1
|
Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2674692. [PMID: 33954291 PMCID: PMC8059556 DOI: 10.34133/2021/2674692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
Evidence in animals suggests that deep brain stimulation or optogenetics can be used for recovery from disorders of consciousness (DOC). However, these treatments require invasive procedures. This report presents a noninvasive strategy to stimulate central nervous system neurons selectively for recovery from DOC in mice. Through the delivery of ultrasound energy to the ventral tegmental area, mice were aroused from an unconscious, anaesthetized state in this study, and this process was controlled by adjusting the ultrasound parameters. The mice in the sham group under isoflurane-induced, continuous, steady-state general anaesthesia did not regain their righting reflex. On insonation, the emergence time from inhaled isoflurane anaesthesia decreased (sham: 13.63 ± 0.53 min, ultrasound: 1.5 ± 0.19 min, p < 0.001). Further, the induction time (sham: 12.0 ± 0.6 min, ultrasound: 17.88 ± 0.64 min, p < 0.001) and the concentration for 50% of the maximal effect (EC50) of isoflurane (sham: 0.6%, ultrasound: 0.7%) increased. In addition, ultrasound stimulation reduced the recovery time in mice with traumatic brain injury (sham: 30.38 ± 1.9 min, ultrasound: 7.38 ± 1.02 min, p < 0.01). This noninvasive strategy could be used on demand to promote emergence from DOC and may be a potential treatment for such disorders.
Collapse
Affiliation(s)
- Tianyuan Bian
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Wen Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Meihong Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhigang Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Junjie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Yibo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China 200030
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| |
Collapse
|
2
|
Godfrey DA, Park JL, Dunn JD, Ross CD. Chemical Effects of Kainic Acid Injection into the Rat Superior Olivary Region. ACTA ACUST UNITED AC 2020; 6. [PMID: 33733053 DOI: 10.24966/ohns-010x/100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Kainic acid injections have been used to destroy neuron somata in particular regions without damaging fiber tracts. We injected a solution of kainic acid into the region of the rat superior olivary complex in an effort to destroy its cholinergic projections to the cochlea and cochlear nucleus, which derive especially from the lateral superior olivary nucleus and ventral nucleus of the trapezoid body. In the lateral superior olivary nucleus, there were relatively small but fairly consistent decreases of choline acetyltransferase (ChAT) activity, larger decreases of acetylcholinesterase (AChE) activity, and consistent decreases of malate dehydrogenase activity, as a marker for oxidative metabolism. Other superior olivary regions were less affected by the kainic acid injections, but most showed overall significant decreases of AChE activity. Our results suggest that the cholinergic neurons giving rise to the centrifugal pathways to the cochlea and cochlear nucleus are more resistant to the effects of kainic acid than are those that receive major ascending input from the cochlear nucleus and project to higher levels of the auditory system. Comparison with published anatomical studies suggests that this resistance to the effects of kainic acid is related to relatively little glutamatergic input to the somata and proximal dendrites of these neurons. We also found a consistent approximately 16 % decrease of ChAT activity in the injected-side facial nerve root, which is most easily explained as a small effect of kainic acid on the facial nerve fibers passing through the injection site.
Collapse
Affiliation(s)
- Donald A Godfrey
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Jami L Park
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Okmulgee, Oklahoma
| | - Jon D Dunn
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Whitewater, Colorado
| | - C David Ross
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Edmond, Oklahoma
| |
Collapse
|
3
|
Manohar S, Adler HJ, Radziwon K, Salvi R. Interaction of auditory and pain pathways: Effects of stimulus intensity, hearing loss and opioid signaling. Hear Res 2020; 393:108012. [PMID: 32554129 DOI: 10.1016/j.heares.2020.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Moderate intensity sounds can reduce pain sensitivity (i.e., audio-analgesia) whereas intense sounds can induce aural pain, evidence of multisensory interaction between auditory and pain pathways. To explore auditory-pain pathway interactions, we used the tail-flick (TF) test to assess thermal tail-pain sensitivity by measuring the latency of a rat to remove its tail from 52 °C water. In Experiment 1, TF latencies were measured in ambient noise and broadband noise (BBN) presented from 80 to 120 dB SPL. TF latencies gradually increased from ambient to 90 dB SPL (audio-analgesia), but then declined. At 120 dB, TF latencies were significantly shorter than normal, evidence for audio-hyperalgesia near the aural threshold for pain. In Experiment II, the opioid pain pathway was modified by treating rats with a high dose of fentanyl known to induce post-treatment hyperalgesia. TF latencies in ambient noise were normal 10-days post-fentanyl. However, TF latencies became shorter than normal from 90 to 110 dB indicating that fentanyl pre-treatment had converted audio-analgesia to audio-hyperalgesia. In Experiment III, we tested the hypothesis that hearing loss could alter pain sensitivity by unilaterally exposing rats to an intense noise that induced a significant hearing loss. TF latencies in ambient noise gradually declined from 1- to 4-weeks post-exposure indicating that noise-induced hearing loss had increased pain sensitivity. Our results suggest that auditory and pain pathways interact in ways that depend on intensity, hearing loss and opioid pain signaling, results potentially relevant to pain hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Kelly Radziwon
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
4
|
Manohar S, Russo FY, Seigel GM, Salvi R. Dynamic Changes in Synaptic Plasticity Genes in Ipsilateral and Contralateral Inferior Colliculus Following Unilateral Noise-induced Hearing Loss. Neuroscience 2020; 436:136-153. [PMID: 32278721 DOI: 10.1016/j.neuroscience.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/07/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Unilateral noise-induced hearing loss reduces the input to the central auditory pathway disrupting the excitatory and inhibitory inputs to the inferior colliculus (IC), an important binaural processing center. Little is known about the compensatory synaptic changes that occur in the IC as a consequence of unilateral noise-induced hearing loss. To address this issue, Sprague-Dawley rats underwent unilateral noise exposure resulting in severe unilateral hearing loss. IC tissues from the contralateral and ipsilateral IC were evaluated for acute (2-d) and chronic (28-d) changes in the expression of 84 synaptic plasticity genes on a PCR array. Arc and Egr1 genes were further visualized by in situ hybridization to validate the PCR results. None of the genes were upregulated, but many were downregulated post-exposure. At 2-d post-exposure, more than 75% of the genes were significantly downregulated in the contralateral IC, while only two were downregulated in the ipsilateral IC. Many of the downregulated genes were related to long-term depression, long-term potentiation, cell adhesion, immediate early genes, neural receptors and postsynaptic density. At 28-d post-exposure, the gene expression pattern was reversed with more than 85% of genes in the ipsilateral IC now downregulated. Most genes previously downregulated in the contralateral IC 2-d post-exposure had recovered; less than 15% remained downregulated. These time-dependent, asymmetric changes in synaptic plasticity gene expression could shed new light on the perceptual deficits associated with unilateral hearing loss and the dynamic structural and functional changes that occur in the IC days and months following unilateral noise-induced hearing loss.
Collapse
Affiliation(s)
| | | | - Gail M Seigel
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Gordon K, Kral A. Animal and human studies on developmental monaural hearing loss. Hear Res 2019; 380:60-74. [DOI: 10.1016/j.heares.2019.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
|
6
|
Illing RB, Buschky H, Tadic A. Mitotic activity, modulation of DNA processing, and purinergic signalling in the adult rat auditory brainstem following sensory deafferentation. Eur J Neurosci 2019; 50:3985-4003. [PMID: 31325398 DOI: 10.1111/ejn.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
A complex scenario of cellular network reorganization is caused by unilateral sensory deafferentation (USD) in the adult rat central auditory system. We asked whether this plasticity response involves mitosis. Immunohistochemistry was applied to brainstem sections for the detection and localization of mitotic markers Ki67 and PCNA, the growth-associated protein Gap43 and purine receptor P2X4. Fluorescent double staining was done for Ki67:PCNA and for both of them with HuC/HuD (neurons), S100 (astrocytes), Iba1 (microglia) and P2X4. Inquiring 1-7 days after USD, we found Ki67 expression to be changed in cellular profiles of cochlear nucleus (CN) with a significant increase in number by 1-3 days, followed by reset to control level within 1 week. USD-induced mitosis exclusively occurred in microglia and was absent elsewhere in the auditory brainstem. PCNA staining of small cellular profiles increased similarly but remained elevated. PCNA staining intensity also changed in CN, superior olive and inferior colliculus in neuronal nuclei, suggesting shifts in DNA processing. No apoptotic cell death was detected in any region of the adult auditory brainstem after USD. A comparison of anterograde and retrograde effects of nerve damage revealed proliferating microglia expressing P2X4 receptors in CN upon USD, but not in the facial nucleus after facial nerve transection. In conclusion, the deafferentation model studied here permits insight into the capacity of the adult mammalian brain to invoke mitosis among glia cells, adjustment of gene processing in neurons and purinergic signalling between them, jointly accounting for a multilayered neuro- and glioplastic response.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Helena Buschky
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Annamaria Tadic
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Hayes SH, Manohar S, Majumdar A, Allman BL, Salvi R. Noise-induced hearing loss alters hippocampal glucocorticoid receptor expression in rats. Hear Res 2019; 379:43-51. [PMID: 31071644 DOI: 10.1016/j.heares.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Although the effects of intense noise exposure on the peripheral and central auditory pathway have been well characterized, its effects on non-classical auditory structures in the brain, such as the hippocampus, are less well understood. Previously, we demonstrated that noise-induced hearing loss causes a significant long-term reduction in hippocampal neurogenesis and cell proliferation. Given the known suppressive effects of stress hormones on neurogenesis, the goal of the present study was to determine if activation of the stress response is an underlying mechanism for the long-term reduction in hippocampal neurogenesis observed following noise trauma. To accomplish this, we monitored basal and reactive blood plasma levels of the stress hormone corticosterone in rats for ten weeks following acoustic trauma, and quantified changes in hippocampal glucocorticoid and mineralocorticoid receptors. Our results indicate that long-term auditory deprivation does not cause a persistent increase in basal or reactive stress hormone levels in the weeks following noise exposure. Instead, we observed a greater decline in reactive corticosterone release in noise-exposed rats between the first and tenth week of sampling compared to control rats. We also observed a significant increase in hippocampal glucocorticoid receptor expression which may cause greater hippocampal sensitivity to circulating glucocorticoid levels and result in glucocorticoid-induced suppression of neurogenesis, as well as increased feedback inhibition on the HPA axis. No change in mineralocorticoid receptor expression was observed between control and noise exposed rats. These results highlight the adverse effect of intense noise exposure and auditory deprivation on the hippocampus.
Collapse
Affiliation(s)
- Sarah H Hayes
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, N6A 5C1, Canada.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Antara Majumdar
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Brian L Allman
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, N6A 5C1, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Pernia M, Estevez S, Poveda C, Plaza I, Carro J, Juiz JM, Merchan MA. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats. J Comp Neurol 2017; 525:2677-2689. [PMID: 28472857 DOI: 10.1002/cne.24233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 02/03/2023]
Abstract
Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex.
Collapse
Affiliation(s)
- M Pernia
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - S Estevez
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - C Poveda
- School of Medicine of Albacete, Institute for Research in Neurological Disabilities (Instituto de Investigación en Discapacidades Neurológicas - IDINE), University of Castilla-La Mancha (Universidad de Castilla La Mancha - UCLM), Albacete, Spain
| | - I Plaza
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - J Carro
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - J M Juiz
- School of Medicine of Albacete, Institute for Research in Neurological Disabilities (Instituto de Investigación en Discapacidades Neurológicas - IDINE), University of Castilla-La Mancha (Universidad de Castilla La Mancha - UCLM), Albacete, Spain
| | - M A Merchan
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| |
Collapse
|
9
|
Gao Y, Manzoor N, Kaltenbach JA. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure. Hear Res 2016; 341:31-42. [PMID: 27490001 DOI: 10.1016/j.heares.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to investigate the immediate effects of acute exposure to intense sound on spontaneous and stimulus-driven activity in the dorsal cochlear nucleus (DCN). We examined the levels of multi- and single-unit spontaneous activity before and immediately following brief exposure (2 min) to tones at levels of either 109 or 85 dB SPL. Exposure frequency was selected to either correspond to the units' best frequency (BF) or fall within the borders of its inhibitory side band. The results demonstrate that these exposure conditions caused significant alterations in spontaneous activity and responses to BF tones. The induced changes have a fast onset (minutes) and are persistent for durations of at least 20 min. The directions of the change were found to depend on the frequency of exposure relative to BF. Transient decreases followed by more sustained increases in spontaneous activity were induced when the exposure frequency was at or near the units' BF, while sustained decreases of activity resulted when the exposure frequency fell inside the inhibitory side band. Follow-up studies at the single unit level revealed that the observed activity changes were found on unit types having properties which have previously been found to represent fusiform cells. The changes in spontaneous activity occurred despite only minor changes in response thresholds. Noteworthy changes also occurred in the strength of responses to BF tones, although these changes tended to be in the direction opposite those of the spontaneous rate changes. We discuss the possible role of activity-dependent plasticity as a mechanism underlying the rapid emergence of increased spontaneous activity after tone exposure and suggest that these changes may represent a neural correlate of acute noise-induced tinnitus.
Collapse
Affiliation(s)
- Y Gao
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - N Manzoor
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - J A Kaltenbach
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Impact of peripheral hearing loss on top-down auditory processing. Hear Res 2016; 343:4-13. [PMID: 27260270 DOI: 10.1016/j.heares.2016.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 01/17/2023]
Abstract
The auditory system consists of an intricate set of connections interposed between hierarchically arranged nuclei. The ascending pathways carrying sound information from the cochlea to the auditory cortex are, predictably, altered in instances of hearing loss resulting from blockage or damage to peripheral auditory structures. However, hearing loss-induced changes in descending connections that emanate from higher auditory centers and project back toward the periphery are still poorly understood. These pathways, which are the hypothesized substrate of high-level contextual and plasticity cues, are intimately linked to the ascending stream, and are thereby also likely to be influenced by auditory deprivation. In the current report, we review both the human and animal literature regarding changes in top-down modulation after peripheral hearing loss. Both aged humans and cochlear implant users are able to harness the power of top-down cues to disambiguate corrupted sounds and, in the case of aged listeners, may rely more heavily on these cues than non-aged listeners. The animal literature also reveals a plethora of structural and functional changes occurring in multiple descending projection systems after peripheral deafferentation. These data suggest that peripheral deafferentation induces a rebalancing of bottom-up and top-down controls, and that it will be necessary to understand the mechanisms underlying this rebalancing to develop better rehabilitation strategies for individuals with peripheral hearing loss.
Collapse
|
11
|
Fang L, Fu Y, Zhang TY. Salicylate-Induced Hearing Loss Trigger Structural Synaptic Modifications in the Ventral Cochlear Nucleus of Rats via Medial Olivocochlear (MOC) Feedback Circuit. Neurochem Res 2016; 41:1343-53. [PMID: 26886762 DOI: 10.1007/s11064-016-1836-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
Lesion-induced cochlear damage can result in synaptic outgrowth in the ventral cochlear nucleus (VCN). Tinnitus may be associated with the synaptic outgrowth and hyperactivity in the VCN. However, it remains unclear how hearing loss triggers structural synaptic modifications in the VCN of rats subjected to salicylate-induced tinnitus. To address this issue, we evaluated tinnitus-like behavior in rats after salicylate treatment and compared the amplitude of the distortion product evoked otoacoustic emission (DPOAE) and auditory brainstem response (ABR) between control and treated rats. Moreover, we observed the changes in the synaptic ultrastructure and in the expression levels of growth-associated protein (GAP-43), brain-derived neurotrophic factor (BDNF), the microglial marker Iba-1 and glial fibrillary acidic protein (GFAP) in the VCN. After salicylate treatment (300 mg/kg/day for 4 and 8 days), analysis of the gap prepulse inhibition of the acoustic startle showed that the rats were experiencing tinnitus. The changes in the DPOAE and ABR amplitude indicated an improvement in cochlear sensitivity and a reduction in auditory input following salicylate treatment. The treated rats displayed more synaptic vesicles and longer postsynaptic density in the VCN than the control rats. We observed that the GAP-43 expression, predominantly from medial olivocochlear (MOC) neurons, was significantly up-regulated, and that BDNF- and Iba-1-immunoreactive cells were persistently decreased after salicylate administration. Furthermore, GFAP-immunoreactive astrocytes, which is associated with synaptic regrowth, was significantly increased in the treated groups. Our study revealed that reduced auditory nerve activity triggers synaptic outgrowth and hyperactivity in the VCN via a MOC neural feedback circuit. Structural synaptic modifications may be a reflexive process that compensates for the reduced auditory input after salicylate administration. However, massive increases in excitatory synapses in the VCN may represent a detrimental process that causes central hyperactivity, leading to tinnitus.
Collapse
Affiliation(s)
- Lian Fang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - YaoYao Fu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Tian-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
12
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
13
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
14
|
Janz P, Illing RB. A role for microglial cells in reshaping neuronal circuitry of the adult rat auditory brainstem after its sensory deafferentation. J Neurosci Res 2014; 92:432-45. [DOI: 10.1002/jnr.23334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Janz
- Neurobiological Research Laboratory; Department of Otorhinolaryngology; University of Freiburg; Freiburg Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory; Department of Otorhinolaryngology; University of Freiburg; Freiburg Germany
| |
Collapse
|
15
|
Butler BE, Lomber SG. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front Syst Neurosci 2013; 7:92. [PMID: 24324409 PMCID: PMC3840613 DOI: 10.3389/fnsys.2013.00092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants.
Collapse
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology and Department of Psychology, National Centre for Audiology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
16
|
Kraus KS, Ding D, Jiang H, Kermany MH, Mitra S, Salvi RJ. Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after carboplatin-induced hearing loss: correlations with inner hair cell loss and outer hair cell loss. Hear Res 2013; 302:74-82. [PMID: 23707995 DOI: 10.1016/j.heares.2013.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/11/2022]
Abstract
Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN.
Collapse
Affiliation(s)
- K S Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Fredrich M, Zeber AC, Hildebrandt H, Illing RB. Differential molecular profiles of astrocytes in degeneration and re-innervation after sensory deafferentation of the adult rat cochlear nucleus. Eur J Neurosci 2013; 38:2041-56. [PMID: 23581580 DOI: 10.1111/ejn.12200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Ablating the cochlea causes total sensory deafferentation of the cochlear nucleus. Over the first postoperative week, degeneration of the auditory nerve and its synaptic terminals in the cochlear nucleus temporally overlaps with its re-innervation by axon collaterals of medial olivocochlear neurons. At the same time, astrocytes increase in size and density. We investigated the time courses of the expression of ezrin, polysialic acid, matrix metalloprotease-9 and matrix metalloprotease-2 within these astrocytes during the first week following cochlear ablation. All four proteins are known to participate in degeneration, regeneration, or both, following injury of the central nervous system. In a next step, stereotaxic injections of kainic acid were made into the ventral nucleus of the trapezoid body prior to cochlear ablation to destroy the neurons that re-innervate the deafferented cochlear nucleus by axon collaterals developing growth-associated protein 43 immunoreactivity. This experimental design allowed us to distinguish between molecular processes associated with degeneration and those associated with re-innervation. Under these conditions, astrocytic growth and proliferation showed an unchanged deafferentation-induced pattern. Similarly, the distribution and amount of ezrin and matrix metalloprotease-9 in astrocytes after cochlear ablation developed in the same way as under cochlear ablation alone. In sharp contrast, the astrocytic expression of polysialic acid and matrix metalloprotease-2 normally invoked by cochlear ablation collapsed when re-innervation of the cochlear nucleus was inhibited by lesioning medial olivocochlear neurons with kainic acid. In conclusion, re-innervation, including axonal growth and synaptogenesis, seems to prompt astrocytes to recompose their molecular profile, paving the way for tissue reorganisation after nerve degeneration and loss of synaptic contacts.
Collapse
Affiliation(s)
- Michaela Fredrich
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianst 5, Freiburg 79106, Germany.
| | | | | | | |
Collapse
|
18
|
Somatosensory projections to cochlear nucleus are upregulated after unilateral deafness. J Neurosci 2013; 32:15791-801. [PMID: 23136418 DOI: 10.1523/jneurosci.2598-12.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cochlear nucleus (CN) receives innervation from auditory and somatosensory structures, which can be identified using vesicular glutamate transporters, VGLUT1 and VGLUT2. VGLUT1 is highly expressed in the magnocellular ventral CN (VCN), which receives auditory nerve inputs. VGLUT2 is predominantly expressed in the granule cell domain (GCD), which receives nonauditory inputs from somatosensory nuclei, including spinal trigeminal nucleus (Sp5) and cuneate nucleus (Cu). Two weeks after unilateral deafening VGLUT1 is significantly decreased in ipsilateral VCN while VGLUT2 is significantly increased in the ipsilateral GCD (Zeng et al., 2009), putatively reflecting decreased inputs from auditory nerve and increased inputs from nonauditory structures in guinea pigs. Here, we wished to determine whether the upregulation of VGLUT2 represents increases in the number of somatosensory projections to the CN that are maintained for longer periods of time. Thus, we examined concurrent changes in VGLUT levels and somatosensory projections in the CN using immunohistochemistry combined with anterograde tract tracing three and six weeks following unilateral deafening. The data reveal that unilateral deafness leads to increased numbers of VGLUT2-colabeled Sp5 and Cu projections to the ventral and dorsal CN. These findings suggest that Sp5 and Cu play significant and unique roles in cross-modal compensation and that, unlike after shorter term deafness, neurons in the magnocellular regions also participate in the compensation. The enhanced glutamatergic somatosensory projections to the CN may play a role in neural spontaneous hyperactivity associated with tinnitus.
Collapse
|
19
|
Clarkson C, Herrero-Turrión MJ, Merchán MA. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis. Front Neural Circuits 2012; 6:86. [PMID: 23233834 PMCID: PMC3516126 DOI: 10.3389/fncir.2012.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022] Open
Abstract
The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca Salamanca, Spain
| | | | | |
Collapse
|
20
|
Alvarado JC, Fuentes-Santamaría V, Jareño-Flores T, Blanco JL, Juiz JM. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: a study in Wistar rats. Neurosci Res 2012; 73:302-11. [PMID: 22595234 DOI: 10.1016/j.neures.2012.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Auditory brainstem evoked responses (ABR) have been used for decades to assess auditory function. Surprisingly, despite the fact that rats are one of the most widely used experimental models in hearing, there have been no studies that have characterized in detail the normal morphological variations that occur in ABR waves. Therefore, the goal of this study was to characterize the patterns of ABR waves in rats to establish baseline criteria that could be used to identify abnormalities. Rats were stimulated with pure tone sounds at different frequencies and ABR waves were classified based on morphology. The most definitive finding was that, unlike what is observed in human ABRs, wave II of the rat ABR was the most prominent. Additionally, wave III was the smallest and, in many cases, was not apparent at low frequencies. Wave III was frequently involved in the formation of complexes, often appearing as a small wave or adjoining primarily wave IV. Complexes were common at low and medium frequencies and rare at high frequencies. These results indicate that knowledge of the different wave patterns in normal rats is fundamental to understanding how the wave morphology changes in pathological conditions that could lead to hearing impairment.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), 02006 Albacete, Spain.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Long-term binaural auditory deprivation is associated with poorer speech recognition outcomes after cochlear implantation, even for postlingual hearing loss. It is, however, unknown to what extent the outcomes of implantation are related to the peripheral changes occurring monaurally or to changes at a higher level in the auditory system related to binaural deafness. This retrospective study aimed to unravel peripheral and central contributions to cochlear implantation outcomes by comparing outcomes obtained in individual ears for adults with long-term monaural auditory deprivation (i.e. unilateral use of hearing aid) who received bilateral cochlear implants. Results showed that similar outcomes can be obtained with the implant placed in the auditory-deprived or in the aided ear. This suggests that the peripheral changes related to monaural auditory deprivation have little effect on outcomes of cochlear implantation.
Collapse
|
22
|
Manzoor NF, Gao Y, Licari F, Kaltenbach JA. Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res 2012; 295:114-23. [PMID: 22521905 DOI: 10.1016/j.heares.2012.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
Induction of hyperactivity in the central auditory system is one of the major physiological hallmarks of animal models of noise-induced tinnitus. Although hyperactivity occurs at various levels of the auditory system, it is not clear to what extent hyperactivity originating in one nucleus contributes to hyperactivity at higher levels of the auditory system. In this study we compared the time courses and tonotopic distribution patterns of hyperactivity in the dorsal cochlear nucleus (DCN) and inferior colliculus (IC). A model of acquisition of hyperactivity in the IC by passive relay from the DCN would predict that the two nuclei show similar time courses and tonotopic profiles of hyperactivity. A model of acquisition of hyperactivity in the IC by compensatory plasticity mechanisms would predict that the IC and DCN would show differences in these features, since each adjusts to changes of spontaneous activity of opposite polarity. To test the role of these two mechanisms, animals were exposed to an intense hyperactivity-inducing tone (10 kHz, 115 dB SPL, 4 h) then studied electrophysiologically at three different post-exposure recovery times (from 1 to 6 weeks after exposure). For each time frame, multiunit spontaneous activity was mapped as a function of location along the tonotopic gradient in the DCN and IC. Comparison of activity profiles from the two nuclei showed a similar progression toward increased activity over time and culminated in the development of a central peak of hyperactivity at a similar tonotopic location. These similarities suggest that the shape of the activity profile is determined primarily by passive relay from the cochlear nucleus. However, the absolute levels of activity were generally much lower in the IC than in the DCN, suggesting that the magnitude of hyperactivity is greatly attenuated by inhibition.
Collapse
Affiliation(s)
- N F Manzoor
- Department of Neurosciences, The Cleveland Clinic, NE-63, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
23
|
Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience 2011; 194:309-25. [PMID: 21821100 PMCID: PMC3390756 DOI: 10.1016/j.neuroscience.2011.07.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine rats to narrow-band noise centered at 12 kHz at 126 dB sound pressure level (SPL) for 2 h and sacrificed them 10 weeks later for evaluation of synaptic plasticity (growth-associated protein 43 [GAP-43] expression) in the cochlear nucleus. Noise-exposed rats along with three age-matched controls were screened for tinnitus-like behavior with gap prepulse inhibition of the acoustic startle (GPIAS) before, 1-10 days after, and 8-10 weeks after the noise exposure. All nine noise-exposed rats showed similar patterns of severe hair cell loss at high- and mid-frequency regions in the exposed ear. Eight of the nine showed strong up-regulation of GAP-43 in auditory nerve fibers and pronounced shrinkage of the ventral cochlear nucleus (VCN) on the noise-exposed side, and strong up-regulation of GAP-43 in the medial ventral VCN, but not in the lateral VCN or the dorsal cochlear nucleus. GAP-43 up-regulation in VCN was significantly greater in Noise-No-Tinnitus rats than in Noise-Tinnitus rats. One Noise-No-Tinnitus rat showed no up-regulation of GAP-43 in auditory nerve fibers and only little VCN shrinkage, suggesting that auditory nerve degeneration plays a role in tinnitus generation. Our results suggest that noise-induced tinnitus is suppressed by strong up-regulation of GAP-43 in the medial VCN. GAP-43 up-regulation most likely originates from medial olivocochlear neurons. Their increased excitatory input on inhibitory neurons in VCN may possibly reduce central hyperactivity and tinnitus.
Collapse
Affiliation(s)
- Kari Suzanne Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ed Lobarinas
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Wei Sun
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Richard J Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| |
Collapse
|
24
|
Deafferentation-induced redistribution of MMP-2, but not of MMP-9, depends on the emergence of GAP-43 positive axons in the adult rat cochlear nucleus. Neural Plast 2011; 2011:859359. [PMID: 22135757 PMCID: PMC3202138 DOI: 10.1155/2011/859359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/17/2011] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases MMP-9 and MMP-2, major modulators of the extracellular matrix (ECM), were changed in amount and distribution in the rat anteroventral cochlear nucleus (AVCN) following its sensory deafferentation by cochlear ablation. To determine what causal relationships exist between the redistribution of MMP-9 and MMP-2 and deafferentation-induced reinnervation, kainic acid was stereotaxically injected into the ventral nucleus of the trapezoid body (VNTB) prior to cochlear ablation, killing cells that deliver the growth associated protein 43 (GAP-43) into AVCN. Deafferentation-induced changes in the pattern of MMP-9 staining remained unaffected by VNTB lesions. By contrast, changes in the distribution of MMP-2 normally evoked by sensory deafferentation were reversed if GAP-43 positive axons were prevented to grow in AVCN. In conclusion, GAP-43-containing axons emerging in AVCN after cochlear ablation seem to be causal for the maintenance of MMP-2-mediated ECM remodeling.
Collapse
|
25
|
Hildebrandt H, Hoffmann NA, Illing RB. Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation. PLoS One 2011; 6:e23686. [PMID: 21887295 PMCID: PMC3161744 DOI: 10.1371/journal.pone.0023686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/25/2011] [Indexed: 01/09/2023] Open
Abstract
Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×10(9) SCZs per mm(3) of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain.
Collapse
Affiliation(s)
- Heika Hildebrandt
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Freiburg, Germany
| | - Nadine A. Hoffmann
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Freiburg, Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
26
|
The possible impact of noise-induced Ca 2+ -dependent activity in the central auditory pathway: A manganese-enhanced MRI study. Neuroimage 2011; 57:190-197. [DOI: 10.1016/j.neuroimage.2011.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/19/2022] Open
|
27
|
Rich AW, Xie R, Manis PB. Hearing loss alters quantal release at cochlear nucleus stellate cells. Laryngoscope 2010; 120:2047-53. [PMID: 20824788 DOI: 10.1002/lary.21106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES/HYPOTHESIS Auditory nerve synapses in ventral cochlear nucleus end on two principal cell types, bushy and stellate cells. Although the effects of hearing loss on bushy cells have been well studied, little is known about the effects of hearing loss on synaptic input to the stellate cells. Based on prior observations in bushy cells, we hypothesized that noise-induced hearing loss (NIHL) would decrease quantal release onto stellate cells. STUDY DESIGN Prospective, randomized animal study. METHODS CBA/CaJ mice were exposed for 2 hours to 98 dB sound pressure level (SPL) 8- to 16-kHz noise to produce a temporary threshold shift (TTS) or 114 dB SPL to produce a permanent threshold shift (PTS). Spontaneous miniature excitatory postsynaptic currents (mEPSCs) were then measured in stellate cells in brain slices of the cochlear nucleus. RESULTS Click auditory brainstem evoked response thresholds were elevated by 35 dB in both TTS and PTS mice. Spontaneous mEPSC frequency was found to be five-fold higher than normal in stellate cells of TTS mice and three-fold higher in PTS mice. The mEPSC amplitude was also larger in PTS mice. The mEPSC time course was not different between experimental and control groups. CONCLUSIONS The dramatic increase in mEPSC frequency after NIHL was not expected. The increase in mEPSC amplitude in PTS mice suggests a postsynaptic remodeling process. Both of these effects could contribute to increased spontaneous firing in the cochlear nucleus in the absence of sound. Our results also suggest that hearing loss may have different effects at auditory nerve synapses on bushy and stellate cells in the VCN.
Collapse
Affiliation(s)
- Alexander W Rich
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina 27599-7070, USA
| | | | | |
Collapse
|
28
|
Cortical Function in Children Receiving Bilateral Cochlear Implants Simultaneously or After a Period of Interimplant Delay. Otol Neurotol 2010; 31:1293-9. [DOI: 10.1097/mao.0b013e3181e8f965] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Illing RB, Rosskothen-Kuhl N, Fredrich M, Hildebrandt H, Zeber AC. Imaging the plasticity of the central auditory system on the cellular and molecular level. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/16513860903454583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Bledsoe SC, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J Neurophysiol 2009; 102:886-900. [PMID: 19458143 PMCID: PMC2724362 DOI: 10.1152/jn.91003.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 05/15/2009] [Indexed: 11/22/2022] Open
Abstract
In the normal guinea pig, contralateral sound inhibits more than a third of ventral cochlear nucleus (VCN) neurons but excites <4% of these neurons. However, unilateral conductive hearing loss (CHL) and cochlear ablation (CA) result in a major enhancement of contralateral excitation. The response properties of the contralateral excitation produced by CHL and CA are similar, suggesting similar pathways are involved for both types of hearing loss. Here we used the neurotoxin melittin to test the hypothesis that this "compensatory" contralateral excitation is mediated either by direct glutamatergic CN-commissural projections or by cholinergic neurons of the olivocochlear bundle (OCB) that send collaterals to the VCN. Unit responses were recorded from the left VCN of anesthetized, unilaterally deafened guinea pigs (CHL via ossicular disruption, or CA via mechanical destruction). Neural responses were obtained with 16-channel electrodes to enable simultaneous data collection from a large number of single- and multiunits in response to ipsi- and contralateral tone burst and noise stimuli. Lesions of each pathway had differential effects on the contralateral excitation. We conclude that contralateral excitation has a fast and a slow component. The fast excitation is likely mediated by glutamatergic neurons located in medial regions of VCN that send their commissural axons to the other CN via the dorsal/intermediate acoustic striae. The slow component is likely mediated by the OCB collateral projections to the CN. Commissural neurons that leave the CN via the trapezoid body are an additional source of fast, contralateral excitation.
Collapse
Affiliation(s)
- Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
31
|
Finlayson PG, Kaltenbach JA. Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 2009; 256:104-17. [PMID: 19622390 DOI: 10.1016/j.heares.2009.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Electrophysiological recordings in the dorsal cochlear nucleus (DCN) were conducted to determine the nature of changes in single unit activity following intense sound exposure and how they relate to changes in multiunit activity. Single and multiunit spontaneous discharge rates and auditory response properties were recorded from the left DCN of tone exposed and control hamsters. The exposure condition consisted of a 10 kHz tone presented in the free-field at a level of 115 dB for 4h. Recordings conducted at 5-6 days post-exposure revealed several important changes. Increases in multiunit spontaneous neural activity were observed at surface and subsurface levels of the DCN of exposed animals, reaching a peak at intermediate depths corresponding to the fusiform cell layer and upper level of the deep layer. Extracellular spikes from single units in the DCN of both control and exposed animals characteristically displayed either M- or W-shaped waveforms, although the proportion of units with M-shaped spikes was higher in exposed animals than in controls. W-shaped spikes showed significant increases in the duration of their major peaks after exposure, suggestive of changes in the intrinsic membrane properties of neurons. Spike amplitudes were not found to be significantly increased in exposed animals. Spontaneous discharge rates of single units increased significantly from 8.7 spikes/s in controls to 15.9 spikes/s after exposure. Units with the highest activity in exposed animals displayed type III electrophysiological responses patterns, properties usually attributed to fusiform cells. Increases in spontaneous discharge rate were significantly larger when the comparison was limited to a subset of units having type III frequency response patterns. There was an increase in the incidence of simple spiking activity as well as in the incidence of spontaneous bursting activity, although the incidence of spikes occurring in bursts was low in both animal groups (i.e., <30%). Despite this low incidence, approximately half of the increase in spontaneous activity in exposed animals was accounted for by an increase in bursting activity. Finally, we found no evidence of an increase in the mean number of spontaneously active units in electrode penetrations of exposed animals compared to those in controls. Overall our results indicate that the increase in multiunit activity observed at the DCN surface reflects primarily an increase in the spontaneous discharge rates of single units below the DCN surface, of which approximately half was contributed by spikes in bursts. The highest level of hyperactivity was observed among units having the response properties most commonly attributed to fusiform cells.
Collapse
Affiliation(s)
- Paul G Finlayson
- Department of Otolaryngology, Wayne State University School of Medicine, 5E-UHC, Detroit, MI 48201, USA.
| | | |
Collapse
|
32
|
Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: up-regulation of GAP-43 in the ventral cochlear nucleus. Hear Res 2009; 255:33-43. [PMID: 19435600 DOI: 10.1016/j.heares.2009.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/02/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
Inner ear damage may lead to structural changes in the central auditory system. In rat and chinchilla, cochlear ablation and noise trauma result in fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between carboplatin-induced hair cell degeneration and VCN plasticity in the chinchilla. Unilateral application of carboplatin (5mg/ml) on the round window membrane resulted in massive hair cell loss. Outer hair cell degeneration showed a pronounced basal-to-apical gradient while inner hair cell loss was more equally distributed throughout the cochlea. Expression of the growth associated protein GAP-43, a well-established marker for synaptic plasticity, was up-regulated in the ipsilateral VCN at 15 and 31 days post-carboplatin, but not at 3 and 7 days. In contrast, the dorsal cochlear nucleus showed only little change. In VCN, the high-frequency area dorsally showed slightly yet significantly stronger GAP-43 up-regulation than the low-frequency area ventrally, possibly reflecting the high-to-low frequency gradient of hair cell degeneration. Synaptic modification or formation of new synapses may be a homeostatic process to re-adjust mismatched inputs from two ears. Alternatively, massive fiber growth may represent a deleterious process causing central hyperactivity that leads to loudness recruitment or tinnitus.
Collapse
|
33
|
Sekiya T, Canlon B, Viberg A, Matsumoto M, Kojima K, Ono K, Yoshida A, Kikkawa YS, Nakagawa T, Ito J. Selective vulnerability of adult cochlear nucleus neurons to de-afferentation by mechanical compression. Exp Neurol 2009; 218:117-23. [PMID: 19393647 DOI: 10.1016/j.expneurol.2009.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/15/2009] [Indexed: 12/22/2022]
Abstract
It is well established that the cochlear nucleus (CN) of developing species is susceptible to loss of synaptic connections from the auditory periphery. Less information is known about how de-afferentation affects the adult auditory system. We investigated the effects of de-afferentation to the adult CN by mechanical compression. This experimental model is quantifiable and highly reproducible. Five weeks after mechanical compression to the axons of the auditory neurons, the total number of neurons in the CN was evaluated using un-biased stereological methods. A region-specific degeneration of neurons in the dorsal cochlear nucleus (DCN) and posteroventral cochlear nucleus (PVCN) by 50% was found. Degeneration of neurons in the anteroventral cochlear nucleus (AVCN) was not found. An imbalance between excitatory and inhibitory synaptic transmission after de-afferentation may have played a crucial role in the development of neuronal cell demise in the CN. The occurrence of a region-specific loss of adult CN neurons illustrates the importance of evaluating all regions of the CN to investigate the effects of de-afferentation. Thus, this experimental model may be promising to obtain not only the basic knowledge on auditory nerve/CN degeneration but also the information relevant to the application of cochlear or auditory brainstem implants.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Sakyou-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hanss J, Veuillet E, Adjout K, Besle J, Collet L, Thai-Van H. The effect of long-term unilateral deafness on the activation pattern in the auditory cortices of French-native speakers: influence of deafness side. BMC Neurosci 2009; 10:23. [PMID: 19309511 PMCID: PMC2662863 DOI: 10.1186/1471-2202-10-23] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/23/2009] [Indexed: 11/29/2022] Open
Abstract
Background In normal-hearing subjects, monaural stimulation produces a normal pattern of asynchrony and asymmetry over the auditory cortices in favour of the contralateral temporal lobe. While late onset unilateral deafness has been reported to change this pattern, the exact influence of the side of deafness on central auditory plasticity still remains unclear. The present study aimed at assessing whether left-sided and right-sided deafness had differential effects on the characteristics of neurophysiological responses over auditory areas. Eighteen unilaterally deaf and 16 normal hearing right-handed subjects participated. All unilaterally deaf subjects had post-lingual deafness. Long latency auditory evoked potentials (late-AEPs) were elicited by two types of stimuli, non-speech (1 kHz tone-burst) and speech-sounds (voiceless syllable/pa/) delivered to the intact ear at 50 dB SL. The latencies and amplitudes of the early exogenous components (N100 and P150) were measured using temporal scalp electrodes. Results Subjects with left-sided deafness showed major neurophysiological changes, in the form of a more symmetrical activation pattern over auditory areas in response to non-speech sound and even a significant reversal of the activation pattern in favour of the cortex ipsilateral to the stimulation in response to speech sound. This was observed not only for AEP amplitudes but also for AEP time course. In contrast, no significant changes were reported for late-AEP responses in subjects with right-sided deafness. Conclusion The results show that cortical reorganization induced by unilateral deafness mainly occurs in subjects with left-sided deafness. This suggests that anatomical and functional plastic changes are more likely to occur in the right than in the left auditory cortex. The possible perceptual correlates of such neurophysiological changes are discussed.
Collapse
|
35
|
Gharabaghi A, Löwenheim H, Heckl S, Koerbel A, Kaminsky J, Tatagiba M. AUDITORY REHABILITATION AFTER LONG-TERM DEAFNESS. Neurosurgery 2008; 62:983-5; discussion 985-6. [DOI: 10.1227/01.neu.0000318191.63901.2b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
The duration of preexisting profound deafness in patients with bilateral retrocochlear lesions is known to correlate negatively to the extent of auditory restoration after auditory brainstem implantation. There is, therefore, a lack of information regarding the potential of the central auditory system to mediate hearing perception after long-term deafness.
METHODS
The authors evaluated auditory perception in a case of auditory brainstem implantation after 35 years of deafness.
RESULTS
Electrically evoked auditory brainstem potentials could be elicited by both stimulus polarities and were consistent with auditory brainstem origin. Discrimination between temporal and spectral patterns in speech could be achieved. This permitted us to distinguish various voice qualities, especially of familiar speakers in quiet surroundings.
CONCLUSION
The potential of the deafferentiated central auditory system to mediate auditory brainstem implant-induced hearing perception even after very long-term deafness has been demonstrated. Those patients with complete dysfunction of Cranial Nerve VIII for a long period may be considered as candidates for auditory brainstem implantation in the future.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Department of Neurosurgery, Eberhard Karls University Hospital, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolarhangology, Eberhard Karls University Hospital, Tübingen, Germany
| | - Stefan Heckl
- Department of Neurosurgery, Eberhard Karls University Hospital, Tübingen, Germany
| | - Andrei Koerbel
- Department of Neurosurgery, Eberhard Karls University Hospital, Tübingen, Germany
| | - Jan Kaminsky
- Department of Neurosurgery, Eberhard Karls University Hospital, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University Hospital, Tübingen, Germany
| |
Collapse
|
36
|
Hwang JH, Chao JC, Ho HC, Hsiao SH. Effects of sex, age and hearing asymmetry on the interaural differences of auditory brainstem responses. Audiol Neurootol 2007; 13:29-33. [PMID: 17715467 DOI: 10.1159/000107468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 04/27/2007] [Indexed: 11/19/2022] Open
Abstract
Healthy patients with asymmetric sensorineural hearing loss who had received examination of auditory brainstem responses (ABR) were gathered for retrospective analysis. The effects of sex, age and hearing asymmetry on the interaural differences of ipsilateral ABR were determined by multivariant linear regression. Our results showed that the interaural differences of ABR wave III and wave V latencies were significantly affected by hearing asymmetry but not by sex or age. However, in female subjects younger than 50 years, differences of III-V intervals could be negatively correlated with hearing asymmetry. We suggest that plasticity in the auditory brainstem in younger females might account for asymmetrical peripheral hearing in this group.
Collapse
Affiliation(s)
- J H Hwang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
37
|
Meidinger MA, Hildebrandt-Schoenfeld H, Illing RB. Cochlear damage induces GAP-43 expression in cholinergic synapses of the cochlear nucleus in the adult rat: a light and electron microscopic study. Eur J Neurosci 2007; 23:3187-99. [PMID: 16820009 DOI: 10.1111/j.1460-9568.2006.04853.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest a potential for activity-dependent reconstruction in the adult mammalian brainstem that exceeds previous expectations. We found that a unilateral cochlear lesion led within 1 week to a rise of choline acetyltransferase (ChAT) immunoreactivity in the ventral cochlear nucleus of the affected side, matching the lesion-induced expression of growth-associated protein 43 (GAP-43) previously described. The rise of both ChAT and GAP-43 immunoreactivity was reflected in the average density of the staining. Moreover, the number of light-microscopically identifiable boutons increased in both stains. GAP-43-positive boutons could, by distinct ultrastructural features, regularly be identified as presynaptic endings. However, GAP-43 immunoreactivity was not only found in presynaptic endings with a classical morphology, but also in profiles that suggest morphological dynamic structures by showing filopodia, assemblages of pleomorphic vesicles, large vesicles (diameter up to 200 nm) fusing with the presynaptic plasma membrane close to synaptic contacts, small dense-core vesicles (diameter about 80 nm) and presynaptic ribosomes. Moreover, we observed perforated synapses as well as GAP-43 immunoreactivity condensed in rafts, both indicative of growing or changing neuronal connections. Classical and untypical ultrastructural profiles that contained GAP-43 also contained ChAT. We conclude that there is extensive deafness-induced GAP-43-mediated synaptic plasticity in the cochlear nucleus, and that this plasticity is predominantly, if not exclusively, based on cholinergic afferents.
Collapse
Affiliation(s)
- Markus A Meidinger
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
38
|
Kaltenbach JA, Zhang J. Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: Evidence for cholinergic receptor upregulation. Hear Res 2007; 226:232-43. [PMID: 16914276 DOI: 10.1016/j.heares.2006.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/19/2006] [Accepted: 07/02/2006] [Indexed: 11/26/2022]
Abstract
Previous studies in a number of species have demonstrated that spontaneous activity in the dorsal cochlear nucleus (DCN) becomes elevated following exposure to intense sound. This condition of hyperactivity has aroused considerable interest because it may represent an important neural correlate of tinnitus. There is some evidence that neurons in the superficial DCN, such as cartwheel, stellate and fusiform cells, may contribute to the level of hyperactivity induced by intense sound, although the relative importance of these different cell types is unknown. In the present study, we sought to determine the effect of intense sound exposure on multiunit spontaneous activity both at the DCN surface and in the fusiform cell layer and to examine the influence of cholinergic input to DCN circuits on the level of activity in the fusiform cell layer. Rats were studied in two groups, one of which had been exposed to a continuous intense sound (10 kHz 127 dB SPL) for 4h while the other group served as unexposed controls. Between 30 and 52 days post-exposure, recordings of multiunit activity were performed at the DCN surface as well as in the middle of the fusiform cell layer. Changes in fusiform cell layer activity were also studied in response to superficial applications of the cholinergic agonist, carbachol, either alone or following pre-application of the cholinergic antagonist, atropine. The results demonstrated that multiunit spontaneous activity in the rat DCN was generally much higher in both control and exposed animals relative to that which has been observed in other species. This activity was significantly higher at the DCN surface of sound-exposed animals than that of controls. In contrast, hyperactivity could not be demonstrated in the fusiform cell layer of sound-exposed animals. Carbachol administration most commonly caused suppression of fusiform cell layer activity. However, this suppression was considerably stronger in the DCN of sound-exposed animals than in controls. These findings suggest that, hyperactivity at the DCN surface of exposed rats may arise as a consequence of more highly activated neurons in the molecular layer, such as cartwheel and/or stellate cells, and that the lack of hyperactivity in the fusiform cell layer may be the result of inhibition of fusiform cells by these inhibitory interneurons. Although this finding does not rule out fusiform cells as possible sources of hyperactivity in other species, or even in the rat after short post-exposure recovery periods, the enhanced sensitivity of the fusiform cell layer to cholinergic stimulation suggests that in the rat, at least after prolonged post-exposure recovery periods, increased inhibition of activity in this layer by more superficially located neurons may result from an upregulation of receptors for cholinergic input. This upregulation may be greater in rats than in other species due to the relatively heavy cholinergic input that exists in the cochlear nucleus of this species.
Collapse
Affiliation(s)
- James A Kaltenbach
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
39
|
The dorsal cochlear nucleus as a contributor to tinnitus: mechanisms underlying the induction of hyperactivity. PROGRESS IN BRAIN RESEARCH 2007; 166:89-106. [DOI: 10.1016/s0079-6123(07)66009-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Lu Y, Harris JA, Rubel EW. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J Neurophysiol 2006; 97:635-46. [PMID: 17079338 PMCID: PMC1774585 DOI: 10.1152/jn.00915.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During a critical period prior to hearing onset, cochlea ablation leads to massive neuronal death in the mouse anteroventral cochlear nucleus (AVCN), where cell survival is believed to depend on glutamatergic input. We investigated the development of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in AVCN neurons using whole cell patch-clamp techniques during [postnatal day 7 (P7)] and after (P14, P21) this critical period. We also examined the effects of unilateral cochlea ablation on mEPSC development. The two main AVCN neuron types, bushy and stellate cells, were distinguished electrophysiologically. Bushy cell mEPSCs became more frequent and faster between P7 and P14/P21 but with little change in amplitude. Dendritic filtering of mEPSCs was not detected as indicated by the lack of correlation between 10 and 90% rise times and decay time constants. Seven days after cochlea ablation at P7 or P14, mEPSCs in surviving bushy cells were similar to controls, except that rise and decay times were positively correlated (R = 0.31 and 0.14 for surgery at P7 and P14, respectively). Consistent with this evidence for a shift of synaptic activity from the somata to the dendrites, SV2 staining (a synaptic vesicle marker) forms a ring around somata of control but not experimental bushy cells. In contrast, mEPSCs of stellate cells showed few significant changes over these ages with or without cochlea ablation. Taken together, mEPSCs in mouse AVCN bushy cells show dramatic developmental changes across this critical period, and cochlea ablation may lead to the emergence of excitatory synaptic inputs impinging on bushy cell dendrites.
Collapse
Affiliation(s)
| | | | - Edwin W Rubel
- *Correspondence to: EWR at the above address: Telephone: 206-543-8360, Facsimile: 206-221-5685, E-mail:
| |
Collapse
|
41
|
Illing RB, Reisch A. Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond. Hear Res 2006; 216-217:189-97. [PMID: 16624512 DOI: 10.1016/j.heares.2005.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 11/16/2022]
Abstract
Variations of sensory activation in strength and pattern are known to affect structure and function of the mammalian brain. Whereas such malleability is readily granted to forebrain structures at early developmental stages, acceptance of experience-dependent structural plasticity has been slow for the adult brainstem. Over the past years we have identified consequences of cochlear ablation, noise trauma, or electrical intracochlear stimulation on neurons and circuitry of the auditory brainstem of the adult rat. We found that loss of sensory activation as well as a substitution for it entail specific molecular, ultrastructural, and morphological changes to central auditory neurons. Here, we make a first attempt to compare these different patterns of central remodeling. We tentatively suggest that after hearing loss or intracochlear stimulation responses of the central neural network in the adult brainstem suit the concept of functional adaptation.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianstr. 5, D-79106 Freiburg, Germany.
| | | |
Collapse
|
42
|
Kraus KS, Illing RB. Cell death or survival: Molecular and connectional conditions for olivocochlear neurons after axotomy. Neuroscience 2005; 134:467-81. [PMID: 15964701 DOI: 10.1016/j.neuroscience.2005.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/24/2005] [Accepted: 04/12/2005] [Indexed: 12/11/2022]
Abstract
We aimed to determine whether rat olivocochlear neurons survive axotomy inflicted through cochlear ablation, or if they degenerate. To estimate their intrinsic potential for axonal regeneration, we investigated the expression of the transcription factor c-Jun and the growth-associated protein-43 (GAP43). Axonal tracing studies based on application of Fast Blue into the cochlea and calcitonin gene-related peptide immunostaining revealed that many, but not all, lateral olivocochlear neurons in the ipsilateral lateral superior olive degenerated upon cochleotomy. A decrease of their number was noticed 2 weeks after the lesion, and 2 months postoperative the population was reduced to approximately one quarter (27-29%) of its original size. No further reduction took place at longer survival times up to 1 year. Most or all shell neurons and medial olivocochlear neurons survived axotomy. Following cochleotomy, 56-60% of the lateral olivocochlear neurons in the ipsilateral lateral superior olive were found to co-express c-Jun and GAP43. Only a small number of shell and medial olivocochlear neurons up-regulated c-Jun expression, and only a small number of shell neurons expressed GAP43. Up-regulation of c-Jun and GAP43 in lateral olivocochlear neurons upon axotomy suggests that they have an intrinsic potential to regenerate after axotomy, but cell counts based on the markers Fast Blue and calcitonin gene-related peptide indicate that this potential cannot be exploited and degeneration is induced instead. The survival of one quarter of the axotomized lateral olivocochlear neurons and of all, or almost all, shell and medial olivocochlear neurons appeared to depend on connections of these cells to other regions than the cochlea by means of axon collaterals, which remained intact after cochleotomy.
Collapse
Affiliation(s)
- K S Kraus
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianstrasse 5, D-79106 Freiburg, Germany
| | | |
Collapse
|