a RNA-level defect, the identification of C9ORF72 as a potential DENN-type GEF raises the possibility that at least part of the pathology might relate to a specific Rab-dependent vesicular trafficking process, as has been observed in the case of some other neurological conditions with similar phenotypes. We present evidence that the longin domain, such as those found in the DENN module, are likely to have been ultimately derived from the related domains found in prokaryotic GTPase-activating proteins of MglA-like GTPases. Thus, the origin of the longin domains from this ancient GTPase-interacting domain, concomitant with the radiation of GTPases, especially of the Rab clade, played an important role in the dynamics of eukaryotic intracellular membrane systems.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
49
|
R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group. Immunogenetics 2012; 65:145-56. [PMID: 23129146 DOI: 10.1007/s00251-012-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100-115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.
Collapse
|
50
|
The loss of RGS protein-Gα(i2) interactions results in markedly impaired mouse neutrophil trafficking to inflammatory sites. Mol Cell Biol 2012; 32:4561-71. [PMID: 22966200 DOI: 10.1128/mcb.00651-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are first responders rapidly mobilized to inflammatory sites by a tightly regulated, nonredundant hierarchy of chemoattractants. These chemoattractants engage neutrophil cell surface receptors triggering heterotrimeric G-protein Gα(i) subunits to exchange GDP for GTP. By limiting the duration that Gα(i) subunits remain GTP bound, RGS proteins modulate chemoattractant receptor signaling. Here, we show that neutrophils with a genomic knock in of a mutation that disables regulator of G-protein signaling (RGS)-Gα(i2) interactions accumulate in the bone marrow and mobilize poorly to inflammatory sites. These defects are attributable to enhanced sensitivity to background signals, prolonged chemoattractant receptor signaling, and inappropriate CXCR2 downregulation. Intravital imaging revealed a failure of the mutant neutrophils to accumulate at and stabilize sites of sterile inflammation. Furthermore, these mice could not control a nonlethal Staphylococcus aureus infection. Neutrophil RGS proteins establish a threshold for Gα(i) activation, helping to coordinate desensitization mechanisms. Their loss renders neutrophils functionally incompetent.
Collapse
|