1
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
2
|
Maharajan N, Cho GW, Jang CH. Therapeutic Application of Mesenchymal Stem Cells for Cochlear Regeneration. In Vivo 2021; 35:13-22. [PMID: 33402445 PMCID: PMC7880755 DOI: 10.21873/invivo.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Hearing loss is one of the major worldwide health problems that seriously affects human social and cognitive development. In the auditory system, three components outer ear, middle ear and inner ear are essential for the hearing mechanism. In the inner ear, sensory hair cells and ganglion neuronal cells are the essential supporters for hearing mechanism. Damage to these cells can be caused by long-term exposure of excessive noise, ototoxic drugs (aminoglycosides), ear tumors, infections, heredity and aging. Since mammalian cochlear hair cells do not regenerate naturally, some therapeutic interventions may be required to replace the damaged or lost cells. Cochlear implants and hearing aids are the temporary solutions for people suffering from severe hearing loss. The current discoveries in gene therapy may provide a deeper understanding in essential genes for the inner ear regeneration. Stem cell migration, survival and differentiation to supporting cells, cochlear hair cells and spiral ganglion neurons are the important foundation in understanding stem cell therapy. Moreover, mesenchymal stem cells (MSCs) from different sources (bone marrow, umbilical cord, adipose tissue and placenta) could be used in inner ear therapy. Transplanted MSCs in the inner ear can recruit homing factors at the damaged sites to induce transdifferentiation into inner hair cells and ganglion neurons or regeneration of sensory hair cells, thus enhancing the cochlear function. This review summarizes the potential application of mesenchymal stem cells in hearing restoration and combining stem cell and molecular therapeutic strategies can also be used in the recovery of cochlear function.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang Won Cho
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Peng T, Peng JJ, Miao GY, Tan ZQ, Liu B, Zhou E. miR‑125/CDK2 axis in cochlear progenitor cell proliferation. Mol Med Rep 2020; 23:102. [PMID: 33300064 PMCID: PMC7723065 DOI: 10.3892/mmr.2020.11741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Hearing loss ranks fourth among the principal causes of disability worldwide, and manipulation of progenitor cells may be a key strategy for hair cell regeneration. The present study investigated the role and mechanism of miR‑125 on the proliferation of cochlear progenitor cells (CPCs). CPCs were isolated from the cochleae of neonatal rats, and their morphology was observed. Furthermore, the differentiation ability of CPCs was determined by assessing the expression of 5‑bromodeoxyuridine (BrdU), nestin and myosin VII by immunofluorescence. The expression levels of miR‑125 and cyclin‑dependent kinase 2 (CDK2) as well as the cell proliferation of CPCs were assessed. In addition, following gain‑ and loss‑of‑function assays, the cell cycle was examined by flow cytometry, and the expression levels of miR‑125, CDK2, proliferating cell nuclear antigen (PCNA) and nestin were determined by reverse transcription‑quantitative PCR and western blotting. The binding sites between miR‑125 and CDK2 were predicted by TargetScan and identified by the dual luciferase reporter assay. The results demonstrated that different types of progenitor spheres were observed from CPCs with positive expression of BrdU, nestin and myosin VII. Following in vitro incubation for 2, 4 and 7 days, the spheres were enlarged, and CPC proliferation gradually increased and reached a plateau after further incubation for 3 days. Furthermore, the expression levels of nestin and PCNA in CPCs increased and then decreased during in vitro incubation for 2, 4 and 7 days. Following this incubation, the expression levels of miR‑125 in CPCs decreased; thereafter, its expression increased, and the expression pattern was different from that of CDK2. In addition, miR‑125 overexpression in CPCs decreased the expression of CDK2 and the number of cells in the S phase. Different expression patterns were found in CPCs in response to the miR‑125 knockdown. In addition, miR‑125 directly targeted CDK2. Simultaneous knockdown of miR‑125 and CDK2 enhanced CPC proliferation compared with CDK2 knockdown alone. Taken together, the findings from the present study suggested that miR‑125 may inhibit CPC proliferation by downregulating CDK2. The present study may provide a novel therapeutic direction for treatment of hearing loss.
Collapse
Affiliation(s)
- Tao Peng
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Jing-Jing Peng
- Department of Obstetrics and Gynecology, Changsha Maternal and Child Health Care Hospital, Changsha, Hunan 410005, P.R. China
| | - Gang-Yong Miao
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Zhi-Qiang Tan
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Bin Liu
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - En Zhou
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
4
|
Chen J, Liu Z, Yan H, Xing W, Mi W, Wang R, Li W, Chen F, Qiu J, Zha D. miR-182 prevented ototoxic deafness induced by co-administration of kanamycin and furosemide in rats. Neurosci Lett 2020; 723:134861. [PMID: 32105765 DOI: 10.1016/j.neulet.2020.134861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Ototoxic drugs may induce auditory sensory hair cell loss and permanent deafness; however, there is still no effective treatments or prevention strategies for this side effect. A recent study found that microRNA182 (miR-182) protected cochlear hair cells from ototoxic drug-induced apoptosis in vitro. However, it remains unclear whether miR-182 can protect drug-induced deafness in vivo. In this study, we overexpressed cochlear miR-182 in Sprague-Dawley rats by trans-round window niche delivery of miR-182 mimics. The rats subsequently received intraperitoneal injections of kanamycin and furosemide to induce acute cochlear outer hair cell death and permanent deafness. Auditory brainstem response tests showed that miR-182 attenuated permanent threshold shifts. Consistent with this result, miR-182 reduced the loss of outer hair cells and missing stereocilia. miR-182 treatment also increased the level of phosphoinositide-3 kinase regulatory subunit p85α in the outer hair cells after co-administration of kanamycin and furosemide. Our findings suggest that miR-182 has powerful protective potential against ototoxic drug-induced acute auditory sensory hair cell loss and permanent deafness.
Collapse
Affiliation(s)
- Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Zhenzhen Liu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Hui Yan
- Department of Otolaryngology, the Bingtuan Hospital, the Second Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang 830002, China
| | - Wei Xing
- Department of Otolaryngology, Sanitarial District, Lintong Sanatorium of Lanzhou Military Region, Xi'an, 710600, China
| | - Wenjuan Mi
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Renfeng Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China.
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China.
| |
Collapse
|
5
|
Li C, Ding D, Gao Y, Li Y. MicroRNA‑3651 promotes colorectal cancer cell proliferation through directly repressing T‑box transcription factor 1. Int J Mol Med 2020; 45:956-966. [PMID: 31922246 DOI: 10.3892/ijmm.2020.4458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a commonly diagnosed gastrointestinal malignancy worldwide with a high mortality rate. Accumulating evidence has indicated that the expression of a number of microRNAs (miRNAs) is associated with the development of colorectal cancer. However, the precise molecular mechanism of these miRNAs in regulating cancer progression is yet to be determined. In the present study, miR‑3651 was demonstrated to be overexpressed in colorectal cancer tissues compared with normal tissues, and to be associated with the tumor‑node‑metastasis stage. The downregulation of miR‑3651 was found to induce growth arrest and apoptosis in colorectal cancer cells. In addition, western blot analysis demonstrated that the downregulation of miR‑3651 inactivated PI3K/AKT and MAPK/ERK signaling in colorectal cancer cells. Bioinformatics analysis predicted T‑box transcription factor 1 (TBX1) as a potential target gene of miR‑3651, and a dual‑luciferase reporter assay confirmed that TBX1 was directly repressed by miR‑3651. The results of the current study also indicated that TBX1 was associated with the miR‑3651 mediated activation of oncogenic signaling and colorectal cancer cell proliferation. In conclusion, the results of the current study revealed the oncogenic potential of miR‑3651 in colorectal cancer.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dayong Ding
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongchao Li
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
6
|
Abstract
OBJECTIVE This review summarises the current literature on the role of microRNAs in presbyacusis (age-related hearing loss) and sudden sensorineural hearing loss. METHODS Medline, PubMed, Web of Science and Embase databases were searched for primary English-language studies, published between 2000 and 2017, which investigated the role of microRNAs in the pathogenesis of presbyacusis or sudden sensorineural hearing loss. Quality of evidence was assessed using the National Institutes of Health quality assessment tool. RESULTS Nine of 207 identified articles, 6 of good quality, satisfied the review's inclusion criteria. In presbyacusis, microRNAs in pro-apoptotic and autophagy pathways are upregulated, while microRNAs in proliferative and differentiation pathways are downregulated. Evidence for microRNAs having an aetiological role in sudden hearing loss is limited. CONCLUSION A shift in microRNA expression, leading to reduced cellular activity and impaired inner-ear homeostasis, may contribute to the pathogenesis of presbyacusis.
Collapse
|
7
|
Stem Cells: A New Hope for Hearing Loss Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:165-180. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.
Collapse
|
8
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
9
|
Zhou W, Du J, Jiang D, Wang X, Chen K, Tang H, Zhang X, Cao H, Zong L, Dong C, Jiang H. microRNA‑183 is involved in the differentiation and regeneration of Notch signaling‑prohibited hair cells from mouse cochlea. Mol Med Rep 2018; 18:1253-1262. [PMID: 29901127 PMCID: PMC6072138 DOI: 10.3892/mmr.2018.9127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023] Open
Abstract
Auditory hair cell regeneration following injury is critical to hearing restoration. The Notch signaling pathway participates in the regulation of inner ear development and cell differentiation. Recent evidence suggests that microRNA (miR)-183 has a similar role in the inner ear. However, it is unclear how Notch signaling functions in hair cell regeneration in mammals and if there is cross-talk between Notch signaling and miR-183. The present study used a gentamicin-induced cochlear injury mouse model. Gentamicin-induced damage of the hair cells activated the Notch signaling pathway and downregulated miR-183 expression. Notch signaling inhibition by the γ-secretase inhibitor, 24-diamino-5-phenylthiazole (DAPT), attenuated gentamicin-induced hair cell loss and reversed the downregulation of miR-183 expression. Further investigation revealed that the novel hair cells produced, induced by DAPT, were derived from transdifferentiated supporting cells. Additionally, myosin VI-positive hair cell numbers were increased by Notch signaling inhibition in in vitro experiments with cultured neonatal mouse inner ear precursor cells. This effect was reversed by miR-183 inhibition. These findings indicate that the Notch signaling pathway served a repressing role during the regeneration of hair cells. Inhibiting this signal improved hair cell regeneration in the gentamicin-damaged cochlear model. miR-183 was demonstrated to be involved in hair cell differentiation and regeneration, and was required for the differentiation of the Notch-inhibited hair cells.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jintao Du
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Di Jiang
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xianren Wang
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kaitian Chen
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haocheng Tang
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuemei Zhang
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Cao
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ling Zong
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang Dong
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongyan Jiang
- Department of Otolaryngology, The First Affiliated Hospital and Institute of Otorhinolaryngology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
10
|
Chadly DM, Best J, Ran C, Bruska M, Woźniak W, Kempisty B, Schwartz M, LaFleur B, Kerns BJ, Kessler JA, Matsuoka AJ. Developmental profiling of microRNAs in the human embryonic inner ear. PLoS One 2018; 13:e0191452. [PMID: 29373586 PMCID: PMC5786302 DOI: 10.1371/journal.pone.0191452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the extreme inaccessibility of fetal human inner ear tissue, defining of the microRNAs (miRNAs) that regulate development of the inner ear has relied on animal tissue. In the present study, we performed the first miRNA sequencing of otic precursors in human specimens. Using HTG miRNA Whole Transcriptome assays, we examined miRNA expression in the cochleovestibular ganglion (CVG), neural crest (NC), and otic vesicle (OV) from paraffin embedded (FFPE) human specimens in the Carnegie developmental stages 13-15. We found that in human embryonic tissues, there are different patterns of miRNA expression in the CVG, NC and OV. In particular, members of the miR-183 family (miR-96, miR-182, and miR-183) are differentially expressed in the CVG compared to NC and OV at Carnegie developmental stage 13. We further identified transcription factors that are differentially targeted in the CVG compared to the other tissues from stages 13-15, and we performed gene set enrichment analyses to determine differentially regulated pathways that are relevant to CVG development in humans. These findings not only provide insight into the mechanisms governing the development of the human inner ear, but also identify potential signaling pathways for promoting regeneration of the spiral ganglion and other components of the inner ear.
Collapse
Affiliation(s)
- Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer Best
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Cong Ran
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Witold Woźniak
- Department of Anatomy, Poznań University, Poznań, Poland
| | | | - Mark Schwartz
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - Bonnie LaFleur
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - B. J. Kerns
- HTG Molecular Diagnostics, Inc., Tucson, Arizona, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
11
|
Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB, Volvert ML, Delacroix L, Nguyen L, Malgrange B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ 2017; 24:2054-2065. [PMID: 28777373 DOI: 10.1038/cdd.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are important regulators of gene expression and are involved in cellular processes such as proliferation or differentiation, particularly during development of numerous organs including the inner ear. However, it remains unknown if miRNAs are required during the earliest stages of otocyst and cochlear duct development. Here, we report that a conditional loss of Dicer expression in the otocyst impairs the early development of the inner ear as a result of the accumulation of DNA damage that trigger p53-mediated apoptosis. Moreover, cochlear progenitors in the prosensory domain do not exit the cell cycle. Our unbiased approach identified ItgA3 as a target of miR-183, which are both enriched in the otic vesicle. We observed that the repression of integrin alpha 3 by miR-183 controls cell proliferation in the developing cochlea. Collectively, our results reveal that Dicer and miRNAs play essential roles in the regulation of early inner ear development.
Collapse
Affiliation(s)
- Priscilla Van den Ackerveken
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Anaïs Mounier
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Aurelia Huyghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Rosalie Sacheli
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Pierre-Bernard Vanlerberghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Marie-Laure Volvert
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| |
Collapse
|
12
|
Ebeid M, Sripal P, Pecka J, Beisel KW, Kwan K, Soukup GA. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells. PLoS One 2017; 12:e0180855. [PMID: 28686713 PMCID: PMC5501616 DOI: 10.1371/journal.pone.0180855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022] Open
Abstract
Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.
Collapse
Affiliation(s)
- Michael Ebeid
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Prashanth Sripal
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Jason Pecka
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kelvin Kwan
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS. MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur Arch Otorhinolaryngol 2017; 274:2373-2380. [PMID: 28224282 DOI: 10.1007/s00405-017-4470-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
miRNAs are important factors for post-transcriptional process that controls gene expression at mRNA level. Various biological processes, including growth and differentiation, are regulated by miRNAs. miRNAs have been demonstrated to play an essential role in development and progression of hearing loss. Nowadays, miRNAs are known as critical factors involved in different physiological, biological, and pathological processes, such as gene expression, progressive sensorineural hearing loss, age-related hearing loss, noise-induced hearing loss, cholesteatoma, schwannomas, and inner ear inflammation. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cells in inner ear specially mechanosensory hair cells that exhibit a great expression level of this family. The plasma levels of miR-24-3p, miR-16-5p, miR-185-5p, and miR-451a were upregulated during noise exposures, and increased levels of miR-21 have been found in vestibular schwannomas and human cholesteatoma. In addition, upregulation of pro-apoptotic miRNAs and downregulation of miRNAs which promote differentiation and proliferation in age-related degeneration of the organ of Corti may potentially serve as a helpful biomarker for the early detection of age-related hearing loss. This knowledge represents miRNAs as promising diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fereshteh Ahmadinejad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
14
|
Mahmoodian Sani MR, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS, Ghasemi-Dehkordi P. MicroRNA-183 Family in Inner Ear: Hair Cell Development and Deafness. J Audiol Otol 2016; 20:131-138. [PMID: 27942598 PMCID: PMC5144812 DOI: 10.7874/jao.2016.20.3.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/09/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoodian Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| | - Payam Ghasemi-Dehkordi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| |
Collapse
|
15
|
Fan Y, Zhang Y, Wu R, Chen X, Zhang Y, Chen X, Zhu D. miR-431 is involved in regulating cochlear function by targeting Eya4. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2119-2126. [DOI: 10.1016/j.bbadis.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
16
|
Jiang D, Du J, Zhang X, Zhou W, Zong L, Dong C, Chen K, Chen Y, Chen X, Jiang H. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int J Mol Med 2016; 38:1367-1376. [PMID: 28025992 PMCID: PMC5065304 DOI: 10.3892/ijmm.2016.2751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/08/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the culture of spiral ganglion stem cells present in the inner ears of newborn mice gave rise to neurons in vitro. The expression patterns of miR-124, miR-132, miR-134, miR-20a, miR-17-5p and miR-30a-5p were examined during a 14-day neuronal differentiation period. We found that miR-124 promoted the neuronal differentiation of and neurite outgrowth in mouse inner ear NSCs, and that the changes in the expression of tropomyosin receptor kinase B (TrkB) and cell division control protein 42 homolog (Cdc42) during inner ear NSC differentiation were associated with miR-124 expression. Our findings indicate that miR-124 plays a role in the neuronal differentiation of inner ear NSCs. This finding may lead to the development of novel strategies for restoring hearing in neurodegenerative diseases.
Collapse
Affiliation(s)
- Di Jiang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jintao Du
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuemei Zhang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Zhou
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lin Zong
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang Dong
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kaitian Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xihui Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongyan Jiang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Combinatorial enzymatic digestion with thermolysin and collagenase type I improved the isolation and culture effects of hair cell progenitors from rat cochleae. In Vitro Cell Dev Biol Anim 2016; 52:537-44. [PMID: 27083165 DOI: 10.1007/s11626-015-9998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Abstract
The high incidence of hearing loss in human combined with the lack of hair cell regeneration in mammalian cochleae had got the attention to manipulate stem/progenitor cells to participate in hair cell regeneration for years. Cochlear progenitor cells are considered as the best candidate for hair cell regeneration. However, there is not any effective and feasible way to separate hair cell progenitors from rat cochleae, yet. In this study, we tried to isolate single epithelial cells from rat basilar membrane by combinatorial enzymatic digestion with thermolysin and collagenase type I. The results showed that the harvested single cells gave rise to otospheres with features of stem cells and could be induced to differentiate into hair cells. Significantly, more otospheres of epithelial origin were obtained by digesting with thermolysin and collagenase type I. The combinatorial enzymatic digestion would be a potential method for hair cell progenitor isolation and culture with broad applications.
Collapse
|
18
|
Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I, Friedman LM, Shomron N, Avraham KB. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics 2014; 15:484. [PMID: 24942165 PMCID: PMC4073505 DOI: 10.1186/1471-2164-15-484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The mammalian inner ear contains sensory organs, the organ of Corti in the cochlea and cristae and maculae in the vestibule, with each comprised of patterned sensory epithelia that are responsible for hearing and balance. The development, cell fate, patterning, and innervation of both the sensory and nonsensory regions of the inner ear are governed by tight regulation involving, among others, transcription factors and microRNAs (miRNAs). In humans, mutations in specific miRNA genes are associated with hearing loss. In mice, experimental reduction or mutations of miRNAs in the inner ear leads to severe developmental and structural abnormalities. A comprehensive identification of miRNAs in the sensory epithelia and their gene targets will enable pathways of auditory and vestibular function to be defined. RESULTS In this study, we used Next-Generation Sequencing (NGS) to identify the most prominent miRNAs in the inner ear and to define miRNA-target pairs that form pathways crucial for the function of the sensory epithelial cells. NGS of RNA from inner ear sensory epithelial cells led to the identification of 455 miRNAs in both cochlear and vestibular sensory epithelium, with 30 and 44 miRNAs found in only cochlea or vestibule, respectively. miR-6715-3p and miR-6715-5p were defined for the first time in the inner ear. Gene targets were identified for each of these miRNAs, including Arhgap12, a GTPase activating protein, for miR-6715-3p, implicating this miRNA in sensory hair cell bundle development, actin reorganization, cell adhesion and inner ear morphogenesis. CONCLUSIONS This study provides a comprehensive atlas of miRNAs in the inner ear sensory epithelia. The results provide further support of the essential regulatory role of miRNAs in inner ear sensory epithelia and in regulating pathways that define development and growth of these cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
19
|
Kohen R, Dobra A, Tracy JH, Haugen E. Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness. Transl Psychiatry 2014; 4:e366. [PMID: 24594777 PMCID: PMC3966046 DOI: 10.1038/tp.2014.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions.
Collapse
Affiliation(s)
- R Kohen
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 Pacific Avenue NE, Seattle, WA 98195-6560, USA. E-mail:
| | - A Dobra
- Department of Statistics, University of Washington, Seattle, WA, USA,Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA,Center for Statistics and The Social Sciences, University of Washington, Seattle, WA, USA
| | - J H Tracy
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - E Haugen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Ushakov K, Rudnicki A, Avraham KB. MicroRNAs in sensorineural diseases of the ear. Front Mol Neurosci 2013; 6:52. [PMID: 24391537 PMCID: PMC3870287 DOI: 10.3389/fnmol.2013.00052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Non-coding microRNAs (miRNAs) have a fundamental role in gene regulation and expression in almost every multicellular organism. Only discovered in the last decade, miRNAs are already known to play a leading role in many aspects of disease. In the vertebrate inner ear, miRNAs are essential for controlling development and survival of hair cells. Moreover, dysregulation of miRNAs has been implicated in sensorineural hearing impairment, as well as in other ear diseases such as cholesteatomas, vestibular schwannomas, and otitis media. Due to the inaccessibility of the ear in humans, animal models have provided the optimal tools to study miRNA expression and function, in particular mice and zebrafish. A major focus of current research has been to discover the targets of the miRNAs expressed in the inner ear, in order to determine the regulatory pathways of the auditory and vestibular systems. The potential for miRNAs manipulation in development of therapeutic tools for hearing impairment is as yet unexplored, paving the way for future work in the field.
Collapse
Affiliation(s)
- Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University Tel Aviv, Israel
| | - Anya Rudnicki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
21
|
Conte I, Banfi S, Bovolenta P. Non-coding RNAs in the development of sensory organs and related diseases. Cell Mol Life Sci 2013; 70:4141-55. [PMID: 23588489 PMCID: PMC11113508 DOI: 10.1007/s00018-013-1335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC–UAM, c/Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Choi E, Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells 2013; 5:172-187. [PMID: 24179605 PMCID: PMC3812521 DOI: 10.4252/wjsc.v5.i4.172] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/13/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted.
Collapse
|
23
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|