1
|
He Y, Wang C, Pan T, Cai Q, Zhou D, Zhang H, Liang R, Zeng D, Ye H, Liang Y, Sun X, Xiao L, Zhou H. POD24-Based prognostic signature enables personalized risk stratification in mantle cell lymphoma. Sci Rep 2025; 15:8687. [PMID: 40082544 PMCID: PMC11906600 DOI: 10.1038/s41598-025-92963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Mantle cell lymphoma (MCL) exhibits significant biological and clinical heterogeneity, necessitating a refined prognostic model. According to the drawbacks of existing models which do not truly define the complexity of the disease, we used the clinical and molecular data from nine medical centers of China to validate the predictive utility of progression of disease within 24 months (POD24), and also established a novel prognostic risk model to predict the survival outcome of MCL patients. POD24 occurred in 37.7% of evaluable patients, with the median over survival being 21 months (vs. 122 months for those without POD24, P < 0.0001). The POD24-based risk model had the highest sensitivity to predict survival with the most satisfying AUC value for risk score (AUC = 0.869). In conclusion, we confirm the obviously predictive performance of POD24 and established a novel risk model combined POD24 and clinical factors. Our new prognostic model might be helpful in effectively classify MCL patients with high-risk groups in terms of survival rate, which may help in selecting high-risk MCL patients for more intensive treatment at time of relapse.
Collapse
Affiliation(s)
- Yizi He
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Caiqin Wang
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Tao Pan
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingqing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dehui Zhou
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin'S Clinical Research Center for Cancer, Tianjin, China
| | - Rong Liang
- Department of Hematology, Department of Internal Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuhua Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Hui Zhou
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Bonometti A, Tzankov A, Alborelli I, Russkamp NF, Dertinger S, Dirnhofer S. Intrasinusoidal bone marrow involvement in mantle cell lymphoma: a case series with review of the main differential diagnoses. Virchows Arch 2025; 486:563-572. [PMID: 39107523 DOI: 10.1007/s00428-024-03885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 03/28/2025]
Abstract
Intrasinusoidal bone marrow involvement is an infrequent histological pattern observed in a limited number of B and T cell lymphomas. Mantle cell lymphoma is a biologically and prognostically heterogeneous B cell lymphoma that frequently involves the bone marrow, with interstitial, nodular-paratrabecular, or diffuse patterns. Intrasinusoidal bone marrow involvement has been described only anecdotally in this lymphoma. Here, we describe the clinical, histopathological, and molecular features of four patients diagnosed with advanced-stage mantle cell lymphoma, showing intrasinusoidal bone marrow involvement, and other peculiar immunophenotypical features. As similar cases may represent a relevant issue in bone marrow diagnostic histopathology, we also reviewed the literature to discuss differential diagnoses of B and T cell lymphomas with intrasinusoidal bone marrow involvement.
Collapse
Affiliation(s)
- Arturo Bonometti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
- Pathology Unit, Humanitas Clinical and Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | - Alexander Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Dertinger
- Institute of Pathology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Ip A, Kabat M, Fogel L, Alkhatatneh H, Voss J, Gupta A, Della Pia A, Leslie LA, Feldman T, Albitar M, Goy AH. Updates on the Biological Heterogeneity of Mantle Cell Lymphoma. Cancers (Basel) 2025; 17:696. [PMID: 40002289 PMCID: PMC11853186 DOI: 10.3390/cancers17040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Advancements in mantle cell lymphoma (MCL) have illuminated the disease's molecular diversity, leading to a wide variation in the outcomes observed in MCL. Current prognostic risk scores are continuously revised to incorporate new updates in the mechanistic or biologic understanding of MCL. Nevertheless, key high-risk features of MCL associated with rapid disease progression and poor survival, such as TP53 mutations, complex karyotypes, and blastoid or pleomorphic morphologies, remain absent from available prognostic tools. The greater accessibility of genomic technologies, such as next-generation sequencing (NGS), has enabled clinicians to identify specific genetic alterations that serve as prognostic signals and disease monitoring parameters, cultivating accurate risk profiling that is illustrative of MCL heterogeneity. Through an increased understanding of distinct MCL behaviors, novel therapies that mechanistically target disease biology, including Bruton's tyrosine kinase inhibitors, BCL-2 inhibitors, ROR1 inhibitors, and bispecific T-cell engagers, have broadened the treatment armamentarium for relapsed/refractory MCL cases. These interventions, in addition to chemoimmunotherapy and autologous stem cell transplantation mainstays, confer the individualization of treatment and improved survival outcomes. Further exploration of the considerable biological heterogeneity of MCL can enhance knowledge, management, and the treatment of this rare lymphoma subtype.
Collapse
Affiliation(s)
- Andrew Ip
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA; (L.F.); (L.A.L.); (T.F.); (A.H.G.)
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| | - Maciej Kabat
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA;
| | - Lindsay Fogel
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA; (L.F.); (L.A.L.); (T.F.); (A.H.G.)
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | | | - Jason Voss
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| | - Amolika Gupta
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Alexandra Della Pia
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| | - Lori A. Leslie
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA; (L.F.); (L.A.L.); (T.F.); (A.H.G.)
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| | - Tatyana Feldman
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA; (L.F.); (L.A.L.); (T.F.); (A.H.G.)
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| | | | - Andre H. Goy
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA; (L.F.); (L.A.L.); (T.F.); (A.H.G.)
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (J.V.); (A.D.P.)
| |
Collapse
|
4
|
Filizoglu N, Ozguven S, Ones T, Turoglu HT, Erdil TY. Extranodal Mantle Cell Lymphoma Presented as Bilateral Adrenal Masses on 18 F-FDG PET/CT and 68 Ga-DOTATATE PET/CT. Clin Nucl Med 2025; 50:e107-e109. [PMID: 39480266 DOI: 10.1097/rlu.0000000000005541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is a rare type of B-cell non-Hodgkin lymphoma that commonly presents with constitutional symptoms, lymphadenopathy, and laboratory abnormalities. Although less common, extranodal involvement of MCL may be seen at initial presentation and most commonly occurs in the spleen, liver, bone marrow, and gastrointestinal tract. Adrenal involvement in MCL is extremely rare, and only a few cases have been reported in the literature. Herein, we present 18 F-FDG PET/CT and 68 Ga-DOTATATE PET/CT findings of a unique case of primary extranodal MCL with gastric and adrenal involvement.
Collapse
Affiliation(s)
- Nuh Filizoglu
- From the Department of Nuclear Medicine, University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Salih Ozguven
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Tunc Ones
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Halil Turgut Turoglu
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Tanju Yusuf Erdil
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Silkenstedt E, Dreyling M. To consolidate or not to consolidate: the role of autologous stem cell transplantation in MCL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:42-47. [PMID: 39644050 DOI: 10.1182/hematology.2024000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
An Ara-C-containing intensified induction therapy followed by autologous stem cell transplantation (ASCT) is considered a highly effective treatment strategy in younger mantle cell lymphoma (MCL) patients, inducing long-lasting remissions. However, ASCT is also hampered by acute and delayed toxicity. Thus, alternative first-line treatment strategies without ASCT but including novel agents are under investigation. With the recently published results of the TRIANGLE trial, showing superiority of an ibrutinib-containing immunochemotherapy induction followed by ASCT compared with the standard therapy and, more strikingly, a noninferiority of an ibrutinib-containing regimen without ASCT compared with the standard regimen with ASCT, we consider the addition of ibrutinib to first-line therapy in younger MCL patients as a new standard of care. Whether ASCT, with additional toxicity, still adds benefit to ibrutinib-based treatment in subsets of patients is not yet determined. In addition, it remains unclear how effective Bruton's tyrosine kinase inhibitor (BTKi) therapy will be in the relapsed setting for patients who received BTKi as part of first-line therapy. It also remains unclear whether the TRIANGLE data can be extrapolated to other BTKi, which is particularly relevant considering it is no longer FDA approved for MCL. Until then, individual patient characteristics and preferences, disease biology, and estimation of risk of toxicity needs to be taken into account when deciding about the addition of ASCT to an ibrutinib-containing induction therapy. For patients with TP53 aberrations, ASCT should not be recommended due to potential toxicity and limited efficacy in this high-risk subgroup. Large randomized clinical trials such as ECOG-ACRIN 4151 will help to ultimately clarify the role of ASCT.
Collapse
Affiliation(s)
- E Silkenstedt
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - M Dreyling
- Department of Medicine III, LMU Hospital, Munich, Germany
| |
Collapse
|
6
|
Khouja M, Jiang L, Pal K, Stewart PJ, Regmi B, Schwarz M, Klapper W, Alig SK, Darzentas N, Kluin-Nelemans HC, Hermine O, Dreyling M, Gonzalez de Castro D, Hoster E, Pott C. Comprehensive genetic analysis by targeted sequencing identifies risk factors and predicts patient outcome in Mantle Cell Lymphoma: results from the EU-MCL network trials. Leukemia 2024; 38:2675-2684. [PMID: 39284897 PMCID: PMC11588657 DOI: 10.1038/s41375-024-02375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 11/27/2024]
Abstract
Recent studies highlighted genetic aberrations associated with prognosis in Mantle Cell lymphoma (MCL), yet comprehensive testing is not implemented in clinical routine. We conducted a comprehensive genomic characterization of 180 patients from the European MCL network trials by targeted sequencing of peripheral blood DNA using the EuroClonality(EC)-NDC assay. The IGH::CCND1 fusion was identified in 94% of patients, clonal IGH-V-(D)-J rearrangements in all, and 79% had ≥1 somatic gene mutation. The top mutated genes were ATM, TP53, KMT2D, SAMHD1, BIRC3 and NFKBIE. Copy number variations (CNVs) were detected in 83% of patients with RB1, ATM, CDKN2A/B and TP53 being the most frequently deleted and KLF2, CXCR4, CCND1, MAP2K1 and MYC the top amplified genes. CNVs and mutations were more frequently observed in older patients with adverse impact on prognosis. TP53mut, NOTCH1mut, FAT1mut TRAF2del, CDKN2A/Bdel and MAP2K1amp were linked to inferior failure-free (FFS) and overall survival (OS), while TRAF2mut, EGR2del and BCL2amp related to inferior OS only. Genetic complexity (≥3 CNVs) observed in 51% of analysed patients was significantly associated with impaired FFS and OS. We demonstrate that targeted sequencing from peripheral blood and bone marrow reliably detects diagnostically and prognostically important genetic factors in MCL patients, facilitating genetic characterization in clinical routine.
Collapse
Affiliation(s)
- Mouhamad Khouja
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Linmiao Jiang
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Karol Pal
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Peter James Stewart
- The Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Binaya Regmi
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin Schwarz
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan K Alig
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - Nikos Darzentas
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, Paris, France
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Martin Dreyling
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | | | - Eva Hoster
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christiane Pott
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
7
|
Yang Y, Song L, Yin Y, Gao Y, Wang Y, Wu S, Wang J, Pan Y, Sui X, Jiang L, Zhang Y, Yu G. Clinical significance of Cyclin D1 by complete quantification detection in mantle cell lymphoma: positive indicator in prognosis. Diagn Pathol 2024; 19:149. [PMID: 39574103 PMCID: PMC11580504 DOI: 10.1186/s13000-024-01577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVES The positive expression of Cyclin D1 in immunohistochemical (IHC) staining serves as the cornerstone for diagnosing mantle cell lymphoma (MCL). However, existing literature does not conclusively establish whether the expression ratio and staining intensity significantly influence diagnostic outcomes or patient prognosis. In this retrospective study, the correlation between comprehensive Cyclin D1 quantification and the prognosis of MCL patients was studied. METHODS The Cyclin D1 protein level was assessed in 120 formalin-fixed paraffin-embedded samples from MCL patients using the quantitative dot blot (QDB) analysis technique. R language software was employed for statistical analysis to determine the optimal threshold with statistical significance. Additionally, Kaplan-Meier method was utilized to evaluate the relationship between the absolute level of Cyclin D1 protein and overall survival (OS) of patients. Furthermore, the Chi-square test was applied to analyze the causes of single and multiple fractures, with a significance level of p < 0.05. Finally, the Log-rank test was used to compare two survival curves, where a significance level of p < 0.05 was considered statistically significant. RESULTS At the optimized cutoff of 0.46 nmol/g, univariate analysis revealed a positive correlation between Cyclin D1 protein level and patient survival (OS). Specifically, in the subgroup with complete quantification of Cyclin D1 higher than the cutoff, the 5-year OS was 18%, whereas in the subgroup with complete quantification of Cyclin D1 lower than the cutoff, the 5-year OS was 4.8% (Log-rank test, P = 0.017). This indicates that patients with Cyclin D1 levels above the cutoff had significantly better overall survival compared to those below the cutoff. Additionally, in the Pearson distribution test, Ki-67 emerged as an independent prognostic factor for the complete quantification of Cyclin D1. Notably, Cyclin D1 complete quantification results remained unaffected by factors such as gender, age, LDH (Lactate Dehydrogenase) level, Ann Arbor stage(AAS), Ki-67, IPI(International prognostic index), MIPI(Mantle International prognostic index), and MIPI-c (MIPI Combined with Ki-67 Proliferation Index Chi-square test, p > 0.05). CONCLUSIONS Comprehensive Cyclin D1 quantification, especially above a threshold, significantly correlates with better overall survival in MCL. This highlights its prognostic importance in MCL management. Full quantification of CyclinD1 aids MCL prognosis, while QDB technology for biomarker quantification supports precise clinical prognostic stratification.
Collapse
Affiliation(s)
- Yan Yang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Liling Song
- The 2nd Medical College of Binzhou Medical University, 346 Guanhai Road, Yantai, China
| | - Ying Yin
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yuan Gao
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yunjun Wang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Shishou Wu
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Jun Wang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yu Pan
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Xiaolong Sui
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Lei Jiang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yunyun Zhang
- Yantai Quanticision Diagnostics, Inc, No. 39, Keji Avenue, Yantai, 264003, China.
| | - Guohua Yu
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China.
| |
Collapse
|
8
|
Gao Q, Wang X, Zhang Y, Wen J, Wang F, Lin Z, Feng Y, Huang J, Li Q, Luo H, Liu X, Zhai X, Li L, He S, Mi Z, Zhang L, Niu T, Xu C, Zheng Y. Ferroptosis-related prognostic model of mantle cell lymphoma. Open Med (Wars) 2024; 19:20241090. [PMID: 39588389 PMCID: PMC11587922 DOI: 10.1515/med-2024-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin's lymphoma. Ferroptosis, an iron-dependent programmed cell death, is closely related to cancer prognosis. In this study, we established a model of ferroptosis related genes for prognostic evaluation of patients with MCL. Methods Using the single-cell RNA sequencing datasets GSE184031 and mRNA sequencing data GSE32018 from the Gene Expression Omnibus, we identified 139 ferroptosis-related genes in MCL. Next a prognostic model was constructed by Cox regression and Least absolute selection and shrinkage Operator regression analysis. Finally, we used CIBERSORT to analyze the immune microenvironment and the "oncoPredict" package to predict potential drugs. Results In our model, the prognosis of MCL patients was assessed by risk scoring using 7 genes ANXA1, IL1B, YBX1, CCND1, MS4A1, MFHAS1, and RILPL2. The patients were divided into high-risk and low-risk groups based on our model, and the high-risk patients had inferior overall survival. Finally, according to our model and computational drug sensitivity analysis, four small molecule compounds, BMS-754807, SB216763, Doramapimod, and Trametinib, were identified as potential therapeutic agents for patients with MCL. Conclusion In summary, we provide a prognostic model with ferroptosis-related gene signature for MCL. This study provides a prognostic model with ferroptosis-related gene signature for MCL. The results show that the model helps predict prognosis in MCL.
Collapse
Affiliation(s)
- Qianwen Gao
- Department of Biology, School of Life Science, Sichuan University, Chengdu, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, Mian-yang Central Hospital, Mianyang, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siyao He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyue Mi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| |
Collapse
|
9
|
Wang JF, Wang Y. Evaluating pirtobrutinib for the treatment of relapsed or refractory mantle cell lymphoma. Expert Rev Hematol 2024; 17:651-659. [PMID: 39109468 DOI: 10.1080/17474086.2024.2389993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an uncommon non-Hodgkin lymphoma that is generally considered incurable. Covalent BTK inhibitors (cBTKi) are the cornerstone of treatment for relapsed or refractory (R/R) MCL, but treatment options are limited and prognosis is poor after cBTKi failure. Pirtobrutinib is a non-covalent BTK inhibitor that has demonstrated excellent efficacy and safety and represents an important new treatment in the evolving treatment landscape of R/R MCL. AREAS COVERED This review will provide an overview of the therapeutic landscape of R/R MCL, characteristics of pirtobrutinib, and efficacy and safety data of pirtobrutinib in R/R MCL from pivotal clinical trials. PubMed and major hematology conference proceedings were searched to identify relevant studies involving pirtobrutinib. EXPERT OPINION For patients with R/R MCL that has progressed after treatment with cBTKi, pirtobrutinib is an important and efficacious treatment that confers favorable outcomes. In the post-cBTKi setting, when chimeric antigen receptor (CAR) T-cell therapy is not available or feasible, pirtobrutinib is the preferred treatment for R/R MCL. How to sequence or combine pirtobrutinib with CAR T-cell therapy and other available or emerging therapies requires further investigation. Future studies should also explore the role of pirtobrutinib in earlier lines of therapy for MCL.
Collapse
Affiliation(s)
| | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Duminuco A, Romano A, Ferrarini I, Santuccio G, Chiarenza A, Figuera A, Caruso LA, Motta G, Palumbo GA, Mogno C, Moioli A, Di Raimondo F, Visco C. Monocyte-to-platelets ratio (MPR) at diagnosis is associated with inferior progression-free survival in patients with mantle cell lymphoma: a multi-center real-life survey. Ann Hematol 2024; 103:3043-3052. [PMID: 38630129 DOI: 10.1007/s00277-024-05752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 07/28/2024]
Abstract
Mantle cell lymphoma (MCL) pathogenesis is strongly related to the role of the tumor immune microenvironment (TIME) in which MCL cells proliferate. TIME cells can produce growth signals influencing MCL cells' survival and exert an antitumoral immune response suppression. The activity of TIME cells might be mirrored by some ratios of peripheral blood cell subpopulations, such as the monocyte-to-platelet ratio (MPR). We reviewed the clinical features of 165 consecutive MCL patients newly diagnosed and not eligible for autologous stem cell transplantation (both for age or comorbidities) who accessed two Italian Centers between 2006 and 2020. MPR was calculated using data obtained from the complete blood cell count at diagnosis before any cytotoxic treatment and correlated with PFS. Univariate analysis showed that MPR ≥ 3 was associated with inferior PFS (p = 0.02). Multivariate analysis confirmed that MPR ≥ 3, LDH > 2.5 ULN, and bone marrow involvement were significant independent variables in predicting PFS. For these reasons, MPR ≥ 3 seems the most promising prognostic factor in patients with MCL, and it could be considered a variable in new predictive models.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy.
- Hematology with BMT Unit - A.O.U. Policlinico "G. Rodolico-San Marco", Via Santa Sofia, 78, Catania, 95123, Italy.
| | - Alessandra Romano
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, University of Catania, Catania, Italy
| | - Isacco Ferrarini
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Annalisa Chiarenza
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Amalia Figuera
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | | | - Giovanna Motta
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Giuseppe Alberto Palumbo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Carlo Mogno
- Department of Engineering for Innovation Medicine, Section of Hematology, AOUI VR, University of Verona, Verona, Italy
| | - Alessia Moioli
- Department of Engineering for Innovation Medicine, Section of Hematology, AOUI VR, University of Verona, Verona, Italy
| | - Francesco Di Raimondo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, University of Catania, Catania, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Hematology, AOUI VR, University of Verona, Verona, Italy
| |
Collapse
|
11
|
López C, Silkenstedt E, Dreyling M, Beà S. Biological and clinical determinants shaping heterogeneity in mantle cell lymphoma. Blood Adv 2024; 8:3652-3664. [PMID: 38748869 PMCID: PMC11284685 DOI: 10.1182/bloodadvances.2023011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an uncommon mature B-cell lymphoma that presents a clinical spectrum ranging from indolent to aggressive disease, with challenges in disease management and prognostication. MCL is characterized by significant genomic instability, affecting various cellular processes, including cell cycle regulation, cell survival, DNA damage response and telomere maintenance, NOTCH and NF-κB/ B-cell receptor pathways, and chromatin modification. Recent molecular and next-generation sequencing studies unveiled a broad genetic diversity among the 2 molecular subsets, conventional MCL (cMCL) and leukemic nonnodal MCL (nnMCL), which may partially explain their clinical heterogeneity. Some asymptomatic and genetically stable nnMCL not requiring treatment at diagnosis may eventually progress clinically. Overall, the high proliferation of tumor cells, blastoid morphology, TP53 and/or CDKN2A/B inactivation, and high genetic complexity influence treatment outcome in cases treated with standard regimens. Emerging targeted and immunotherapeutic strategies are promising for refractory or relapsed cases and a few genetic and nongenetic determinants of refractoriness have been reported. This review summarizes the recent advances in MCL biology, focusing on molecular insights, prognostic markers, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina López
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Silkenstedt
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Zhang WJ, Hu CL, Guo BL, Liang XP, Wang CY, Yang T. STAT5B Suppresses Ferroptosis by Promoting DCAF13 Transcription to Regulate p53/xCT Pathway to Promote Mantle Cell Lymphoma Progression. Biologics 2024; 18:181-193. [PMID: 38979130 PMCID: PMC11229983 DOI: 10.2147/btt.s461287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Objective The purpose of this study was to analyze the mechanism by which STAT5B inhibits ferroptosis in mantle cell lymphoma (MCL) by promoting DCAF13 transcriptional regulation of p53/xCT pathway. Methods The correlations between STAT5B, DCAF13 and ferroptosis in MCL were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html). The expression levels and pairwise correlations of STAT5B, DCAF13, p53 and xCT in MCL patients were detected, respectively. STAT5B was silenced to confirm their criticality in MCL ferroptosis. the effects of blocking necrosis, apoptosis and ferroptosis on the anti-MCL effects of STAT5B were examined. Cells with STAT5B overexpression and/or DCAF13 silencing were constructed to confirm the involvement of DCAF13 in the STAT5B-regulated p53/xCT pathway. The regulation of p53 ubiquitination was confirmed by DCAF13 overexpression and MG132. The effects of silencing DCAF13 and MG132 on STAT5B overexpression on MCL was clarified by a tumor-bearing nude mouse model. Results DCAF13 was overexpressed in MCL and positively correlated with STAT5B, negatively correlated with p53, and positively correlated with xCT. Inhibition of ferroptosis alleviated the inhibitory effects of siSTAT5B on MCL, while inhibition of necrosis and apoptosis had few effects. Silencing of DCAF13 led to the blocking of STAT5B regulation of p53/xCT and ferroptosis. The changes in DCAF13 and the addition of MG132 did not have statistically significant effects on p53 mRNA. Elevation of DCAF13 resulted in downregulation of p53 protein levels, and this inhibition was reversed by MG132. In animal models, the promotion of MCL and the inhibition of ferroptosis by STAT5B. Silencing of DCAF13 blocked STAT5B inhibition of p53 and induction of xCT, GPX4, and GSH. Conclusion STAT5B suppresses ferroptosis by promoting DCAF13 transcription to regulate p53/xCT pathway to promote MCL progression.
Collapse
Affiliation(s)
- Wen Jun Zhang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chong Ling Hu
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Bing Ling Guo
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Xi Ping Liang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chao Yu Wang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Orfanoudaki G, Psatha K, Aivaliotis M. Insight into Mantle Cell Lymphoma Pathobiology, Diagnosis, and Treatment Using Network-Based and Drug-Repurposing Approaches. Int J Mol Sci 2024; 25:7298. [PMID: 39000404 PMCID: PMC11242097 DOI: 10.3390/ijms25137298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, incurable, and aggressive B-cell non-Hodgkin lymphoma (NHL). Early MCL diagnosis and treatment is critical and puzzling due to inter/intra-tumoral heterogeneity and limited understanding of the underlying molecular mechanisms. We developed and applied a multifaceted analysis of selected publicly available transcriptomic data of well-defined MCL stages, integrating network-based methods for pathway enrichment analysis, co-expression module alignment, drug repurposing, and prediction of effective drug combinations. We demonstrate the "butterfly effect" emerging from a small set of initially differentially expressed genes, rapidly expanding into numerous deregulated cellular processes, signaling pathways, and core machineries as MCL becomes aggressive. We explore pathogenicity-related signaling circuits by detecting common co-expression modules in MCL stages, pointing out, among others, the role of VEGFA and SPARC proteins in MCL progression and recommend further study of precise drug combinations. Our findings highlight the benefit that can be leveraged by such an approach for better understanding pathobiology and identifying high-priority novel diagnostic and prognostic biomarkers, drug targets, and efficacious combination therapies against MCL that should be further validated for their clinical impact.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Liu Y, Cao P, Xiao L, Tang N, Fei W, Li X. Hypomethylation-associated Sox11 upregulation promotes oncogenesis via the PI3K/AKT pathway in OLP-associated OSCC. J Cell Mol Med 2024; 28:e18556. [PMID: 39039706 PMCID: PMC11263134 DOI: 10.1111/jcmm.18556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wei Fei
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of StomatologySichuan Provincial People's Hospital Wenjiang HospitalChengduChina
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
15
|
Abdelrazak Morsy MH, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38237141 PMCID: PMC11103171 DOI: 10.1182/blood.2023022241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Magali Merrien
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Agnes L. Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
17
|
Carreras J, Hamoudi R, Nakamura N. Artificial intelligence and classification of mature lymphoid neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:332-348. [PMID: 38745770 PMCID: PMC11090685 DOI: 10.37349/etat.2024.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/07/2023] [Indexed: 05/16/2024] Open
Abstract
Hematologists, geneticists, and clinicians came to a multidisciplinary agreement on the classification of lymphoid neoplasms that combines clinical features, histological characteristics, immunophenotype, and molecular pathology analyses. The current classification includes the World Health Organization (WHO) Classification of tumours of haematopoietic and lymphoid tissues revised 4th edition, the International Consensus Classification (ICC) of mature lymphoid neoplasms (report from the Clinical Advisory Committee 2022), and the 5th edition of the proposed WHO Classification of haematolymphoid tumours (lymphoid neoplasms, WHO-HAEM5). This article revises the recent advances in the classification of mature lymphoid neoplasms. Artificial intelligence (AI) has advanced rapidly recently, and its role in medicine is becoming more important as AI integrates computer science and datasets to make predictions or classifications based on complex input data. Summarizing previous research, it is described how several machine learning and neural networks can predict the prognosis of the patients, and classified mature B-cell neoplasms. In addition, new analysis predicted lymphoma subtypes using cell-of-origin markers that hematopathologists use in the clinical routine, including CD3, CD5, CD19, CD79A, MS4A1 (CD20), MME (CD10), BCL6, IRF4 (MUM-1), BCL2, SOX11, MNDA, and FCRL4 (IRTA1). In conclusion, although most categories are similar in both classifications, there are also conceptual differences and differences in the diagnostic criteria for some diseases. It is expected that AI will be incorporated into the lymphoma classification as another bioinformatics tool.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, WC1E 6BT London, UK
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara 259-1193, Japan
| |
Collapse
|
18
|
Hoang NM, Liu Y, Bates PD, Heaton AR, Lopez AF, Liu P, Zhu F, Chen R, Kondapelli A, Zhang X, Selberg PE, Ngo VN, Skala MC, Capitini CM, Rui L. Targeting DNMT3A-mediated oxidative phosphorylation to overcome ibrutinib resistance in mantle cell lymphoma. Cell Rep Med 2024; 5:101484. [PMID: 38554704 PMCID: PMC11031386 DOI: 10.1016/j.xcrm.2024.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.
Collapse
Affiliation(s)
- Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul D Bates
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexa R Heaton
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Angelica F Lopez
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ruoyu Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Apoorv Kondapelli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Xiyu Zhang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul E Selberg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Vu N Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Melissa C Skala
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Christian M Capitini
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
19
|
Akkari Y, Baughn LB, Kim A, Karaca E, Raca G, Shao L, Mikhail FM. Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet Med 2024; 26:101054. [PMID: 38349293 DOI: 10.1016/j.gim.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
Collapse
Affiliation(s)
- Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Annette Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
20
|
Nylund P, Nikkarinen A, Ek S, Glimelius I. Empowering macrophages: the cancer fighters within the tumour microenvironment in mantle cell lymphoma. Front Immunol 2024; 15:1373269. [PMID: 38566987 PMCID: PMC10985169 DOI: 10.3389/fimmu.2024.1373269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In Mantle Cell Lymphoma (MCL), the role of macrophages within the tumour microenvironment (TME) has recently gained attention due to their impact on prognosis and response to therapy. Despite their low absolute number in MCL tumour tissue, recent findings reveal an association between the levels of macrophages and prognosis, consistent with trends observed in other lymphoma subtypes. M2-like macrophages, identified by markers such as CD163, contribute to angiogenesis and suppression of the immune response. Clinical trials with MCL patients treated with chemoimmunotherapy and targeted treatments underscore the adverse impact of high levels of M2-like macrophages. Immunomodulatory drugs like lenalidomide reduce the levels of MCL-associated CD163+ macrophages and enhance macrophage phagocytic activity. Similarly, clinical approaches targeting the CD47 "don't eat me" signalling, in combination with the anti-CD20-antibody rituximab, demonstrate increased macrophage activity and phagocytosis of MCL tumour cells. Cell-based therapies such as chimeric antigen receptor (CAR) T-cell have shown promise but various challenges persist, leading to a potential interest in CAR-macrophages (CAR-M). When macrophages are recruited to the TME, they offer advantages including phagocytic function and responsiveness to microenvironment alterations, suggesting their potential as a manipulable and inducible alternative when CAR T-cell therapies fails in the complex landscape of MCL treatment.
Collapse
Affiliation(s)
- Patrick Nylund
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Gambino S, Quaglia FM, Galasso M, Cavallini C, Chignola R, Lovato O, Giacobazzi L, Caligola S, Adamo A, Putta S, Aparo A, Ferrarini I, Ugel S, Giugno R, Donadelli M, Dando I, Krampera M, Visco C, Scupoli MT. B-cell receptor signaling activity identifies patients with mantle cell lymphoma at higher risk of progression. Sci Rep 2024; 14:6595. [PMID: 38503806 PMCID: PMC10951201 DOI: 10.1038/s41598-024-55728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by a high clinical variability. Therefore, there is a critical need to define parameters that identify high-risk patients for aggressive disease and therapy resistance. B-cell receptor (BCR) signaling is crucial for MCL initiation and progression and is a target for therapeutic intervention. We interrogated BCR signaling proteins (SYK, LCK, BTK, PLCγ2, p38, AKT, NF-κB p65, and STAT5) in 30 primary MCL samples using phospho-specific flow cytometry. Anti-IgM modulation induced heterogeneous BCR signaling responses among samples allowing the identification of two clusters with differential responses. The cluster with higher response was associated with shorter progression free survival (PFS) and overall survival (OS). Moreover, higher constitutive AKT activity was predictive of inferior response to the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. Time-to-event analyses showed that MCL international prognostic index (MIPI) high-risk category and higher STAT5 response were predictors of shorter PFS and OS whilst MIPI high-risk category and high SYK response predicted shorter OS. In conclusion, we identified BCR signaling properties associated with poor clinical outcome and resistance to ibrutinib, thus highlighting the prognostic and predictive significance of BCR activity and advancing our understanding of signaling heterogeneity underlying clinical behavior of MCL.
Collapse
Affiliation(s)
- Simona Gambino
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
| | | | - Marilisa Galasso
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
| | - Chiara Cavallini
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ornella Lovato
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Luca Giacobazzi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | | | - Annalisa Adamo
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | | | - Antonino Aparo
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.
- Hematology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Engineering for Innovation Medicine, Section of Biomedicine, University of Verona, Verona, Italy.
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| |
Collapse
|
22
|
Sugaya R, Taniguchi A, Abe M, Ozawa I, Kirito K, Hatakeyama S. A Pancreatic Collision Tumor Comprising Mantle Cell Lymphoma and Adenocarcinoma: A Case Report and Literature Review. Intern Med 2024; 63:553-558. [PMID: 37380453 PMCID: PMC10937135 DOI: 10.2169/internalmedicine.1937-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
A collision tumor is a rare clinical condition where two different tumors occur synchronically within a lesion. Pancreatic collision tumors with mantle cell lymphoma (MCL) are extremely rare and have only been reported in one case to date. We herein report an elderly patient with MCL and adenocarcinoma of the pancreas with Ann Arbor stage IV and Union for International Cancer Control stage IIB, respectively. The patient received palliative therapy and died 23 months after the diagnosis. Further research and case studies are required to investigate whether or not MCL-derived cyclin D1 overexpression affects the occurrence/growth of adenocarcinomas.
Collapse
Affiliation(s)
- Ryo Sugaya
- Department of Internal Medicine, Nikko City Hospital, Japan
- Division of General Internal Medicine, Jichi Medical University Hospital, Japan
| | - Ai Taniguchi
- Department of Internal Medicine, Nikko City Hospital, Japan
| | - Makoto Abe
- Department of Pathology, Tochigi Cancer Center, Japan
| | - Iwao Ozawa
- Department of Hepato-Biliary-Pancreatic Surgery, Tochigi Cancer Center, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, Japan
| | - Shuji Hatakeyama
- Division of General Internal Medicine, Jichi Medical University Hospital, Japan
| |
Collapse
|
23
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Morsy MHA, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38774451 PMCID: PMC7615944 DOI: 10.1182/blood.2023022241/2210808/blood.2023022241.pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 21561, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre (BMC), SE-751 24, Uppsala, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Agnes L Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| |
Collapse
|
25
|
Lu T, Zhang J, McCracken JM, Young KH. Recent advances in genomics and therapeutics in mantle cell lymphoma. Cancer Treat Rev 2024; 122:102651. [PMID: 37976759 DOI: 10.1016/j.ctrv.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Over the past decades, significant strides have been made in understanding the pathobiology, prognosis, and treatment options for mantle cell lymphoma (MCL). The heterogeneity observed in MCL's biology, genomics, and clinical manifestations, including indolent and aggressive forms, is intricately linked to factors such as the mutational status of the variable region of the immunoglobulin heavy chain gene, epigenetic profiling, and Sox11 expression. Several intriguing subtypes of MCL, such as Cyclin D1-negative MCL, in situ mantle cell neoplasm, CCND1/IGH FISH-negative MCL, and the impact of karyotypic complexity on prognosis, have been explored. Notably, recent immunochemotherapy regimens have yielded long-lasting remissions in select patients. The therapeutic landscape for MCL is continuously evolving, with a shift towards nonchemotherapeutic agents like ibrutinib, acalabrutinib, and venetoclax. The introduction of BTK inhibitors has brought about a transformative change in MCL treatment. Nevertheless, the challenge of resistance to BTK inhibitors persists, prompting ongoing efforts to discover strategies for overcoming this resistance. These strategies encompass non-covalent BTK inhibitors, immunomodulatory agents, BCL2 inhibitors, and CAR-T cell therapy, either as standalone treatments or in combination regimens. Furthermore, developing novel drugs holds promise for further improving the survival of patients with relapsed or refractory MCL. In this comprehensive review, we methodically encapsulate MCL's clinical and pathological attributes and the factors influencing prognosis. We also undertake an in-depth examination of stratified treatment alternatives. We investigate conceivable resistance mechanisms in MCL from a genetic standpoint and offer precise insights into various therapeutic approaches for relapsed or refractory MCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jenna M McCracken
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ken H Young
- Division of Hematopathology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Huang Y, Xia L, Shen W, Fu T. A case report: Infection-related glomerulonephritis and mantle cell lymphoma due to mycobacterium avium complex infection. Medicine (Baltimore) 2023; 102:e35620. [PMID: 38206690 PMCID: PMC10754588 DOI: 10.1097/md.0000000000035620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 01/13/2024] Open
Abstract
RATIONALE Mycobacterium avium complex (MAC) infection is common in lung, liver and skin. However, MAC presenting with peritonitis is uncommon and is particularly rare in immunocompetent patients. We report a case of infection-associated glomerulonephritis and mantle cell lymphoma caused by peritonitis due to MAC. PATIENT CONCERNS We report a case of a 73-year-old elderly man with fever and abdominal pain for 2 days and gradually developed anuria, ascites, and abdominal lymphadenopathy. DIAGNOSES The initial diagnosis was peritonitis and acute renal failure. There was no significant relief of symptoms after empirical anti-infective therapy and hemodialysis. infection-associated glomerulonephritis, mantle cell lymphoma, and peritonitis due to MAC were diagnosed by renal biopsy, abdominal lymph node biopsy, and metagenomics next-generation sequencing. INTERVENTIONS The patient received empirical antibiotic therapy, hemodialysis, and anti-MAC therapy. OUTCOMES Unfortunately, the patient eventually died of septic shock after the 21st day of admissiom. LESSONS Early diagnosis of MAC infection is essential. When the cause of fever is unknown, metagenomics next-generation sequencing can be considered.
Collapse
Affiliation(s)
- Yiqi Huang
- Department of Nephrology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Li Xia
- Department of Nephrology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Weigang Shen
- Department of Nephrology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Tianxiao Fu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Obregon M, Kohli A, Song M. Mantle Cell Lymphoma Causing Recurrent Pleural Effusions: A Case Report. Cureus 2023; 15:e48945. [PMID: 38106801 PMCID: PMC10725574 DOI: 10.7759/cureus.48945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare type of B cell non-Hodgkin's lymphoma. MCL is most commonly identified in the gastrointestinal tract. Yet, many other extranodal sites have been described in the literature, including the rare instances of the primary site being the pleura of the lung. We present a case with a 73-year-old female who presented with a three-month history of unintentional weight loss, nocturnal fever, and night sweats. She had recurrent left pleural effusions; however, thoracentesis and pleural fluid cytology were negative for malignancy. A definitive diagnosis was achieved after the patient underwent video-assisted thoracic surgery. MCL presenting as a pleural effusion is rarely reported in the literature.
Collapse
Affiliation(s)
- Michael Obregon
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Akshay Kohli
- Pulmonary and Critical Care Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Mingchen Song
- Pulmonary and Critical Care Medicine, Southern Illinois University School of Medicine, Springfield, USA
| |
Collapse
|
29
|
Chan WK, Williams J, Sorathia K, Pray B, Abusaleh K, Bian Z, Sharma A, Hout I, Nishat S, Hanel W, Sloan SL, Yasin A, Denlinger N, Zhang X, Muthusamy N, Vasu S, de Lima M, Yang Y, Baiocchi R, Alinari L. A novel CAR-T cell product targeting CD74 is an effective therapeutic approach in preclinical mantle cell lymphoma models. Exp Hematol Oncol 2023; 12:79. [PMID: 37740214 PMCID: PMC10517521 DOI: 10.1186/s40164-023-00437-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a rare B-cell non-Hodgkin lymphoma subtype which remains incurable despite multimodal approach including chemoimmunotherapy followed by stem cell transplant, targeted approaches such as the BTK inhibitor ibrutinib, and CD19 chimeric antigen receptor (CAR) T cells. CD74 is a nonpolymorphic type II integral membrane glycoprotein identified as an MHC class II chaperone and a receptor for macrophage migration inhibitory factor. Our group previously reported on CD74's abundant expression in MCL and its ability to increase via pharmacological inhibition of autophagosomal degradation. Milatuzumab, a fully humanized anti-CD74 monoclonal antibody, demonstrated significant activity in preclinical lymphoma models but failed to provide meaningful benefits in clinical trials mainly due to its short half-life. We hypothesized that targeting CD74 using a CAR-T cell would provide potent and durable anti-MCL activity. METHODS We engineered a second generation anti-CD74 CAR with 4-1BB and CD3ζ signaling domains (74bbz). Through in silico and rational mutagenesis on the scFV domain, the 74bbz CAR was functionally optimized for superior antigen binding affinity, proliferative signaling, and cytotoxic activity against MCL cells in vitro and in vivo. RESULTS Functionally optimized 74bbz CAR-T cells (clone 42105) induced significant killing of MCL cell lines, and primary MCL patient samples including one relapse after commercial CD19 CAR-T cell therapy with direct correlation between antigen density and cytotoxicity. It significantly prolonged the survival of an animal model established in NOD-SCIDγc-/- (NSG) mice engrafted with a human MCL cell line Mino subcutaneously compared to controls. Finally, while CD74 is also expressed on normal immune cell subsets, treatment with 74bbz CAR-T cells resulted in minimal cytotoxicity against these cells both in vitro and in vivo. CONCLUSIONS Targeting CD74 with 74bbz CAR-T cells represents a new cell therapy to provide a potent and durable and anti-MCL activity.
Collapse
Affiliation(s)
- Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Jessica Williams
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Kinnari Sorathia
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Betsy Pray
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Kaled Abusaleh
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Zehua Bian
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Archisha Sharma
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Ian Hout
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Shamama Nishat
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Walter Hanel
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Shelby L Sloan
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Aneeq Yasin
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Nathan Denlinger
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Natarajan Muthusamy
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Sumithira Vasu
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Marcos de Lima
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Yiping Yang
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Robert Baiocchi
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA
| | - Lapo Alinari
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, 400 W. 12th Ave, 481D Wiseman Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Nzenwa IC, Berquist M, Brenner TJ, Ansari A, Al-Fadhl HD, Aboukhaled M, Patel SS, Peck EE, Al-Fadhl MD, Thomas AV, Zackariya N, Walsh MM, Bufill JA. Type B Lactic Acidosis in a Patient with Mantle Cell Lymphoma. Case Rep Crit Care 2023; 2023:7021123. [PMID: 37621746 PMCID: PMC10447056 DOI: 10.1155/2023/7021123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/23/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Type B lactic acidosis is an uncommon medical emergency in which acid production overwhelms hepatic clearance. This specific etiology of lactic acidosis occurs without organ hypoperfusion and has been most commonly described in patients with hematologic malignancies but also in patients with solid tumors. The mechanism by which cancer cells switch their glucose metabolism toward increasingly anaerobic glycolytic phenotypes has been described as the "Warburg effect." Without treating the underlying malignancy, the prognosis for patients diagnosed with malignancy-related type B lactic acidosis is extremely poor. Here, we present a case of a 66-year-old male who was diagnosed with type B lactic acidosis secondary to mantle cell lymphoma. Bicarbonate drip was started to correct the lactic acidosis. The patient was also immediately treated with rituximab chemotherapy combined with rasburicase to avoid the hyperuricemia associated with tumor lysis syndrome. He responded to the early treatment and was discharged with normal renal function. Type B lactic acidosis secondary to hematologic malignancy is important to recognize. In order to successfully treat this syndrome, early diagnosis and simultaneous treatment of the imbalance of lactic acid levels and the underlying malignancy are necessary.
Collapse
Affiliation(s)
| | | | - Toby J. Brenner
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | - Aida Ansari
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | | | | | | | - Ethan E. Peck
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
| | - Mahmoud D. Al-Fadhl
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Anthony V. Thomas
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Nuha Zackariya
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | - Mark M. Walsh
- Saint Joseph Regional Medical Center, Mishawaka, Indiana, USA
- Indiana University School of Medicine South Bend Campus, Notre Dame, Indiana, USA
| | | |
Collapse
|
32
|
Saleban M, Harris EL, Poulter JA. D-Type Cyclins in Development and Disease. Genes (Basel) 2023; 14:1445. [PMID: 37510349 PMCID: PMC10378862 DOI: 10.3390/genes14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
D-type cyclins encode G1/S cell cycle checkpoint proteins, which play a crucial role in defining cell cycle exit and progression. Precise control of cell cycle exit is vital during embryonic development, with defects in the pathways regulating intracellular D-type cyclins resulting in abnormal initiation of stem cell differentiation in a variety of different organ systems. Furthermore, stabilisation of D-type cyclins is observed in a wide range of disorders characterized by cellular over-proliferation, including cancers and overgrowth disorders. In this review, we will summarize and compare the roles played by each D-type cyclin during development and provide examples of how their intracellular dysregulation can be an underlying cause of disease.
Collapse
Affiliation(s)
- Mostafa Saleban
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Chauhan S, Valenta J, Dhillon GS, Phan P, Huh Y, Manov AE, Wierman A. A Rare Case of Nodular Mantle Cell Lymphoma of the Gastrointestinal Tract Discovered During a Routine Colonoscopy With a Positive Response to R-CHOP Chemotherapy Regimen. Cureus 2023; 15:e42516. [PMID: 37637598 PMCID: PMC10457472 DOI: 10.7759/cureus.42516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
This report describes the case of a 73-year-old female patient who presented with abdominal symptoms. A colonoscopy identified a cecal mass confirmed as mantle cell lymphoma (MCL). Imaging showed extensive lymph node involvement. The patient received rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, resulting in tumor reduction and adenopathy resolution. Despite a typically unfavorable prognosis associated with a high Ki-67 index, the patient responded well to chemotherapy and achieved a favorable outcome. This case highlights the importance of early detection, appropriate treatment which in our case was R-CHOP, and personalized management approaches in addressing MCL.
Collapse
Affiliation(s)
| | - Jordan Valenta
- Internal Medicine, MountainView Hospital, Las Vegas, USA
| | | | - Preston Phan
- Medicine, Touro University Nevada, Henderson, USA
| | - Yongwoon Huh
- Family Medicine, Valley Health System, Las Vegas, USA
| | - Andre E Manov
- Internal Medicine, Sunrise Health Graduate Medical Education (GME) Consortium, Las Vegas, USA
| | - Ann Wierman
- Hematology/Oncology, MountainView Hospital, Las Vegas, USA
| |
Collapse
|
34
|
Castillo DR, Park D, Jeon WJ, Joung B, Lee J, Yang C, Pham B, Hino C, Chong E, Shields A, Nguyen A, Brothers J, Liu Y, Zhang KK, Cao H. Unveiling the Prognostic Significance of BCL6+/CD10+ Mantle Cell Lymphoma: Meta-Analysis of Individual Patients and Systematic Review. Int J Mol Sci 2023; 24:10207. [PMID: 37373354 DOI: 10.3390/ijms241210207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma (NHL) characterized by a hallmark translocation of t (11; 14). CD10 negativity has been used to differentiate MCL from other NHL types; however, recently, there has been an increase in the number of reported cases of CD10-positive MCL. This warrants further investigation into this rarer immunophenotype and its clinical significance. BCL6, which is a master transcription factor for the regulation of cell proliferation and key oncogene in B cell lymphomagenesis, has been reported to have co-expression with CD10 in MCL. The clinical significance of this aberrant antigen expression remains unknown. We conducted a systematic review by searching four databases and selected five retrospective analyses and five case series. Two survival analyses were conducted to determine if BCL6 positivity conferred a survival difference: 1. BCL6+ vs. BCL6- MCL. 2. BCL6+/CD10+ vs. BCL6-/CD10+ MCL. Correlation analysis was conducted to determine if BCL6 positivity correlated with the Ki67 proliferation index (PI). Overall survival (OS) rates were performed by the Kaplan-Meier method and log-rank test. Our analyses revealed that BCL6+ MCL had significantly shorter overall survival (median OS: 14 months vs. 43 months; p = 0.01), BCL6+/CD10+ MCL had an inferior outcome vs. BCL6+/CD10- MCL (median OS: 20 months vs. 55 months p = 0.1828), BCL6+ MCL had significantly higher percentages of Ki67% (Ki67% difference: 24.29; p = 0.0094), and BCL6 positivity had a positive correlation with CD10+ status with an odds ratio 5.11 (2.49, 10.46; p = 0.0000286). Our analysis showed that BCL6 expression is correlated with CD10 positivity in MCL, and BCL6 expression demonstrated an inferior overall survival. The higher Ki67 PI in BCL6+ MCL compared to BCL6- MCL further supports the idea that the BCL6+ immunophenotype may have prognostic value in MCL. MCL management should consider incorporating prognostic scoring systems adjusted for BCL6 expression. Targeted therapies against BCL6 may offer potential therapeutic options for managing MCL with aberrant immunophenotypes.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Daniel Park
- Department of Internal Medicine, School of Medicine, University of California San Francisco-Fresno, Fresno, CA 93701, USA
| | - Won Jin Jeon
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Bowon Joung
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Bryan Pham
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Christopher Hino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Esther Chong
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Anthony Nguyen
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
| | - Joel Brothers
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Liu
- Department of Pathology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Huynh Cao
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
35
|
Zhu Y, Wang S, Yang Y, Shen B, Wang A, Zhang X, Zhang X, Li N, Gao Z, Liu Y, Zhu J, Wei Z, Guan J, Su K, Liu F, Gu M, Yin S. Adenoid lymphocyte heterogeneity in pediatric adenoid hypertrophy and obstructive sleep apnea. Front Immunol 2023; 14:1186258. [PMID: 37283767 PMCID: PMC10239814 DOI: 10.3389/fimmu.2023.1186258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Yang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bojun Shen
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anzhao Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Wei
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Su
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Chen Y, Yang P, Wang J, Gao S, Xiao S, Zhang W, Zhu M, Wang Y, Ke X, Jing H. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma. Exp Hematol Oncol 2023; 12:28. [PMID: 36882855 PMCID: PMC9990225 DOI: 10.1186/s40164-023-00381-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Cell cycle dysregulation characterized by cyclin D1 overexpression is common in mantle cell lymphoma (MCL), while mitotic disorder was less studied. Cell division cycle 20 homologue (CDC20), an essential mitotic regulator, was highly expressed in various tumors. Another common abnormality in MCL is p53 inactivation. Little was known about the role of CDC20 in MCL tumorigenesis and the regulatory relationship between p53 and CDC20 in MCL. METHODS CDC20 expression was detected in MCL patients and MCL cell lines harboring mutant p53 (Jeko and Mino cells) and wild-type p53 (Z138 and JVM2 cells). Z138 and JVM2 cells were treated with CDC20 inhibitor apcin, p53 agonist nutlin-3a, or in combination, and then cell proliferation, cell apoptosis, cell cycle, cell migration and invasion were determined by CCK-8, flow cytometry and Transwell assays. The regulatory mechanism between p53 and CDC20 was revealed by dual-luciferase reporter gene assay and CUT&Tag technology. The anti-tumor effect, safety and tolerability of nutlin-3a and apcin were investigated in vivo in the Z138-driven xenograft tumor model. RESULTS CDC20 was overexpressed in MCL patients and cell lines compared with their respective controls. The typical immunohistochemical marker of MCL patients, cyclin D1, was positively correlated with CDC20 expression. CDC20 high expression indicated unfavorable clinicopathological features and poor prognosis in MCL patients. In Z138 and JVM2 cells, either apcin or nutlin-3a treatment could inhibit cell proliferation, migration and invasion, and induce cell apoptosis and cell cycle arrest. GEO analysis, RT-qPCR and WB results showed that p53 expression was negatively correlated with CDC20 expression in MCL patients, Z138 and JVM2 cells, while this relationship was not observed in p53-mutant cells. Dual-luciferase reporter gene assay and CUT&Tag assay revealed mechanistically that CDC20 was transcriptionally repressed by p53 through directly binding p53 to CDC20 promoter from - 492 to + 101 bp. Moreover, combined treatment of nutlin-3a and apcin showed better anti-tumor effect than single treatment in Z138 and JVM2 cells. Administration of nutlin-3a/apcin alone or in combination confirmed their efficacy and safety in tumor-bearing mice. CONCLUSIONS Our study validates the essential role of p53 and CDC20 in MCL tumorigenesis, and provides a new insight for MCL therapeutics through dual-targeting p53 and CDC20.
Collapse
Affiliation(s)
- Yingtong Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shuang Gao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
37
|
Sureda-Gómez M, Balsas P, Rodríguez ML, Nadeu F, De Bolòs A, Eguileor Á, Kulis M, Castellano G, López C, Giné E, Demajo S, Jares P, Martín-Subero JI, Beà S, Campo E, Amador V. Tumorigenic role of Musashi-2 in aggressive mantle cell lymphoma. Leukemia 2023; 37:408-421. [PMID: 36509891 PMCID: PMC9898029 DOI: 10.1038/s41375-022-01776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
SOX11 overexpression has been associated with aggressive behavior of mantle cell lymphomas (MCL). SOX11 is overexpressed in embryonic and cancer stem cells (CSC) of some tumors. Although CSC have been isolated from primary MCL, their relationship to SOX11 expression and contribution to MCL pathogenesis and clinical evolution remain unknown. Here, we observed enrichment in leukemic and hematopoietic stem cells gene signatures in SOX11+ compared to SOX11- MCL primary cases. Musashi-2 (MSI2) emerged as one of the most significant upregulated stem cell-related genes in SOX11+ MCLs. SOX11 is directly bound to the MSI2 promoter upregulating its expression in vitro. MSI2 intronic enhancers were strongly activated in SOX11+ MCL cell lines and primary cases. MSI2 upregulation was significantly associated with poor overall survival independently of other high-risk features of MCL. MSI2 knockdown decreased the expression of genes related to apoptosis and stem cell features and significantly reduced clonogenic growth, tumor cell survival and chemoresistance in MCL cells. MSI2-knockdown cells had reduced tumorigenic engraftment into mice bone marrow and spleen compared to control cells in xenotransplanted mouse models. Our results suggest that MSI2 might play a key role in sustaining stemness and tumor cell survival, representing a possible novel target for therapeutic interventions in MCL.
Collapse
Affiliation(s)
- Marta Sureda-Gómez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Balsas
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta-Leonor Rodríguez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna De Bolòs
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Eguileor
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Giancarlo Castellano
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Hematology Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Santiago Demajo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Jares
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - José I. Martín-Subero
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Silvia Beà
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
38
|
Sander B, Campo E, Hsi ED. Chronic lymphocytic leukaemia/small lymphocytic lymphoma and mantle cell lymphoma: from early lesions to transformation. Virchows Arch 2023; 482:131-145. [PMID: 36454275 PMCID: PMC9852142 DOI: 10.1007/s00428-022-03460-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The International Clinical Advisory Committee reviewed advances in our understanding of the clinicopathologic and biologic features of chronic lymphocytic leukaemia/small lymphocytic lymphoma, B-cell prolymphocytic leukaemia, and mantle cell lymphoma since the revised 4th edition of the WHO Classification of Tumours of the Haematopoietic and Lymphoid Tissues. Discussions amongst pathologists, clinicians, and molecular geneticists around these diseases focussed on incorporating new knowledge into the next classification system. In this manuscript, we review these disease entities and incorporate results of these deliberations, including advances in our understanding of early lesions and transformation.
Collapse
Affiliation(s)
- Birgitta Sander
- grid.24381.3c0000 0000 9241 5705Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elias Campo
- grid.5841.80000 0004 1937 0247Laboratory of Pathology Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain ,grid.10403.360000000091771775Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Eric D. Hsi
- grid.241167.70000 0001 2185 3318Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
39
|
Zhu Y, Gan X, Qin R, Lin Z. Identification of Six Diagnostic Biomarkers for Chronic Lymphocytic Leukemia Based on Machine Learning Algorithms. JOURNAL OF ONCOLOGY 2022; 2022:3652107. [PMID: 36467501 PMCID: PMC9715328 DOI: 10.1155/2022/3652107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 09/19/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults. Thus, novel reliable biomarkers need to be further explored to increase diagnostic, therapeutic, and prognostic effectiveness. METHODS Six datasets containing CLL and control samples were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis, weighted gene coexpression network analysis (WGCNA), and the least absolute shrinkage and selection operator (LASSO) regression were applied to identify potential diagnostic biomarkers for CLL using R software. The diagnostic performance of the hub genes was then measured by the receiver operating characteristic (ROC) curve analysis. Functional analysis was implemented to uncover the underlying mechanisms. Additionally, correlation analysis was performed to assess the relationship between the hub genes and immunity characteristics. RESULTS A total number of 47 differentially expressed genes (DEGs) and 25 candidate hub genes were extracted through differential gene expression analysis and WGCNA, respectively. Based on the 14 overlapped genes between the DEGs and the candidate hub genes, LASSO regression analysis was used, which identified a final number of six hub genes as potential biomarkers for CLL: ABCA6, CCDC88A, PMEPA1, EBF1, FILIP1L, and TEAD2. The ROC curves of the six genes showed reliable predictive ability in the training and validation cohorts, with all area under the curve (AUC) values over 0.80. Functional analysis revealed an abnormal immune status in the CLL patients. A significant correlation was found between the hub genes and the immune-related pathways, indicating a possible tight connection between the hub genes and tumor immunity in CLL. CONCLUSION This study was based on machine learning algorithms, and we identified six genes that could be possible CLL markers, which may be involved in CLL pathogenesis and progression through immune-related signal pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xinjin Gan
- Department of Hematology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruoyan Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhikang Lin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
40
|
Carreras J, Roncador G, Hamoudi R. Artificial Intelligence Predicted Overall Survival and Classified Mature B-Cell Neoplasms Based on Immuno-Oncology and Immune Checkpoint Panels. Cancers (Basel) 2022; 14:5318. [PMID: 36358737 PMCID: PMC9657332 DOI: 10.3390/cancers14215318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
Artificial intelligence (AI) can identify actionable oncology biomarkers. This research integrates our previous analyses of non-Hodgkin lymphoma. We used gene expression and immunohistochemical data, focusing on the immune checkpoint, and added a new analysis of macrophages, including 3D rendering. The AI comprised machine learning (C5, Bayesian network, C&R, CHAID, discriminant analysis, KNN, logistic regression, LSVM, Quest, random forest, random trees, SVM, tree-AS, and XGBoost linear and tree) and artificial neural networks (multilayer perceptron and radial basis function). The series included chronic lymphocytic leukemia, mantle cell lymphoma, follicular lymphoma, Burkitt, diffuse large B-cell lymphoma, marginal zone lymphoma, and multiple myeloma, as well as acute myeloid leukemia and pan-cancer series. AI classified lymphoma subtypes and predicted overall survival accurately. Oncogenes and tumor suppressor genes were highlighted (MYC, BCL2, and TP53), along with immune microenvironment markers of tumor-associated macrophages (M2-like TAMs), T-cells and regulatory T lymphocytes (Tregs) (CD68, CD163, MARCO, CSF1R, CSF1, PD-L1/CD274, SIRPA, CD85A/LILRB3, CD47, IL10, TNFRSF14/HVEM, TNFAIP8, IKAROS, STAT3, NFKB, MAPK, PD-1/PDCD1, BTLA, and FOXP3), apoptosis (BCL2, CASP3, CASP8, PARP, and pathway-related MDM2, E2F1, CDK6, MYB, and LMO2), and metabolism (ENO3, GGA3). In conclusion, AI with immuno-oncology markers is a powerful predictive tool. Additionally, a review of recent literature was made.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Horgan D, Walewski J, Aurer I, Visco C, Giné E, Fetica B, Jerkeman M, Kozaric M, da Silva MG, Dreyling M. Tackling Mantle Cell Lymphoma in Europe. Healthcare (Basel) 2022; 10:1682. [PMID: 36141294 PMCID: PMC9498856 DOI: 10.3390/healthcare10091682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
An expert panel convened by the European Alliance for Personalized Medicine (EAPM) reflected on achievements and outstanding challenges in Europe in mantle cell lymphoma (MCL). Through the prism of member state experience, the panel noted advances in outcomes over the last decade, but highlighted issues constituting barriers to better care. The list notably included availability of newer treatments, infrastructure and funding for related testing, and shortages of relevant skills and of research support. The prospect of improvements was held to reside in closer coordination and cooperation within and between individual countries, and in changes in policy and scale of investment at both national and EU levels.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Jan Walewski
- The Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warszawa, Poland
| | - Igor Aurer
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, 37129 Verona, Italy
| | - Eva Giné
- Instituto Clínic de Enfermedades Hematológicas y Oncológicas, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Bogdan Fetica
- Department of Pathology, Institute of Oncology “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| | - Mats Jerkeman
- Department of Oncology, Institute of Clinical Sciences, Lund University and Skane, University Hospital, BMC F12, 221 84 Lund, Sweden
| | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Maria Gomes da Silva
- Haematology Unit, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisbon, Portugal
| | - Martin Dreyling
- Medical Clinic III, Groβhadern Clinic, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| |
Collapse
|
42
|
Chen S, Li L. Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front Oncol 2022; 12:949688. [PMID: 36059670 PMCID: PMC9434365 DOI: 10.3389/fonc.2022.949688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cyclin D1 has been reported to be upregulated in several solid and hematologic tumors, promoting cancer progression. Thus, decreasing cyclin D1 by degradation could be a promising target strategy for cancer therapy. This mini review summarizes the roles of cyclin D1 in tumorigenesis and progression and its degradation strategies. Besides, we proposed an exploration of the degradation of cyclin D1 by FBX4, an F box protein belonging to the E3 ligase SKP-CUL-F-box (SCF) complex, which mediates substrate ubiquitination, as well as a postulate about the concrete combination mode of FBX4 and cyclin D1. Furthermore, we proposed a possible photodynamic therapy strategythat is based on the above concrete combination mode for treating superficial cancer.
Collapse
Affiliation(s)
- Shuyi Chen
- The Sixth Student Battalion, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
43
|
Patent highlights December 2021-January 2022. Pharm Pat Anal 2022; 11:89-96. [PMID: 35861046 DOI: 10.4155/ppa-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
44
|
Jain P, Wang ML. Mantle cell lymphoma in 2022-A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol 2022; 97:638-656. [PMID: 35266562 DOI: 10.1002/ajh.26523] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022]
Abstract
The field of mantle cell lymphoma (MCL) has witnessed remarkable progress due to relentless advances in molecular pathogenesis, prognostication, and newer treatments. MCL consists of a spectrum of clinical subtypes. Rarely, atypical cyclin D1-negative MCL and in situ MCL neoplasia are identified. Prognostication of MCL is further refined by identifying somatic mutations (such as TP53, NSD2, KMT2D), methylation status, chromatin organization pattern, SOX-11 expression, minimal residual disease (MRD), and genomic clusters. Lymphoid tissue microenvironment studies demonstrated the role of B-cell receptor signaling, nuclear factor kappa B (NF-kB), colony-stimulating factor (CSF)-1, the CD70-SOX-11 axis. Molecular mechanism of resistance, mutation dynamics, and pathogenic pathways (B-cell receptor (BCR), oxidative phosphorylation, and MYC) were identified in mediating resistance to various treatments (bruton tyrosine kinase (BTK) inhibitors [ibrutinib, acalabrutinib]. Treatment options range from conventional chemoimmunotherapy and stem cell transplantation (SCT) to targeted therapies against BTK (covalent and noncovalent), Bcl2, ROR1, cellular therapy such as anti-CD19 chimeric antigen receptor therapy (CAR-T), and most recently bispecific antibodies against CD19 and CD20. MCL patients frequently relapse. Complex pathogenesis and the management of patients with progression after treatment with BTK/Bcl2 inhibitors and CAR-T (triple-resistant MCL) remain a challenge. Next-generation clinical trials incorporating newer agents and concurrent translational and molecular investigations are ongoing.
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Lymphoma/Myeloma. Mantle cell lymphoma center of excellence The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Michael L. Wang
- Department of Lymphoma/Myeloma. Mantle cell lymphoma center of excellence The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
45
|
Liu F, Gu B, Li N, Pan H, Chen W, Qiao Y, Song S, Liu X. Prognostic Value of Heterogeneity Index Derived from Baseline 18F-FDG PET/CT in Mantle Cell Lymphoma. Front Oncol 2022; 12:862473. [PMID: 35494037 PMCID: PMC9047855 DOI: 10.3389/fonc.2022.862473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesMantle cell lymphoma (MCL) represents a group of highly heterogeneous tumors, leading to a poor prognosis. Early prognosis prediction may guide the choice of therapeutic regimen. Thus, the purpose of this study was to investigate the potential application value of heterogeneity index (HI) in predicting the prognosis of MCL.MethodsA total of 83 patients with histologically proven MCL who underwent baseline fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) were retrospectively enrolled. The clinicopathologic index and PET/CT metabolic parameters containing maximum and mean standard uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and HI were evaluated. Receiver operating characteristic (ROC) curve analyses were performed to determine the optimal cutoff values of the parameters for progression-free survival (PFS) and overall survival (OS). Univariate and multivariate Cox regression were used to assess relationships between risk factors and recurrence. Kaplan–Meier plots were applied for survival analyses.ResultsIn univariate analyses, age [HR = 2.51, 95% CI = 1.20–5.24, p = 0.041 for body weight (BW)] and HI-BW (HR = 4.17, 95% CI = 1.00–17.38, p = 0.050) were significantly correlated with PFS. In multivariate analyses, age (HR = 2.61, 95% CI = 1.25–5.47, p = 0.011 for BW) and HI-BW (HR = 4.41, 95% CI = 1.06–18.41, p = 0.042) were independent predictors for PFS, but not for OS. B symptoms (HR = 5.00, 95% CI = 1.16–21.65, p = 0.031 for BW) were an independent prognostic factor for OS, but not for PFS. The other clinicopathologic index and PET/CT metabolic parameters were not related to outcome survival in MCL.ConclusionThe age and HI derived from baseline PET/CT parameters were significantly correlated with PFS in MCL patients.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Herong Pan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Wen Chen
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Ying Qiao
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| | - Xiaosheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes , Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
- *Correspondence: Xiaosheng Liu,
| |
Collapse
|
46
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
47
|
Carreras J, Nakamura N, Hamoudi R. Artificial Intelligence Analysis of Gene Expression Predicted the Overall Survival of Mantle Cell Lymphoma and a Large Pan-Cancer Series. Healthcare (Basel) 2022; 10:155. [PMID: 35052318 PMCID: PMC8775707 DOI: 10.3390/healthcare10010155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a subtype of mature B-cell non-Hodgkin lymphoma characterized by a poor prognosis. First, we analyzed a series of 123 cases (GSE93291). An algorithm using multilayer perceptron artificial neural network, radial basis function, gene set enrichment analysis (GSEA), and conventional statistics, correlated 20,862 genes with 28 MCL prognostic genes for dimensionality reduction, to predict the patients' overall survival and highlight new markers. As a result, 58 genes predicted survival with high accuracy (area under the curve = 0.9). Further reduction identified 10 genes: KIF18A, YBX3, PEMT, GCNA, and POGLUT3 that associated with a poor survival; and SELENOP, AMOTL2, IGFBP7, KCTD12, and ADGRG2 with a favorable survival. Correlation with the proliferation index (Ki67) was also made. Interestingly, these genes, which were related to cell cycle, apoptosis, and metabolism, also predicted the survival of diffuse large B-cell lymphoma (GSE10846, n = 414), and a pan-cancer series of The Cancer Genome Atlas (TCGA, n = 7289), which included the most relevant cancers (lung, breast, colorectal, prostate, stomach, liver, etcetera). Secondly, survival was predicted using 10 oncology panels (transcriptome, cancer progression and pathways, metabolic pathways, immuno-oncology, and host response), and TYMS was highlighted. Finally, using machine learning, C5 tree and Bayesian network had the highest accuracy for prediction and correlation with the LLMPP MCL35 proliferation assay and RGS1 was made. In conclusion, artificial intelligence analysis predicted the overall survival of MCL with high accuracy, and highlighted genes that predicted the survival of a large pan-cancer series.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, Faculty of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan;
| | - Naoya Nakamura
- Department of Pathology, Faculty of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
48
|
Is There Still a Role for Transplant for Patients with Mantle Cell Lymphoma (MCL) in the Era of CAR-T Cell Therapy? Curr Treat Options Oncol 2022; 23:1614-1625. [PMID: 36227407 PMCID: PMC9557996 DOI: 10.1007/s11864-022-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT For years, upfront autologous hematopoietic cell transplant (auto-HCT) has been the standard of care for younger and physically fit mantle cell lymphoma (MCL) patients after chemoimmunotherapy (CIT) induction. Bruton's tyrosine kinase (BTK) inhibitors have proven to be excellent salvage therapies, but their durability remains a question, especially in high-risk (HR) MCL. Allogeneic HCT (allo-HCT) was the only option for long-term remission and possibly cure for MCL relapse after auto-HCT and sometime as upfront consolidation for a young patient with HR MCL (debatable). We have seen a paradigm shift since the FDA approval in July 2020 of the brexucabtagene autoleucel chimeric antigen receptor T (CAR-T) cell therapy for relapsed and refractory (R/R) MCL with an preliminary evidence suggesting CAR-T may overcome known biological risk factors in MCL. Given its safety profile and excellent efficacy, the role of CAR-T among other approved therapies and HCT may need to be better defined. Based on the current evidence, auto-HCT remains a standard frontline consolidation therapy. CAR-T therapy is a preferred option for patients with relapsed/refractory (R/R) MCL, particularly those who failed BTK inhibitors. In certain high-risk MCL patients (such as high ki 67, TP53 alterations, complex karyotype, blastoid morphology, early relapse after initial diagnosis), CAR-T cell therapy may be considered before BTK inhibitors (preferably on a clinical trial). The role of allo-HCT is unclear in the CAR-T era, but remains a viable option for eligible patients who have no access or who have failed CAR-T therapy. Our review discusses current standards and the shifting paradigms in the indications for HCT and the role of CAR-T cell therapy for MCL. Prospective studies tailored based on risk factors are needed to better define the optimal sequences of HCT and cellular therapy and other approved novel therapies.
Collapse
|
49
|
Cabeçadas J, Nava VE, Ascensao JL, Gomes da Silva M. How to Diagnose and Treat CD5-Positive Lymphomas Involving the Spleen. Curr Oncol 2021; 28:4611-4633. [PMID: 34898558 PMCID: PMC8628806 DOI: 10.3390/curroncol28060390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with CD5-expressing lymphomas presenting with splenomegaly are frequently diagnosed with chronic lymphocytic leukemia. The most important differential diagnosis is mantle cell lymphoma, both in its classical and leukemic, non-nodal forms, given its prognostic and therapeutic implications. Other small B-cell neoplasms that frequently involve the spleen and occasionally express CD5 include the splenic marginal zone lymphoma, hairy cell leukemia and, rarely, lymphoplasmacytic lymphoma. The frequency of CD5 positivity depends in part on the sensitivity of the detection methods employed. Usually, a combination of morphological, immunophenotypic and molecular findings allows for a precise sub-classification of CD5-positive, low-grade B-cell lymphomas of the spleen. Some of these tumors may display a mixture of small and larger B cells, raising the possibility of more aggressive lymphomas, such as diffuse large B-cell lymphomas (DLBCL). Approximately 5-10% of DLBCL are CD5-positive and some may manifest as primary splenic lesions. When available, the morphology of DLBCL in the splenic tissue is distinctive and a leukemic picture is very rare. In conclusion, the appropriate morphological and clinical context assisted by flow cytometry panels and/or immunohistochemistry allows the differential diagnosis of CD5-positive, non-Hodgkin, B-cell lymphomas involving the spleen.
Collapse
Affiliation(s)
- José Cabeçadas
- Department of Pathology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisboa, Portugal;
| | - Victor E. Nava
- Department of Pathology, The George Washington University, Washington, DC 20037, USA;
- Department of Pathology, Veterans Health Administration Medical Center, Washington, DC 20422, USA
| | - Joao L. Ascensao
- School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Maria Gomes da Silva
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisboa, Portugal
| |
Collapse
|
50
|
Qiu L, Xu J, Tang G, Wang SA, Lin P, Ok CY, Garces S, Yin CC, Khanlari M, Vega F, Medeiros LJ, Li S. Mantle Cell Lymphoma with Chronic Lymphocytic Leukemia-Like Features: A Diagnostic Mimic and Pitfall. Hum Pathol 2021; 119:59-68. [PMID: 34767860 DOI: 10.1016/j.humpath.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022]
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm characterized by t(11;14)(q13;q32) and cyclin D1 overexpression in >95% of cases. Classic MCL cases are composed of a monotonous population of small to medium-sized lymphocytes with irregular nuclear contours that are positive for cyclin D1 and SOX11, and negative for CD23 and CD200. By contrast, occasional MCL cases express CD23 and CD200 but lack of SOX11, and morphologically and immunophenotypically resemble chronic lymphocytic leukemia (CLL), termed as CLL-like MCL in this study. These neoplasms pose a diagnostic challenge and easy to be diagnosed as CLL in daily practice. We studied 14 cases of CLL-like MCL to define their clinicopathologic features and compared them with 33 traditional CLL cases. There were 8 men and 6 women with a median age of 62 years (range, 44-80). Compared with CLL, patients with CLL-like MCL have lower levels of peripheral blood and bone marrow involvement, and more frequently had mutated IGHV. Immunophenotypically, CLL-like MCL often showed moderate to bright expression of B-cell antigens and surface immunoglobulin light chain, dim and partial expression of CD23 and CD200, infrequent CD43 positivity, and lack of LEF1. The overall survival of patients with CLL-like MCL was similar to that of CLL patients. In conclusion, CD23+, CD200+, and SOX11-negative MCL closely resemble CLL, both clinically and pathologically, including a similar indolent clinical course. They may pose a diagnostic challenge. However, patients with CLL-like MCL also have distinctive immunophenotypic features that are useful to distinguish these neoplasms from CLL.
Collapse
Affiliation(s)
- Lianqun Qiu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sophia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mahsa Khanlari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|