1
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Xiang Z, Song Y, Li J, Yu J, Xu C, Xu Y, Shu W, Fang X, Su R, Lu Z, Zheng S, Xu X, Lu D, Wei X. Impact of Donor CMV-Seropostive Grafts on Prognosis of Liver Transplantation for Hepatocellular Carcinoma. J Med Virol 2025; 97:e70150. [PMID: 39760308 DOI: 10.1002/jmv.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Studies investigating the impact of donor cytomegalovirus (CMV) positivity on the prognosis of liver transplantation (LT) recipients with HCC are currently lacking. A total of 21 759 eligible LT recipients were identified in the UNOS database between January 2002 and June 2023. The patients were divided into the donor CMV-seronegative (n = 7575) and CMV-seropositive (n = 14 814) groups. Moreover, the subgroup analyses by recipient age and gender were conducted. All patients were also divided into 18-40 (n = 271), 40-60 (n = 9538), and ≥ 60 (n = 11 950) groups, male (n = 16 954) and female (n = 4805) groups, respectively. Patients in the donor CMV-seropositive group had shorter overall survival (OS) and disease-free survival (DFS) compared to those in the donor CMV-seronegative group (both p < 0.001). Donor CMV seropositivity was proved to be a risk factor for OS and DFS (both p = 0.001). Patients receiving CMV-seropositive liver grafts had shorter OS and DFS in the 40-60 and ≥ 60 groups (all p < 0.05). Patients receiving CMV-seropositive liver grafts had shorted OS and DFS only in the male group (both p < 0.001). The receipt of donor CMV-seropositive liver grafts is associated with shorter survival and a higher risk of HCC recurrence in LT recipients with HCC. These adverse effects are influenced by recipient age and gender.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Fang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyang Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
3
|
Andreu-Sánchez S, Ripoll-Cladellas A, Culinscaia A, Bulut O, Bourgonje AR, Netea MG, Lansdorp P, Aubert G, Bonder MJ, Franke L, Vogl T, van der Wijst MG, Melé M, Van Baarle D, Fu J, Zhernakova A. Antibody signatures against viruses and microbiome reflect past and chronic exposures and associate with aging and inflammation. iScience 2024; 27:109981. [PMID: 38868191 PMCID: PMC11167443 DOI: 10.1016/j.isci.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna Culinscaia
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Monique G.P. van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Debbie Van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
5
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Doshi B, Athans SR, Woloszynska A. Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions. Oncogenesis 2023; 12:44. [PMID: 37666817 PMCID: PMC10477245 DOI: 10.1038/s41389-023-00489-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Sex and gender disparities in bladder cancer have long been a subject of interest to the cancer research community, wherein men have a 4 times higher incidence rate than women, and female patients often present with higher-grade disease and experience worse outcomes. Despite the known differences in disease incidence and clinical outcomes between male and female bladder cancer patients, clinical management remains the same. In this review, we critically analyze studies that report on the biological differences between men and women and evaluate how these differences contribute to sex and gender disparities in bladder cancer. Distinct characteristics of the male and female immune systems, differences in circulating hormone levels and hormone receptor expression, and different genetic and epigenetic alterations are major biological factors that all likely contribute to disparate incidence rates and outcomes for male and female bladder cancer patients. Future preclinical and clinical studies in this area should employ experimental approaches that account for and consider sex and gender disparities in bladder cancer, thereby facilitating the development of precision medicine for the effective treatment of bladder cancer in all patients.
Collapse
Affiliation(s)
- Bhavisha Doshi
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Umbreen G, Rehman A, Avais M, Jabeen C, Sadiq S, Maqsood R, Rashid HB, Afzal S, Chaudhry M. Burden of influenza A (H1N1)pdm09 infection among tuberculosis patients: a prospective cohort study. BMC Infect Dis 2023; 23:526. [PMID: 37563563 PMCID: PMC10413717 DOI: 10.1186/s12879-023-08441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Influenza and tuberculosis both cause significant morbidity and mortality worldwide. Therefore, this study aimed to estimate the burden of influenza A (H1N1)pdm09 virus infection among human tuberculosis patients and the general population. METHODS A prospective cohort study was conducted among a cohort group (TB positive patients) as exposed and a comparison group (general population) as non-exposed. A total of 304 participants were recruited in both groups and followed for a period of 12 weeks. Of the 304 concurrently enrolled individuals, 152 were TB-positive patients (cohort group) and 152 were from the general population (comparison group).To calculate the sample size, the power of study was kept at 80% for detecting a difference at 5% alpha level assuming the 25% prevalence of respiratory viruses in cohort group compared to 12.5% in general population. An oropharyngeal swab was taken from a participant with symptoms of influenza-like illness (ILI). Samples were tested by conventional reverse transcription polymerase chain reaction (RT-PCR) for the detection of influenza A (H1N1)pdm09. All statistical analyses were conducted using R software. RESULTS A total of 95 participants developed influenza-like illness (ILI) symptoms. Among these, 64 tested positive for influenza A(H1N1)pdm09, of which 39 were from the exposed group and 25 were from the non-exposed group. During the 12-week period of follow-up, the influenza A (H1N1)pdm09 incidence rate was 20 per 1000 people. The risk of testing positive for influenza A (H1N1)pdm09 was 1.66 times higher in the exposed group compared to the non-exposed group. The cumulative incidence indicated that 25% of the TB cohort and 16% of the comparison group were at risk of getting influenza A (H1N1)pdm09 during the 12 weeks of follow-up. CONCLUSION Participants from the TB cohort had a higher incidence of influenza A (H1N1)pdm09 than the general population suggesting that they should be prioritized for influenza vaccination.
Collapse
Affiliation(s)
- Gulshan Umbreen
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Rehman
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Avais
- Department of Veterinary Medicine, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Chanda Jabeen
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shakera Sadiq
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Rubab Maqsood
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamad Bin Rashid
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saira Afzal
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan
| | - Mamoona Chaudhry
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
8
|
Augustyniak A, Szymański T, Porzucek F, Mieloch AA, Semba JA, Hubert KA, Grajek D, Krela R, Rogalska Z, Zalc-Budziszewska E, Wysocki S, Sobczak K, Kuczyński L, Rybka JD. A cohort study reveals different dynamics of SARS-CoV-2-specific antibody formation after Comirnaty and Vaxzevria vaccination. Vaccine 2023:S0264-410X(23)00665-5. [PMID: 37407407 PMCID: PMC10284451 DOI: 10.1016/j.vaccine.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The Coronavirus (COVID-19) Disease Pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide, prompting a collective effort from the global scientific community to develop a vaccine against it. This study purports to investigate the influence of factors such as sex, age, type of vaccination (Comirnaty, BNT162b2, Pfizer Inc. or Vaxzevria, ChAdOx1-S, Oxford/AstraZeneca), and time since vaccine administration on the process of antibody production. Both of them are based on the introduction of SARS-CoV-2 spike protein (S protein) to the body using different mechanisms (mRNA and recombinant adenovirus, respectively). S protein is responsible for host cell attachment and penetration via its receptor-binding domain (RBD domain). The level of anti-RBD IgG antibodies was tested with an ELISA-based immunodiagnostic assay in serum samples from a total of 1395 patients at 3 time points: before vaccination, after the first dose, and after the second dose. Our novel statistical model, the Generalized Additive Model, revealed variability in antibody production dynamics for both vaccines. Interestingly, no discernible variation in antibody levels between men and women was found. A nonlinear relationship between age and antibody production was observed, characterized by decreased antibody levels for people up to 30 and over 60 years of age, with a lack of correlation in the middle age range. Collectively, our findings further the understanding of the mechanism driving vaccine-induced immunity. Additionally, we propose the Generalized Additive Model as a standardized way of presenting data in similar research.
Collapse
Affiliation(s)
- Adam Augustyniak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Tomasz Szymański
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland; Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Filip Porzucek
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Katarzyna Anna Hubert
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Dominika Grajek
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Rafał Krela
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Zuzanna Rogalska
- Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Ewa Zalc-Budziszewska
- Provincial Specialist Complex of Healthcare Institutions of Lung Diseases and Tuberculosis, Wolica 113, 62-872 Godziesze Małe, Poland
| | - Sławomir Wysocki
- Provincial Specialist Complex of Healthcare Institutions of Lung Diseases and Tuberculosis, Wolica 113, 62-872 Godziesze Małe, Poland
| | - Krzysztof Sobczak
- Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
9
|
Lott N, Gebhard CE, Bengs S, Haider A, Kuster GM, Regitz-Zagrosek V, Gebhard C. Sex hormones in SARS-CoV-2 susceptibility: key players or confounders? Nat Rev Endocrinol 2023; 19:217-231. [PMID: 36494595 PMCID: PMC9734735 DOI: 10.1038/s41574-022-00780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.
Collapse
Affiliation(s)
- Nicola Lott
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Gabriela M Kuster
- Department of Cardiology and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Cardiology, Inselspital Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
10
|
Martin BE, Taylor EB, Attipoe EM, Wu W, Stec DE, Showmaker KC, Garrett MR. Sex and molecular differences in cardiovascular parameters at peak influenza disease in mice. Physiol Genomics 2023; 55:79-89. [PMID: 36645670 PMCID: PMC9925171 DOI: 10.1152/physiolgenomics.00146.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
There is a growing interest in the detection of subtle changes in cardiovascular physiology in response to viral infection to develop better disease surveillance strategies. This is not only important for earlier diagnosis and better prognosis of symptomatic carriers but also useful to diagnose asymptomatic carriers of the virus. Previous studies provide strong evidence of an association between inflammatory biomarker levels and both blood pressure (BP) and heart rate (HR) during infection. The identification of novel biomarkers during an inflammatory event could significantly improve predictions for cardiovascular events. Thus, we evaluated changes in cardiovascular physiology induced in A/Puerto Rico/8/34 (PR8) influenza infections in female and male C57BL/6J mice and compared them with the traditional method of influenza disease detection using body weight (BW). Using radiotelemetry, changes in BP, HR, and activity were studied. Change in BW of infected females was significantly decreased from 5 to 13 days postinfection (dpi), yet alterations in normal physiology including loss of diurnal rhythm and reduced activity was observed starting at about 3 dpi for HR and 4 dpi for activity and BP; continuing until about 13 dpi. In contrast, males had significantly decreased BW 8 to 12 dpi and demonstrated altered physiological measurements for a shorter period compared with females with a reduction starting at 5 dpi for activity, 6 dpi for BP, and 7 dpi for HR until about 12 dpi, 10 dpi, and 9 dpi, respectively. Finally, females and males exhibited different patterns of inflammatory maker expression in lungs at peak disease by analyzing bulk RNA-sequencing data for lungs and Bio-plex cytokine assay for blood collected from influenza-infected and naïve C57BL/6J female and male mice at 7 dpi. In total, this study provides insight into cardiovascular changes and molecular markers to distinguish sex differences in peak disease caused by influenza virus infection.NEW & NOTEWORTHY This study performed longitudinal cardiovascular measurements of influenza viral infection and identified sex difference in both physiological and molecular markers at peak disease.
Collapse
Affiliation(s)
- Brigitte E Martin
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Esinam M Attipoe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjie Wu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - David E Stec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Division of Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Shields CA, Wang X, Cornelius DC. Sex differences in cardiovascular response to sepsis. Am J Physiol Cell Physiol 2023; 324:C458-C466. [PMID: 36571442 PMCID: PMC9902216 DOI: 10.1152/ajpcell.00134.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, there has been increased recognition of the importance of sex as a biological factor affecting disease and health. Many preclinical studies have suggested that males may experience a less favorable outcome in response to sepsis than females. The underlying mechanisms for these differences are still largely unknown but are thought to be related to the beneficial effects of estrogen. Furthermore, the immunosuppressive role of testosterone is also thought to contribute to the sex-dependent differences that are present in clinical sepsis. There are still significant knowledge gaps in this field. This mini-review will provide a brief overview of sex-dependent variables in relation to sepsis and the cardiovascular system. Preclinical animal models for sepsis research will also be discussed. The intent of this mini-review is to inspire interest for future considerations of sex-related variables in sepsis that should be addressed to increase our understanding of the underlying mechanisms in sepsis-induced cardiovascular dysfunction for the identification of therapeutic targets and improved sepsis management and treatment.
Collapse
Affiliation(s)
- Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
13
|
Perry WA, Gardiner BJ, Price LL, Rodriguez-Garcia M, Chow JK, Snydman DR. Female sex and advanced age are associated with invasive cytomegalovirus disease in solid organ transplant recipients. Transpl Infect Dis 2022; 24:e13960. [PMID: 36263467 DOI: 10.1111/tid.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Limited data exist to describe sex-based differences in the severity of cytomegalovirus (CMV) infection after solid organ transplant (SOT). We sought to identify if a difference exists in likelihood of tissue-invasive disease between male and female SOT recipients and to understand how age affects this relationship. METHODS A retrospective cohort of 180 heart, liver, and kidney recipients treated for CMV was examined. A logistic regression model was developed to assess the relationship between female sex and CMV type (noninvasive vs. invasive). A secondary regression analysis looked at the relationship of invasive CMV with a variable combining sex with age above or below 50. RESULTS There were 37 cases of proven or probable invasive CMV, occurring in 30% of females versus 16% of males. After adjustment for potential confounders, females with CMV infection were significantly more likely to have invasive disease (odds ratio (OR) 2.69, 95% confidence interval (CI) 1.25-5.90, p = .01). Females 50 years or older were at particular risk compared with males under 50 years (adjusted OR 4.54, 95% CI 1.33-18.83, p = .02). CONCLUSION Female SOT recipients with CMV in our cohort were more likely than males to have tissue-invasive disease, with the highest risk among older females. Further prospective studies are warranted to explore underlying immunologic mechanisms.
Collapse
Affiliation(s)
- Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bradley J Gardiner
- Department of Infectious Disease, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lori Lyn Price
- The Institute for Clinical and Health Research Policy Studies (ICRHPS), Tufts Medical Center, Boston, Massachusetts, USA.,Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer K Chow
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - David R Snydman
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Yang FF, Yu SJ, Du WN, Wang HM, Yao XX, Xue DD, Yu Y. Global morbidity and mortality of lower respiratory infections: A population -based study. Respir Med 2022; 205:107042. [PMID: 36462288 DOI: 10.1016/j.rmed.2022.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study provides a comprehensive, comparative and updated estimates of temporal patterns of lower respiratory infections (LRIs) globally over the past three decades. METHODS The data on morbidity and mortality of patients with LRIs at the global, regional and national levels were retrieved from the Global Burden of Disease (GBD) 2019 study. RESULTS Globally, the incident cases of LRIs increased from 414,342,866 [95% uncertainty interval (UI):383,529,625 to 449, 086,938]in 1990 to 488,902,504(95% UI: 457,572,987 to 522,635,542)in 2019 with the age standardized incidence rate (ASIR) decreased from 8,276/100,000 persons (95% UI: 7,727 to 8,892) to 6,295/100,000 persons (95% UI: 5,887 to 6,737) between 1990 and 2019. Number of LRIs deaths were 2,493,200 (95% UI: 2,268,184 to 2,736,184) in 2019, a decrease of 24.9% (95% UI: -34.4 to -15.4) in the past 30 years. Meanwhile, the age-standardized death rate (ASDR) declined also from 67/100,000 persons (95% UI: 61 to 73) in 1990 to 34/100,000 persons (95% UI: 31 to 38) in 2019. Moreover, the numbers and age-standardized rates per 100,000 persons of morbidity and mortality varied widely by age, sex, Socio-Demographic Index (SDI) quintiles, and geographical locations in 2019. CONCLUSION LRIs remain a major public health concern . Some differences in age, sex, SDI quintiles, and geographical locations contribute to LRIs-related global health policy development and health system resource optimization.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shuai-Jun Yu
- Intensive Care Unit, Huantai Traditional Chinese Medicine Hospital, Zibo, China
| | - Wei-Na Du
- Intensive Care Unit, People Hospital of Huantai County, Zibo, China
| | - Hui-Min Wang
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Xiao-Xi Yao
- Department of Pelvic Floor Rehabilitation, TaiYuan Maternal and Child Health Hospital, Taiyuan, China
| | - Dong-Dong Xue
- Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yong Yu
- Intensive Care Unit, Zibo Central Hospital, Zibo, China.
| |
Collapse
|
15
|
Lindemann M, Baumann C, Wilde B, Gäckler A, Meller L, Horn PA, Krawczyk A, Witzke O. Prospective, Longitudinal Study on Specific Cellular Immune Responses after Vaccination with an Adjuvanted, Recombinant Zoster Vaccine in Kidney Transplant Recipients. Vaccines (Basel) 2022; 10:vaccines10060844. [PMID: 35746452 PMCID: PMC9227383 DOI: 10.3390/vaccines10060844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Solid organ transplant recipients have an up to ninefold higher risk of varicella-zoster virus (VZV) reactivation than the general population. Due to lifelong immunosuppressive therapy, vaccination against VZV may be less effective in kidney transplant (KTX) recipients. In the current study, twelve female and 17 male KTX recipients were vaccinated twice with the adjuvanted, recombinant zoster vaccine Shingrix™, which contains the VZV glycoprotein E (gE). Cellular immunity against various VZV antigens was analyzed with interferon-gamma ELISpot. We observed the strongest vaccination-induced changes after stimulation with a gE peptide pool. One month after the second vaccination, median responses were 8.0-fold higher than the responses prior to vaccination (p = 0.0006) and 4.8-fold higher than responses after the first vaccination (p = 0.0007). After the second vaccination, we observed an at least twofold increase in ELISpot responses towards gE peptides in 22 out of 29 patients (76%). Male sex, good kidney function, early time point after transplantation, and treatment with tacrolimus or mycophenolate were correlated significantly with higher VZV-specific cellular immunity, whereas diabetes mellitus was correlated with impaired responses. Thus, our data indicate that vaccination with Shingrix™ significantly augmented cellular, VZV gE-specific immunity in KTX recipients, which was dependent on several covariates.
Collapse
Affiliation(s)
- Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.B.); (P.A.H.)
- Correspondence: ; Tel.: +49-201-723-4217
| | - Charleen Baumann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.B.); (P.A.H.)
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (L.M.); (A.K.); (O.W.)
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (A.G.)
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (A.G.)
| | - Lara Meller
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (L.M.); (A.K.); (O.W.)
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (C.B.); (P.A.H.)
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (L.M.); (A.K.); (O.W.)
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (L.M.); (A.K.); (O.W.)
| |
Collapse
|
16
|
Koldehoff M, Horn PA, Lindemann M. Cellular Immune Response after Vaccination with an Adjuvanted, Recombinant Zoster Vaccine in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Vaccines (Basel) 2022; 10:809. [PMID: 35632565 PMCID: PMC9143460 DOI: 10.3390/vaccines10050809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) recipients have a high risk of developing primary varicella-zoster virus (VZV) infection and reactivation. VZV vaccination may prevent infection and reactivation. In the current study, recipients of allogeneic HSCT (34 females, 45 males) were vaccinated with adjuvanted, recombinant zoster vaccine Shingrix™, which contains the VZV glycoprotein E. Cellular immunity against various VZV antigens was analyzed by interferon-gamma ELISpot. Peripheral blood mononuclear cells (PBMC) of recipients with versus without prior shingles (n = 36 and n = 43, respectively) showed approximately twofold higher VZV-specific responses prior to and post vaccination. After the first and second vaccination, ELISpot responses towards the glycoprotein E were significantly higher in males versus females (median of spots increment 18 versus 1 and 17 versus 4, respectively, p ≤ 0.02 each). Multivariate analysis showed that shingles and sex both impacts significantly on VZV immunity. Whereas vaccination-induced changes could hardly be detected after stimulation with a whole VZV antigen, there was a significant increase in responses towards glycoprotein E after vaccination (p < 0.005). These data indicate that vaccination with Shingrix™ augmented cellular, VZV-specific immunity in HSCT recipients. Shingles and male sex could both be identified as factors leading to increased immunity.
Collapse
Affiliation(s)
- Michael Koldehoff
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
17
|
Chaturvedi R, Lui B, Aaronson JA, White RS, Samuels JD. COVID-19 complications in males and females: recent developments. J Comp Eff Res 2022; 11:689-698. [PMID: 35510532 PMCID: PMC9149780 DOI: 10.2217/cer-2022-0027] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To provide a comprehensive understanding of the varying effects of SARS-CoV-2 infection based on sex. Methods: A PubMed search of 470 primary articles was performed, with inclusion based on relevance (sex differences discussed in the target COVID population) and redundancy. PubMed was queried based on title for the keywords “SEX” and “COVID” or “SARS” between 2020 and 2022. Results: For COVID-19, males have increased risk for infectivity and intensive care unit admission and worse overall outcomes compared with females. Genetic predispositions, sex hormones, immune system responses and non-biological causes all contribute to the disparity in COVID-19 responses between the sexes. COVID-19 sex-related determinants of morbidity and mortality remain unclear. Conclusions: Male sex is a risk factor for several overall worse outcomes related to COVID-19. Investigating the sex impact of COVID-19 is an important part of understanding the behavior of the disease. Future work is needed to further explore these relationships and optimize the management of COVID-19 patients based on sex.
Collapse
Affiliation(s)
- Rahul Chaturvedi
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| | - Briana Lui
- Weill Cornell Medical College, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jamie A Aaronson
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| | - Robert S White
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| | - Jon D Samuels
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| |
Collapse
|
18
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
19
|
Mumps virus-specific immune response outcomes and sex-based differences in a cohort of healthy adolescents. Clin Immunol 2022; 234:108912. [PMID: 34968746 PMCID: PMC8760162 DOI: 10.1016/j.clim.2021.108912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Despite high levels of MMR-II usage in the US, mumps outbreaks continue to occur. Evidence suggests that mumps vaccine-induced humoral immunity wanes over time. Relatively few studies have examined cell-mediated immunity or reported on sex-based differences. To better understand sex-based differences in the immune response to mumps vaccine, we measured neutralizing antibody titers and mumps-specific cytokine/chemokine responses in a cohort of 748 adolescents and young adults after two doses of MMR vaccine. We observed significantly higher neutralizing antibody titers in females than in males (120.8 IU/mL, 98.7 IU/mL, p = 0.038) but significantly higher secretion levels of MIP-1α, MIP-1β, TNFα, IL-6, IFNγ, and IL-1β in males compared to females. These data demonstrate that sex influences mumps-specific humoral and cell-mediated immune response outcomes, a phenomenon that should be considered during efforts to improve vaccines and prevent future outbreaks.
Collapse
|
20
|
Are sex disparities in COVID-19 a predictable outcome of failing men's health provision? Nat Rev Urol 2021; 19:47-63. [PMID: 34795426 PMCID: PMC8600906 DOI: 10.1038/s41585-021-00535-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has taken a catastrophic toll on society, health-care systems and the economy. Notably, COVID-19 has been shown to be associated with a higher mortality rate in men than in women. This disparity is likely to be a consequence of a failure to invest in men’s health, as it has also been established that men have a lower life expectancy and poorer outcomes from non-communicable diseases than women. A variety of biological, social and economic factors have contributed to the sex disparities in mortality from COVID-19. A streamlined men’s health programme — with the urologist as the gatekeeper of men’s health — is needed to help prevent future tragedies of this nature. COVID-19 has been shown to be associated with a higher mortality rate in men than in women. In this Perspectives article, the authors posit that this disparity is due to a failure to invest in men’s health and discuss the biological, social and economic factors that have contributed to the sex disparities in mortality from COVID-19, as well as considering how a streamlined men’s health programme with the urologist in a central role could address these issues.
Collapse
|
21
|
Reus B, Caserta S, Larsen M, Morrow G, Bano A, Hallensleben M, Rajkumar C, Pera A, Kern F. In-Depth Profiling of T-Cell Responsiveness to Commonly Recognized CMV Antigens in Older People Reveals Important Sex Differences. Front Immunol 2021; 12:707830. [PMID: 34484207 PMCID: PMC8414256 DOI: 10.3389/fimmu.2021.707830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The impact of biological sex on T-cell immunity to Cytomegalovirus (CMV) has not been investigated in detail with only one published study comparing CMV-specific T-cell responses in men and women. Many studies, however, have shown an association between CMV infection and immunosenescence, with broad effects on peripheral blood lymphocyte subsets as well as the T and B-cell repertoires. Here, we provide a detailed analysis of CMV-specific T-cell responses in (n=94) CMV+ older people, including 47 women and 47 men aged between 60 and 93 years. We explore sex differences with respect to 16 different CMV proteins arranged in 14 peptide pools (overlapping peptides). Following ex vivo stimulation, CD4 and CD8 T-cells producing IFN-γ, TNF, and IL-2 were enumerated by flow-cytometry (intracellular cytokine staining). T-cell responses were evaluated in terms of each cytokine separately or in terms of cytokines produced simultaneously (polyfunctionality). Surface memory phenotype and CD3 downmodulation were assessed in parallel. The polyfunctionality index and a memory subset differentiation score were used to identify associations between response size, cytokine production, polyfunctionality, and memory subset distribution. While no significant sex differences were found with respect to overall CMV target protein selection, the T-cell response in men appeared more focused and accompanied by a more prominent accumulation of CMV-specific memory CD4 and CD8 T-cells. T-cell polyfunctionality and differentiation were similar in the sexes, however, CMV-specific T-cells in men produced more pro-inflammatory cytokines. Particularly, TNF production by CD4 T-cells was stronger in men than in women. Also, compared with women, men had larger responses to CMV proteins with immediate-early/early kinetics than women, which might have been driven by CMV reactivation. In conclusion, the CMV-specific T-cell response in men was larger and more pro-inflammatory than in women. Our findings may help explain sex differences in CMV-associated pathologies.
Collapse
Affiliation(s)
- Bernhard Reus
- Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Stefano Caserta
- Department of Biomedical Sciences, The University of Hull, Hull, United Kingdom
| | - Martin Larsen
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - George Morrow
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Aalia Bano
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Chakravarthi Rajkumar
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Alejandra Pera
- Immunology and Allergy Group, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Florian Kern
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
22
|
Abstract
The ongoing COVID-19 pandemic has increased awareness about sex-specific differences in immunity and outcomes following SARS-CoV-2 infection. Strong evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated by sex differential immune responses against SARS-CoV-2. This hypothesis is based on data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and others that have demonstrated sex-specific immunity to viral infections. Although males are more susceptible to most viral infections, females possess immunological features that render them more vulnerable to distinct immune-related disease outcomes. Both sex chromosome complement and related genes as well as sex steroids play important roles in mediating the development of sex differences in immunity to viral infections.
Collapse
Affiliation(s)
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
23
|
Andreou D, Jørgensen KN, Wortinger LA, Engen K, Vaskinn A, Ueland T, Yolken RH, Andreassen OA, Agartz I. Cytomegalovirus infection and IQ in patients with severe mental illness and healthy individuals. Psychiatry Res 2021; 300:113929. [PMID: 33866186 DOI: 10.1016/j.psychres.2021.113929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Cytomegalovirus (CMV) infection in immunocompetent adults is usually asymptomatic, but results in lifelong latency. Infection occurring congenitally or in immunodeficiency can lead to cognitive impairment. We aimed to investigate the associations between CMV exposure and intelligence quotient (IQ) in patients with schizophrenia spectrum disorders (SZS), bipolar spectrum disorders (BDS) and healthy controls (HC). CMV immunoglobulin G antibody concentrations were measured by immunoassay and expressed as dichotomous measures (seropositive/CMV+ vs. seronegative/CMV-). Based on a significant CMV-by-diagnosis-by-sex interaction on IQ, we investigated main and interaction effects of CMV and sex on IQ in each diagnostic category. Significant CMV-by-sex interactions were found in patient groups. In SZS, CMV+ female patients (n = 50) had significantly lower IQ than CMV- female patients (n = 33), whereas CMV+ (n = 48) and CMV- (n = 45) male patients did not differ in IQ. In BDS, CMV+ (n = 49) and CMV- (n = 37) female patients did not differ in IQ, whereas CMV+ male patients (n = 33) had significantly higher IQ than CMV- male patients (n = 32). Among HC, CMV+ (n = 138) and CMV- (n = 118) male participants as well as CMV+ (n = 125) and CMV- (n = 93) female participants did not differ in IQ. Our findings suggest that CMV exposure may affect IQ in patients with severe mental illness but not HC.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kristine Engen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Psychosis Research Section, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Psychosis Research Section, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
24
|
Kazemian N, Kao D, Pakpour S. Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. Int J Mol Sci 2021; 22:3004. [PMID: 33809421 PMCID: PMC7998826 DOI: 10.3390/ijms22063004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
COVID-19 is a major pandemic facing the world today, which has implications on current microbiome-based treatments such as fecal microbiota transplantation (FMT) used for recurrent Clostridioides difficile infections. The bidirectional relationship between the inhabitants of our gut, the gut microbiota, and COVID-19 pathogenesis, as well as the underlying mechanism involved, must be elucidated in order to increase FMT safety and efficacy. In this perspective, we discuss the crucial cross-talk between the gut microbiota and the lungs, known as the gut-lung axis, during COVID-19 infection, as well as the putative effect of these microorganisms and their functional activity (i.e., short chain fatty acids and bile acids) on FMT treatment. In addition, we highlight the urgent need to investigate the possible impact of COVID-19 on FMT safety and efficacy, as well as instilling stringent screening protocols of donors and recipients during COVID-19 and post-COVID-19 pandemic to produce a cohesive and optimized FMT treatment plan across all centers and in all countries across the globe.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| |
Collapse
|
25
|
Gliga S, Fiedler M, Dornieden T, Achterfeld A, Paul A, Horn PA, Herzer K, Lindemann M. Comparison of Three Cellular Assays to Predict the Course of CMV Infection in Liver Transplant Recipients. Vaccines (Basel) 2021; 9:vaccines9020088. [PMID: 33504093 PMCID: PMC7911226 DOI: 10.3390/vaccines9020088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
To estimate protection from cytomegalovirus (CMV) replication after solid organ transplantation, CMV serology has been considered insufficient and thus CMV immunity is increasingly assessed by cellular in vitro methods. We compared two commercially available IFN-γ ELISpot assays (T-Track CMV and T-SPOT.CMV) and an IFN-γ ELISA (QuantiFERON-CMV). Currently, there is no study comparing these three assays. The assays were performed in 56 liver transplant recipients at the end of antiviral prophylaxis and one month thereafter. In CMV high- or intermediate-risk patients the two ELISpot assays showed significant correlation (p < 0.0001, r > 0.6) but the correlation of the ELISpot assays with QuantiFERON-CMV was weaker. Results of both ELISpot assays were similarly predictive of protection from CMV-DNAemia ≥500 copies/mL [CMV pp65 T-SPOT.CMV at the end of prophylaxis: area under curve (AUC) = 0.744, cut-off 142 spot forming units (SFU), sensitivity set to 100%, specificity 46%; CMV IE-1 T-Track CMV at month 1: AUC = 0.762, cut-off 3.5 SFU, sensitivity set to 100%, specificity 59%]. The QuantiFERON-CMV assay was inferior, reaching a specificity of 23% when setting the sensitivity to 100%. In conclusion, both CMV-specific ELISpot assays appear suitable to assess protection from CMV infection/reactivation in liver transplant recipients.
Collapse
Affiliation(s)
- Smaranda Gliga
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; (S.G.); (T.D.); (P.A.H.)
- Institute for Virology, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany;
| | - Melanie Fiedler
- Institute for Virology, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany;
| | - Theresa Dornieden
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; (S.G.); (T.D.); (P.A.H.)
| | - Anne Achterfeld
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (A.A.); (K.H.)
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany;
| | - Andreas Paul
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany;
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; (S.G.); (T.D.); (P.A.H.)
| | - Kerstin Herzer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany; (A.A.); (K.H.)
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, 45147 Essen, Germany;
- Knappschaftsklinik Bad Neuenahr, 53474 Bad Neuenahr-Ahrweiler, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; (S.G.); (T.D.); (P.A.H.)
- Correspondence: ; Tel.: +49-201-723-4217
| |
Collapse
|
26
|
Blazquez-Navarro A, Dang-Heine C, Bauer C, Wittenbrink N, Wolk K, Sabat R, Witzke O, Westhoff TH, Sawitzki B, Reinke P, Thomusch O, Hugo C, Babel N, Or-Guil M. Sex-Associated Differences in Cytomegalovirus Prevention: Prophylactic Strategy is Potentially Associated With a Strong Kidney Function Impairment in Female Renal Transplant Patients. Front Pharmacol 2020; 11:534681. [PMID: 33519427 PMCID: PMC7845412 DOI: 10.3389/fphar.2020.534681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transplantation cytomegalovirus (CMV) syndrome can be prevented using the antiviral drug (val)ganciclovir. (Val)ganciclovir is typically administered following a prophylactic or a pre-emptive strategy. The prophylactic strategy entails early universal administration, the pre-emptive strategy, early treatment in case of infection. However, it is not clear which strategy is superior with respect to transplantation outcome; sex-specific effects of these prevention strategies are not known. We have retrospectively analyzed 540 patients from the multi-centre Harmony study along eight pre-defined visits: 308 were treated according to a prophylactic, 232 according to a pre-emptive strategy. As expected, we observed an association of prophylactic strategy with lower incidence of CMV syndrome, delayed onset and lower viral loads compared to the pre-emptive strategy. However, in female patients, the prophylactic strategy was associated with a strong impairment of glomerular filtration rate one year post-transplant (difference: -11.8 ± 4.3 ml min-1·1.73 m-2, p = 0.006). Additionally, we observed a tendency of higher incidence of acute rejection and severe BK virus reactivation in the prophylactic strategy group. While the prophylactic strategy was more effective for preventing CMV syndrome, our results suggest for the first time that the prophylactic strategy might lead to inferior transplantation outcomes in female patients, providing evidence for a strong association with sex. Further randomized controlled studies are necessary to confirm this potential negative effect.
Collapse
Affiliation(s)
- Arturo Blazquez-Navarro
- Department of Biology, Systems Immunology Lab, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Chantip Dang-Heine
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Clinical Study Center (CSC), Berlin Institute of Health, and Charitét - Universitättsmedizin Berlin, Corporate Member of Freie Universitätt Berlin, Humboldt-Universitätt Zu Berlin, Campus Charitét Mitte Berlin, Germany
| | | | - Nicole Wittenbrink
- Department of Biology, Systems Immunology Lab, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Wolk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Psoriasis Research and Treatment Center, Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Sabat
- Department of Dermatology and Allergy, Psoriasis Research and Treatment Center, Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Interdisciplinary Group of Molecular Immunopathology, Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Witzke
- Klinik für Infektiologie, Universitätsklinikum Essen, Essen, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Thomusch
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Christian Hugo
- Medizinische Klinik III - Bereich Nephrologie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburger Centrum für Regenerative Therapien, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Michal Or-Guil
- Department of Biology, Systems Immunology Lab, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Haitao T, Vermunt JV, Abeykoon J, Ghamrawi R, Gunaratne M, Jayachandran M, Narang K, Parashuram S, Suvakov S, Garovic VD. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin Proc 2020; 95:2189-2203. [PMID: 33012349 PMCID: PMC7402208 DOI: 10.1016/j.mayocp.2020.07.024] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Men are consistently overrepresented in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and coronavirus disease 2019 (COVID-19) severe outcomes, including higher fatality rates. These differences are likely due to gender-specific behaviors, genetic and hormonal factors, and sex differences in biological pathways related to SARS-CoV-2 infection. Several social, behavioral, and comorbid factors are implicated in the generally worse outcomes in men compared with women. Underlying biological sex differences and their effects on COVID-19 outcomes, however, have received less attention. The present review summarizes the available literature regarding proposed molecular and cellular markers of COVID-19 infection, their associations with health outcomes, and any reported modification by sex. Biological sex differences characterized by such biomarkers exist within healthy populations and also differ with age- and sex-specific conditions, such as pregnancy and menopause. In the context of COVID-19, descriptive biomarker levels are often reported by sex, but data pertaining to the effect of patient sex on the relationship between biomarkers and COVID-19 disease severity/outcomes are scarce. Such biomarkers may offer plausible explanations for the worse COVID-19 outcomes seen in men. There is the need for larger studies with sex-specific reporting and robust analyses to elucidate how sex modifies cellular and molecular pathways associated with SARS-CoV-2. This will improve interpretation of biomarkers and clinical management of COVID-19 patients by facilitating a personalized medical approach to risk stratification, prevention, and treatment.
Collapse
Affiliation(s)
- Tu Haitao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jane V Vermunt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Jithma Abeykoon
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN
| | - Ranine Ghamrawi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Muthuvel Jayachandran
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Division of Hematology and Oncology, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kavita Narang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN; Division of Maternal Fetal Medicine, Mayo Clinic, Rochester, MN
| | | | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
28
|
Amgalan A, Malinowski AK, Othman M. COVID-19 and Sex-/Gender-Specific Differences: Understanding the Discrimination. Semin Thromb Hemost 2020; 47:341-347. [PMID: 32882714 DOI: 10.1055/s-0040-1715455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ariunzaya Amgalan
- Georgetown University School of Medicine, Washington, District of Columbia
| | | | - Maha Othman
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada.,School of Baccalaureate Nursing, St. Lawrence College, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Sex-Differential Impact of Human Cytomegalovirus Infection on In Vitro Reactivity to Toll-Like Receptor 2, 4 and 7/8 Stimulation in Gambian Infants. Vaccines (Basel) 2020; 8:vaccines8030407. [PMID: 32707906 PMCID: PMC7564534 DOI: 10.3390/vaccines8030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection rates approach 100% by the first year of life in low-income countries. It is not known if this drives changes to innate immunity in early life and thereby altered immune reactivity to infections and vaccines. Given the panoply of sex differences in immunity, it is feasible that any immunological effects of HCMV would differ in males and females. We analysed ex vivo innate cytokine responses to a panel of toll-like receptor (TLR) ligands in 108 nine-month-old Gambian males and females participating in a vaccine trial. We found evidence that HCMV suppressed reactivity to TLR2 and TLR7/8 stimulation in females but not males. This is likely to contribute to sex differences in responses to infections and vaccines in early life and has implications for the development of TLR ligands as vaccine adjuvants. Development of an effective HCMV vaccine would be able to circumvent some of these potentially negative effects of HCMV infection in childhood.
Collapse
|
30
|
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ 2020; 11:29. [PMID: 32450906 PMCID: PMC7247289 DOI: 10.1186/s13293-020-00304-9] [Citation(s) in RCA: 722] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. CONTENT The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. CONCLUSION The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.
Collapse
Affiliation(s)
- Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Vera Regitz-Zagrosek
- University of Zurich, Zurich, Switzerland
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Hannelore K Neuhauser
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Abstract
Immunotherapies are often used for the treatment, remission, and possible cure of autoimmune diseases, infectious diseases, and cancers. Empirical evidence illustrates that females and males differ in outcomes following the use of biologics for the treatment of autoimmune diseases, e.g., rheumatoid arthritis (RA), infectious diseases, e.g., influenza, and solid tumor cancers. Females tend to experience more adverse reactions than males following the use of a class of biologics referred to as immunotherapies. For immunotherapies aimed at stimulating an immune response, e.g., influenza vaccines, females develop greater responses and may experience greater efficacy than males. In contrast, for immunotherapies that repress an immune response, e.g., tumor necrosis factor (TNF) inhibitors for RA or checkpoint inhibitors for melanoma, the efficacy is reportedly greater for males than females. Despite these differences, discrepancies in reporting differences between females and males exist, with females have been historically excluded from biomedical and clinical studies. There is a critical need for research that addresses the biological (i.e., sex) as well as sociocultural (i.e., gender) causes of male-female disparities in immunotherapy responses, toxicities, and outcomes. One-size-fits-all approaches to immunotherapies will not work, and sex/gender may contribute to variable treatment success, including adherence, in clinical settings.
Collapse
|
32
|
Leng SX, Margolick JB. Aging, sex, inflammation, frailty, and CMV and HIV infections. Cell Immunol 2020; 348:104024. [PMID: 31843200 PMCID: PMC7002257 DOI: 10.1016/j.cellimm.2019.104024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Aging is characterized by significant immune remodeling at both cellular and molecular levels, also known as immunosenescence. Older adults often manifest a chronic low-grade inflammatory phenotype. These age-related immune system changes have increasingly been recognized not only to lead to immune functional decline and increased vulnerability to infections, but also to play an important role in many chronic conditions such as frailty in older adults. In addition to sex as an important biological factor, chronic viral infections including that by human immunodeficiency virus (HIV) and cytomegalovirus (CMV) are all known to have major impact on the aging immune system. This article provides an overview of our current understanding of aging immunity, sex, inflammation, frailty, and HIV and CMV infections.
Collapse
Affiliation(s)
- Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
33
|
Santiago JL, Pérez-Flores I, Sánchez-Pérez L, Moreno de la Higuera MA, Calvo-Romero N, Querol-García J, Culebras E, Urcelay E, Fernández-Pérez C, Sánchez-Fructuoso AI. The Interferon-Gamma +874 A/T Polymorphism Is Not Associated With CMV Infection After Kidney Transplantation. Front Immunol 2020; 10:2994. [PMID: 31998298 PMCID: PMC6961530 DOI: 10.3389/fimmu.2019.02994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
The +874 A/T polymorphism in the interferon gamma (IFNG) gene has been associated with Cytomegalovirus (CMV) infection risk in lung and kidney transplant recipients. To replicate this association, we performed a retrospective observational study of this polymorphism and immunosuppressive therapies considering the prophylactic treatment in 600 consecutive kidney transplanted recipients. We found no association of the aforementioned polymorphism with CMV infection in univariate and multivariate analyses regardless of the prophylactic treatment. In addition, the immunosuppressive treatment with mammalian target of rapamycin inhibitors (imTOR) showed a protective effect in all patients independently of prophylaxis. Moreover, in the adjusted model, we found interactions between prophylaxis with high-risk (Donor+/Recipient-, D+/R-) status (p-interaction = 0.01), with thymoglobulin induction therapy (p-interaction = 0.03) and with thymoglobulin anti-rejection therapy (p-interaction = 0.002). Data also revealed that prophylaxis was not an advantage in the not D+/R- and without thymoglobulin therapy group (HR = 0.98, p = 0.95). The benefit of prophylaxis was observed in all groups with thymoglobulin therapy, but it was maximal in the high-risk CMV infection group with both thymoglobulin induction therapy and thymoglobulin anti-rejection therapy (HR = 0.01, p < 0.001). In conclusion, the IFNG +874 polymorphism is not a predictive marker of CMV infection. The protective effect of imTOR is not improved with prophylaxis. Interestingly, the thymoglobulin therapy associated with prophylaxis is not a risk factor for CMV infection, and prophylaxis is not effective in recipients with no high-risk CMV status and without thymoglobulin therapy.
Collapse
Affiliation(s)
- Jose Luis Santiago
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Isabel Pérez-Flores
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Luis Sánchez-Pérez
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Maria Angeles Moreno de la Higuera
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Natividad Calvo-Romero
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Javier Querol-García
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esther Culebras
- Microbiology Department Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Elena Urcelay
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Fernández-Pérez
- Clinical Research and Methodology Unit, Facultad de Medicina, Hospital Clínico San Carlos Universidad Complutense de Madrid, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ana Isabel Sánchez-Fructuoso
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
34
|
Yee Mon KJ, Goldsmith E, Watson NB, Wang J, Smith NL, Rudd BD. Differential Sensitivity to IL-12 Drives Sex-Specific Differences in the CD8+ T Cell Response to Infection. Immunohorizons 2020; 3:121-132. [PMID: 31317126 PMCID: PMC6636834 DOI: 10.4049/immunohorizons.1800066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that males and females respond differently to intracellular pathogens. Females mount a more robust immune response than males, which decreases their susceptibility to infection but comes at the cost of increasing immunopathology. However, the underlying basis for sex-specific differences in the CD8+ T cell response to infection remains poorly understood. In this study, we show that female CD8+ T cells have an intrinsic propensity to become short-lived effectors, whereas male CD8+ T cells give rise to more memory precursor effector cells after murine infection with either a virus (vaccinia virus) or bacteria (Listeria monocytogenes). Interestingly, we found that the propensity of female CD8+ T cells to form short-lived effectors is not because they respond to lower amounts of cognate Ag but rather because they have an enhanced capacity to respond to IL-12, which facilitates more effector cell differentiation at each round of cell division. Our findings provide key insights into the sex-based immunological differences that underlie variations in the susceptibility to infection in males and females. ImmunoHorizons, 2019, 3: 121–132.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Elizabeth Goldsmith
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Neva B Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
35
|
Di Benedetto S, Müller L, Rauskolb S, Sendtner M, Deutschbein T, Pawelec G, Müller V. Network topology dynamics of circulating biomarkers and cognitive performance in older Cytomegalovirus-seropositive or -seronegative men and women. IMMUNITY & AGEING 2019; 16:31. [PMID: 31827568 PMCID: PMC6894301 DOI: 10.1186/s12979-019-0171-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023]
Abstract
Background Cytokines are signaling molecules operating within complex cascade patterns and having exceptional modulatory functions. They impact various physiological processes such as neuroendocrine and metabolic interactions, neurotrophins’ metabolism, neuroplasticity, and may affect behavior and cognition. In our previous study, we found that sex and Cytomegalovirus (CMV)-serostatus may modulate levels of circulating pro- and anti-inflammatory cytokines, metabolic factors, immune cells, and cognitive performance, as well as associations between them. Results In the present study, we used a graph-theoretical approach to investigate the network topology dynamics of 22 circulating biomarkers and 11 measures of cognitive performance in 161 older participants recruited to undergo a six-months training intervention. For network construction, we applied coefficient of determination (R2) that was calculated for all possible pairs of variables (N = 33) in four groups (CMV− men and women; CMV+ men and women). Network topology has been evaluated by clustering coefficient (CC) and characteristic path length (CPL) as well as local (Elocal) and global (Eglobal) efficiency, showing the degree of network segregation (CC and Elocal) and integration (CPL and Eglobal). We found that networks under consideration showed small-world networks properties with more random characteristics. Mean CC, as well as local and global efficiency were highest and CPL shortest in CMV− males (having lowest inflammatory status and highest cognitive performance). CMV− and CMV+ females did not show any significant differences. Modularity analyses showed that the networks exhibit in all cases highly differentiated modular organization (with Q-value ranged between 0.397 and 0.453). Conclusions In this work, we found that segregation and integration properties of the network were notably stronger in the group with balanced inflammatory status. We were also able to confirm our previous findings that CMV-infection and sex modulate multiple circulating biomarkers and cognitive performance and that balanced inflammatory and metabolic status in elderly contributes to better cognitive functioning. Thus, network analyses provide a useful strategy for visualization and quantitative description of multiple interactions between various circulating pro- and anti-inflammatory biomarkers, hormones, neurotrophic and metabolic factors, immune cells, and measures of cognitive performance and can be in general applied for analyzing interactions between different physiological systems.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- 1Max Planck Institute for Human Development, Berlin, Germany.,2University of Tübingen, Tübingen, Germany
| | - Ludmila Müller
- 1Max Planck Institute for Human Development, Berlin, Germany
| | | | | | - Timo Deutschbein
- 4Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, Germany
| | | | - Viktor Müller
- 1Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
36
|
Gender differences in innate responses and gene expression profiles in memory CD4 T cells are apparent very early during acute simian immunodeficiency virus infection. PLoS One 2019; 14:e0221159. [PMID: 31490965 PMCID: PMC6730907 DOI: 10.1371/journal.pone.0221159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Gender differences in Human immunodeficiency virus (HIV) disease progression and comorbidities have been extensively reported. Using the simian immunodeficiency virus (SIV) infected rhesus macaque model, we show that these differences are apparent very early during the course of infection. Though there were no major changes in the proportions of CD4 T cells or its subsets, central memory CD4 T cells from female macaques were found to differentially regulate a significantly larger number of genes at day 4 post-infection (PI) as compared to males. Pathway analysis revealed divergence of both canonical and biological pathways that persisted at day 10 PI. Changes in gene expression profiles were accompanied by a significant increase in plasma levels of pro-inflammatory mediators such as MCP-1/CCL2, I-TAC/CXCL11, and MIF. Though plasma levels of IFNα did not differ between male and female macaques, the expression levels of IFNα subtype-14, 16, IFNβ, and IFNω were significantly upregulated in the lymph nodes of female macaques at day 10 PI as compared to male macaques. Our results suggest that the pathogenic sequelae seen during chronic infection may be shaped by gender differences in immune responses induced very early during the course of HIV infection.
Collapse
|
37
|
Sex-Specific Differences in HLA Antibodies after Pneumococcal Vaccination in Kidney Transplant Recipients. Vaccines (Basel) 2019; 7:vaccines7030084. [PMID: 31390822 PMCID: PMC6789899 DOI: 10.3390/vaccines7030084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
In transplant recipients vaccination against Streptococcus pneumoniae is recommended to reduce mortality from invasive pneumococcal disease. It is still debated if vaccination in transplant recipients triggers alloresponses. Therefore, it was our aim to define if vaccination with Prevenar 13®, a 13-valent, conjugated pneumococcal vaccine (Pfizer, New York, NY, USA) that acts T cell dependently, induces human leukocyte antigen (HLA) antibodies in clinically stable kidney transplant recipients. Forty-seven patients were vaccinated once with Prevenar 13® and HLA antibodies were determined prior to vaccination and at month 1 and 12 thereafter. In parallel, pneumococcal IgG antibodies were measured. Using Luminex™ Mixed Beads technology (One Lambda/Thermo Fisher, Canoga Park, CA, USA) we observed overall no change in HLA antibodies after vaccination. Pneumococcal antibodies increased significantly at month 1 (p < 0.0001) and remained elevated at month 12 (p < 0.005). A more detailed analysis of HLA antibodies showed that in 18 females HLA class I and II antibodies increased significantly at month 1 and 12 (p < 0.05); whereas in 29 males HLA class I and II antibodies tended to decrease. Using Luminex™ Single Antigen Beads assay, no de novo donor-specific HLA antibodies were detected after vaccination. In conclusion, the current data indicate that females may be more susceptible to the induction of (non-specific) HLA antibodies after vaccination.
Collapse
|
38
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
39
|
Di Benedetto S, Gaetjen M, Müller L. The Modulatory Effect of Gender and Cytomegalovirus-Seropositivity on Circulating Inflammatory Factors and Cognitive Performance in Elderly Individuals. Int J Mol Sci 2019; 20:ijms20040990. [PMID: 30823516 PMCID: PMC6412896 DOI: 10.3390/ijms20040990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a chronic increase in the systemic levels of inflammatory cytokines even in ostensibly healthy individuals. The drivers of age-related increase in systemic inflammation are unclear but one potential contributor may be a persistent infection with Cytomegalovirus (CMV). In this study, we characterized the inflammatory status of 161 older participants recruited to undergo a six-month training intervention. We investigated the influence of gender and CMV-seropositivity on the main inflammatory and anti-inflammatory circulating biomarkers, such as cytokines, receptor antagonist, soluble receptor, immune cells, and relevant metabolic markers. We found that both gender and CMV-seropositivity modulate circulating peripheral biomarkers, and that CMV-infection modifies associations among the latter. Moreover, we observed an interaction between CMV-serostatus and gender associations with cognitive abilities: gender differences in fluid intelligence (Gf) and working memory (WM) were noted only in CMV-negative individuals. Finally, we found that in the CMV-seronegative participants Gf, episodic memory (EM), and WM correlated negatively with pro-inflammatory tumor necrosis factor (TNF); and EM correlated positively with anti-inflammatory interleukin (IL)-10. In CMV-seropositive individuals EM and Gf correlated negatively with pro-inflammatory IL-6, while EM, Gf, and WM correlated negatively with anti-inflammatory IL-1RA. We conclude that both CMV-serostatus and gender may modulate neuroimmune factors, cognitive performance and the relationship between the two domains and should therefore be considered in comparative and interventional studies with elderly people.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
- Center for Medical Research, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany.
| | - Marcel Gaetjen
- Becton Dickinson Biosciences, Tullastr. 8-12, 69126 Heidelberg, Germany.
| | - Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Clement M, Humphreys IR. Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Front Immunol 2019; 10:78. [PMID: 30761144 PMCID: PMC6362858 DOI: 10.3389/fimmu.2019.00078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus with high sero-prevalence within the human population. Primary HCMV infection and life-long carriage are typically asymptomatic. However, HCMV is implicated in exacerbation of chronic conditions and associated damage in individuals with intact immune systems. Furthermore, HCMV is a significant cause of morbidity and mortality in the immunologically immature and immune-compromised where disease is associated with tissue damage. Infection-induced inflammation, including robust cytokine responses, is a key component of pathologies associated with many viruses. Despite encoding a large number of immune-evasion genes, HCMV also triggers the induction of inflammatory cytokine responses during infection. Thus, understanding how cytokines contribute to CMV-induced pathologies and the mechanisms through which they are regulated may inform clinical management of disease. Herein, we discuss our current understanding based on clinical observation and in vivo modeling of disease of the role that cytokines play in CMV pathogenesis. Specifically, in the context of the different tissues and organs in which CMV replicates, we give a broad overview of the beneficial and adverse effects that cytokines have during infection and describe how cytokine-mediated tissue damage is regulated. We discuss the implications of findings derived from mice and humans for therapeutic intervention strategies and our understanding of how host genetics may influence the outcome of CMV infections.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| |
Collapse
|
41
|
The Cytomegalovirus-Specific IL-21 ELISpot Correlates with Allograft Function of Kidney Transplant Recipients. Int J Mol Sci 2018; 19:ijms19123945. [PMID: 30544783 PMCID: PMC6320857 DOI: 10.3390/ijms19123945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In kidney transplant recipients, the cytomegalovirus (CMV) is frequently causing infection/reactivation and can trigger allograft rejection. To assess the risk of reactivation, the cellular immune response against CMV is increasingly assessed by cellular in vitro methods, such as the interferon (IFN)-γ ELISpot. In the current study we compared the IFN-γ ELISpot with our newly established CMV-specific ELISpot assays determining IL-17A, IL-21, IL-22, granzyme B, and perforin and correlated the results with flow cytometric data and clinical parameters. In 77 kidney transplant recipients, the highest frequency was observed for CMV pp65-specific cells secreting IFN-γ, followed by cells secreting IL-21 (62.9 and 23.2 Δ spot forming cells/105 cells). We observed a positive correlation between the percentage of CMV-specific CD3+ CD4+ CD154+ cells and results of the CMV-specific IL-21 ELISpot (p = 0.002). Results of the CMV pp65-specific IL-21 ELISpot correlated negatively with kidney function (estimated glomerular filtration rate, p = 0.006) and were significantly higher in women (p = 0.005). IL-21, a cytokine involved in aging that is secreted by activated CD4+ T cells, may also impact on allograft function. Thus, the CMV-specific IL-21 ELISpot could become a new tool to assess if CMV seropositivity represents a hazard for the graft.
Collapse
|
42
|
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E, Maeurer M. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology 2018; 155:294-308. [PMID: 30098205 DOI: 10.1111/imm.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous, persistent beta herpesvirus. CMV infection contributes to the accumulation of functional antigen-specific CD8+ T-cell pools with an effector-memory phenotype and enrichment of these immune cells in peripheral organs. We review here this 'memory T-cell inflation' phenomenon and associated factors including age and sex. 'Collateral damage' due to CMV-directed immune reactivity may occur in later stages of life - arising from CMV-specific immune responses that were beneficial in earlier life. CMV may be considered an age-dependent immunomodulator and a double-edged sword in editing anti-tumour immune responses. Emerging evidence suggests that CMV is highly prevalent in patients with a variety of cancers, particularly glioblastoma. A better understanding of CMV-associated immune responses and its implications for immune senescence, especially in patients with cancer, may aid in the design of more clinically relevant and tailored, personalized treatment regimens. 'Memory T-cell inflation' could be applied in vaccine development strategies to enrich for immune reactivity where long-term immunological memory is needed, e.g. in long-term immune memory formation directed against transformed cells.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
44
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
45
|
Abstract
OBJECTIVE Animal studies showed that male subjects had lower activity of immune response to infections than female subjects, which may increase the risk of the development of tuberculosis in male population. This study intended to investigate the risk of incident tuberculosis in male and female adults in Taiwan. DESIGN This is a retrospective cohort study. SETTING The present analyses used data of Taiwan National Health Interview Survey 2001, 2005 and 2009, National Register of Deaths Dataset, and National Health Insurance Research Database from 2000 to 2013. PARTICIPANTS A total of 43 424 subjects with a mean age of 43.04 years were analysed. PRIMARY OUTCOME MEASURES Incidence of tuberculosis. RESULTS During 381 561 person-years of follow-up period, incident tuberculosis was recognised in 268 individuals. The incidence rates of tuberculosis were 97.56 and 43.24 per 100 000 person-years among male and female participants, respectively. Kaplan-Meier curves comparing male and female subjects showed statistical significance (log-rank test, P value<0.01). After adjusting for subjects' demographics and comorbidities, men showed increased risks of incident tuberculosis (adjusted HR, 1.68; 95% CI 1.21 to 2.34; P value<0.01) compared with women. On subgroup analysis, after stratifying by age, smoking and alcohol use, men had a higher risk of incident tuberculosis than women in all patient subgroups, except those who were current smokers. CONCLUSIONS This study suggests that men had a higher risk of incident tuberculosis than women. Future tuberculosis control programmes should particularly target the male population.
Collapse
Affiliation(s)
- Yung-Feng Yen
- Section of Infectious Diseases, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
- Center for InfectiousDisease and Cancer Research, Kaohsiung MedicalUniversity, Kaohsiung, Taiwan
| | - Hsiao-Yun Hu
- Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ya-Ling Lee
- Department of Dentistry, Taipei City Hospital, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Wen Ku
- Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan
| | - Ming-Chung Ko
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Urology, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Hung Chuang
- Center for Prevention and Treatment of Occupational Injury and Diseases, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-ju Lai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Puli Branch of Taichung Veterans General Hospital, Nantou, Taiwan
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Dachen Chu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Neurosurgery, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
46
|
Dotson AL, Offner H. Sex differences in the immune response to experimental stroke: Implications for translational research. J Neurosci Res 2017; 95:437-446. [PMID: 27870460 DOI: 10.1002/jnr.23784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability in the United States. It is known that males and females respond differently to stroke. Depending on age, the incidence, prevalence, mortality rate, and disability outcome of stroke differ between the sexes. Females generally have strokes at older ages than males and, therefore, have a worse stroke outcome. There are also major differences in how the sexes respond to stroke at the cellular level. Immune response is a critical factor in determining the progress of neurodegeneration after stroke and is fundamentally different for males and females. Additionally, females respond to stroke therapies differently from males, yet they are often left out of the basic research that is focused on developing those therapies. With a resounding failure to translate stroke therapies from the bench to the bedside, it is clearer than ever that inclusion of both sexes in stroke studies is essential for future clinical success. This Mini-Review examines sex differences in the immune response to experimental stroke and its implications for therapy development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The article reviews our current knowledge regarding the role of sex and sex hormones in regulating innate immune responses to viral infections, which may account for the described sex differences in immunity to HIV-1. RECENT FINDINGS Prominent sex differences exist in various infectious and autoimmune diseases. Biological mechanisms underlying these differences include the modulation of immunological pathways by sex hormones and gene dosage effects of immunomodulatory genes encoded by the X chromosome. During HIV-1 infections, women have been shown to present with lower viral load levels in primary infection, although their progression to AIDS is faster in comparison with men when accounting for viral load levels in chronic infection. HIV-1-infected women furthermore tend to have higher levels of immune activation and interferon-stimulated gene expression in comparison with men for the same viral load, which has been associated to innate sensing of HIV-1 by Toll-like receptor 7 and the consequent interferon-α production by plasmacytoid dendritic cells. SUMMARY Improvement in understanding the mechanisms associated with sex differences in HIV-1-mediated immunopathology will be critical to take sex differences into consideration when designing experimental and clinical studies in HIV-1-infected populations.
Collapse
|
48
|
Fink AL, Klein SL. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiology (Bethesda) 2016; 30:408-16. [PMID: 26525340 DOI: 10.1152/physiol.00035.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly.
Collapse
Affiliation(s)
- Ashley L Fink
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
49
|
Firth C, Harrison R, Ritchie S, Wardlaw J, Ferro C, Starr J, Deary I, Moss P. Cytomegalovirus infection is associated with an increase in systolic blood pressure in older individuals. QJM 2016; 109:595-600. [PMID: 27071749 PMCID: PMC5027953 DOI: 10.1093/qjmed/hcw026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) is a chronic infection that is widely distributed in the population. CMV infects a range of tissues, including endothelium, and viral replication is suppressed by the host immune system. Infection is associated with increased risk of mortality from vascular disease in older people, but the mechanisms behind this have not been determined. AIM We investigated the association between CMV infection and cardiovascular phenotype in a cohort of healthy elderly donors. DESIGN CMV serostatus and cardiovascular parameters were determined in the Lothian Birth cohort, which comprises 1091 individuals aged 70 years in whom many environmental, biochemical and radiological correlates of vascular function have been determined. METHODS CMV serostatus was determined by enzyme-linked immunosorbant assay and correlated with a range of biochemical and phenotypic measures. RESULTS Sixty-five percent of participants were CMV seropositive, which indicates chronic infection. The mean sitting systolic blood pressure (SBP) was 149.2 mmHg in CMV seropositive individuals compared with 146.2 mmHg in CMV seronegative subjects (SD 18.7 vs. 19.7; P < 0.017). This association between CMV infection and SBP was not attenuated after adjustment for a wide range of biological and socio-economic factors. CONCLUSIONS These data show that CMV infection is associated with an increase in SBP in individuals at age 70 years. The magnitude is comparable to environmental variables such as obesity, diabetes or high salt intake. This is the first evidence to show that a chronic infection may be an important determinant of blood pressure and could have significant implications for the future management of hypertension.
Collapse
Affiliation(s)
- C. Firth
- From the Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| | - R. Harrison
- Geriatric Medicine Unit, University of Edinburgh, Edinburgh, EH16, 4SB UK
| | - S. Ritchie
- Geriatric Medicine Unit, University of Edinburgh, Edinburgh, EH16, 4SB UK
| | - J. Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh, UK
| | - C.J. Ferro
- University Hospitals NHS Foundation Trust, Edgbaston, Birmingham, B15 2WB UK
| | - J.M. Starr
- Geriatric Medicine Unit, University of Edinburgh, Edinburgh, EH16, 4SB UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - I.J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - P. Moss
- From the Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
- University Hospitals NHS Foundation Trust, Edgbaston, Birmingham, B15 2WB UK
| |
Collapse
|
50
|
Al-Attar A, Presnell SR, Peterson CA, Thomas DT, Lutz CT. The effect of sex on immune cells in healthy aging: Elderly women have more robust natural killer lymphocytes than do elderly men. Mech Ageing Dev 2016; 156:25-33. [PMID: 27059724 DOI: 10.1016/j.mad.2016.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/12/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Immune gender differences have been reported, but are little studied in elderly humans. We compared monocyte and lymphocyte subsets, along with soluble immune mediators in healthy men and women over the age of 70. We also measured natural killer (NK) lymphocyte cytotoxic granule exocytosis, chemokine synthesis, and cytokine synthesis in response to a variety of stimuli. Elderly women had significantly more circulating B cells than men, whereas men had more CD4 central memory T cells and higher monocyte levels. Plasma adiponectin levels were higher in women, plasma retinol-binding protein 4 levels were higher in men, but there were no significant gender differences in C-reactive protein, IL-15, or sphingosine-1-phosphate. Women had a higher ratio of immature CD56(bright) NK cells to mature CD56(dim) NK cells, indicating a gender difference in NK cell maturation in the elderly. Comparing sexes, female mature NK cells had more vigorous cytotoxic granule responses to K562 leukemia cells and IFN-γ responses to NKp46 crosslinking. Moreover, female NK cells were more likely to produce MIP-1β in response to a variety of stimuli. These data show that gender influences NK cell activity in elderly humans.
Collapse
Affiliation(s)
- Ahmad Al-Attar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Steven R Presnell
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - D Travis Thomas
- Department of Clinical Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Charles T Lutz
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|